Search Results

Search found 15648 results on 626 pages for 'wcf security'.

Page 49/626 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • Exceptions from WCF

    - by adrianm
    What exceptions can be thrown from a WCF client? I usually catch CommunicationFaultedException, CommunicationException, TimoutException and some other but from time to time new ones occur, e.g. most recently QuotaExceededException There is no common base to catch (except Exception) so does anyone have a complete list?

    Read the article

  • Different databases using WCF dataservice

    - by espenk
    I have multiple SQL Server databases with the same schema. I would like to use one WCF data service (Rest service) to access the different databases. How can I accomplish this so the client can pass in the correct database name or connection string?

    Read the article

  • WCF - Error Handling

    - by inutan
    Hello there, I have my WCF Service hosted in Windows Service. The client application is a website project to which I added the Service reference. I was not using any error logging/tracing... but now I feel I should implement as it will help me not to make void guesses. Please guide me for the best practice so that I can quickly handle errors and pin point the exact issue. Thank you!

    Read the article

  • Under what circumstances does it make sense to run a WCF client and server on the same machine?

    - by Rising Star
    In Learning WCF, by Michele Bustamante, there is a section that describes a binding called the NetNamedPipes binding. The books says that this binding can only be used for WCF services that will be called exclusively from the same machine. Under what circumstances would it make sense to use this? Ordinarily, I would write asynchronous code without using WCF... Why would Microsoft provide something for WCF that can only run on the same machine?

    Read the article

  • How to access hosted WCF service methods?

    - by Qutbuddin Kamaal
    Hi, I created a WCF service name 'WasSettingsService' have method 'GetWASSettings' and Hosted this service like this: ServiceHost myServiceHost = new ServiceHost(typeof(LocalMachineSettingsService.WasSettingsService)); myServiceHost.Open(); Now How can I access 'GetWASSettings' Thanks in advance will really appreciate this..

    Read the article

  • WCF + json. WCF response invalid not expected string.

    - by Evgeny
    I have configured wcf service and method which return some structure. The problem that all symbols in response '\' begins with '/' Example: [ { "rel":"http:\/\/localhost:3354\/customer\/1\/order", "uri":"http:\/\/localhost:3354\/customer\/1\/order\/3" }, { "rel":"http:\/\/localhost:3354\/customer\/1\/order", "uri":"http:\/\/localhost:3354\/customer\/1\/order\/5" }, { "rel":"http:\/\/localhost:3354\/customer\/1\/order", "uri":"http:\/\/localhost:3354\/customer\/1\/order\/8" } ] And i return only http:\localhost:3354\customer\1\order ! Why that symbols added and how can i remove them?

    Read the article

  • WCF channel timed out error

    - by stackuser3
    Hi, I have devloped an application which connects the database thrugh WCF + LINQ. I am able invoke the service from my asp.net application successfuly. But the problem here is that, when i navigate from end to end in my application almost after four or five clicks, i am getting the late response and says channel timed out error. If anyone is aware about the soltion for this. It would be really helpful for me. Thanks,

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Security and the Mobile Workforce

