Search Results

Search found 25852 results on 1035 pages for 'linq query syntax'.

Page 49/1035 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • Cannot convert lambda expression to type 'string' because it is not a delegate type

    - by RememberME
    I have the following code written by another developer on 2 pages of my site. This used to work just fine, but now is giving the error "Cannot convert lambda expression to type 'string' because it is not a delegate type" on the Delete line with Ajax.ThemeRollerActionLink. I don't go into this section of the site often, and we recently upgraded from MVC 1.0 to 2.0. I'm guessing that's probably when it stopped working. I've looked up this error and the recommended fix seems to be add using System.Linq However, the page already has <%@ Import Namespace="System.Linq" %> <% Html.Grid(Model).Columns(col => { col.For(c => "<a href='" + Url.Action("Edit", new { userName = c }) + "' class=\"fg-button fg-button-icon-solo ui-state-default ui-corner-all\"><span class=\"ui-icon ui-icon-pencil\"></span></a>").Named("Edit").DoNotEncode(); col.For(c => Ajax.ThemeRollerActionLink("fg-button fg-button-icon-solo ui-state-default ui-corner-all", "ui-icon ui-icon-close", "Delete", new { userName = c }, new AjaxOptions { Confirm = "Delete User?", HttpMethod = "Delete", InsertionMode = InsertionMode.Replace, UpdateTargetId = "gridcontainer", OnSuccess = "successDeleteAssignment", OnFailure = "failureDeleteAssignment" })).Named("Delete").DoNotEncode(); col.For(c => c).Named("User"); }).Attributes(id => "userlist").Render(); %>

    Read the article

  • stackoverflow tags and related tags

    - by parminder
    Hi Experts, I am working on a website where a user can add tags to their posted books. It is similar to stackover flow, but I am keeping my tags in differnt table. so here are the tables/class in linq to entities. Books { bookId, Title } Tags { Id Tag } BooksTags { Id BookId TagId } Here are few sample records. Books BookId Title 113421 A 113422 B Tags Id Tag 1 ASP 2 C# 3 CSS 4 VB 5 VB.NET 6 PHP 7 java 8 pascal BooksTags Id BookId TagId 1 113421 1 2 113421 2 3 113421 3 4 113421 4 5 113422 1 6 113422 4 7 113422 8 Question 1 : I need to write something in linq to entities queries which gives me data according to the tags say if I want bookIds where tagid =1 it should return bookid 113421 and 113422 as it exists in both the books, but If I ask data for tags 1 and 2 it should return only book 113421 as that is the only book where both the tags are present. Question 2 : I need tags and their count too to show in related tags, so in first case my related tags class should have following result. RelatedTags Tag Count 2 1 3 1 4 2 8 1 in the second case when two tags are requested the result should be like RelatedTags Tag Count 3 1 4 1 I have get the first thing working by converting a sql query in linqer, but that seems like a hell. so want to know if there is any better idea. I have used dyanmic where clause to include two tags. So if someone can help. It will be much appreciated. Thanks Parminder

    Read the article

  • I need to convert the result of a stored procedure in a dbml file to IQueryable to view a list in an

    - by RJ
    I have a MVC project that has a Linq to SQL dbml class. It is a table called Clients that houses client information. I can easily get the information to display in a View using the code I followed in Nerd Dinner but I have added a stored procedure to the dbml and it's result set is of IQueryable, not IQueryable. I need to convert IQueryable to IQueryable so I can display it in the same View. The reason for the sproc is so I can pass a search string tothe sproc and return the same information as a full list but filtered on the search. I know I can use Linq to filter the whole list but I don't want the whole list so I am using the sproc. Here is the code in my ClientRepository with a comment where I need to convert. What code goes in the commented spot. public IQueryable<Client> SelectClientsBySearch(String search) { IQueryable<SelectClientsBySearchResult> spClientList = (from p in db.SelectClientsBySearch(search) select p).AsQueryable(); //what is the code to convert IQueryable<SelectClientsBySearchResult> to IQueryable<Client> return clientList; }

    Read the article

  • How do I do a table join on two fields in my second table?

    - by Cannonade
    I have two tables: Messages - Amongst other things, has a to_id and a from_id field. People - Has a corresponding person_id I am trying to figure out how to do the following in a single linq query: Give me all messages that have been sent to and from person x (idself). I had a couple of cracks at this. Not quite right MsgPeople = (from p in db.people join m in db.messages on p.person_id equals m.from_id where (m.from_id == idself || m.to_id == idself) orderby p.name descending select p).Distinct(); This almost works, except I think it misses one case: "people who have never received a message, just sent one to me" How this works in my head So what I really need is something like: join m in db.messages on (p.people_id equals m.from_id or p.people_id equals m.to_id) Gets me a subset of the people I am after It seems you can't do that. I have tried a few other options, like doing two joins: MsgPeople = (from p in db.people join m in AllMessages on p.person_id equals m.from_id join m2 in AllMessages on p.person_id equals m2.to_id where (m2.from_id == idself || m.to_id == idself) orderby p.name descending select p).Distinct(); but this gives me a subset of the results I need, I guess something to do with the order the joins are resolved. My understanding of LINQ (and perhaps even database theory) is embarrassingly superficial and I look forward to having some light shed on my problem.

    Read the article

  • LINQ to Twitter Queries with LINQPad

    - by Joe Mayo
    LINQPad is a popular utility for .NET developers who use LINQ a lot.  In addition to standard SQL queries, LINQPad also supports other types of LINQ providers, including LINQ to Twitter.  The following sections explain how to set up LINQPad for making queries with LINQ to Twitter. LINQPad comes in a couple versions and this example uses LINQPad4, which runs on the .NET Framework 4.0. 1. The first thing you'll need to do is set up a reference to the LinqToTwitter.dll. From the Query menu, select query properties. Click the Browse button and find the LinqToTwitter.dll binary. You should see something similar to the Query Properties window below. 2. While you have the query properties window open, add the namespace for the LINQ to Twitter types.  Click the Additional Namespace Imports tab and type in LinqToTwitter. The results are shown below: 3. The default query type, when you first start LINQPad, is C# Expression, but you'll need to change this to support multiple statements.  Change the Language dropdown, on the Main window, to C# Statements. 4. To query LINQ to Twitter, instantiate a TwitterContext, by typing the following into the LINQPad Query window: var ctx = new TwitterContext(); Note: If you're getting syntax errors, go back and make sure you did steps #2 and #3 properly. 5. Next, add a query, but don't materialize it, like this: var tweets = from tweet in ctx.Status where tweet.Type == StatusType.Public select new { tweet.Text, tweet.Geo, tweet.User }; 6. Next, you want the output to be displayed in the LINQPad grid, so do a Dump, like this: tweets.Dump(); The following image shows the final results:   That was an unauthenticated query, but you can also perform authenticated queries with LINQ to Twitter's support of OAuth.  Here's an example that uses the PinAuthorizer (type this into the LINQPad Query window): var auth = new PinAuthorizer { Credentials = new InMemoryCredentials { ConsumerKey = "", ConsumerSecret = "" }, UseCompression = true, GoToTwitterAuthorization = pageLink => Process.Start(pageLink), GetPin = () => { // this executes after user authorizes, which begins with the call to auth.Authorize() below. Console.WriteLine("\nAfter you authorize this application, Twitter will give you a 7-digit PIN Number.\n"); Console.Write("Enter the PIN number here: "); return Console.ReadLine(); } }; // start the authorization process (launches Twitter authorization page). auth.Authorize(); var ctx = new TwitterContext(auth, "https://api.twitter.com/1/", "https://search.twitter.com/"); var tweets = from tweet in ctx.Status where tweet.Type == StatusType.Public select new { tweet.Text, tweet.Geo, tweet.User }; tweets.Dump(); This code is very similar to what you'll find in the LINQ to Twitter downloadable source code solution, in the LinqToTwitterDemo project.  For obvious reasons, I changed the value assigned to ConsumerKey and ConsumerSecret, which you'll have to obtain by visiting http://dev.twitter.com and registering your application. One tip, you'll probably want to make this easier on yourself by creating your own DLL that encapsulates all of the OAuth logic and then call a method or property on you custom class that returns a fully functioning TwitterContext.  This will help avoid adding all this code every time you want to make a query. Now, you know how to set up LINQPad for LINQ to Twitter, perform unauthenticated queries, and perform queries with OAuth. Joe

    Read the article

  • Replaceable parameter syntax meaning

    - by Alexander N.
    Replaceable parameter syntax for the console object in C#. I am taking the O'Reilly C# Course 1 and it is asking for a replaceable parameter syntax and it is not very clear on what that means. Currently I used this: double trouble = 99999.0009; double bubble = 11111.0001; Console.WriteLine(trouble * bubble); Am I missing the meaning of replaceable parameter syntax? Can someone provide an example for what I am looking for? Original question for the quiz: "Create two variables, both doubles, assign them numbers greater than 10,000, and include a decimal component. Output the result of multiplying the numbers together, but use replaceable parameter syntax of the Console object, and multiply the numbers within the call to the Console.WriteLine() method."

    Read the article

  • Why the Select is before the From in a SQL Query?

    - by Scorpi0
    This is something that bothered me a lot at school. 5 years ago, when I learned SQL, I always wondered why we specify first the fields we want and then where we want them from. According to my idea, we should write: From Employee e Select e.Name So why the norm says: Select e.Name -- Eeeeek, what e means ? From Employee e -- Ok, now I know what e is It took me weeks to understand SQL, and I know that a lot of that time was consumed by the wrong order of elements. It is like writing in C#: string name = employee.Name; var employee = this.GetEmployee(); So, I assume that it has a historical reason, anyone knows why?

    Read the article

  • Dynamically select field names in a query with Spring JDBCTemplate

    - by Francesco
    Hi, I have a problem with parameters replacing by Spring JdbcTemplate. I have this query : <bean id="fixQuery" class="java.lang.String"> <constructor-arg type="java.lang.String" value="select fa.id, fi.? from fix_ambulation fa left join fix_i18n fi on fa.translation_id = fi.id order by name" /> And this method : public List<FixAmbulation> readFixAmbulation(String locale) throws Exception { List<FixAmbulation> ambulations = this.getJdbcTemplate().query( fixQuery, new Object[] {locale.toLowerCase()}, ParameterizedBeanPropertyRowMapper .newInstance(FixAmbulation.class)); return ambulations; } And I'd like to have the ? filled with the string representing the locale the user is using. So if the user is brasilian I'd send him the column pt_br from the table fix_i18n, otherwise if he's american I'd send him the column en_us. What I get from this method is a PostgreSQL exception org.postgresql.util.PSQLException: ERROR: syntax error at or near "$1" If I replace fi.? with just ? (the column name of the locale is unique, so if I run this query in the database it works just fine) what I get is that every object returned from method has the string locale into the field name. I.e. in name field I have "en_us". The only way to have it working I found was to change the method into : public List<FixAmbulation> readFixAmbulation(String locale) throws Exception { String query = "select fa.id, fi." + locale.toLowerCase() + " as name " + fixQuery; this.log.info("QUERY : " + query); List<FixAmbulation> ambulations = this.getJdbcTemplate().query( query, ParameterizedBeanPropertyRowMapper .newInstance(FixAmbulation.class)); return ambulations; } and setting fixQuery to : <bean id="fixQuery" class="java.lang.String"> <constructor-arg type="java.lang.String" value=" from telemedicina.fix_ambulation fa left join telemedicina.fix_i18n fi on fa.translation_id = fi.id order by name" /> </bean> My DAO extends Spring JdbcDaoSupport and works just fine for all other queries. What am I doing wrong?

    Read the article

  • Date problem in MYSQL Query

    - by davykiash
    Am looking for a query to sum values in a particular time duration say an year or a particular month in an year using MYSQL syntax.Note that my transaction_date column stores daily amount transacted. Am example of a query that returns total sales in an year query would look something like this SELECT SUM(transaction_amount) WHERE transaction_date = (YEAR) Am example of a query that returns total sales in an particular month and year would look something like this SELECT SUM(transaction_amount) WHERE transaction_date = (YEAR)(MONTH) How achievable is this?

    Read the article

  • File system query

    - by Balaji
    Is there an easy way to query data in file system? We are storing data in File system (instead of database) Is there a way to query the content of the file system? The data in the file system is stored in xml format. since the data is growing day by day we are finding it difficult to query the content of the files in the file system. Can anyone suggest what could be the tool/method to query the data in the existing file system?

    Read the article

  • Drawbacks of Dynamic Query in Sqlserver 2005 ?

    - by KuldipMCA
    I have using the many dynamic Query in my database for the procedures because my filter is not fix so i have taken @filter as parameter and pass in the procedure. Declare @query as varchar(8000) Declare @Filter as varchar(1000) set @query = 'Select * from Person.Address where 1=1 and ' + @Filter exec(@query) Like that my filter contain any Field from the table for comparison. It will affect my performance or not ? is there any alternate way to achieve this type of things

    Read the article

  • WordPress SQL Query on Category/Terms

    - by mroggle
    Hi, i am modifying a plugin slightly to meet my needs, and need to change this query to return post ID's of just one category. I know it has something to do with INNER JOIN, but cant get the query right. Here is the original query $query = "SELECT ID as PID FROM $wpdb->posts"; $results = $wpdb->get_results($querydetails,ARRAY_A);

    Read the article

  • Improve long mysql query

    - by John Adawan
    I have a php mysql query like this $query = "SELECT * FROM articles FORCE INDEX (articleindex) WHERE category='$thiscat' and did>'$thisdid' and mid!='$thismid' and status='1' and group='$thisgroup' and pid>'$thispid' LIMIT 10"; As optimization, I've indexed all the parameters in articleindex and I use force index to force mysql to use the index, supposedly for faster processing. But it seems that this query is still quite slow and it's causing a jam and maxing out the max mysql connection limit. Let's discuss how we can improve on such long query.

    Read the article

  • Improve long mysql query

    - by John Adawan
    I have a php mysql query like this $query = "SELECT * FROM articles FORCE INDEX (articleindex) WHERE category='$thiscat' and did>'$thisdid' and mid!='$thismid' and status='1' and group='$thisgroup' and pid>'$thispid' LIMIT 10"; As optimization, I've indexed all the parameters in articleindex and I use force index to force mysql to use the index, supposedly for faster processing. But it seems that this query is still quite slow and it's causing a jam and maxing out the max mysql connection limit. Let's discuss how we can improve on such long query.

    Read the article

  • running same query in different databases

    - by user316833
    I wrote a query that I want to run in several access databases. I have 1000+ access databases with the same tables (same names, same fields). So far, I have been manually copying this query from a txt file to the sql view in the access query design screen for each database and then run it. I did not need to change the query language - everything is the same for the 1000 databases. Is there a way to automate this?

    Read the article

  • Grails query not using GORM

    - by Tihom
    What is the best way to query for something without using GORM in grails? I have query that doesn't seem to fit in the GORM model, the query has a subquery and a computed field. I posted on stackoverflow already with no response so I decided to take a different approach. I want to query for something not using GORM within a grails application. Is there an easy way to get the connection and go through the result set?

    Read the article

  • A Query to remove relationships that do not belong [closed]

    - by Segfault
    In a SQL Server 2008 R2 database, given this schema: AgentsAccounts _______________ AgentID int UNIQUE AccountID FinalAgents ___________ AgentID I need to create a query that does this: For each AgentID 'final' in FinalAgents remove all of the OTHER AgentID's from AgentsAccounts that have the same AccountID as 'final'. So if the tables have these rows before the query: AgentsAccounts AgentID AccountID 1 A 2 A 3 B 4 B FinalAgents 1 3 then after the query the AgentsAccounts table will look like this: AgentsAccounts AgentID AccountID 1 A 3 B What T-SQL query will delete the correct rows without using a curosr?

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • Finally! Entity Framework working in fully disconnected N-tier web app

    - by oazabir
    Entity Framework was supposed to solve the problem of Linq to SQL, which requires endless hacks to make it work in n-tier world. Not only did Entity Framework solve none of the L2S problems, but also it made it even more difficult to use and hack it for n-tier scenarios. It’s somehow half way between a fully disconnected ORM and a fully connected ORM like Linq to SQL. Some useful features of Linq to SQL are gone – like automatic deferred loading. If you try to do simple select with join, insert, update, delete in a disconnected architecture, you will realize not only you need to make fundamental changes from the top layer to the very bottom layer, but also endless hacks in basic CRUD operations. I will show you in this article how I have  added custom CRUD functions on top of EF’s ObjectContext to make it finally work well in a fully disconnected N-tier web application (my open source Web 2.0 AJAX portal – Dropthings) and how I have produced a 100% unit testable fully n-tier compliant data access layerfollowing the repository pattern. http://www.codeproject.com/KB/linq/ef.aspx In .NET 4.0, most of the problems are solved, but not all. So, you should read this article even if you are coding in .NET 4.0. Moreover, there’s enough insight here to help you troubleshoot EF related problems. You might think “Why bother using EF when Linq to SQL is doing good enough for me.” Linq to SQL is not going to get any innovation from Microsoft anymore. Entity Framework is the future of persistence layer in .NET framework. All the innovations are happening in EF world only, which is frustrating. There’s a big jump on EF 4.0. So, you should plan to migrate your L2S projects to EF soon.

    Read the article

  • Entity Framework: How to bind related products

    - by Waheed
    I am using the following Linq query from p in Product.Include("ProductDetails.Colors") where p.ProductID.Equals(18) select p; And then using the result of this query to bind the GridView. The productDetails are bind to the grid fine, but the Colors are not bind. To bind colors i am using <%# Eval("Colors.CategoryName") %. Error is " Field or property with the name 'Colors.CategoryName' was not found on the selected data source." But in a loop i am getting this fine. foreach (ProductDetails proDet in pd.ProductDetails) { string bar = proDet.BarCode; string color = proDet.Colors.CategoryName; }

    Read the article

  • EJB-QL query never returning unless another query is run

    - by KevMo
    I have a strange strange problem. When executing the following EJB-QL query, my ENTIRE application will stop responding to requests, as the query never finishes executing. Query q = em.createQuery("SELECT o from RoomReservation as o WHERE o.deleted = FALSE AND o.room.id IN (Select r.id from Room as r where r.deleted = FALSE AND r.type.name = 'CLASSROOM')"); However, if I execute this query before I execute the other query, it runs without issue. Query dumbQuery = em.createQuery("SELECT o from Room as o WHERE o.deleted = FALSE"); Any idea what in the world is going on?

    Read the article

  • mySQL: Select WHERE causes error - why?

    - by Industrial
    Hi everybody, I have this query: SELECT `manufacturers`.*, `languages`.*, COUNT(`products`.`id`) AS productcount FROM (`manufacturers`) WHERE manufacturers.flushed = 0 JOIN `languages` ON `manufacturers`.`lang` = `languages`.`id` LEFT OUTER JOIN `products` ON `products`.`manuf` = `manufacturers`.`mid` GROUP BY manufacturers.id ORDER BY `languages`.`id` asc, `manufacturers`.`mid` asc; Without the WHERE row, everything works great, but with it, I get a Error 1064 (Syntax error) thrown in my face. I guess that it has something to do with the actual placement of the WHERE row in the query, so I tried to move it around, but without any luck. What can I do?

    Read the article

  • refactor LINQ TO SQL custom properties that instantiate datacontext

    - by Thiago Silva
    I am working on an existing ASP.NET MVC app that started small and has grown with time to require a good re-architecture and refactoring. One thing that I am struggling with is that we've got partial classes of the L2S entities so we could add some extra properties, but these props create a new data context and query the DB for a subset of data. This would be the equivalent to doing the following in SQL, which is not a very good way to write this query as oppsed to joins: SELECT tbl1.stuff, (SELECT nestedValue FROM tbl2 WHERE tbl2.Foo = tbl1.Bar), tbl1.moreStuff FROM tbl1 so in short here's what we've got in some of our partial entity classes: public partial class Ticket { public StatusUpdate LastStatusUpdate { get { //this static method call returns a new DataContext but needs to be refactored var ctx = OurDataContext.GetContext(); var su = Compiled_Query_GetLastUpdate(ctx, this.TicketId); return su; } } } We've got some functions that create a compiled query, but the issue is that we also have some DataLoadOptions defined in the DataContext, and because we instantiate a new datacontext for getting these nested property, we get an exception "Compiled Queries across DataContexts with different LoadOptions not supported" . The first DataContext is coming from a DataContextFactory that we implemented with the refactorings, but this second one is just hanging off the entity property getter. We're implementing the Repository pattern in the refactoring process, so we must stop doing stuff like the above. Does anyone know of a good way to address this issue?

    Read the article

  • Solving Combinatory Problems with LINQ /.NET4

    - by slf
    I saw this article pop-up in my MSDN RSS feed, and after reading through it, and the sourced article here I began to wonder about the solution. The rules are simple: Find a number consisting of 9 digits in which each of the digits from 1 to 9 appears only once. This number must also satisfy these divisibility requirements: The number should be divisible by 9. If the rightmost digit is removed, the remaining number should be divisible by 8. If the rightmost digit of the new number is removed, the remaining number should be divisible by 7. And so on, until there's only one digit (which will necessarily be divisible by 1). This is his proposed monster LINQ query: // C# and LINQ solution to the numeric problem presented in: // http://software.intel.com/en-us/blogs/2009/12/07/intel-parallel-studio-great-for-serial-code-too-episode-1/ int[] oneToNine = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // the query var query = from i1 in oneToNine from i2 in oneToNine where i2 != i1 && (i1 * 10 + i2) % 2 == 0 from i3 in oneToNine where i3 != i2 && i3 != i1 && (i1 * 100 + i2 * 10 + i3) % 3 == 0 from i4 in oneToNine where i4 != i3 && i4 != i2 && i4 != i1 && (i1 * 1000 + i2 * 100 + i3 * 10 + i4) % 4 == 0 from i5 in oneToNine where i5 != i4 && i5 != i3 && i5 != i2 && i5 != i1 && (i1 * 10000 + i2 * 1000 + i3 * 100 + i4 * 10 + i5) % 5 == 0 from i6 in oneToNine where i6 != i5 && i6 != i4 && i6 != i3 && i6 != i2 && i6 != i1 && (i1 * 100000 + i2 * 10000 + i3 * 1000 + i4 * 100 + i5 * 10 + i6) % 6 == 0 from i7 in oneToNine where i7 != i6 && i7 != i5 && i7 != i4 && i7 != i3 && i7 != i2 && i7 != i1 && (i1 * 1000000 + i2 * 100000 + i3 * 10000 + i4 * 1000 + i5 * 100 + i6 * 10 + i7) % 7 == 0 from i8 in oneToNine where i8 != i7 && i8 != i6 && i8 != i5 && i8 != i4 && i8 != i3 && i8 != i2 && i8 != i1 && (i1 * 10000000 + i2 * 1000000 + i3 * 100000 + i4 * 10000 + i5 * 1000 + i6 * 100 + i7 * 10 + i8) % 8 == 0 from i9 in oneToNine where i9 != i8 && i9 != i7 && i9 != i6 && i9 != i5 && i9 != i4 && i9 != i3 && i9 != i2 && i9 != i1 let number = i1 * 100000000 + i2 * 10000000 + i3 * 1000000 + i4 * 100000 + i5 * 10000 + i6 * 1000 + i7 * 100 + i8 * 10 + i9 * 1 where number % 9 == 0 select number; // run it! foreach (int n in query) Console.WriteLine(n); Octavio states "Note that no attempt at all has been made to optimize the code", what I'd like to know is what if we DID attempt to optimize this code. Is this really the best this code can get? I'd like to know how we can do this best with .NET4, in particular doing as much in parallel as we possibly can. I'm not necessarily looking for an answer in pure LINQ, assume .NET4 in any form (managed c++, c#, etc all acceptable).

    Read the article

  • Grafting LINQ onto C# 2 library

    - by P Daddy
    I'm writing a data access layer. It will have C# 2 and C# 3 clients, so I'm compiling against the 2.0 framework. Although encouraging the use of stored procedures, I'm still trying to provide a fairly complete ability to perform ad-hoc queries. I have this working fairly well, already. For the convenience of C# 3 clients, I'm trying to provide as much compatibility with LINQ query syntax as I can. Jon Skeet noticed that LINQ query expressions are duck typed, so I don't have to have an IQueryable and IQueryProvider (or IEnumerable<T>) to use them. I just have to provide methods with the correct signatures. So I got Select, Where, OrderBy, OrderByDescending, ThenBy, and ThenByDescending working. Where I need help are with Join and GroupJoin. I've got them working, but only for one join. A brief compilable example of what I have is this: // .NET 2.0 doesn't define the Func<...> delegates, so let's define some workalikes delegate TResult FakeFunc<T, TResult>(T arg); delegate TResult FakeFunc<T1, T2, TResult>(T1 arg1, T2 arg2); abstract class Projection{ public static Condition operator==(Projection a, Projection b){ return new EqualsCondition(a, b); } public static Condition operator!=(Projection a, Projection b){ throw new NotImplementedException(); } } class ColumnProjection : Projection{ readonly Table table; readonly string columnName; public ColumnProjection(Table table, string columnName){ this.table = table; this.columnName = columnName; } } abstract class Condition{} class EqualsCondition : Condition{ readonly Projection a; readonly Projection b; public EqualsCondition(Projection a, Projection b){ this.a = a; this.b = b; } } class TableView{ readonly Table table; readonly Projection[] projections; public TableView(Table table, Projection[] projections){ this.table = table; this.projections = projections; } } class Table{ public Projection this[string columnName]{ get{return new ColumnProjection(this, columnName);} } public TableView Select(params Projection[] projections){ return new TableView(this, projections); } public TableView Select(FakeFunc<Table, Projection[]> projections){ return new TableView(this, projections(this)); } public Table Join(Table other, Condition condition){ return new JoinedTable(this, other, condition); } public TableView Join(Table inner, FakeFunc<Table, Projection> outerKeySelector, FakeFunc<Table, Projection> innerKeySelector, FakeFunc<Table, Table, Projection[]> resultSelector){ Table join = new JoinedTable(this, inner, new EqualsCondition(outerKeySelector(this), innerKeySelector(inner))); return join.Select(resultSelector(this, inner)); } } class JoinedTable : Table{ readonly Table left; readonly Table right; readonly Condition condition; public JoinedTable(Table left, Table right, Condition condition){ this.left = left; this.right = right; this.condition = condition; } } This allows me to use a fairly decent syntax in C# 2: Table table1 = new Table(); Table table2 = new Table(); TableView result = table1 .Join(table2, table1["ID"] == table2["ID"]) .Select(table1["ID"], table2["Description"]); But an even nicer syntax in C# 3: TableView result = from t1 in table1 join t2 in table2 on t1["ID"] equals t2["ID"] select new[]{t1["ID"], t2["Description"]}; This works well and gives me identical results to the first case. The problem is if I want to join in a third table. TableView result = from t1 in table1 join t2 in table2 on t1["ID"] equals t2["ID"] join t3 in table3 on t1["ID"] equals t3["ID"] select new[]{t1["ID"], t2["Description"], t3["Foo"]}; Now I get an error (Cannot implicitly convert type 'AnonymousType#1' to 'Projection[]'), presumably because the second join is trying to join the third table to an anonymous type containing the first two tables. This anonymous type, of course, doesn't have a Join method. Any hints on how I can do this?

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >