Search Results

Search found 20833 results on 834 pages for 'oracle advice'.

Page 494/834 | < Previous Page | 490 491 492 493 494 495 496 497 498 499 500 501  | Next Page >

  • Add Widget via Action in Toolbar

    - by Geertjan
    The question of the day comes from Vadim, who asks on the NetBeans Platform mailing list: "Looking for example showing how to add Widget to Scene, e.g. by toolbar button click." Well, the solution is very similar to this blog entry, where you see a solution provided by Jesse Glick for VisiTrend in Boston: https://blogs.oracle.com/geertjan/entry/zoom_capability Other relevant articles to read are as follows: http://netbeans.dzone.com/news/which-netbeans-platform-action http://netbeans.dzone.com/how-to-make-context-sensitive-actions Let's go through it step by step, with this result in the end, a solution involving 4 classes split (optionally, since a central feature of the NetBeans Platform is modularity) across multiple modules: The Customer object has a "name" String and the Droppable capability has a method "doDrop" which takes a Customer object: public interface Droppable {    void doDrop(Customer c);} In the TopComponent, we use "TopComponent.associateLookup" to publish an instance of "Droppable", which creates a new LabelWidget and adds it to the Scene in the TopComponent. Here's the TopComponent constructor: public CustomerCanvasTopComponent() {    initComponents();    setName(Bundle.CTL_CustomerCanvasTopComponent());    setToolTipText(Bundle.HINT_CustomerCanvasTopComponent());    final Scene scene = new Scene();    final LayerWidget layerWidget = new LayerWidget(scene);    Droppable d = new Droppable(){        @Override        public void doDrop(Customer c) {            LabelWidget customerWidget = new LabelWidget(scene, c.getTitle());            customerWidget.getActions().addAction(ActionFactory.createMoveAction());            layerWidget.addChild(customerWidget);            scene.validate();        }    };    scene.addChild(layerWidget);    jScrollPane1.setViewportView(scene.createView());    associateLookup(Lookups.singleton(d));} The Action is displayed in the toolbar and is enabled only if a Droppable is currently in the Lookup: @ActionID(        category = "Tools",        id = "org.customer.controler.AddCustomerAction")@ActionRegistration(        iconBase = "org/customer/controler/icon.png",        displayName = "#AddCustomerAction")@ActionReferences({    @ActionReference(path = "Toolbars/File", position = 300)})@NbBundle.Messages("AddCustomerAction=Add Customer")public final class AddCustomerAction implements ActionListener {    private final Droppable context;    public AddCustomerAction(Droppable droppable) {        this.context = droppable;    }    @Override    public void actionPerformed(ActionEvent ev) {        NotifyDescriptor.InputLine inputLine = new NotifyDescriptor.InputLine("Name:", "Data Entry");        Object result = DialogDisplayer.getDefault().notify(inputLine);        if (result == NotifyDescriptor.OK_OPTION) {            Customer customer = new Customer(inputLine.getInputText());            context.doDrop(customer);        }    }} Therefore, when the Properties window, for example, is selected, the Action will be disabled. (See the Zoomable example referred to in the link above for another example of this.) As you can see above, when the Action is invoked, a Droppable must be available (otherwise the Action would not have been enabled). The Droppable is obtained in the Action and a new Customer object is passed to its "doDrop" method. The above in pictures, take note of the enablement of the toolbar button with the red dot, on the extreme left of the toolbar in the screenshots below: The above shows the JButton is only enabled if the relevant TopComponent is active and, when the Action is invoked, the user can enter a name, after which a new LabelWidget is created in the Scene. The source code of the above is here: http://java.net/projects/nb-api-samples/sources/api-samples/show/versions/7.3/misc/WidgetCreationFromAction Note: Showing this as an MVC example is slightly misleading because, depending on which model object ("Customer" and "Droppable") you're looking at, the V and the C are different. From the point of view of "Customer", the TopComponent is the View, while the Action is the Controler, since it determines when the M is displayed. However, from the point of view of "Droppable", the TopComponent is the Controler, since it determines when the Action, i.e., which is in this case the View, displays the presence of the M.

    Read the article

  • Tip #19 Module Private Visibility in OSGi

    - by ByronNevins
    I hate public and protected methods and classes.  It requires so much work to change them in a huge project like GlassFish.  Not to mention that you may well have to support those APIs forever.  They are highly overused in GlassFish.  In fact I'd bet that > 95% of classes are marked as public for no good reason.  It's just (bad) habit is my guess. private and default visibility (I call it package-private) is easier to maintain.  It is much much easier to change such classes and methods around.  If you have ANY public method or public class in GlassFish you'll need to grep through a tremendous amount of source code to find all callers.  But even that won't be theoretically reliable.  What if a caller is using reflection to access public methods?  You may never find such usages. If you have package private methods, it's easy.  Simply grep through all the code in that one package.  As long as that package compiles ok you're all set.  There can' be any compile errors anywhere else.  It's a waste of time to even look around or build the "outside" world.  So you may be thinking: "Aha!  I'll just make my module have one giant package with all the java files.  Then I can use the default visibility and maintenance will be much easier.  But there's a problem.  You are wasting a very nice feature of java -- organizing code into separate packages.  It also makes the code much more encapsulated.  Unfortunately to share code between the packages you have no choice but to declare public visibility. What happens in practice is that a module ends up having tons of public classes and methods that are used exclusively inside the module.  Which finally brings me to the point of this blog:  If Only There Was A Module-Private Visibility Available Well, surprise!  There is such a mechanism.  If your project is running under OSGi that is.  Like GlassFish does!  With this mechanism you can easily add another level of visibility by telling OSGi exactly which public you want to be exposed outside of the module.  You get the best of both worlds: Better encapsulation of your code so that maintenance is easier and productivity is increased. Usage of public visibility inside the module so that you can encapsulate intra-module better with packages. How I do this in GlassFish: Carefully plan out at least one package that will contain "true" publics.  This is the package that will be exported by OSGi.  I recommend just one package. Here is how to tell OSGi to use it in GlassFish -- edit osgi.bundle like so:-exportcontents:     org.glassfish.mymodule.truepublics;  version=${project.osgi.version} Now all publics declared in any other packages will be visible module-wide but not outside the module. There is one caveat: Accessing "module-private" items outside of the module is controlled at run-time, not compile-time.  The compiler has no clue that a public in a dependent module isn't really public.  it will happily compile it.  At runtime you will definitely see fireworks.  The good news is that you don't have to wait for the code path that tries to use the "module-private" items to fire.  OSGi will complain loudly when that module gets loaded.  OSGi will refuse to load it.  You will see an error like this: remote failure: Error while loading FOO: Exception while adding the new configuration : Error occurred during deployment: Exception while loading the app : org.osgi.framework.BundleException: Unresolved constraint in bundle com.oracle.glassfish.miscreant.code [115]: Unable to resolve 115.0: missing requirement [115.0] osgi.wiring.package; (osgi.wiring.package=org.glassfish.mymodule.unexported). Please see server.log for more details. That is if you accidentally change code in module B to use a public that is really a "module-private" in module A, then you will see the error immediately when you try to test whatever you were changing in module B.

    Read the article

  • Java works under Firefox but not under Internet Explorer

    - by Dominic Grenier
    Java works under Firefox but not under IE. Java applet activated in security settings, activated in add-ons, activated in advanced tab; that's the advice they usually give in forums... I've also deleted my temporary internet files, reinstalled IE8 and it is also set as the default java for IE through the control panel. IE version: 8.0.6001.18702 Java version: 1.7.0_03. Windows XP SP3. Any advice? Thanks :)

    Read the article

  • Cisco 1242 WAP Bridging

    - by DanWake
    I'm looking to connect two facilities with a a pair of Cisco 1242 access points and am looking for advice on configuration. We have multiple VLANs running that will need to be passed through the connection, but otherwise a fairly simple setup. Any advice on best practices from security, reliability, and speed points of views?

    Read the article

  • Can't connect to MySQL server on 'localhost' (10048)

    - by tempyAcc
    From what I can tell this is recent error that has started to occur on my localserver: Can't connect to MySQL server on 'localhost' (10048). My site will work for a while then it will randomly throw this error then start working again. Any advice on how to fix this? I have searched online and most people claim that it is a windows based error which needs a registry fix but I wanted to see if anyone else has encountered this issue and has any better advice? Thanks!

    Read the article

  • What's at Risk with Switching to ZSH?

    - by Yar
    Most advice for Mac is written assuming you use the Bash shell. If I switch to zsh, how incompatible do I become with current Bash scripts that I have on my system, and advice people on SU give me? Does the #!/bin/sh line at the beginning of my scripts help?

    Read the article

  • VM Virtual guest machine disk defrag improves performance, myth or reality?

    - by jafin
    In operation of a virtual Vmware or Hyper-V guest typically advice is given to defrag the host and virtual disk images so to result in improved performance. Something like a cmd: vmware-vdiskmanager -d <file.vmdk> works great. Yet I can't find any qualitive evidence that suggest defraging inside the guest VM improves performance. Does anyone have advice or evidence that doesn't come from a commercial defragger's whitepaper that suggests inside guest defragging helps?

    Read the article

  • Easy Flood Fill

    - by Jimmy
    Some advice, please. I'm just starting out in C#. I've managed to get some shapes created on a Windows form, and now I'd like to fill them with color. In the old C++ I studied years ago, there was a floodfill function that was really easy. It has been an unpleasant realization to find there's not a similar method available in regular old C#. Does anyone have advice for me, or some code, so I can implement filling without understanding GDI+, DirectX, or rest of the avalanche of acronyms that I've run into by researching this on the web? I need to fill irregular shapes, bounded by a certain color. Gradient and transparency control would be nice, but I'd settle for plain old solid fill right now, just to get a modicom of control over this. Any help, code or advice would be really appreciated.

    Read the article

  • Cleanest way to run/debug python programs in windows

    - by YGA
    Python for Windows by default comes with IDLE, which is the barest-bones IDE I've ever encountered. For editing files, I'll stick to emacs, thank you very much. However, I want to run programs in some other shell than the crappy windows command prompt, which can't be widened to more than 80 characters. IDLE lets me run programs in it if I open the file, then hit F5 (to go Run- Run Module). I would rather like to just "run" the command, rather than going through the rigmarole of closing the emacs file, loading the IDLE file, etc. A scan of google and the IDLE docs doesn't seem to give much help about using IDLE's shell but not it's IDE. Any advice from the stack overflow guys? Ideally I'd either like advice on running programs using IDLE's shell advice on other ways to run python programs in windows outside of IDLE or "cmd". Thanks, /YGA

    Read the article

  • As a consultant should I charge my clients for developing specs?

    - by Chris
    I'm trying to transition into some programming consulting work. A friend of my former employer is interested in having me "develop a spec," which I take to mean come up with some technology requirements and time estimates (e.g. milestones). Do developers normally charge for this? I'm imagining it's basically the same kind of workload that creating a bid for a project would take. On one hand, consultants don't get paid for the time they put into the legwork of a bid. On the other hand, this is probably go to be more than a couple hours of work, and my time is valuable. Any advice? Any sites besides SO I could go to get advice with this kind of stuff? (Sorry if this isn't programming-related enough for StackOverflow! I don't know where else to get advice!)

    Read the article

  • How to edit files on the users file system from my web server?

    - by Abs
    Hello all, I am really looking for implementation advice as I have entered a new realm that I am not familiar with. At the simplest level, I would like to find a way that I can read/write to a users machine from my web server. For this to work, I think I will have to install some sort of "plugin" on the users machine which can receive (or poll?) the server for instructions. The above is the line of thought that I currently have, maybe using JAVA to do this. This needs to work on Linux, Mac and Windows OS. I am really looking for advice on the above, is it a good idea? Is there a better way of doing this? Is there something out there already that I can build on top of? I really appreciate all input and advice as this is something I have not done before. Thanks all

    Read the article

  • Start a Mapping or Process Flow from OWB Browser

    - by Dong Ruirong
    Basically, we start a Mapping or Process Flow from Oracle Warehouse Builder (OWB) Design Client. But actually we can also start a Mapping or Process Flow from OWB Browser. This paper will introduce the Start Report first and then introduce how to start/rerun a Mapping or Process Flow from OWB Browser. Start Report Start Report is used to start an execution of a Mapping or Process Flow. So there are two kinds of Start Report: Mapping Start Report (See Figure 1) and Process Flow Start Report (See Figure 2). Start Report shows the Mapping or Process Flow identification properties, including latest deployment and latest execution, lists all execution parameters for the Mapping or Process Flow, which were specified by the latest deployment, and assigns parameter default values from the latest deployment specification. You can do a couple of things from Start Report: Sort execution parameters on name, category. Table 1 lists all parameters of a Mapping. Table 2 lists all parameters of a Process Flow. Change values of any input parameter where permitted. For some parameters, selection lists are provided. For example, Mapping’s parameter Audit Level has a selection list. Reset all parameter settings to their default values. Apply basic validation to parameter values before starting an execution. Start the Mapping or Process Flow, which means it is executed immediately. Navigate to Deployment Report for latest deployment details of the Mapping or Process Flow. Navigate to Execution Job Report for latest execution of current Mapping or Process Flow Link to on-link help Warehouse Report Page, Deployment Report, Execution Report, Execution Schedule Report and Execution Summary Report. Figure 1 Mapping Start Report Table 1 Execution Parameters and default values for a Mapping Category Name Mode Input Value System Audit Level In Error Details System Bulk Size In 1000 System Commit Frequency In 1000 System EXECUTE_RESUME_TASK In FALSE System FORCE_RESUME_OPTION In FALSE System Max No of Errors In 50 System NUMBER_OF_TIMES_TO_RETRY In 2 System Operating Mode In Set Based Fail Over to Row Based System PARALLEL_LEVEL In 0 System Procedure Name In main System Purge Group In WB Figure 2 Process Flow Start Report Table 2 Execution Parameters and default values for a Process Flow Category Name Mode Input Value System EVAL_LOCATION In   System Item Key In-Out   System Item Type In PFPKG_1 Start a Mapping or Process Flow To navigate to Start Report, it’s better to login OWB Browser with Control Center option; if not, after logging in OWB Browser, go to Control Center first. Then you can follow the ways introduced in this section to navigate to Start Report. One more thing you need to pay attention to is that you are not allowed to deploy any Mappings and Process Flows from OWB Browser as it’s not supported. So it’s necessary to deploy the Mappings and Process Flows first before starting them from OWB Browser. If you have deployed a Mapping or Process Flow but have not started it, please navigate from Object Summary Report or Deployment Schedule Report to Start Report. 1. Navigating from Object Summary Report to Start Report Open the Object Summary Report to see all deployed Mappings and Process Flows. Click the Mapping Name or Process Flow Name link to see its Deployment Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. 2. Navigating from Deployment Schedule Report to Start Report Open the Deployment Schedule Report to see deployment details of Mapping and Process Flow. Expand the project trees to find the deployed Mappings and Process Flows. Click the Mapping Name or Process Flow Name link to see its Deployment Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. Re-run a Mapping or Process Flow If you have executed a Mapping or Process Flow, you can navigate from Object Summary Report, Deployment Schedule Report, Execution Summary Report or Execution Schedule Report to Start Report. 1. Navigating from the Execution Summary Report to Start Report Open the Execution Summary Report to see all execution jobs including Mapping jobs and Process Flow jobs. Click on the Mapping Name or Process Flow Name to see its Execution Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. 2. Navigating from the Execution Schedule Report to Start Report Open the Execution Schedule Report to see list of all executions of Mapping and Process Flow. Click on the Mapping Name or Process Flow Name to see its Execution Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. If the execution of a Mapping or Process Flow is successful, you will see this message from the Start Report: Start Execution request successful. (See Figure 3) Figure 3 Execution Result You can also confirm the execution of the Mapping or Process Flow by referring to Execution Report of the current Mapping or Process Flow by clicking the link in the Available Reports tab for the given Mapping or Process Flow. One new record of execution job details is added to Execution Report of the Mapping or Process Flow which shows the details of the execution such as Start Time, Elapsed Time, Status, the number of records selected, inserted, updated, deleted etc.

    Read the article

  • JMaghreb 2012 Trip Report

    - by arungupta
    JMaghreb is the inaugural Java conference organized by Morocco JUG. It is the biggest Java conference in Maghreb (5 countries in North West Africa). Oracle was the exclusive platinum sponsor with several others. The registrations had to be closed at 1412 for the free conference and several folks were already on the waiting list. Rabat with 531 registrations and Casablanca with 426 were the top cities. Some statistics ... 850+ attendees over 2 days, 500+ every day 30 sessions were delivered by 18 speakers from 10 different countries 10 sessions in French and 20 in English 6 of the speakers spoke at JavaOne 2012 8 will be at Devoxx Attendees from 5 different countries and 57 cities in Morocco 40.9% qualified them as professional and rest as students Topics ranged from HTML5, Java EE 7, ADF, JavaFX, MySQL, JCP, Vaadin, Android, Community, JCP Java EE 6 hands-on lab was sold out within 7 minutes and JavaFX in 12 minutes I gave the keynote along with Simon Ritter which was basically a recap of the Strategy and Technical keynotes presented at JavaOne 2012. An informal survey during the keynote showed the following numbers: 25% using NetBeans, 90% on Eclipse, 3 on JDeveloper, 1 on IntelliJ About 10 subscribers to free online Java magazine. This digital magazine is a comprehensive source of information for everything Java - subscribe for free!! About 10-15% using Java SE 7. Download JDK 7 and get started today! Even JDK 8 builds have been available for a while now. My second talk explained the core concepts of WebSocket and how JSR 356 is providing a standard API to build WebSocket-driven applications in Java EE 7. TOTD #183 explains how you can easily get started with WebSocket in GlassFish 4. The complete slide deck is available: Next day started with a community keynote by Sonya Barry. Some of us live the life of JCP, JSR, EG, EC, RI, etc every day, but not every body is. To address that, Sonya prepared an excellent introductory presentation providing an explanation of these terms and how java.net infrastructure supports Java development. The registration for the lab showed there is a definite demand for these technologies in this part of the world. I delivered the Java EE 6 hands-on lab to a packed room of about 120 attendees. Most of the attendees were able to progress and follow the lab instructions. Some of the attendees did not have a laptop but were taking extensive notes on paper notepads. Several attendees were already using Java EE 6 in their projects and typically they are the ones asking deep dive questions. Also gave out three copies of my recently released Java EE 6 Pocket Guide and new GlassFish t-shirts. Definitely feels happy to coach ~120 more Java developers learn standards-based enterprise Java programming. I also participated in a JCP BoF along with Werner, Sonya, and Badr. Adotp-a-JSR, java.net infrastructure, how to file a JSR, what is an RI, and other similar topics were discussed in a candid manner. You can follow @JMaghrebConf or check out their facebook page. java.net published a timely conversation with Badr El Houari - the fearless leader of the Morocco JUG team. Did you know that Morocco JUG stood for JCP EC elections (ADD LINK) ? Even though they did not get elected but did fairly well. Now some sample tweets from #JMaghreb ... #JMaghreb is over. Impressive for a first edition! Thanks @badrelhouari and all the @MoroccoJUG team ! Since you @speakjava : System.out.println("Thank you so much dear Tech Evangelist ! The JavaFX was pretty amazing !!! "); #JMaghreb @YounesVendetta @arungupta @JMaghrebConf Right ! hope he will be back to morocco again and again .. :) @Alji_ @arungupta @JMaghrebConf That dude is a genius ;) Put it on your wall :p @arungupta rocking Java EE 6 at @JMaghrebConf #Java #JavaEE #JMaghreb http://t.co/isl0Iq5p @sonyabarry you are an awesome speaker ;-) #JMaghreb rich more than 550 attendees in day one. Expecting more tomorrow! ongratulations @badrelhouari the organisation was great! The talks were pretty interesting, and the turnout was surprising at #JMaghreb! #JMaghreb is truly awesome... The speakers are unbelievable ! #JavaFX... Just amazing #JMaghreb Charmed by the talk about #javaFX ( nodes architecture, MVC, Lazy loading, binding... ) gotta start using it intead of SWT. #JMaghreb JavaFX is killing JFreeChart. It supports Charts a lot of kind of them ... #JMaghreb The british man is back #JMaghreb I do like him!! #JMaghreb @arungupta rocking @JMaghrebConf. pic.twitter.com/CNohA3PE @arungupta Great talk about the future of Java EE (JEE 7 & JEE 8) Thank you. #JMaghreb JEE7 more mooore power , leeess less code !! #JMaghreb They are simplifying the existing API for Java Message Service 2.0 #JMaghreb good to know , the more the code is simplified the better ! The Glassdoor guy #arungupta is doing it RIGHT ! #JMaghreb Great presentation of The Future of the Java Platform: Java EE 7, Java SE 8 & Beyond #jMaghreb @arungupta is a great Guy apparently #JMaghreb On a personal front, the hotel (Soiftel Jardin des Roses) was pretty nice and the location was perfect. There was a 1.8 mile loop dirt trail right next to it so I managed to squeeze some runs before my upcoming marathon. Also enjoyed some great Moroccan cuisine - Couscous, Tajine, mint tea, and moroccan salad. Visit to Kasbah of the Udayas, Hassan II (one of the tallest mosque in the world), and eating in a restaurant in a kasbah are some of the exciting local experiences. Now some pictures from the event (and around the city) ... And the complete album: Many thanks to Badr, Faisal, and rest of the team for organizing a great conference. They are already thinking about how to improve the content, logisitics, and flow for the next year. I'm certainly looking forward to JMaghreb 2.0 :-)

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Why It Is So Important to Know Your Customer

    - by Christie Flanagan
    Over the years, I endured enough delayed flights, air turbulence and misadventures in airport security clearance to watch my expectations for the air travel experience fall to abysmally low levels. The extent of my loyalty to any one carrier had more to do with the proximity of the airport parking garage to their particular gate than to any effort on the airline’s part to actually earn and retain my business. That all changed one day when I found myself at the airport hoping to catch a return flight home a few hours earlier than expected, using an airline I had flown with for the first time just that week.  When you travel regularly for business, being able to catch a return flight home that’s even an hour or two earlier than originally scheduled is a big deal. It can mean the difference between having a normal evening with your family and having to sneak in like a cat burglar after everyone is fast asleep. And so I found myself on this particular day hoping to catch an earlier flight home. I approached the gate agent and was told that I could go on standby for their next flight out. Then I asked how much it was going to cost to change the flight, knowing full well that I wouldn’t get reimbursed by my company for any change fees. “Oh, there’s no charge to fly on standby,” the gate agent told me. I made a funny look. I couldn’t believe what I was hearing. This airline was going to let my fly on standby, at no additional charge, even though I was a new customer with no status or points. It had been years since I’d seen an airline pass up a short term revenue generating opportunity in favor of a long term loyalty generating one.  At that moment, this particular airline gained my loyal business. Since then, this airline has had the opportunity to learn a lot about me. They know where I live, where I fly from, where I usually fly to, and where I like to sit on the plane. In general, I’ve found their customer service to be quite good whether at the airport, via call center and even through social channels. They email me occasionally, and when they do, they demonstrate that they know me by promoting deals for flights from where I live to places that I’d be interested in visiting. And that’s part of why I’m always so puzzled when I visit their website.Does this company with the great service, customer friendly policies, and clean planes demonstrate that they know me at all when I visit their website? The answer is no. Even when I log in using my loyalty program credentials, it’s pretty obvious that they’re presenting the same old home page and same old offers to every single one of their site visitors. I mean, those promotional offers that they’re featuring so prominently  -- they’re for flights that originate thousands of miles from where I live! There’s no way I’d ever book one of those flights and I’m sure I’m not the only one of their customers to feel that way.My reason for recounting this story is not to pick on the one customer experience flaw I've noticed with this particular airline, in fact, they do so many things right that I’ll continue to fly with them. But I did want to illustrate just how glaringly obvious it is to customers today when a touch point they have with a brand is impersonal, unconnected and out of sync. As someone who’s spent a number of years in the web experience management and online marketing space, it particularly peeves me when that out of sync touch point is a brand’s website, perhaps because I know how important it is to make a customer’s online experience relevant and how many powerful tools are available for making a relevant experience a reality. The fact is, delivering a one-size-fits-all online customer experience is no longer acceptable or particularly effective in today’s world. Today’s savvy customers expect you to know who they are and to understand their preferences, behavior and relationship with your brand. Not only do they expect you to know about them, but they also expect you to demonstrate this knowledge across all of their touch points with your brand in a consistent and compelling fashion, whether it be on your traditional website, your mobile web presence or through various social channels.Delivering the kind of personalized online experiences that customers want can have tremendous business benefits. This is not just about generating feelings of goodwill and higher customer satisfaction ratings either. More relevant and personalized online experiences boost the effectiveness of online marketing initiatives and the statistics prove this out. Personalized web experiences can help increase online conversion rates by 70% -- that’s a huge number.1  And more than three quarters of consumers indicate that they’ve made additional online purchases based on personalized product recommendations.2Now if only this airline would get on board with delivering a more personalized online customer experience. I’d certainly be happier and more likely to spring for one of their promotional offers. And by targeting relevant offers on their home page to appropriate segments of their site visitors, I bet they’d be happier and generating additional revenue too. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}  ***** If you're interested in hearing more perspectives on the benefits of demonstrating that you know your customers by delivering a more personalized experience, check out this white paper on creating a successful and meaningful customer experience on the web.  Also catch the video below on the business value of CX in attracting new customers featuring Oracle's VP of Customer Experience Strategy, Brian Curran. 1 Search Engine Watch 2 Marketing Charts

    Read the article

  • How-to tell the ViewCriteria a user chose in an af:query component

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The af:query component defines a search form for application users to enter search conditions for a selected View Criteria. A View Criteria is a named where clauses that you can create declaratively on the ADF Business Component View Object. A default View Criteria that allows users to search in all attributes exists by default and exposed in the Data Controls panel. To create an ADF Faces search form, expand the View Object node that contains the View Criteria definition in the Data Controls panel. Drag the View Criteria that should be displayed as the default criteria onto the page and choose Query in the opened context menu. One of the options within the Query option is to create an ADF Query Panel with Table, which displays the result set in a table view, which can have additional column filters defined. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} To intercept the user query for modification, or just to know about the selected View Criteria, you override the QueryListener property on the af:query component of the af:table component. Overriding the QueryListener on the table makes sense if the table allows users to further filter the result set using column filters.To override the default QueryListener, copy the existing string referencing the binding layer to the clipboard and then select Edit from the field context menu (press the arrow icon to open it) to selecte or create a new managed bean and method to handle the query event.  The code below is from a managed bean with custom query listener handlers defined for the af:query component and the af:table component. The default listener entry copied to the clipboard was "#{bindings.ImplicitViewCriteriaQuery.processQuery}"  public void onQueryList(QueryEvent queryEvent) {   // The generated QueryListener replaced by this method   //#{bindings.ImplicitViewCriteriaQuery.processQuery}        QueryDescriptor qdes = queryEvent.getDescriptor();          //print or log selected View Criteria   System.out.println("NAME "+qdes.getName());           //call default Query Event        invokeQueryEventMethodExpression("      #{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent);  } public void onQueryTable(QueryEvent queryEvent) {   // The generated QueryListener replaced by this method   //#{bindings.ImplicitViewCriteriaQuery.processQuery}   QueryDescriptor qdes = queryEvent.getDescriptor();   //print or log selected View Criteria   System.out.println("NAME "+qdes.getName());                   invokeQueryEventMethodExpression(     "#{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent); } private void invokeQueryEventMethodExpression(                        String expression, QueryEvent queryEvent){   FacesContext fctx = FacesContext.getCurrentInstance();   ELContext elctx = fctx.getELContext();   ExpressionFactory efactory   fctx.getApplication().getExpressionFactory();     MethodExpression me =     efactory.createMethodExpression(elctx,expression,                                     Object.class,                                     new Class[]{QueryEvent.class});     me.invoke(elctx, new Object[]{queryEvent}); } Of course, this code also can be used as a starting point for other query manipulations and also works with saved custom criterias. To read more about the af:query component, see: http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_query.html

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Java EE 6 and NoSQL/MongoDB on GlassFish using JPA and EclipseLink 2.4 (TOTD #175)

    - by arungupta
    TOTD #166 explained how to use MongoDB in your Java EE 6 applications. The code in that tip used the APIs exposed by the MongoDB Java driver and so requires you to learn a new API. However if you are building Java EE 6 applications then you are already familiar with Java Persistence API (JPA). Eclipse Link 2.4, scheduled to release as part of Eclipse Juno, provides support for NoSQL databases by mapping a JPA entity to a document. Their wiki provides complete explanation of how the mapping is done. This Tip Of The Day (TOTD) will show how you can leverage that support in your Java EE 6 applications deployed on GlassFish 3.1.2. Before we dig into the code, here are the key concepts ... A POJO is mapped to a NoSQL data source using @NoSQL or <no-sql> element in "persistence.xml". A subset of JPQL and Criteria query are supported, based upon the underlying data store Connection properties are defined in "persistence.xml" Now, lets lets take a look at the code ... Download the latest EclipseLink 2.4 Nightly Bundle. There is a Installer, Source, and Bundle - make sure to download the Bundle link (20120410) and unzip. Download GlassFish 3.1.2 zip and unzip. Install the Eclipse Link 2.4 JARs in GlassFish Remove the following JARs from "glassfish/modules": org.eclipse.persistence.antlr.jar org.eclipse.persistence.asm.jar org.eclipse.persistence.core.jar org.eclipse.persistence.jpa.jar org.eclipse.persistence.jpa.modelgen.jar org.eclipse.persistence.moxy.jar org.eclipse.persistence.oracle.jar Add the following JARs from Eclipse Link 2.4 nightly build to "glassfish/modules": org.eclipse.persistence.antlr_3.2.0.v201107111232.jar org.eclipse.persistence.asm_3.3.1.v201107111215.jar org.eclipse.persistence.core.jpql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.core_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa.jpql_2.0.0.v20120407-r11132.jar org.eclipse.persistence.jpa.modelgen_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa_2.4.0.v20120407-r11132.jar org.eclipse.persistence.moxy_2.4.0.v20120407-r11132.jar org.eclipse.persistence.nosql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.oracle_2.4.0.v20120407-r11132.jar Start MongoDB Download latest MongoDB from here (2.0.4 as of this writing). Create the default data directory for MongoDB as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db Refer to Quickstart for more details. Start MongoDB as: arungup-mac:mongodb-osx-x86_64-2.0.4 <arungup> ->./bin/mongod./bin/mongod --help for help and startup optionsMon Apr  9 12:56:02 [initandlisten] MongoDB starting : pid=3124 port=27017 dbpath=/data/db/ 64-bit host=arungup-mac.localMon Apr  9 12:56:02 [initandlisten] db version v2.0.4, pdfile version 4.5Mon Apr  9 12:56:02 [initandlisten] git version: 329f3c47fe8136c03392c8f0e548506cb21f8ebfMon Apr  9 12:56:02 [initandlisten] build info: Darwin erh2.10gen.cc 9.8.0 Darwin Kernel Version 9.8.0: Wed Jul 15 16:55:01 PDT 2009; root:xnu-1228.15.4~1/RELEASE_I386 i386 BOOST_LIB_VERSION=1_40Mon Apr  9 12:56:02 [initandlisten] options: {}Mon Apr  9 12:56:02 [initandlisten] journal dir=/data/db/journalMon Apr  9 12:56:02 [initandlisten] recover : no journal files present, no recovery neededMon Apr  9 12:56:02 [websvr] admin web console waiting for connections on port 28017Mon Apr  9 12:56:02 [initandlisten] waiting for connections on port 27017 Check out the JPA/NoSQL sample from SVN repository. The complete source code built in this TOTD can be downloaded here. Create Java EE 6 web app Create a Java EE 6 Maven web app as: mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -DarchetypeArtifactId=webapp-javaee6 -DgroupId=model -DartifactId=javaee-nosql -DarchetypeVersion=1.5 -DinteractiveMode=false Copy the model files from the checked out workspace to the generated project as: cd javaee-nosqlcp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/model src/main/java Copy "persistence.xml" mkdir src/main/resources cp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/META-INF ./src/main/resources Add the following dependencies: <dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.jpa</artifactId> <version>2.4.0-SNAPSHOT</version> <scope>provided</scope></dependency><dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.nosql</artifactId> <version>2.4.0-SNAPSHOT</version></dependency><dependency> <groupId>org.mongodb</groupId> <artifactId>mongo-java-driver</artifactId> <version>2.7.3</version></dependency> The first one is for the EclipseLink latest APIs, the second one is for EclipseLink/NoSQL support, and the last one is the MongoDB Java driver. And the following repository: <repositories> <repository> <id>EclipseLink Repo</id> <url>http://www.eclipse.org/downloads/download.php?r=1&amp;nf=1&amp;file=/rt/eclipselink/maven.repo</url> <snapshots> <enabled>true</enabled> </snapshots> </repository>  </repositories> Copy the "Test.java" to the generated project: mkdir src/main/java/examplecp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/example/Test.java ./src/main/java/example/ This file contains the source code to CRUD the JPA entity to MongoDB. This sample is explained in detail on EclipseLink wiki. Create a new Servlet in "example" directory as: package example;import java.io.IOException;import java.io.PrintWriter;import javax.servlet.ServletException;import javax.servlet.annotation.WebServlet;import javax.servlet.http.HttpServlet;import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletResponse;/** * @author Arun Gupta */@WebServlet(name = "TestServlet", urlPatterns = {"/TestServlet"})public class TestServlet extends HttpServlet { protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html;charset=UTF-8"); PrintWriter out = response.getWriter(); try { out.println("<html>"); out.println("<head>"); out.println("<title>Servlet TestServlet</title>"); out.println("</head>"); out.println("<body>"); out.println("<h1>Servlet TestServlet at " + request.getContextPath() + "</h1>"); try { Test.main(null); } catch (Exception ex) { ex.printStackTrace(); } out.println("</body>"); out.println("</html>"); } finally { out.close(); } } @Override protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); } @Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); }} Build the project and deploy it as: mvn clean packageglassfish3/bin/asadmin deploy --force=true target/javaee-nosql-1.0-SNAPSHOT.war Accessing http://localhost:8080/javaee-nosql/TestServlet shows the following messages in the server.log: connecting(EISLogin( platform=> MongoPlatform user name=> "" MongoConnectionSpec())) . . .Connected: User: Database: 2.7  Version: 2.7 . . .Executing MappedInteraction() spec => null properties => {mongo.collection=CUSTOMER, mongo.operation=INSERT} input => [DatabaseRecord( CUSTOMER._id => 4F848E2BDA0670307E2A8FA4 CUSTOMER.NAME => AMCE)]. . .Data access result: [{TOTALCOST=757.0, ORDERLINES=[{DESCRIPTION=table, LINENUMBER=1, COST=300.0}, {DESCRIPTION=balls, LINENUMBER=2, COST=5.0}, {DESCRIPTION=rackets, LINENUMBER=3, COST=15.0}, {DESCRIPTION=net, LINENUMBER=4, COST=2.0}, {DESCRIPTION=shipping, LINENUMBER=5, COST=80.0}, {DESCRIPTION=handling, LINENUMBER=6, COST=55.0},{DESCRIPTION=tax, LINENUMBER=7, COST=300.0}], SHIPPINGADDRESS=[{POSTALCODE=L5J1H7, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa,STREET=17 Jane St.}], VERSION=2, _id=4F848E2BDA0670307E2A8FA8,DESCRIPTION=Pingpong table, CUSTOMER__id=4F848E2BDA0670307E2A8FA7, BILLINGADDRESS=[{POSTALCODE=L5J1H8, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa, STREET=7 Bank St.}]}] You'll not see any output in the browser, just the output in the console. But the code can be easily modified to do so. Once again, the complete Maven project can be downloaded here. Do you want to try accessing relational and non-relational (aka NoSQL) databases in the same PU ?

    Read the article

  • What's up with LDoms: Part 2 - Creating a first, simple guest

    - by Stefan Hinker
    Welcome back! In the first part, we discussed the basic concepts of LDoms and how to configure a simple control domain.  We saw how resources were put aside for guest systems and what infrastructure we need for them.  With that, we are now ready to create a first, very simple guest domain.  In this first example, we'll keep things very simple.  Later on, we'll have a detailed look at things like sizing, IO redundancy, other types of IO as well as security. For now,let's start with this very simple guest.  It'll have one core's worth of CPU, one crypto unit, 8GB of RAM, a single boot disk and one network port.  CPU and RAM are easy.  The network port we'll create by attaching a virtual network port to the vswitch we created in the primary domain.  This is very much like plugging a cable into a computer system on one end and a network switch on the other.  For the boot disk, we'll need two things: A physical piece of storage to hold the data - this is called the backend device in LDoms speak.  And then a mapping between that storage and the guest domain, giving it access to that virtual disk.  For this example, we'll use a ZFS volume for the backend.  We'll discuss what other options there are for this and how to chose the right one in a later article.  Here we go: root@sun # ldm create mars root@sun # ldm set-vcpu 8 mars root@sun # ldm set-mau 1 mars root@sun # ldm set-memory 8g mars root@sun # zfs create rpool/guests root@sun # zfs create -V 32g rpool/guests/mars.bootdisk root@sun # ldm add-vdsdev /dev/zvol/dsk/rpool/guests/mars.bootdisk \ mars.root@primary-vds root@sun # ldm add-vdisk root mars.root@primary-vds mars root@sun # ldm add-vnet net0 switch-primary mars That's all, mars is now ready to power on.  There are just three commands between us and the OK prompt of mars:  We have to "bind" the domain, start it and connect to its console.  Binding is the process where the hypervisor actually puts all the pieces that we've configured together.  If we made a mistake, binding is where we'll be told (starting in version 2.1, a lot of sanity checking has been put into the config commands themselves, but binding will catch everything else).  Once bound, we can start (and of course later stop) the domain, which will trigger the boot process of OBP.  By default, the domain will then try to boot right away.  If we don't want that, we can set "auto-boot?" to false.  Finally, we'll use telnet to connect to the console of our newly created guest.  The output of "ldm list" shows us what port has been assigned to mars.  By default, the console service only listens on the loopback interface, so using telnet is not a large security concern here. root@sun # ldm set-variable auto-boot\?=false mars root@sun # ldm bind mars root@sun # ldm start mars root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 8 7680M 0.5% 1d 4h 30m mars active -t---- 5000 8 8G 12% 1s root@sun # telnet localhost 5000 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. ~Connecting to console "mars" in group "mars" .... Press ~? for control options .. {0} ok banner SPARC T3-4, No Keyboard Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. OpenBoot 4.33.1, 8192 MB memory available, Serial # 87203131. Ethernet address 0:21:28:24:1b:50, Host ID: 85241b50. {0} ok We're done, mars is ready to install Solaris, preferably using AI, of course ;-)  But before we do that, let's have a little look at the OBP environment to see how our virtual devices show up here: {0} ok printenv auto-boot? auto-boot? = false {0} ok printenv boot-device boot-device = disk net {0} ok devalias root /virtual-devices@100/channel-devices@200/disk@0 net0 /virtual-devices@100/channel-devices@200/network@0 net /virtual-devices@100/channel-devices@200/network@0 disk /virtual-devices@100/channel-devices@200/disk@0 virtual-console /virtual-devices/console@1 name aliases We can see that setting the OBP variable "auto-boot?" to false with the ldm command worked.  Of course, we'd normally set this to "true" to allow Solaris to boot right away once the LDom guest is started.  The setting for "boot-device" is the default "disk net", which means OBP would try to boot off the devices pointed to by the aliases "disk" and "net" in that order, which usually means "disk" once Solaris is installed on the disk image.  The actual devices these aliases point to are shown with the command "devalias".  Here, we have one line for both "disk" and "net".  The device paths speak for themselves.  Note that each of these devices has a second alias: "net0" for the network device and "root" for the disk device.  These are the very same names we've given these devices in the control domain with the commands "ldm add-vnet" and "ldm add-vdisk".  Remember this, as it is very useful once you have several dozen disk devices... To wrap this up, in this part we've created a simple guest domain, complete with CPU, memory, boot disk and network connectivity.  This should be enough to get you going.  I will cover all the more advanced features and a little more theoretical background in several follow-on articles.  For some background reading, I'd recommend the following links: LDoms 2.2 Admin Guide: Setting up Guest Domains Virtual Console Server: vntsd manpage - This includes the control sequences and commands available to control the console session. OpenBoot 4.x command reference - All the things you can do at the ok prompt

    Read the article

  • Creating an SMF service for mercurial web server

    - by Chris W Beal
    I'm working on a project at the moment, which has a number of contributers. We're managing the project gate (which is stand alone) with mercurial. We want to have an easy way of seeing the changelog, so we can show management what is going on.  Luckily mercurial provides a basic web server which allows you to see the changes, and drill in to change sets. This can be run as a daemon, but as it was running on our build server, every time it was rebooted, someone needed to remember to start the process again. This is of course a classic usage of SMF. Now I'm not an experienced person at writing SMF services, so it took me 1/2 an hour or so to figure it out the first time. But going forward I should know what I'm doing a bit better. I did reference this doc extensively. Taking a step back, the command to start the mercurial web server is $ hg serve -p <port number> -d So we somehow need to get SMF to run that command for us. In the simplest form, SMF services are really made up of two components. The manifest Usually lives in /var/svc/manifest somewhere Can be imported from any location The method Usually live in /lib/svc/method I simply put the script straight in that directory. Not very repeatable, but it worked Can take an argument of start, stop, or refresh Lets start with the manifest. This looks pretty complex, but all it's doing is describing the service name, the dependencies, the start and stop methods, and some properties. The properties can be by instance, that is to say I could have multiple hg serve processes handling different mercurial projects, on different ports simultaneously Here is the manifest I wrote. I stole extensively from the examples in the Documentation. So my manifest looks like this $ cat hg-serve.xml <?xml version="1.0"?> <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type='manifest' name='hg-serve'> <service name='application/network/hg-serve' type='service' version='1'> <dependency name='network' grouping='require_all' restart_on='none' type='service'> <service_fmri value='svc:/milestone/network:default' /> </dependency> <exec_method type='method' name='start' exec='/lib/svc/method/hg-serve %m' timeout_seconds='2' /> <exec_method type='method' name='stop' exec=':kill' timeout_seconds='2'> </exec_method> <instance name='project-gate' enabled='true'> <method_context> <method_credential user='root' group='root' /> </method_context> <property_group name='hg-serve' type='application'> <propval name='path' type='astring' value='/src/project-gate'/> <propval name='port' type='astring' value='9998' /> </property_group> </instance> <stability value='Evolving' /> <template> <common_name> <loctext xml:lang='C'>hg-serve</loctext> </common_name> <documentation> <manpage title='hg' section='1' /> </documentation> </template> </service> </service_bundle> So the only things I had to decide on in this are the service name "application/network/hg-serve" the start and stop methods (more of which later) and the properties. This is the information I need to pass to the start method script. In my case the port I want to start the web server on "9998", and the path to the source gate "/src/project-gate". These can be read in to the start method. So now lets look at the method scripts $ cat /lib/svc/method/hg-serve #!/sbin/sh # # # Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. # # Standard prolog # . /lib/svc/share/smf_include.sh if [ -z $SMF_FMRI ]; then echo "SMF framework variables are not initialized." exit $SMF_EXIT_ERR fi # # Build the command line flags # # Get the port and directory from the SMF properties port=`svcprop -c -p hg-serve/port $SMF_FMRI` dir=`svcprop -c -p hg-serve/path $SMF_FMRI` echo "$1" case "$1" in 'start') cd $dir /usr/bin/hg serve -d -p $port ;; *) echo "Usage: $0 {start|refresh|stop}" exit 1 ;; esac exit $SMF_EXIT_OK This is all pretty self explanatory, we read the port and directory using svcprop, and use those simply to run a command in the start case. We don't need to implement a stop case, as the manifest says to use "exec=':kill'for the stop method. Now all we need to do is import the manifest and start the service, but first verify the manifest # svccfg verify /path/to/hg-serve.xml If that doesn't give an error try importing it # svccfg import /path/to/hg-serve.xml If like me you originally put the hg-serve.xml file in /var/svc/manifest somewhere you'll get an error and told to restart the import service svccfg: Restarting svc:/system/manifest-import The manifest being imported is from a standard location and should be imported with the command : svcadm restart svc:/system/manifest-import # svcadm restart svc:/system/manifest-import and you're nearly done. You can look at the service using svcs -l # svcs -l hg-serve fmri svc:/application/network/hg-serve:project-gate name hg-serve enabled false state disabled next_state none state_time Thu May 31 16:11:47 2012 logfile /var/svc/log/application-network-hg-serve:project-gate.log restarter svc:/system/svc/restarter:default contract_id 15749 manifest /var/svc/manifest/network/hg/hg-serve.xml dependency require_all/none svc:/milestone/network:default (online) And look at the interesting properties # svcprop hg-serve hg-serve/path astring /src/project-gate hg-serve/port astring 9998 ...stuff deleted.... Then simply enable the service and if every things gone right, you can point your browser at http://server:9998 and get a nice graphical log of project activity. # svcadm enable hg-serve # svcs -l hg-serve fmri svc:/application/network/hg-serve:project-gate name hg-serve enabled true state online next_state none state_time Thu May 31 16:18:11 2012 logfile /var/svc/log/application-network-hg-serve:project-gate.log restarter svc:/system/svc/restarter:default contract_id 15858 manifest /var/svc/manifest/network/hg/hg-serve.xml dependency require_all/none svc:/milestone/network:default (online) None of this is rocket science, but a bit fiddly. Hence I thought I'd blog it. It might just be you see this in google and it clicks with you more than one of the many other blogs or how tos about it. Plus I can always refer back to it myself in 3 weeks, when I want to add another project to the server, and I've forgotten how to do it.

    Read the article

  • Das T5-4 TPC-H Ergebnis naeher betrachtet

    - by Stefan Hinker
    Inzwischen haben vermutlich viele das neue TPC-H Ergebnis der SPARC T5-4 gesehen, das am 7. Juni bei der TPC eingereicht wurde.  Die wesentlichen Punkte dieses Benchmarks wurden wie gewohnt bereits von unserer Benchmark-Truppe auf  "BestPerf" zusammengefasst.  Es gibt aber noch einiges mehr, das eine naehere Betrachtung lohnt. Skalierbarkeit Das TPC raet von einem Vergleich von TPC-H Ergebnissen in unterschiedlichen Groessenklassen ab.  Aber auch innerhalb der 3000GB-Klasse ist es interessant: SPARC T4-4 mit 4 CPUs (32 Cores mit 3.0 GHz) liefert 205,792 QphH. SPARC T5-4 mit 4 CPUs (64 Cores mit 3.6 GHz) liefert 409,721 QphH. Das heisst, es fehlen lediglich 1863 QphH oder 0.45% zu 100% Skalierbarkeit, wenn man davon ausgeht, dass die doppelte Anzahl Kerne das doppelte Ergebnis liefern sollte.  Etwas anspruchsvoller, koennte man natuerlich auch einen Faktor von 2.4 erwarten, wenn man die hoehere Taktrate mit beruecksichtigt.  Das wuerde die Latte auf 493901 QphH legen.  Dann waere die SPARC T5-4 bei 83%.  Damit stellt sich die Frage: Was hat hier nicht skaliert?  Vermutlich der Plattenspeicher!  Auch hier lohnt sich eine naehere Betrachtung: Plattenspeicher Im Bericht auf BestPerf und auch im Full Disclosure Report der TPC stehen einige interessante Details zum Plattenspeicher und der Konfiguration.   In der Konfiguration der SPARC T4-4 wurden 12 2540-M2 Arrays verwendet, die jeweils ca. 1.5 GB/s Durchsatz liefert, insgesamt also eta 18 GB/s.  Dabei waren die Arrays offensichtlich mit jeweils 2 Kabeln pro Array direkt an die 24 8GBit FC-Ports des Servers angeschlossen.  Mit den 2x 8GBit Ports pro Array koennte man so ein theoretisches Maximum von 2GB/s erreichen.  Tatsaechlich wurden 1.5GB/s geliefert, was so ziemlich dem realistischen Maximum entsprechen duerfte. Fuer den Lauf mit der SPARC T5-4 wurden doppelt so viele Platten verwendet.  Dafuer wurden die 2540-M2 Arrays mit je einem zusaetzlichen Plattentray erweitert.  Mit dieser Konfiguration wurde dann (laut BestPerf) ein Maximaldurchsatz von 33 GB/s erreicht - nicht ganz das doppelte des SPARC T4-4 Laufs.  Um tatsaechlich den doppelten Durchsatz (36 GB/s) zu liefern, haette jedes der 12 Arrays 3 GB/s ueber seine 4 8GBit Ports liefern muessen.  Im FDR stehen nur 12 dual-port FC HBAs, was die Verwendung der Brocade FC Switches erklaert: Es wurden alle 4 8GBit ports jedes Arrays an die Switches angeschlossen, die die Datenstroeme dann in die 24 16GBit HBA ports des Servers buendelten.  Das theoretische Maximum jedes Storage-Arrays waere nun 4 GB/s.  Wenn man jedoch den Protokoll- und "Realitaets"-Overhead mit einrechnet, sind die tatsaechlich gelieferten 2.75 GB/s gar nicht schlecht.  Mit diesen Zahlen im Hinterkopf ist die Verdopplung des SPARC T4-4 Ergebnisses eine gute Leistung - und gleichzeitig eine gute Erklaerung, warum nicht bis zum 2.4-fachen skaliert wurde. Nebenbei bemerkt: Weder die SPARC T4-4 noch die SPARC T5-4 hatten in der gemessenen Konfiguration irgendwelche Flash-Devices. Mitbewerb Seit die T4 Systeme auf dem Markt sind, bemuehen sich unsere Mitbewerber redlich darum, ueberall den Eindruck zu hinterlassen, die Leistung des SPARC CPU-Kerns waere weiterhin mangelhaft.  Auch scheinen sie ueberzeugt zu sein, dass (ueber)grosse Caches und hohe Taktraten die einzigen Schluessel zu echter Server Performance seien.  Wenn ich mir nun jedoch die oeffentlichen TPC-H Ergebnisse ansehe, sehe ich dies: TPC-H @3000GB, Non-Clustered Systems System QphH SPARC T5-4 3.6 GHz SPARC T5 4/64 – 2048 GB 409,721.8 SPARC T4-4 3.0 GHz SPARC T4 4/32 – 1024 GB 205,792.0 IBM Power 780 4.1 GHz POWER7 8/32 – 1024 GB 192,001.1 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64 – 512 GB 162,601.7 Kurz zusammengefasst: Mit 32 Kernen (mit 3 GHz und 4MB L3 Cache), liefert die SPARC T4-4 mehr QphH@3000GB ab als IBM mit ihrer 32 Kern Power7 (bei 4.1 GHz und 32MB L3 Cache) und auch mehr als HP mit einem 64 Kern Intel Xeon System (2.27 GHz und 24MB L3 Cache).  Ich frage mich, wo genau SPARC hier mangelhaft ist? Nun koennte man natuerlich argumentieren, dass beide Ergebnisse nicht gerade neu sind.  Nun, in Ermangelung neuerer Ergebnisse kann man ja mal ein wenig spekulieren: IBMs aktueller Performance Report listet die o.g. IBM Power 780 mit einem rPerf Wert von 425.5.  Ein passendes Nachfolgesystem mit Power7+ CPUs waere die Power 780+ mit 64 Kernen, verfuegbar mit 3.72 GHz.  Sie wird mit einem rPerf Wert von  690.1 angegeben, also 1.62x mehr.  Wenn man also annimmt, dass Plattenspeicher nicht der limitierende Faktor ist (IBM hat mit 177 SSDs getestet, sie duerfen das gerne auf 400 erhoehen) und IBMs eigene Leistungsabschaetzung zugrunde legt, darf man ein theoretisches Ergebnis von 311398 QphH@3000GB erwarten.  Das waere dann allerdings immer noch weit von dem Ergebnis der SPARC T5-4 entfernt, und gerade in der von IBM so geschaetzen "per core" Metric noch weniger vorteilhaft. In der x86-Welt sieht es nicht besser aus.  Leider gibt es von Intel keine so praktischen rPerf-Tabellen.  Daher muss ich hier fuer eine Schaetzung auf SPECint_rate2006 zurueckgreifen.  (Ich bin kein grosser Fan von solchen Kreuz- und Querschaetzungen.  Insb. SPECcpu ist nicht besonders geeignet, um Datenbank-Leistung abzuschaetzen, da fast kein IO im Spiel ist.)  Das o.g. HP System wird bei SPEC mit 1580 CINT2006_rate gelistet.  Das bis einschl. 2013-06-14 beste Resultat fuer den neuen Intel Xeon E7-4870 mit 8 CPUs ist 2180 CINT2006_rate.  Das ist immerhin 1.38x besser.  (Wenn man nur die Taktrate beruecksichtigen wuerde, waere man bei 1.32x.)  Hier weiter zu rechnen, ist muessig, aber fuer die ungeduldigen Leser hier eine kleine tabellarische Zusammenfassung: TPC-H @3000GB Performance Spekulationen System QphH* Verbesserung gegenueber der frueheren Generation SPARC T4-4 32 cores SPARC T4 205,792 2x SPARC T5-464 cores SPARC T5 409,721 IBM Power 780 32 cores Power7 192,001 1.62x IBM Power 780+ 64 cores Power7+  311,398* HP ProLiant DL980 G764 cores Intel Xeon X7560 162,601 1.38x HP ProLiant DL980 G780 cores Intel Xeon E7-4870    224,348* * Keine echten Resultate  - spekulative Werte auf der Grundlage von rPerf (Power7+) oder SPECint_rate2006 (HP) Natuerlich sind IBM oder HP herzlich eingeladen, diese Werte zu widerlegen.  Aber stand heute warte ich noch auf aktuelle Benchmark Veroffentlichungen in diesem Datensegment. Was koennen wir also zusammenfassen? Es gibt einige Hinweise, dass der Plattenspeicher der begrenzende Faktor war, der die SPARC T5-4 daran hinderte, auf jenseits von 2x zu skalieren Der Mythos, dass SPARC Kerne keine Leistung bringen, ist genau das - ein Mythos.  Wie sieht es umgekehrt eigentlich mit einem TPC-H Ergebnis fuer die Power7+ aus? Cache ist nicht der magische Performance-Schalter, fuer den ihn manche Leute offenbar halten. Ein System, eine CPU-Architektur und ein Betriebsystem jenseits einer gewissen Grenze zu skalieren ist schwer.  In der x86-Welt scheint es noch ein wenig schwerer zu sein. Was fehlt?  Nun, das Thema Preis/Leistung ueberlasse ich gerne den Verkaeufern ;-) Und zu guter Letzt: Nein, ich habe mich nicht ins Marketing versetzen lassen.  Aber manchmal kann ich mich einfach nicht zurueckhalten... Disclosure Statements The views expressed on this blog are my own and do not necessarily reflect the views of Oracle. TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org, results as of 6/7/13. Prices are in USD. SPARC T5-4 409,721.8 QphH@3000GB, $3.94/QphH@3000GB, available 9/24/13, 4 processors, 64 cores, 512 threads; SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads. SPEC and the benchmark names SPECfp and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of June 18, 2013 from www.spec.org. HP ProLiant DL980 G7 (2.27 GHz, Intel Xeon X7560): 1580 SPECint_rate2006; HP ProLiant DL980 G7 (2.4 GHz, Intel Xeon E7-4870): 2180 SPECint_rate2006,

    Read the article

  • T4 Performance Counters explained

    - by user13346607
    Now that T4 is out for a few month some people might have wondered what details of the new pipeline you can monitor. A "cpustat -h" lists a lot of events that can be monitored, and only very few are self-explanatory. I will try to give some insight on all of them, some of these "PIC events" require an in-depth knowledge of T4 pipeline. Over time I will try to explain these, for the time being these events should simply be ignored. (Side note: some counters changed from tape-out 1.1 (*only* used in the T4 beta program) to tape-out 1.2 (used in the systems shipping today) The table only lists the tape-out 1.2 counters) 0 0 1 1058 6033 Oracle Microelectronics 50 14 7077 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} pic name (cpustat) Prose Comment Sel-pipe-drain-cycles, Sel-0-[wait|ready], Sel-[1,2] Sel-0-wait counts cycles a strand waits to be selected. Some reasons can be counted in detail; these are: Sel-0-ready: Cycles a strand was ready but not selected, that can signal pipeline oversubscription Sel-1: Cycles only one instruction or µop was selected Sel-2: Cycles two instructions or µops were selected Sel-pipe-drain-cycles: cf. PRM footnote 8 to table 10.2 Pick-any, Pick-[0|1|2|3] Cycles one, two, three, no or at least one instruction or µop is picked Instr_FGU_crypto Number of FGU or crypto instructions executed on that vcpu Instr_ld dto. for load Instr_st dto. for store SPR_ring_ops dto. for SPR ring ops Instr_other dto. for all other instructions not listed above, PRM footnote 7 to table 10.2 lists the instructions Instr_all total number of instructions executed on that vcpu Sw_count_intr Nr of S/W count instructions on that vcpu (sethi %hi(fc000),%g0 (whatever that is))  Atomics nr of atomic ops, which are LDSTUB/a, CASA/XA, and SWAP/A SW_prefetch Nr of PREFETCH or PREFETCHA instructions Block_ld_st Block loads or store on that vcpu IC_miss_nospec, IC_miss_[L2_or_L3|local|remote]\ _hit_nospec Various I$ misses, distinguished by where they hit. All of these count per thread, but only primary events: T4 counts only the first occurence of an I$ miss on a core for a certain instruction. If one strand misses in I$ this miss is counted, but if a second strand on the same core misses while the first miss is being resolved, that second miss is not counted This flavour of I$ misses counts only misses that are caused by instruction that really commit (note the "_nospec") BTC_miss Branch target cache miss ITLB_miss ITLB misses (synchronously counted) ITLB_miss_asynch dto. but asynchronously [I|D]TLB_fill_\ [8KB|64KB|4MB|256MB|2GB|trap] H/W tablewalk events that fill ITLB or DTLB with translation for the corresponding page size. The “_trap” event occurs if the HWTW was not able to fill the corresponding TLB IC_mtag_miss, IC_mtag_miss_\ [ptag_hit|ptag_miss|\ ptag_hit_way_mismatch] I$ micro tag misses, with some options for drill down Fetch-0, Fetch-0-all fetch-0 counts nr of cycles nothing was fetched for this particular strand, fetch-0-all counts cycles nothing was fetched for all strands on a core Instr_buffer_full Cycles the instruction buffer for a strand was full, thereby preventing any fetch BTC_targ_incorrect Counts all occurences of wrongly predicted branch targets from the BTC [PQ|ROB|LB|ROB_LB|SB|\ ROB_SB|LB_SB|RB_LB_SB|\ DTLB_miss]\ _tag_wait ST_q_tag_wait is listed under sl=20. These counters monitor pipeline behaviour therefore they are not strand specific: PQ_...: cycles Rename stage waits for a Pick Queue tag (might signal memory bound workload for single thread mode, cf. Mail from Richard Smith) ROB_...: cycles Select stage waits for a ROB (ReOrderBuffer) tag LB_...: cycles Select stage waits for a Load Buffer tag SB_...: cycles Select stage waits for Store Buffer tag combinations of the above are allowed, although some of these events can overlap, the counter will only be incremented once per cycle if any of these occur DTLB_...: cycles load or store instructions wait at Pick stage for a DTLB miss tag [ID]TLB_HWTW_\ [L2_hit|L3_hit|L3_miss|all] Counters for HWTW accesses caused by either DTLB or ITLB misses. Canbe further detailed by where they hit IC_miss_L2_L3_hit, IC_miss_local_remote_remL3_hit, IC_miss I$ prefetches that were dropped because they either miss in L2$ or L3$ This variant counts misses regardless if the causing instruction commits or not DC_miss_nospec, DC_miss_[L2_L3|local|remote_L3]\ _hit_nospec D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters DTLB_miss_asynch counts all DTLB misses asynchronously, there is no way to count them synchronously DC_pref_drop_DC_hit, SW_pref_drop_[DC_hit|buffer_full] L1-D$ h/w prefetches that were dropped because of a D$ hit, counted per core. The others count software prefetches per strand [Full|Partial]_RAW_hit_st_[buf|q] Count events where a load wants to get data that has not yet been stored, i. e. it is still inside the pipeline. The data might be either still in the store buffer or in the store queue. If the load's data matches in the SB and in the store queue the data in buffer takes precedence of course since it is younger [IC|DC]_evict_invalid, [IC|DC|L1]_snoop_invalid, [IC|DC|L1]_invalid_all Counter for invalidated cache evictions per core St_q_tag_wait Number of cycles pipeline waits for a store queue tag, of course counted per core Data_pref_[drop_L2|drop_L3|\ hit_L2|hit_L3|\ hit_local|hit_remote] Data prefetches that can be further detailed by either why they were dropped or where they did hit St_hit_[L2|L3], St_L2_[local|remote]_C2C, St_local, St_remote Store events distinguished by where they hit or where they cause a L2 cache-to-cache transfer, i.e. either a transfer from another L2$ on the same die or from a different die DC_miss, DC_miss_\ [L2_L3|local|remote]_hit D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters L2_[clean|dirty]_evict Per core clean or dirty L2$ evictions L2_fill_buf_full, L2_wb_buf_full, L2_miss_buf_full Per core L2$ buffer events, all count number of cycles that this state was present L2_pipe_stall Per core cycles pipeline stalled because of L2$ Branches Count branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_taken Counts taken branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_mispred, Br_dir_mispred, Br_trg_mispred, Br_trg_mispred_\ [far_tbl|indir_tbl|ret_stk] Counter for various branch misprediction events.  Cycles_user counts cycles, attribute setting hpriv, nouser, sys controls addess space to count in Commit-[0|1|2], Commit-0-all, Commit-1-or-2 Number of times either no, one, or two µops commit for a strand. Commit-0-all counts number of times no µop commits for the whole core, cf. footnote 11 to table 10.2 in PRM for a more detailed explanation on how this counters interacts with the privilege levels

    Read the article

  • The Faces in the Crowdsourcing

    - by Applications User Experience
    By Jeff Sauro, Principal Usability Engineer, Oracle Imagine having access to a global workforce of hundreds of thousands of people who can perform tasks or provide feedback on a design quickly and almost immediately. Distributing simple tasks not easily done by computers to the masses is called "crowdsourcing" and until recently was an interesting concept, but due to practical constraints wasn't used often. Enter Amazon.com. For five years, Amazon has hosted a service called Mechanical Turk, which provides an easy interface to the crowds. The service has almost half a million registered, global users performing a quarter of a million human intelligence tasks (HITs). HITs are submitted by individuals and companies in the U.S. and pay from $.01 for simple tasks (such as determining if a picture is offensive) to several dollars (for tasks like transcribing audio). What do we know about the people who toil away in this digital crowd? Can we rely on the work done in this anonymous marketplace? A rendering of the actual Mechanical Turk (from Wikipedia) Knowing who is behind Amazon's Mechanical Turk is fitting, considering the history of the actual Mechanical Turk. In the late 1800's, a mechanical chess-playing machine awed crowds as it beat master chess players in what was thought to be a mechanical miracle. It turned out that the creator, Wolfgang von Kempelen, had a small person (also a chess master) hiding inside the machine operating the arms to provide the illusion of automation. The field of human computer interaction (HCI) is quite familiar with gathering user input and incorporating it into all stages of the design process. It makes sense then that Mechanical Turk was a popular discussion topic at the recent Computer Human Interaction usability conference sponsored by the Association for Computing Machinery in Atlanta. It is already being used as a source for input on Web sites (for example, Feedbackarmy.com) and behavioral research studies. Two papers shed some light on the faces in this crowd. One paper tells us about the shifting demographics from mostly stay-at-home moms to young men in India. The second paper discusses the reliability and quality of work from the workers. Just who exactly would spend time doing tasks for pennies? In "Who are the crowdworkers?" University of California researchers Ross, Silberman, Zaldivar and Tomlinson conducted a survey of Mechanical Turk worker demographics and compared it to a similar survey done two years before. The initial survey reported workers consisting largely of young, well-educated women living in the U.S. with annual household incomes above $40,000. The more recent survey reveals a shift in demographics largely driven by an influx of workers from India. Indian workers went from 5% to over 30% of the crowd, and this block is largely male (two-thirds) with a higher average education than U.S. workers, and 64% report an annual income of less than $10,000 (keeping in mind $1 has a lot more purchasing power in India). This shifting demographic certainly has implications as language and culture can play critical roles in the outcome of HITs. Of course, the demographic data came from paying Turkers $.10 to fill out a survey, so there is some question about both a self-selection bias (characteristics which cause Turks to take this survey may be unrepresentative of the larger population), not to mention whether we can really trust the data we get from the crowd. Crowds can perform tasks or provide feedback on a design quickly and almost immediately for usability testing. (Photo attributed to victoriapeckham Flikr While having immediate access to a global workforce is nice, one major problem with Mechanical Turk is the incentive structure. Individuals and companies that deploy HITs want quality responses for a low price. Workers, on the other hand, want to complete the task and get paid as quickly as possible, so that they can get on to the next task. Since many HITs on Mechanical Turk are surveys, how valid and reliable are these results? How do we know whether workers are just rushing through the multiple-choice responses haphazardly answering? In "Are your participants gaming the system?" researchers at Carnegie Mellon (Downs, Holbrook, Sheng and Cranor) set up an experiment to find out what percentage of their workers were just in it for the money. The authors set up a 30-minute HIT (one of the more lengthy ones for Mechanical Turk) and offered a very high $4 to those who qualified and $.20 to those who did not. As part of the HIT, workers were asked to read an email and respond to two questions that determined whether workers were likely rushing through the HIT and not answering conscientiously. One question was simple and took little effort, while the second question required a bit more work to find the answer. Workers were led to believe other factors than these two questions were the qualifying aspect of the HIT. Of the 2000 participants, roughly 1200 (or 61%) answered both questions correctly. Eighty-eight percent answered the easy question correctly, and 64% answered the difficult question correctly. In other words, about 12% of the crowd were gaming the system, not paying enough attention to the question or making careless errors. Up to about 40% won't put in more than a modest effort to get paid for a HIT. Young men and those that considered themselves in the financial industry tended to be the most likely to try to game the system. There wasn't a breakdown by country, but given the demographic information from the first article, we could infer that many of these young men come from India, which makes language and other cultural differences a factor. These articles raise questions about the role of crowdsourcing as a means for getting quick user input at low cost. While compensating users for their time is nothing new, the incentive structure and anonymity of Mechanical Turk raises some interesting questions. How complex of a task can we ask of the crowd, and how much should these workers be paid? Can we rely on the information we get from these professional users, and if so, how can we best incorporate it into designing more usable products? Traditional usability testing will still play a central role in enterprise software. Crowdsourcing doesn't replace testing; instead, it makes certain parts of gathering user feedback easier. One can turn to the crowd for simple tasks that don't require specialized skills and get a lot of data fast. As more studies are conducted on Mechanical Turk, I suspect we will see crowdsourcing playing an increasing role in human computer interaction and enterprise computing. References: Downs, J. S., Holbrook, M. B., Sheng, S., and Cranor, L. F. 2010. Are your participants gaming the system?: screening mechanical turk workers. In Proceedings of the 28th international Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA, April 10 - 15, 2010). CHI '10. ACM, New York, NY, 2399-2402. Link: http://doi.acm.org/10.1145/1753326.1753688 Ross, J., Irani, L., Silberman, M. S., Zaldivar, A., and Tomlinson, B. 2010. Who are the crowdworkers?: shifting demographics in mechanical turk. In Proceedings of the 28th of the international Conference Extended Abstracts on Human Factors in Computing Systems (Atlanta, Georgia, USA, April 10 - 15, 2010). CHI EA '10. ACM, New York, NY, 2863-2872. Link: http://doi.acm.org/10.1145/1753846.1753873

    Read the article

< Previous Page | 490 491 492 493 494 495 496 497 498 499 500 501  | Next Page >