    - by tobyehatch
    Now that many organizations are moving to the BYOD philosophy (bring your own devices), security for phones and tablets accessing company sensitive information is of paramount importance. I had the pleasure to interview Brian MacDonald, Principal Product Manager for Oracle Business Intelligence (BI) Mobile Products, about this subject, and he shared some wonderful insight about how the Oracle Mobile Security Tool Kit is addressing mobile security and doing some pretty cool things.  With the rapid proliferation of phones and tablets, there is a perception that mobile devices are a security threat to corporate IT, that mobile operating systems are not secure, and that there are simply too many ways to inadvertently provide access to critical analytic data outside the firewall. Every day, I see employees working on mobile devices at the airport, while waiting for their airplanes, and using public WIFI connections at coffee houses and in restaurants. These methods are not typically secure ways to access confidential company data. I asked Brian to explain why. “The native controls for mobile devices and applications are indeed insufficiently secure for corporate deployments of Business Intelligence and most certainly for businesses where data is extremely critical - such as financial services or defense - although it really applies across the board. The traditional approach for accessing data from outside a firewall is using a VPN connection which is not a viable solution for mobile. The problem is that once you open up a VPN connection on your phone or tablet, you are creating an opening for the whole device, for all the software and installed applications. Often the VPN connection by itself provides insufficient encryption – if any – which means that data can be potentially intercepted.” For this reason, most organizations that deploy Business Intelligence data via mobile devices will only do so with some additional level of control. So, how has the industry responded? What are companies doing to address this very real threat? Brian explained that “Mobile Device Management (MDM) and Mobile Application Management (MAM) software vendors have rapidly created solutions for mobile devices that provide a vast array of services for controlling, managing and establishing enterprise mobile usage policies. On the device front, vendors now support full levels of encryption behind the firewall, encrypted local data storage, credential management such as federated single-sign-on as well as remote wipe, geo-fencing and other risk reducing features (should a device be lost or stolen). More importantly, these software vendors have created methods for providing these capabilities on a per application basis, allowing for complete isolation of the application from the mobile operating system. Finally, there are tools which allow the applications themselves to be distributed through enterprise application stores allowing IT organizations to manage who has access to the apps, when updates to the applications will happen, and revoke access after an employee leaves. So even though an employee may be using a personal device, access to company data can be controlled while on or near the company premises. So do the Oracle BI mobile products integrate with the MDM and MAM vendors? Brian explained that our customers use a wide variety of mobile security vendors and may even have more than one in-house. Therefore, Oracle is ensuring that users have a choice and a mechanism for linking together Oracle’s BI offering with their chosen vendor’s secure technology. The Oracle BI Mobile Security Toolkit, which is a version of the Oracle BI Mobile HD application, delivered through the Oracle Technology Network (OTN) in its component parts, helps Oracle users to build their own version of the Mobile HD application, sign it with their own enterprise development certificates, link with their security vendor of choice, then deploy the combined application through whichever means they feel most appropriate, including enterprise application stores.  Brian further explained that Oracle currently supports most of the major mobile security vendors, has close relationships with each, and maintains strong partnerships enabling both Oracle and the vendors to test, update and release a cooperating solution in lock-step. Oracle also ensures that as new versions of the Oracle HD application are made available on the Apple iTunes store, the same version is also immediately made available through the Security Toolkit on OTN.  Rest assured that as our workforce continues down the mobile path, company sensitive information can be secured.  To listen to the entire podcast, click here. To learn more about the Oracle BI Mobile HD, click  here To learn more about the BI Mobile Security Toolkit, click here 

    Read the article

  • Mac Management and Security

    - by Bart Silverstrim
    I was going through some literature on managing OS X laptops and asked someone some questions about usage scenarios when using the MacBooks. I asked someone more knowledgeable than I about whether it was possible for my Mac to be taken over if I were visiting another site for a conference or if I went on a wifi network at a local coffee house with policies from an OS X Server with workgroup manager (either legit for the site or someone running a version of OS X Server on hardware they have hidden somewhere on the network), which apparently could be set up to do things like limit my access to Finder or impose other neat whiz-bang management features. He said that it is indeed possible for it to happen as it would be assigned via the DHCP server and the OS X server would assume my Mac is a guest and could hand out restrictions and apparently my Mac will happily accept them without notifying me or giving me an option, unlike Windows which I believe would need to be joined to a domain before it becomes "managed" by Active Directory. So my question is as network admins and sysadmins with users traveling with MacBooks, is there a way to reasonably protect your users from having their machines hijacked without resorting to just turning off networking all the time? Or isn't this much of a security hazard? What threat does this pose to the road warriors in your businesses?

    Read the article

  • Online Storage and security concerns

    - by Megge
    I plan to set up a small fileserver. I already own a small server at HostEurope (VirtualServer L, 250GB space), but they don't offer enough space (there is the HostEurope Cloud, but paying for bandwidth isn't an option here, video-streaming should be possible) Requirements summarized: Storage: 2TB, Users: ~15, Filesizes: < 100GB, should be easily reachable (Mount as a networkdrive or at least have solid "communication" software) My first question would be: Where can I get halfway affordable online storages? And how should I connect them to my server? Getting an additional server is a bit overkill, as I know no hoster which allows 2 TB on a small 2 Ghz Dual Core 2 GB RAM thingy (that would be enough by far, I just need much space), and connecting it via NFS or FTP over Internet seems a bit strange and cripples performance. Do you have any advice where I could get that storage service from? (I sent HostEurope a custom request today, but they didn't answer till now. If they can provide me with that space, this question will be irrelevant, but the 2nd one is the more important one anway, don't do much more than recommend me some based on experience, you don't have to crawl hours through hosting services) livedrive for example offers 5 TB for 17€ / month, I'd be happy with 2 TB for 20 €, the caveat is: It doesn't allow multiple users, which leads me to my second question: Where are the security problems? Which protocol is sufficient (I want private and "public" folders etc. the usual "every user has its own and a public space"-thing), secure and fast? (I'd tend to (S)FTP, problem with FTP is: Most of those hosting services don't even allow FTP with mutliple users and single users lead me into "hacking" a solution (you could map the basic folder structure on the main server and just mount every subfolder from the storage, things get difficult with a public folder with 644 permissions though) Is useing something like PKI or 802.1X overkill for private uses?

    Read the article

  • Managing Apache to Compensate for WebDAV's Security Masking

    - by Tohuw
    When a user creates a file via WebDAV, the default behavior is that the file is owned by the user and group running the Apache process, with a umask of 022. Unfortunately, this makes it impossible for unprivileged users to write to the files by other means without being a member of the group Apache runs under (which strikes me as a particularly bad idea). My current solution is to set umask 000 in Apache's envvars and remove all world permissions from the webdav parent directory for the user. So, if the WebDAV share is /home/foo/www, then /home/foo/www is owned by www-data:foo with permissions of 770. This keeps other unprivileged users out, more or less, but it's hokey at best and a security disaster awaiting at worst. From my research and poking around at mod_dav and Apache, I cannot find a reasonable solution short of a cron job flipping all the permissions back (I'd rather not have the load and increased complexity on the server). SuExec won't work, either, because WebDAV operations are not going to execute as a different user. Any thoughts on this? Thank you.

    Read the article

  • Microsoft Security Essentials & MsMpEng.exe hogging resources

    - by Mike
    I've been using MSE for a couple months now, never had a single problem. All of a sudden the process "MsMpEng.exe" will randomly go crazy and hog all my system resources so I can't do anything unless I kill it in the task manager. (I've quit the program for now and my comp is running smooth). When I restart the program, reboot, whatever, it goes off and hogs all the resources again after a couple minutes. If I kill the process it will go away and then come back a couple minutes later and do the same thing. I've scanned with MSE, another antivirus and malware with no probs. Any ideas? Should I uninstall and find something else? The thing is I've liked it so far. I'm running Win7 64-bit. Also, I'm not running any other conflicting security programs. This is the only one on my PC right now. Windows Defender is also off.

    Read the article

  • Mac Management Without Permission and Security

    - by Bart Silverstrim
    I was going through some literature on managing OS X laptops and asked someone some questions about usage scenarios when using the MacBooks. I asked someone more knowledgeable than I about whether it was possible for my Mac to be taken over if I were visiting another site for a conference or if I went on a wifi network at a local coffee house with policies from an OS X Server with workgroup manager (either legit for the site or someone running a version of OS X Server on hardware they have hidden somewhere on the network), which apparently could be set up to do things like limit my access to Finder or impose other neat whiz-bang management features. He said that it is indeed possible for it to happen as it would be assigned via the DHCP server and the OS X server would assume my Mac is a guest and could hand out restrictions and apparently my Mac will happily accept them without notifying me or giving me an option, unlike Windows which I believe would need to be joined to a domain before it becomes "managed" by Active Directory. So my question is as network admins and sysadmins with users traveling with MacBooks, is there a way to reasonably protect your users from having their machines hijacked without resorting to just turning off networking all the time? Or isn't this much of a security hazard? What threat does this pose to the road warriors in your businesses?

    Read the article

  • Resources for Smartphone Security

    - by Shial
    My organization is currently working on improving our data and network security due to increasing HIPAA laws and a general need to get a better grasp on controlling our health related information. We are a non-profit working with people with developmental disabilities so we handle a lot of medical related information. One area that has been identified as a risk is our use of smartphones, specifically at this time Windows Mobile 6.1 devices from T-Mobile. We do not utilize the VPNs on the phones so there isn't any way they can access our databases or file servers (username/password for VPNs is not the domain logons). What would be exposed however is the particular user's email account since you could extract out the username/password and access the email either on the device or on our web email (Exchange 2003) which could contain HIPAA protected confidential information about clients and services and this would be an incident that would have to be reported. What resources or ideas would help us secure these devices? I'm not worried about data interception (using SSL) but more about physical theft or loss of the device. Are there websites that I just have not found with guidelines and suggestions or particualar products that would help protect us? I also don't want to limit the discussion to windows Mobile either. I myself am looking at an android 2.0 device and there is always the eventual possibility we could get pushed to enable the VPNs. I know this is a subject that likely won't have any particular correct answer and it is something we should all be aware of since there devices are sitting outside of our immediate control most of the time.

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >