Search Results

Search found 20270 results on 811 pages for 'package management'.

Page 499/811 | < Previous Page | 495 496 497 498 499 500 501 502 503 504 505 506  | Next Page >

  • Need to integrate phpFox and Wordpress so that there is a single login.

    - by Jason
    phpFox should take care of user login management, add user and edit user. But would like to automatically create a corresponding Wordpress account when user signs up for phpFox. And when user logs into phpFox user is auto logged into Wordpress so user doesn't really even realize Wordpress login or user account exists. What would be the best way to do this? Apps will be on the same server so could make native calls or use curl.

    Read the article

  • Good resource for studying Database High Availability techniques

    - by Invincible
    Hello Can anybody suggest some good resource/book on Database high availability techniques? Moreover, High-availability of system software like Intrusion Prevention system or Web servers. I am considering high-availability is global term which covers clustring, cloud computing, replication, replica management, distributed synchronization for cluster. Thanks in advance!

    Read the article

  • Looking for a good Python Tree data structure

    - by morpheous
    I am looking for a good Tree data structure class. I have come across this package, but since I am relatively new to Python (not programming), I dont know if there are any better ones out there. I'd like to hear from the Pythonistas on here - do you have a favorite tree script that you regularly use and would recommend?

    Read the article

  • manage user permissions in php

    - by user420528
    i am creating a marks management system using php & mysqlwhere the concerned faculty will be able to login and enter the marks of the students. i can go with a simple table but the problem is there are 288 different subjects for which marks must be entered. So creating a mysql table with so many subjects does not look good for me. please suggest me the best way to manage user permissions so that only the corresponding faculty will be able to enter marks

    Read the article

  • How to do yum backup and restore?

    - by tomaszs
    Is there a way to make a backup of package that will be change while yum update? For example when I do yum update lighttpd is there a way to backup and restore lighttpd if yum update will be unsuccessful or it will result in unsuspected errors or bugs?

    Read the article

  • _REQUIREDNAME always nil

    - by Nali4Freedom
    I'm trying to use the method for naming a lua package after the filename mentioned here, however _REQUIREDNAME is never defined. For example I have these two files samplePackage.lua: print("_REQUIREDNAME: ", _REQUIREDNAME) return nil; packageTest.lua: require "samplePackage" And when I run packageTest.lua it outputs > _REQUIREDNAME: nil I also couldn't find any mention of _REQUIREDNAME in the Lua 5.1 Refrence manual, so was this removed from the language, or am I missing something?

    Read the article

  • sidewaysfire and twosided

    - by hanno
    I try two use sidewaysfigure from the rotating package in the twosided memoir class. The resulting figures look correct in the pdf that is generated, with the page rotated by 90 degrees. However, when I print the document (on linux, using CUPS), some of the pages with a sidewaysfigure are upside down (rotated by 180 degreeS).

    Read the article

  • How to log SQL output to text file on client from C#

    - by Rob Packwood
    I have a large auditing stored procedure that prints values and runs some SELECT statements. When running within SQL Management Studio we have the use select to display "Results to Text" so all of the SQL results and print statement display in one place. Now I need to have some C# code also call this auditing procedure at the end of the process and basically store all data that would be in the "Results to Text" window into a .txt file. How can this be done?

    Read the article

  • Google Drive listing, searching and deleting files

    - by omarshammas
    I'm building a web app that integrates with Google Drive, and am wondering if there was a way to list, search or delete files. I see from https://developers.google.com/drive/v1/reference/files#resource that there are 4 operations. If there are no list and search capabilities then the onus is on the app to handle the management. Is there another API I should be using? Are those features in the works?

    Read the article

  • How to Add Tab to dotProject's Project page?

    - by userbiasa
    I'm a newbie in PHP. A friend of mine want me to help him set up a Project Management intranet with dotProject. The first request I receive from my friend is add a new tab on Projects page. Does anyone can give me clue on how to do it, since lack of documentation on dotProject website.

    Read the article

  • How to calculate the cycles that change one permutation into another?

    - by fortran
    Hi, I'm looking for an algorithm that given two permutations of a sequence (e.g. [2, 3, 1, 4] and [4, 1, 3, 2]) calculates the cycles that are needed to convert the first into the second (for the example, [[0, 3], [1, 2]]). The link from mathworld says that Mathematica's ToCycle function does that, but sadly I don't have any Mathematica license at hand... I'd gladly receive any pointer to an implementation of the algorithm in any FOSS language or mathematics package. Thanks!

    Read the article

  • read, parse and process json (java)

    - by mac
    Guys, simple situation - read a json file discover all key-value pairs compare key-value pairs I tried gson, package from json.org, but can't seem to get far with it. Can someone please provide a clear sample in Java on how to take a file, read it, end up with json objec i can get key/value pairs from thanks so much

    Read the article

  • Invoking a function of library libfprint in Python

    - by Ivanelson
    I need help to call a function(Struct C) that detects the devices, so I'm calling the function this way: from ctypes import * fp = CDLL('./libfprint.so.0') fp.fp_discover_devs.argtypes = None fp.fp_discover_devs.restype = c_char_p ret = fp.fp_discover_devs() print ret # is "0" That is not detected any device, because the return is "0". See the documentation of the function: I'm using Ubuntu and I downloaded the "fprint_demo" and works perfectly. Did you install any package missing? Thanks.

    Read the article

  • Problem with java and conditional (game of life)

    - by Muad'Dib
    Hello everybody, I'm trying to implement The Game of Life in java, as an exercise to learn this language. Unfortunately I have a problem, as I don't seem able to make this program run correctly. I implemented a torodial sum (the plane is a donut) with no problem: int SumNeighbours (int i, int j) { int value = 0; value = world[( i - 1 + row ) % row][( j - 1 + column ) % column]+world[( i - 1 + row ) % row][j]+world[( i - 1 + row ) % row][( j + 1 ) % column]; value = value + world[i][( j - 1 + column ) % column] + world[i][( j + 1 ) % column]; value = value + world[( i + 1 ) % row][( j - 1 + column ) % column] + world[( i + 1 ) % row][j]+world[ ( i+1 ) % row ][( j + 1 ) % column]; return value; } And it sums correctly when I test it: void NextWorldTest () { int count; int [][] nextWorld = new int[row][row]; nextWorld = world; for (int i=0; i<row; i++) { for (int j=0; j<column; j++) { count = SumNeighbours(i,j); System.out.print(" " + count + " "); } System.out.println(); } world=nextWorld; } Unfortunately when I add the conditions of game of life (born/death) the program stop working correctly, as it seems not able anymore to count correctly the alive cells in the neighborhood. It counts where there are none, and it doesn't count when there are some. E.g.: it doesn't count the one below some living cells. It's a very odd behaviour, and it's been giving me a headache for 3 days now... maybe I'm missing something basic about variables? Here you can find the class. void NextWorld () { int count; int [][] nextWorld = new int[row][column]; nextWorld = world; for (int i=0; i<row; i++) { for (int j=0; j<column; j++) { count = SumNeighbours(i,j); System.out.print(" " + count + " "); if ( ( world[i][j] == 0) && ( count == 3 ) ) { nextWorld[i][j] = 1; } else if ( ( world[i][j] == 1 ) && ( (count == 3) || (count == 2) )) { nextWorld[i][j] = 1; } else { nextWorld[i][j]=0; } } System.out.println(); } world=nextWorld; } } Am I doing something wrong? Below you can find the full package. package com.GaOL; public class GameWorld { int [][] world; int row; int column; public int GetRow() { return row; } public int GetColumn() { return column; } public int GetWorld (int i, int j) { return world[i][j]; } void RandomGen (int size, double p1) { double randomCell; row = size; column = size; world = new int[row][column]; for (int i = 0; i<row; i++ ) { for (int j = 0; j<column; j++ ) { randomCell=Math.random(); if (randomCell < 1-p1) { world[i][j] = 0; } else { world[i][j] = 1; } } } } void printToConsole() { double test = 0; for (int i=0; i<row; i++) { for (int j=0; j<column; j++) { if ( world[i][j] == 0 ) { System.out.print(" "); } else { System.out.print(" * "); test++; } } System.out.println(""); } System.out.println("ratio is " + test/(row*column)); } int SumNeighbours (int i, int j) { int value = 0; value = world[( i - 1 + row ) % row][( j - 1 + column ) % column]+world[( i - 1 + row ) % row][j]+world[( i - 1 + row ) % row][( j + 1 ) % column]; value = value + world[i][( j - 1 + column ) % column] + world[i][( j + 1 ) % column]; value = value + world[( i + 1 ) % row][( j - 1 + column ) % column] + world[( i + 1 ) % row][j]+world[ ( i+1 ) % row ][( j + 1 ) % column]; return value; } void NextWorldTest () { int count; int [][] nextWorld = new int[row][row]; nextWorld = world; for (int i=0; i<row; i++) { for (int j=0; j<column; j++) { count = SumNeighbours(i,j); System.out.print(" " + count + " "); } System.out.println(); } world=nextWorld; } void NextWorld () { int count; int [][] nextWorld = new int[row][column]; nextWorld = world; for (int i=0; i<row; i++) { for (int j=0; j<column; j++) { count = SumNeighbours(i,j); System.out.print(" " + count + " "); if ( ( world[i][j] == 0) && ( count == 3 ) ) { nextWorld[i][j] = 1; } else if ( ( world[i][j] == 1 ) && ( (count == 3) || (count == 2) )) { nextWorld[i][j] = 1; } else { nextWorld[i][j]=0; } } System.out.println(); } world=nextWorld; } } and here the test class: package com.GaOL; public class GameTestClass { public static void main(String[] args) { GameWorld prova = new GameWorld(); prova.RandomGen(10, 0.02); for (int i=0; i<3; i++) { prova.printToConsole(); prova.NextWorld(); } } }

    Read the article

  • Dropbox links in a Phonegap app (Android)

    - by genericatz
    I try to create downloadable links to files which can be downloaded directly after clicking the link. I added "dl" instead of "www" and "?dl=1" in the end of the dropbox link (dropbox api: directly download files). The direct download works perfectly in the chrome browser but if I package the app which phonegap and click on the same link whithin the resulting app the file will not be downloaded. Is this not possible whithin the adroid browser or do I have to modify some android browser preferences?

    Read the article

  • when was RAII added to C++

    - by Magnus
    I recently learned about the wonderful memory management technique of RAII, which seems so much cleaner than the new/delete headache I learned in school years ago (I haven't looked at much C++ during the intervening years). I'm trying to track down when this great technique was added to C++. Was it always there and I just missed the memo? What's the oldest version of the C++ standard which supports RAII?

    Read the article

  • dropdown list;servlet Problem

    - by user294750
    I try to excute the servlet code given, like an exemple to understand how it works. BUT I did not understand from where the attribut optionDAO and what is the necessity to use it. The find method seems like the given by hibernate in package".base". What should I really do to skip this. Thanks.

    Read the article

  • has c++ outlived its usefulness? [closed]

    - by user303030
    With the advent of more powerful computers and the difficulties with memory management, pointers and archaic mechanisms for constructing functions and classes, has C++ outlived its usefulness? Have the problems and challenges with development made this language too difficult to understand?

    Read the article

  • Why should you choose Oracle WebLogic 12c instead of JBoss EAP 6?

    - by Ricardo Ferreira
    In this post, I will cover some technical differences between Oracle WebLogic 12c and JBoss EAP 6, which was released a couple days ago from Red Hat. This article claims to help you in the evaluation of key points that you should consider when choosing for an Java EE application server. In the following sections, I will present to you some important aspects that most customers ask us when they are seriously evaluating for an middleware infrastructure, specially if you are considering JBoss for some reason. I would suggest that you keep the following question in mind while you are reading the points: "Why should I choose JBoss instead of WebLogic?" 1) Multi Datacenter Deployment and Clustering - D/R ("Disaster & Recovery") architecture support is embedded on the WebLogic Server 12c product. JBoss EAP 6 on the other hand has no direct D/R support included, Red Hat relies on third-part tools with higher prices. When you consider a middleware solution to host your business critical application, you should worry with every architectural aspect that are related with the solution. Fail-over support is one little aspect of a truly reliable solution. If you do not worry about D/R, your solution will not be reliable. Having said that, with Red Hat and JBoss EAP 6, you have this extra cost that will increase considerably the total cost of ownership of the solution. As we commonly hear from analysts, open-source are not so cheaper when you start seeing the big picture. - WebLogic Server 12c supports advanced LAN clustering, detection of death servers and have a common alert framework. JBoss EAP 6 on the other hand has limited LAN clustering support with no server death detection. They do not generate any alerts when servers goes down (only if you buy JBoss ON which is a separated technology, but until now does not support JBoss EAP 6) and manual intervention are required when servers goes down. In most cases, admin people must rely on "kill -9", "tail -f someFile.log" and "ps ax | grep java" commands to manage failures and clustering anomalies. - WebLogic Server 12c supports the concept of Node Manager, which is a separated process that runs on the physical | virtual servers that allows extend the administration of the cluster to WebLogic managed servers that are often distributed across multiple machines and geographic locations. JBoss EAP 6 on the other hand has no equivalent technology. Whole server instances must be managed individually. - WebLogic Server 12c Node Manager supports Coherence to boost performance when managing servers. JBoss EAP 6 on the other hand has no similar technology. There is no way to coordinate JBoss and infiniband instances provided by JBoss using high throughput and low latency protocols like InfiniBand. The Node Manager feature also allows another very important feature that JBoss EAP lacks: secure the administration. When using WebLogic Node Manager, all the administration tasks are sent to the managed servers in a secure tunel protected by a certificate, which means that the transport layer that separates the WebLogic administration console from the managed servers are secured by SSL. - WebLogic Server 12c are now integrated with OTD ("Oracle Traffic Director") which is a web server technology derived from the former Sun iPlanet Web Server. This software complements the web server support offered by OHS ("Oracle HTTP Server"). Using OTD, WebLogic instances are load-balanced by a high powerful software that knows how to handle SDP ("Socket Direct Protocol") over InfiniBand, which boost performance when used with engineered systems technologies like Oracle Exalogic Elastic Cloud. JBoss EAP 6 on the other hand only offers support to Apache Web Server with custom modules created to deal with JBoss clusters, but only across standard TCP/IP networks.  2) Application and Runtime Diagnostics - WebLogic Server 12c have diagnostics capabilities embedded on the server called WLDF ("WebLogic Diagnostic Framework") so there is no need to rely on third-part tools. JBoss EAP 6 on the other hand has no diagnostics capabilities. Their only diagnostics tool is the log generated by the application server. Admin people are encouraged to analyse thousands of log lines to find out what is going on. - WebLogic Server 12c complement WLDF with JRockit MC ("Mission Control"), which provides to administrators and developers a complete insight about the JVM performance, behavior and possible bottlenecks. WebLogic Server 12c also have an classloader analysis tool embedded, and even a log analyzer tool that enables administrators and developers to view logs of multiple servers at the same time. JBoss EAP 6 on the other hand relies on third-part tools to do something similar. Again, only log searching are offered to find out whats going on. - WebLogic Server 12c offers end-to-end traceability and monitoring available through Oracle EM ("Enterprise Manager"), including monitoring of business transactions that flows through web servers, ESBs, application servers and database servers, all of this with high deep JVM analysis and diagnostics. JBoss EAP 6 on the other hand, even using JBoss ON ("Operations Network"), which is a separated technology, does not support those features. Red Hat relies on third-part tools to provide direct Oracle database traceability across JVMs. One of those tools are Oracle EM for non-Oracle middleware that manage JBoss, Tomcat, Websphere and IIS transparently. - WebLogic Server 12c with their JRockit support offers a tool called JRockit Flight Recorder, which can give developers a complete visibility of a certain period of application production monitoring with zero extra overhead. This automatic recording allows you to deep analyse threads latency, memory leaks, thread contention, resource utilization, stack overflow damages and GC ("Garbage Collection") cycles, to observe in real time stop-the-world phenomenons, generational, reference count and parallel collects and mutator threads analysis. JBoss EAP 6 don't even dream to support something similar, even because they don't have their own JVM. 3) Application Server Administration - WebLogic Server 12c offers a complete administration console complemented with scripting and macro-like recording capabilities. A single WebLogic console can managed up to hundreds of WebLogic servers belonging to the same domain. JBoss EAP 6 on the other hand has a limited console and provides a XML centric administration. JBoss, after ten years, started the development of a rudimentary centralized administration that still leave a lot of administration tasks aside, so admin people and developers must touch scripts and XML configuration files for most advanced and even simple administration tasks. This lead applications to error prone and risky deployments. Even using JBoss ON, JBoss EAP are not able to offer decent administration features for admin people which must be high skilled in JBoss internal architecture and its managing capabilities. - Oracle EM is available to manage multiple domains, databases, application servers, operating systems and virtualization, with a complete end-to-end visibility. JBoss ON does not provide management capabilities across the complete architecture, only basic monitoring. Even deployment must be done aside JBoss ON which does no integrate well with others softwares than JBoss. Until now, JBoss ON does not supports JBoss EAP 6, so even their minimal support for JBoss are not available for JBoss EAP 6 leaving customers uncovered and subject to high skilled JBoss admin people. - WebLogic Server 12c has the same administration model whatever is the topology selected by the customer. JBoss EAP 6 on the other hand differentiates between two operational models: standalone-mode and domain-mode, that are not consistent with each other. Depending on the mode used, the administration skill is different. - WebLogic Server 12c has no point-of-failures processes, and it does not need to define any specialized server. Domain model in WebLogic is available for years (at least ten years or more) and is production proven. JBoss EAP 6 on the other hand needs special processes to garantee JBoss integrity, the PC ("Process-Controller") and the HC ("Host-Controller"). Different from WebLogic, the domain model in JBoss is quite new (one year at tops) of maturity, and need to mature considerably until start doing things like WebLogic domain model does. - WebLogic Server 12c supports parallel deployment model which enables some artifacts being deployed at the same time. JBoss EAP 6 on the other hand does not have any similar feature. Every deployment are done atomically in the containers. This means that if you have a huge EAR (an EAR of 120 MB of size for instance) and deploy onto JBoss EAP 6, this EAR will take some minutes in order to starting accept thread requests. The same EAR deployed onto WebLogic Server 12c will reduce the deployment time at least in 2X compared to JBoss. 4) Support and Upgrades - WebLogic Server 12c has patch management available. JBoss EAP 6 on the other hand has no patch management available, each JBoss EAP instance should be patched manually. To achieve such feature, you need to buy a separated technology called JBoss ON ("Operations Network") that manage this type of stuff. But until now, JBoss ON does not support JBoss EAP 6 so, in practice, JBoss EAP 6 does not have this feature. - WebLogic Server 12c supports previuous WebLogic domains without any reconfiguration since its kernel is robust and mature since its creation in 1995. JBoss EAP 6 on the other hand has a proven lack of supportability between JBoss AS 4, 5, 6 and 7. Different kernels and messaging engines were implemented in JBoss stack in the last five years reveling their incapacity to create a well architected and proven middleware technology. - WebLogic Server 12c has patch prescription based on customer configuration. JBoss EAP 6 on the other hand has no such capability. People need to create ticket supports and have their installations revised by Red Hat support guys to gain some patch prescription from them. - Oracle WebLogic Server independent of the version has 8 years of support of new patches and has lifetime release of existing patches beyond that. JBoss EAP 6 on the other hand provides patches for a specific application server version up to 5 years after the release date. JBoss EAP 4 and previous versions had only 4 years. A good question that Red Hat will argue to answer is: "what happens when you find issues after year 5"?  5) RAC ("Real Application Clusters") Support - WebLogic Server 12c ships with a specific JDBC driver to leverage Oracle RAC clustering capabilities (Fast-Application-Notification, Transaction Affinity, Fast-Connection-Failover, etc). Oracle JDBC thin driver are also available. JBoss EAP 6 on the other hand ships only the standard Oracle JDBC thin driver. Load balancing with Oracle RAC are not supported. Manual intervention in case of planned or unplanned RAC downtime are necessary. In JBoss EAP 6, situation does not reestablish automatically after downtime. - WebLogic Server 12c has a feature called Active GridLink for Oracle RAC which provides up to 3X performance on OLTP applications. This seamless integration between WebLogic and Oracle database enable more value added to critical business applications leveraging their investments in Oracle database technology and Oracle middleware. JBoss EAP 6 on the other hand has no performance gains at all, even when admin people implement some kind of connection-pooling tuning. - WebLogic Server 12c also supports transaction and web session affinity to the Oracle RAC, which provides aditional gains of performance. This is particularly interesting if you are creating a reliable solution that are distributed not only in an LAN cluster, but into a different data center. JBoss EAP 6 on the other hand has no such support. 6) Standards and Technology Support - WebLogic Server 12c is fully Java EE 6 compatible and production ready since december of 2011. JBoss EAP 6 on the other hand became fully compatible with Java EE 6 only in the community version after three months, and production ready only in a few days considering that this article was written in June of 2012. Red Hat says that they are the masters of innovation and technology proliferation, but compared with Oracle and even other proprietary vendors like IBM, they historically speaking are lazy to deliver the most newest technologies and standards adherence. - Oracle is the steward of Java, driving innovation into the platform from commercial and open-source vendors. Red Hat on the other hand does not have its own JVM and relies on third-part JVMs to complete their application server offer. 95% of Red Hat customers are using Oracle HotSpot as JVM, which means that without Oracle involvement, their support are limited exclusively to the application server layer and we all know that most problems are happens in the JVM layer. - WebLogic Server 12c supports natively JDK 7, which empower developers to explore the maximum of the Java platform productivity when writing code. This feature differentiate WebLogic from others application servers (except GlassFish that are also managed by Oracle) because the usage of JDK 7 introduce such remarkable productivity features like the "try-with-resources" enhancement, catching multiple exceptions with one try block, Strings in the switch statements, JVM improvements in terms of JDBC, I/O, networking, security, concurrency and of course, the most important feature of Java 7: native support for multiple non-Java languages. More features regarding JDK 7 can be found here. JBoss EAP 6 on the other hand does not support JDK 7 officially, they comment in their community version that "Java SE 7 can be used with JBoss 7" which does not gives you any guarantees of enterprise support for JDK 7. - Oracle WebLogic Server 12c supports integration with Spring framework allowing Spring applications to use WebLogic special transaction manager, exposing bean interfaces to WebLogic MBeans to take advantage of all WebLogic monitoring and administration advantages. JBoss EAP 6 on the other hand has no special integration with Spring. In fact, Red Hat offers a suspicious package called "JBoss Web Platform" that in theory supports Spring, but in practice this package does not offers any special integration. It is just a facility for Red Hat customers to have support from both JBoss and Spring technology using the same customer support. 7) Lightweight Development - Oracle WebLogic Server 12c and Oracle GlassFish are completely integrated and can share applications without any modifications. Starting with the 12c version, WebLogic now understands natively GlassFish deployment descriptors and specific configurations in order to offer you a truly and reliable migration path from a community Java EE application server to a enterprise middleware product like WebLogic. JBoss EAP 6 on the other hand has no support to natively reuse an existing (or still in development) application from JBoss AS community server. Users of JBoss suffer of critical issues during deployment time that includes: changing the libraries and dependencies of the application, patching the DTD or XSD deployment descriptors, refactoring of the application layers due classloading issues and anomalies, rebuilding of persistence, business and web layers due issues with "usage of the certified version of an certain dependency" or "frameworks that Red Hat potentially does not recommend" etc. If you have the culture or enterprise IT directive of developing Java EE applications using community middleware to in a certain future, transition to enterprise (supported by a vendor) middleware, Oracle WebLogic plus Oracle GlassFish offers you a more sustainable solution. - WebLogic Server 12c has a very light ZIP distribution (less than 165 MB). JBoss EAP 6 ZIP size is around 130 MB, together with JBoss ON you have more 100 MB resulting in a higher download footprint. This is particularly interesting if you plan to use automated setup of application server instances (for example, to rapidly setup a development or staging environment) using Maven or Hudson. - WebLogic Server 12c has a complete integration with Maven allowing developers to setup WebLogic domains with few commands. Tasks like downloading WebLogic, installation, domain creation, data sources deployment are completely integrated. JBoss EAP 6 on the other hand has a limited offer integration with those tools.  - WebLogic Server 12c has a startup mode called WLX that turns-off EJB, JMS and JCA containers leaving enabled only the web container with Java EE 6 web profile. JBoss EAP 6 on the other hand has no such feature, you need to disable manually the containers that you do not want to use. - WebLogic Server 12c supports fastswap, which enables you to change classes without redeployment. This is particularly interesting if you are developing patches for the application that is already deployed and you do not want to redeploy the entire application. This is the same behavior that most application servers offers to JSP pages, but with WebLogic Server 12c, you have the same feature for Java classes in general. JBoss EAP 6 on the other hand has no such support. Even JBoss EAP 5 does not support this until now. 8) JMS and Messaging - WebLogic Server 12c has a proven and high scalable JMS implementation since its initial release in 1995. JBoss EAP 6 on the other hand has a still immature technology called HornetQ, which was introduced in JBoss EAP 5 replacing everything that was implemented in the previous versions. Red Hat loves to introduce new technologies across JBoss versions, playing around with customers and their investments. And when they are asked about why they have changed the implementation and caused such a mess, their answer is always: "the previous implementation was inadequate and not aligned with the community strategy so we are creating a new a improved one". This Red Hat practice leads to uncomfortable investments that in a near future (sometimes less than a year) will be affected in someway. - WebLogic Server 12c has troubleshooting and monitoring features included on the WebLogic console and WLDF. JBoss EAP 6 on the other hand has no direct monitoring on the console, activity is reflected only on the logs, no debug logs available in case of JMS issues. - WebLogic Server 12c has extremely good performance and scalability. JBoss EAP 6 on the other hand has a JMS storage mechanism relying on Oracle database or MySQL. This means that if an issue in production happens and Red Hat affirms that an performance issue is happening due to database problems, they will not support you on the performance issue. They will orient you to call Oracle instead. - WebLogic Server 12c supports messaging enterprise features like SAF ("Store and Forward"), Distributed Queues/Topics and Foreign JMS providers support that leverage JMS implementations without compromise developer code making things completely transparent. JBoss EAP 6 on the other hand do not even dream to support such features. 9) Caching and Grid - Coherence, which is the leading and most mature data grid technology from Oracle, is available since early 2000 and was integrated with WebLogic in 2009. Coherence and WebLogic clusters can be both managed from WebLogic administrative console. Even Node Manager supports Coherence. JBoss on the other hand discontinued JBoss Cache, which was their caching implementation just like they did with the messaging implementation (JBossMQ) which was a issue for long term customers. JBoss EAP 6 ships InfiniSpan version 1.0 which is immature and lack a proven record of successful cases and reliability. - WebLogic Server 12c has a feature called ActiveCache which uses Coherence to, without any code changes, replicate HTTP sessions from both WebLogic and other application servers like JBoss, Tomcat, Websphere, GlassFish and even Microsoft IIS. JBoss EAP 6 on the other hand does have such support and even when they do in the future, they probably will support only their own application server. - Coherence can be used to manage both L1 and L2 cache levels, providing support to Oracle TopLink and others JPA compliant implementations, even Hibernate. JBoss EAP 6 and Infinispan on the other hand supports only Hibernate. And most important of all: Infinispan does not have any successful case of L1 or L2 caching level support using Hibernate, which lead us to reflect about its viability. 10) Performance - WebLogic Server 12c is certified with Oracle Exalogic Elastic Cloud and can run unchanged applications at this engineered system. This approach can benefit customers from Exalogic optimization's of both kernel and JVM layers to boost performance in terms of 10X for web, OLTP, JMS and grid applications. JBoss EAP 6 on the other hand has no investment on engineered systems: customers do not have the choice to deploy on a Java ultra fast system if their project becomes relevant and performance issues are detected. - WebLogic Server 12c maintains a performance gain across each new release: starting on WebLogic 5.1, the overall performance gain has been close to 4X, which close to a 20% gain release by release. JBoss on the other hand does not provide SPECJAppServer or SPECJEnterprise performance benchmarks. Their so called "performance gains" remains hidden in their customer environments, which lead us to think if it is true or not since we will never get access to those environments. - WebLogic Server 12c has industry performance benchmarks with submissions across platforms and configurations leading SPECJ. Oracle WebLogic leads SPECJAppServer performance in multiple categories, fitting all customer topologies like: dual-node, single-node, multi-node and multi-node with RAC. JBoss... again, does not provide any SPECJAppServer performance benchmarks. - WebLogic Server 12c has a feature called work manager which allows your application to embrace new performance levels based on critical resource utilization of the CPUs usage. Work managers prioritizes work and allocates threads based on an execution model that takes into account administrator-defined parameters and actual run-time performance and throughput. JBoss EAP 6 on the other hand has no compared feature and probably they never will. Not supporting such feature like work managers, JBoss EAP 6 forces admin people and specially developers to uncover performance gains in a intrusive way, rewriting the code and doing performance refactorings. 11) Professional Services Support - WebLogic Server 12c and any other technology sold by Oracle give customers the possibility of hire OCS ("Oracle Consulting Services") to manage critical scenarios, deployment assistance of new applications, high skilled consultancy of architecture, best practices and people allocation together with customer teams. All OCS services are available without any restrictions, having the customer bought software from Oracle or just starting their implementation before any acquisition. JBoss EAP 6 or Red Hat to be more specifically, only offers professional services if you buy subscriptions from them. If you are developing a new critical application for your business and need the help of Red Hat for a serious issue or architecture decision, they will probably say: "OK... I can help you but after you buy subscriptions from me". Red Hat also does not allows their professional services consultants to manage environments that uses community based software. They will probably force you to first buy a subscription, download their "enterprise" version and them, optionally hire their consultants. - Oracle provides you our university to educate your team into our technologies, including of course specialized trainings of WebLogic application server. At any time and location, you can hire Oracle to train your team so you get trustful knowledge according to your specific needs. Certifications for the products are also available if your technical people desire to differentiate themselves as professionals. Red Hat on the other hand have a limited pool of resources to train your team in their technologies. Basically they are selling training and certification for RHEL ("Red Hat Enterprise Linux") but if you demand more specialized training in JBoss middleware, they will probably connect you to some "certified" partner localized training since they are apparently discontinuing their education center, at least here in Brazil. They were not able to reproduce their success with RHEL education to their middleware division since they need first sell the subscriptions to after gives you specialized training. And again, they only offer you specialized training based on their enterprise version (EAP in the case of JBoss) which means that the courses will be a quite outdated. There are reports of developers that took official training's from Red Hat at this year (2012) and in a certain JBoss advanced course, Red Hat supposedly covered JBossMQ as the messaging subsystem, and even the printed material provided was based on JBossMQ since the training was created for JBoss EAP 4.3. 12) Encouraging Transparency without Ulterior Motives - WebLogic Server 12c like any other software from Oracle can be downloaded any time from anywhere, you should only possess an OTN ("Oracle Technology Network") credential and you can download any enterprise software how many times you want. And is not some kind of "trial" version. It is the official binaries that will be running for ever in your data center. Oracle does not encourages the usage of "specific versions" of our software. The binaries you buy from Oracle are the same binaries anyone in the world could download and use for testing and personal education. JBoss EAP 6 on the other hand are not available for download unless you buy a subscription and get access to the Red Hat enterprise repositories. If you need to test, learn or just start creating your application using Red Hat's middleware software, you should download it from the community website. You are not allowed to download the enterprise version that, according to Red Hat are more secure, reliable and robust. But no one of us want to start the development of a software with an unsecured, unreliable and not scalable middleware right? So what you do? You are "invited" by Red Hat to buy subscriptions from them to get access to the "cool" version of the software. - WebLogic Server 12c prices are publicly available in the Oracle website. If you want to know right now how much WebLogic will cost to your organization, just click here and get access to our price list. In the case of WebLogic, check out the "US Oracle Technology Commercial Price List". Oracle also encourages you to get in touch with a sales representative to discuss discounts that would make possible the investment into our technology. But you are not required to do this, only if you are interested in buying our technology or maybe you want to discuss some discount scenarios. JBoss EAP 6 on the other hand does not have its cost publicly available in Red Hat's website or in any other media, at least is not so easy to get such information. The only link you will possibly find in their website is a "Contact a Sales Representative" link. This is not a very good relationship between an customer and an vendor. This is not an example of transparency, mainly when the software are sold as open. In this situations, customers expects to see the software prices publicly available, so they can have the chance to decide, based on the existing features of the software, if the cost is fair or not. Conclusion Oracle WebLogic is the most mature, secure, reliable and scalable Java EE application server of the market, and have a proven record of success around the globe to prove it's majority. Don't lose the chance to discover today how WebLogic could fit your needs and sustain your global IT middleware strategy, no matter if your strategy are completely based on the Cloud or not.

    Read the article

  • Java Cloud Service Integration to REST Service

    - by Jani Rautiainen
    Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance. This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance. In this article a custom application integrating with REST service will be implemented. We will use REST services provided by Taleo as an example; however the same approach will work with any REST service. In this example the data from the REST service is used to populate a dynamic table. Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration.Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source.The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the "Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud" link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guideFor details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Access to a local database The database associated with the JCS instance cannot be connected to with JDBC.  Since creating ADFbc business component requires a JDBC connection we will need access to a local database. 3rd party libraries This example will use some 3rd party libraries for implementing the REST service call and processing the input / output content. Other libraries may also be used, however these are tested to work. Jersey 1.x Jersey library will be used as a client to make the call to the REST service. JCS documentation for supported specifications states: Java API for RESTful Web Services (JAX-RS) 1.1 So Jersey 1.x will be used. Download the single-JAR Jersey bundle; in this example Jersey 1.18 JAR bundle is used. Json-simple Jjson-simple library will be used to process the json objects. Download the  JAR file; in this example json-simple-1.1.1.jar is used. Accessing data in Taleo Before implementing the application it is beneficial to familiarize oneself with the data in Taleo. Easiest way to do this is by using a RESTClient on your browser. Once added to the browser you can access the UI: The client can be used to call the REST services to test the URLs and data before adding them into the application. First derive the base URL for the service this can be done with: Method: GET URL: https://tbe.taleo.net/MANAGER/dispatcher/api/v1/serviceUrl/<company name> The response will contain the base URL to be used for the service calls for the company. Next obtain authentication token with: Method: POST URL: https://ch.tbe.taleo.net/CH07/ats/api/v1/login?orgCode=<company>&userName=<user name>&password=<password> The response includes an authentication token that can be used for few hours to authenticate with the service: {   "response": {     "authToken": "webapi26419680747505890557"   },   "status": {     "detail": {},     "success": true   } } To authenticate the service calls navigate to "Headers -> Custom Header": And add a new request header with: Name: Cookie Value: authToken=webapi26419680747505890557 Once authentication token is defined the tool can be used to invoke REST services; for example: Method: GET URL: https://ch.tbe.taleo.net/CH07/ats/api/v1/object/candidate/search.xml?status=16 This data will be used on the application to be created. For details on the Taleo REST services refer to the Taleo Business Edition REST API Guide. Create Application First Fusion Web Application is created and configured. Start JDeveloper and click "New Application": Application Name: JcsRestDemo Application Package Prefix: oracle.apps.jcs.test Application Template: Fusion Web Application (ADF) Configure Local Cloud Connection Follow the steps documented in the "Java Cloud Service ADF Web Application" article to configure a local database connection needed to create the ADFbc objects. Configure Libraries Add the 3rd party libraries into the class path. Create the following directory and copy the jar files into it: <JDEV_USER_HOME>/JcsRestDemo/lib  Select the "Model" project, navigate "Application -> Project Properties -> Libraries and Classpath -> Add JAR / Directory" and add the 2 3rd party libraries: Accessing Data from Taleo To access data from Taleo using the REST service the 3rd party libraries will be used. 2 Java classes are implemented, one representing the Candidate object and another for accessing the Taleo repository Candidate Candidate object is a POJO object used to represent the candidate data obtained from the Taleo repository. The data obtained will be used to populate the ADFbc object used to display the data on the UI. The candidate object contains simply the variables we obtain using the REST services and the getters / setters for them: Navigate "New -> General -> Java -> Java Class", enter "Candidate" as the name and create it in the package "oracle.apps.jcs.test.model".  Copy / paste the following as the content: import oracle.jbo.domain.Number; public class Candidate { private Number candId; private String firstName; private String lastName; public Candidate() { super(); } public Candidate(Number candId, String firstName, String lastName) { super(); this.candId = candId; this.firstName = firstName; this.lastName = lastName; } public void setCandId(Number candId) { this.candId = candId; } public Number getCandId() { return candId; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getFirstName() { return firstName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getLastName() { return lastName; } } Taleo Repository Taleo repository class will interact with the Taleo REST services. The logic will query data from Taleo and populate Candidate objects with the data. The Candidate object will then be used to populate the ADFbc object used to display data on the UI. Navigate "New -> General -> Java -> Java Class", enter "TaleoRepository" as the name and create it in the package "oracle.apps.jcs.test.model".  Copy / paste the following as the content (for details of the implementation refer to the documentation in the code): import com.sun.jersey.api.client.Client; import com.sun.jersey.api.client.ClientResponse; import com.sun.jersey.api.client.WebResource; import com.sun.jersey.core.util.MultivaluedMapImpl; import java.io.StringReader; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import java.util.Map; import javax.ws.rs.core.MediaType; import javax.ws.rs.core.MultivaluedMap; import oracle.jbo.domain.Number; import org.json.simple.JSONArray; import org.json.simple.JSONObject; import org.json.simple.parser.JSONParser; /** * This class interacts with the Taleo REST services */ public class TaleoRepository { /** * Connection information needed to access the Taleo services */ String _company = null; String _userName = null; String _password = null; /** * Jersey client used to access the REST services */ Client _client = null; /** * Parser for processing the JSON objects used as * input / output for the services */ JSONParser _parser = null; /** * The base url for constructing the REST URLs. This is obtained * from Taleo with a service call */ String _baseUrl = null; /** * Authentication token obtained from Taleo using a service call. * The token can be used to authenticate on subsequent * service calls. The token will expire in 4 hours */ String _authToken = null; /** * Static url that can be used to obtain the url used to construct * service calls for a given company */ private static String _taleoUrl = "https://tbe.taleo.net/MANAGER/dispatcher/api/v1/serviceUrl/"; /** * Default constructor for the repository * Authentication details are passed as parameters and used to generate * authentication token. Note that each service call will * generate its own token. This is done to avoid dealing with the expiry * of the token. Also only 20 tokens are allowed per user simultaneously. * So instead for each call there is login / logout. * * @param company the company for which the service calls are made * @param userName the user name to authenticate with * @param password the password to authenticate with. */ public TaleoRepository(String company, String userName, String password) { super(); _company = company; _userName = userName; _password = password; _client = Client.create(); _parser = new JSONParser(); _baseUrl = getBaseUrl(); } /** * This obtains the base url for a company to be used * to construct the urls for service calls * @return base url for the service calls */ private String getBaseUrl() { String result = null; if (null != _baseUrl) { result = _baseUrl; } else { try { String company = _company; WebResource resource = _client.resource(_taleoUrl + company); ClientResponse response = resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE).get(ClientResponse.class); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); JSONObject jsonResponse = (JSONObject)jsonObject.get("response"); result = (String)jsonResponse.get("URL"); } catch (Exception ex) { ex.printStackTrace(); } } return result; } /** * Generates authentication token, that can be used to authenticate on * subsequent service calls. Note that each service call will * generate its own token. This is done to avoid dealing with the expiry * of the token. Also only 20 tokens are allowed per user simultaneously. * So instead for each call there is login / logout. * @return authentication token that can be used to authenticate on * subsequent service calls */ private String login() { String result = null; try { MultivaluedMap<String, String> formData = new MultivaluedMapImpl(); formData.add("orgCode", _company); formData.add("userName", _userName); formData.add("password", _password); WebResource resource = _client.resource(_baseUrl + "login"); ClientResponse response = resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE).post(ClientResponse.class, formData); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); JSONObject jsonResponse = (JSONObject)jsonObject.get("response"); result = (String)jsonResponse.get("authToken"); } catch (Exception ex) { throw new RuntimeException("Unable to login ", ex); } if (null == result) throw new RuntimeException("Unable to login "); return result; } /** * Releases a authentication token. Each call to login must be followed * by call to logout after the processing is done. This is required as * the tokens are limited to 20 per user and if not released the tokens * will only expire after 4 hours. * @param authToken */ private void logout(String authToken) { WebResource resource = _client.resource(_baseUrl + "logout"); resource.header("cookie", "authToken=" + authToken).post(ClientResponse.class); } /** * This method is used to obtain a list of candidates using a REST * service call. At this example the query is hard coded to query * based on status. The url constructed to access the service is: * <_baseUrl>/object/candidate/search.xml?status=16 * @return List of candidates obtained with the service call */ public List<Candidate> getCandidates() { List<Candidate> result = new ArrayList<Candidate>(); try { // First login, note that in finally block we must have logout _authToken = "authToken=" + login(); /** * Construct the URL, the resulting url will be: * <_baseUrl>/object/candidate/search.xml?status=16 */ MultivaluedMap<String, String> formData = new MultivaluedMapImpl(); formData.add("status", "16"); JSONArray searchResults = (JSONArray)getTaleoResource("object/candidate/search", "searchResults", formData); /** * Process the results, the resulting JSON object is something like * this (simplified for readability): * * { * "response": * { * "searchResults": * [ * { * "candidate": * { * "candId": 211, * "firstName": "Mary", * "lastName": "Stochi", * logic here will find the candidate object(s), obtain the desired * data from them, construct a Candidate object based on the data * and add it to the results. */ for (Object object : searchResults) { JSONObject temp = (JSONObject)object; JSONObject candidate = (JSONObject)findObject(temp, "candidate"); Long candIdTemp = (Long)candidate.get("candId"); Number candId = (null == candIdTemp ? null : new Number(candIdTemp)); String firstName = (String)candidate.get("firstName"); String lastName = (String)candidate.get("lastName"); result.add(new Candidate(candId, firstName, lastName)); } } catch (Exception ex) { ex.printStackTrace(); } finally { if (null != _authToken) logout(_authToken); } return result; } /** * Convenience method to construct url for the service call, invoke the * service and obtain a resource from the response * @param path the path for the service to be invoked. This is combined * with the base url to construct a url for the service * @param resource the key for the object in the response that will be * obtained * @param parameters any parameters used for the service call. The call * is slightly different depending whether parameters exist or not. * @return the resource from the response for the service call */ private Object getTaleoResource(String path, String resource, MultivaluedMap<String, String> parameters) { Object result = null; try { WebResource webResource = _client.resource(_baseUrl + path); ClientResponse response = null; if (null == parameters) response = webResource.header("cookie", _authToken).get(ClientResponse.class); else response = webResource.queryParams(parameters).header("cookie", _authToken).get(ClientResponse.class); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); result = findObject(jsonObject, resource); } catch (Exception ex) { ex.printStackTrace(); } return result; } /** * Convenience method to recursively find a object with an key * traversing down from a given root object. This will traverse a * JSONObject / JSONArray recursively to find a matching key, if found * the object with the key is returned. * @param root root object which contains the key searched for * @param key the key for the object to search for * @return the object matching the key */ private Object findObject(Object root, String key) { Object result = null; if (root instanceof JSONObject) { JSONObject rootJSON = (JSONObject)root; if (rootJSON.containsKey(key)) { result = rootJSON.get(key); } else { Iterator children = rootJSON.entrySet().iterator(); while (children.hasNext()) { Map.Entry entry = (Map.Entry)children.next(); Object child = entry.getValue(); if (child instanceof JSONObject || child instanceof JSONArray) { result = findObject(child, key); if (null != result) break; } } } } else if (root instanceof JSONArray) { JSONArray rootJSON = (JSONArray)root; for (Object child : rootJSON) { if (child instanceof JSONObject || child instanceof JSONArray) { result = findObject(child, key); if (null != result) break; } } } return result; } }   Creating Business Objects While JCS application can be created without a local database, the local database is required when using ADFbc objects even if database objects are not referred. For this example we will create a "Transient" view object that will be programmatically populated based the data obtained from Taleo REST services. Creating ADFbc objects Choose the "Model" project and navigate "New -> Business Tier : ADF Business Components : View Object". On the "Initialize Business Components Project" choose the local database connection created in previous step. On Step 1 enter "JcsRestDemoVO" on the "Name" and choose "Rows populated programmatically, not based on query": On step 2 create the following attributes: CandId Type: Number Updatable: Always Key Attribute: checked Name Type: String Updatable: Always On steps 3 and 4 accept defaults and click "Next".  On step 5 check the "Application Module" checkbox and enter "JcsRestDemoAM" as the name: Click "Finish" to generate the objects. Populating the VO To display the data on the UI the "transient VO" is populated programmatically based on the data obtained from the Taleo REST services. Open the "JcsRestDemoVOImpl.java". Copy / paste the following as the content (for details of the implementation refer to the documentation in the code): import java.sql.ResultSet; import java.util.List; import java.util.ListIterator; import oracle.jbo.server.ViewObjectImpl; import oracle.jbo.server.ViewRowImpl; import oracle.jbo.server.ViewRowSetImpl; // --------------------------------------------------------------------- // --- File generated by Oracle ADF Business Components Design Time. // --- Tue Feb 18 09:40:25 PST 2014 // --- Custom code may be added to this class. // --- Warning: Do not modify method signatures of generated methods. // --------------------------------------------------------------------- public class JcsRestDemoVOImpl extends ViewObjectImpl { /** * This is the default constructor (do not remove). */ public JcsRestDemoVOImpl() { } @Override public void executeQuery() { /** * For some reason we need to reset everything, otherwise * 2nd entry to the UI screen may fail with * "java.util.NoSuchElementException" in createRowFromResultSet * call to "candidates.next()". I am not sure why this is happening * as the Iterator is new and "hasNext" is true at the point * of the execution. My theory is that since the iterator object is * exactly the same the VO cache somehow reuses the iterator including * the pointer that has already exhausted the iterable elements on the * previous run. Working around the issue * here by cleaning out everything on the VO every time before query * is executed on the VO. */ getViewDef().setQuery(null); getViewDef().setSelectClause(null); setQuery(null); this.reset(); this.clearCache(); super.executeQuery(); } /** * executeQueryForCollection - overridden for custom java data source support. */ protected void executeQueryForCollection(Object qc, Object[] params, int noUserParams) { /** * Integrate with the Taleo REST services using TaleoRepository class. * A list of candidates matching a hard coded query is obtained. */ TaleoRepository repository = new TaleoRepository(<company>, <username>, <password>); List<Candidate> candidates = repository.getCandidates(); /** * Store iterator for the candidates as user data on the collection. * This will be used in createRowFromResultSet to create rows based on * the custom iterator. */ ListIterator<Candidate> candidatescIterator = candidates.listIterator(); setUserDataForCollection(qc, candidatescIterator); super.executeQueryForCollection(qc, params, noUserParams); } /** * hasNextForCollection - overridden for custom java data source support. */ protected boolean hasNextForCollection(Object qc) { boolean result = false; /** * Determines whether there are candidates for which to create a row */ ListIterator<Candidate> candidates = (ListIterator<Candidate>)getUserDataForCollection(qc); result = candidates.hasNext(); /** * If all candidates to be created indicate that processing is done */ if (!result) { setFetchCompleteForCollection(qc, true); } return result; } /** * createRowFromResultSet - overridden for custom java data source support. */ protected ViewRowImpl createRowFromResultSet(Object qc, ResultSet resultSet) { /** * Obtain the next candidate from the collection and create a row * for it. */ ListIterator<Candidate> candidates = (ListIterator<Candidate>)getUserDataForCollection(qc); ViewRowImpl row = createNewRowForCollection(qc); try { Candidate candidate = candidates.next(); row.setAttribute("CandId", candidate.getCandId()); row.setAttribute("Name", candidate.getFirstName() + " " + candidate.getLastName()); } catch (Exception e) { e.printStackTrace(); } return row; } /** * getQueryHitCount - overridden for custom java data source support. */ public long getQueryHitCount(ViewRowSetImpl viewRowSet) { /** * For this example this is not implemented rather we always return 0. */ return 0; } } Creating UI Choose the "ViewController" project and navigate "New -> Web Tier : JSF : JSF Page". On the "Create JSF Page" enter "JcsRestDemo" as name and ensure that the "Create as XML document (*.jspx)" is checked.  Open "JcsRestDemo.jspx" and navigate to "Data Controls -> JcsRestDemoAMDataControl -> JcsRestDemoVO1" and drag & drop the VO to the "<af:form> " as a "ADF Read-only Table": Accept the defaults in "Edit Table Columns". To execute the query navigate to to "Data Controls -> JcsRestDemoAMDataControl -> JcsRestDemoVO1 -> Operations -> Execute" and drag & drop the operation to the "<af:form> " as a "Button": Deploying to JCS Follow the same steps as documented in previous article"Java Cloud Service ADF Web Application". Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsRestDemo-ViewController-context-root/faces/JcsRestDemo.jspx The UI displays a list of candidates obtained from the Taleo REST Services: Summary In this article we learned how to integrate with REST services using Jersey library in JCS. In future articles various other integration techniques will be covered.

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

< Previous Page | 495 496 497 498 499 500 501 502 503 504 505 506  | Next Page >