Search Results

Search found 504 results on 21 pages for 'abstraction'.

Page 5/21 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Peut on encore innover en informatique « sans réinventer la roue » ? Une planche de BD soulève la question avec humour

    Peut on encore innover en informatique « sans réinventer la roue » ? Une planche de BD soulève la question avec humour Une planche de BD, au style très rudimentaire, commence à faire le tour du Web (en tout cas celui fréquenté par les développeurs). Ces quelques cases résument la routine dans laquelle baignent beaucoup de programmeurs en ce début 21e siècle. Son auteur y décrit le cas typique du développeur en quête d'accomplissement personnel, las de combiner couche d'abstraction sur couche d'abstraction, sans pouvoir mettre à profit ses « talents de résolution de problèmes complexes ». L'employé envisage alors de quitter son travail pour se consacrer ? effectivement - à l...

    Read the article

  • How to measure code quality? [closed]

    - by Lo Wai Lun
    Is there a methodology or any objective standard to determine whether the code of the project is well-written? How to measure in a structural and scientific manner to access the quality of the code? Many people say code review is important and always do encapsulation and data abstraction to ensure the quality. How can we determine the quality? Can a structural, organised software design diagrams drawn implies good quality of code ? If we type the code with good cautions of encapsulation and data abstraction, why review anyway?

    Read the article

  • Code Reuse is (Damn) Hard

    - by James Michael Hare
    Being a development team lead, the task of interviewing new candidates was part of my job.  Like any typical interview, we started with some easy questions to get them warmed up and help calm their nerves before hitting the hard stuff. One of those easier questions was almost always: “Name some benefits of object-oriented development.”  Nearly every time, the candidate would chime in with a plethora of canned answers which typically included: “it helps ease code reuse.”  Of course, this is a gross oversimplification.  Tools only ease reuse, its developers that ultimately can cause code to be reusable or not, regardless of the language or methodology. But it did get me thinking…  we always used to say that as part of our mantra as to why Object-Oriented Programming was so great.  With polymorphism, inheritance, encapsulation, etc. we in essence set up the concepts to help facilitate reuse as much as possible.  And yes, as a developer now of many years, I unquestionably held that belief for ages before it really struck me how my views on reuse have jaded over the years.  In fact, in many ways Agile rightly eschews reuse as taking a backseat to developing what's needed for the here and now.  It used to be I was in complete opposition to that view, but more and more I've come to see the logic in it.  Too many times I've seen developers (myself included) get lost in design paralysis trying to come up with the perfect abstraction that would stand all time.  Nearly without fail, all of these pieces of code become obsolete in a matter of months or years. It’s not that I don’t like reuse – it’s just that reuse is hard.  In fact, reuse is DAMN hard.  Many times it is just a distraction that eats up architect and developer time, and worse yet can be counter-productive and force wrong decisions.  Now don’t get me wrong, I love the idea of reusable code when it makes sense.  These are in the few cases where you are designing something that is inherently reusable.  The problem is, most business-class code is inherently unfit for reuse! Furthermore, the code that is reusable will often fail to be reused if you don’t have the proper framework in place for effective reuse that includes standardized versioning, building, releasing, and documenting the components.  That should always be standard across the board when promoting reusable code.  All of this is hard, and it should only be done when you have code that is truly reusable or you will be exerting a large amount of development effort for very little bang for your buck. But my goal here is not to get into how to reuse (that is a topic unto itself) but what should be reused.  First, let’s look at an extension method.  There’s many times where I want to kick off a thread to handle a task, then when I want to reign that thread in of course I want to do a Join on it.  But what if I only want to wait a limited amount of time and then Abort?  Well, I could of course write that logic out by hand each time, but it seemed like a great extension method: 1: public static class ThreadExtensions 2: { 3: public static bool JoinOrAbort(this Thread thread, TimeSpan timeToWait) 4: { 5: bool isJoined = false; 6:  7: if (thread != null) 8: { 9: isJoined = thread.Join(timeToWait); 10:  11: if (!isJoined) 12: { 13: thread.Abort(); 14: } 15: } 16: return isJoined; 17: } 18: } 19:  When I look at this code, I can immediately see things that jump out at me as reasons why this code is very reusable.  Some of them are standard OO principles, and some are kind-of home grown litmus tests: Single Responsibility Principle (SRP) – The only reason this extension method need change is if the Thread class itself changes (one responsibility). Stable Dependencies Principle (SDP) – This method only depends on classes that are more stable than it is (System.Threading.Thread), and in itself is very stable, hence other classes may safely depend on it. It is also not dependent on any business domain, and thus isn't subject to changes as the business itself changes. Open-Closed Principle (OCP) – This class is inherently closed to change. Small and Stable Problem Domain – This method only cares about System.Threading.Thread. All-or-None Usage – A user of a reusable class should want the functionality of that class, not parts of that functionality.  That’s not to say they most use every method, but they shouldn’t be using a method just to get half of its result. Cost of Reuse vs. Cost to Recreate – since this class is highly stable and minimally complex, we can offer it up for reuse very cheaply by promoting it as “ready-to-go” and already unit tested (important!) and available through a standard release cycle (very important!). Okay, all seems good there, now lets look at an entity and DAO.  I don’t know about you all, but there have been times I’ve been in organizations that get the grand idea that all DAOs and entities should be standardized and shared.  While this may work for small or static organizations, it’s near ludicrous for anything large or volatile. 1: namespace Shared.Entities 2: { 3: public class Account 4: { 5: public int Id { get; set; } 6:  7: public string Name { get; set; } 8:  9: public Address HomeAddress { get; set; } 10:  11: public int Age { get; set;} 12:  13: public DateTime LastUsed { get; set; } 14:  15: // etc, etc, etc... 16: } 17: } 18:  19: ... 20:  21: namespace Shared.DataAccess 22: { 23: public class AccountDao 24: { 25: public Account FindAccount(int id) 26: { 27: // dao logic to query and return account 28: } 29:  30: ... 31:  32: } 33: } Now to be fair, I’m not saying there doesn’t exist an organization where some entites may be extremely static and unchanging.  But at best such entities and DAOs will be problematic cases of reuse.  Let’s examine those same tests: Single Responsibility Principle (SRP) – The reasons to change for these classes will be strongly dependent on what the definition of the account is which can change over time and may have multiple influences depending on the number of systems an account can cover. Stable Dependencies Principle (SDP) – This method depends on the data model beneath itself which also is largely dependent on the business definition of an account which can be very inherently unstable. Open-Closed Principle (OCP) – This class is not really closed for modification.  Every time the account definition may change, you’d need to modify this class. Small and Stable Problem Domain – The definition of an account is inherently unstable and in fact may be very large.  What if you are designing a system that aggregates account information from several sources? All-or-None Usage – What if your view of the account encompasses data from 3 different sources but you only care about one of those sources or one piece of data?  Should you have to take the hit of looking up all the other data?  On the other hand, should you have ten different methods returning portions of data in chunks people tend to ask for?  Neither is really a great solution. Cost of Reuse vs. Cost to Recreate – DAOs are really trivial to rewrite, and unless your definition of an account is EXTREMELY stable, the cost to promote, support, and release a reusable account entity and DAO are usually far higher than the cost to recreate as needed. It’s no accident that my case for reuse was a utility class and my case for non-reuse was an entity/DAO.  In general, the smaller and more stable an abstraction is, the higher its level of reuse.  When I became the lead of the Shared Components Committee at my workplace, one of the original goals we looked at satisfying was to find (or create), version, release, and promote a shared library of common utility classes, frameworks, and data access objects.  Now, of course, many of you will point to nHibernate and Entity for the latter, but we were looking at larger, macro collections of data that span multiple data sources of varying types (databases, web services, etc). As we got deeper and deeper in the details of how to manage and release these items, it quickly became apparent that while the case for reuse was typically a slam dunk for utilities and frameworks, the data access objects just didn’t “smell” right.  We ended up having session after session of design meetings to try and find the right way to share these data access components. When someone asked me why it was taking so long to iron out the shared entities, my response was quite simple, “Reuse is hard...”  And that’s when I realized, that while reuse is an awesome goal and we should strive to make code maintainable, often times you end up creating far more work for yourself than necessary by trying to force code to be reusable that inherently isn’t. Think about classes the times you’ve worked in a company where in the design session people fight over the best way to implement a class to make it maximally reusable, extensible, and any other buzzwordable.  Then think about how quickly that design became obsolete.  Many times I set out to do a project and think, “yes, this is the best design, I can extend it easily!” only to find out the business requirements change COMPLETELY in such a way that the design is rendered invalid.  Code, in general, tends to rust and age over time.  As such, writing reusable code can often be difficult and many times ends up being a futile exercise and worse yet, sometimes makes the code harder to maintain because it obfuscates the design in the name of extensibility or reusability. So what do I think are reusable components? Generic Utility classes – these tend to be small classes that assist in a task and have no business context whatsoever. Implementation Abstraction Frameworks – home-grown frameworks that try to isolate changes to third party products you may be depending on (like writing a messaging abstraction layer for publishing/subscribing that is independent of whether you use JMS, MSMQ, etc). Simplification and Uniformity Frameworks – To some extent this is similar to an abstraction framework, but there may be one chosen provider but a development shop mandate to perform certain complex items in a certain way.  Or, perhaps to simplify and dumb-down a complex task for the average developer (such as implementing a particular development-shop’s method of encryption). And what are less reusable? Application and Business Layers – tend to fluctuate a lot as requirements change and new features are added, so tend to be an unstable dependency.  May be reused across applications but also very volatile. Entities and Data Access Layers – these tend to be tuned to the scope of the application, so reusing them can be hard unless the abstract is very stable. So what’s the big lesson?  Reuse is hard.  In fact it’s damn hard.  And much of the time I’m not convinced we should focus too hard on it. If you’re designing a utility or framework, then by all means design it for reuse.  But you most also really set down a good versioning, release, and documentation process to maximize your chances.  For anything else, design it to be maintainable and extendable, but don’t waste the effort on reusability for something that most likely will be obsolete in a year or two anyway.

    Read the article

  • Is functional programming a superset of object oriented?

    - by Jimmy Hoffa
    The more functional programming I do, the more I feel like it adds an extra layer of abstraction that seems like how an onion's layer is- all encompassing of the previous layers. I don't know if this is true so going off the OOP principles I've worked with for years, can anyone explain how functional does or doesn't accurately depict any of them: Encapsulation, Abstraction, Inheritance, Polymorphism I think we can all say, yes it has encapsulation via tuples, or do tuples count technically as fact of "functional programming" or are they just a utility of the language? I know Haskell can meet the "interfaces" requirement, but again not certain if it's method is a fact of functional? I'm guessing that the fact that functors have a mathematical basis you could say those are a definite built in expectation of functional, perhaps? Please, detail how you think functional does or does not fulfill the 4 principles of OOP.

    Read the article

  • Difference between the terms Material & Effect

    - by codey
    I'm making an effect system right now (I think, because it may be a material system... or both!). The effects system follows the common (e.g. COLLADA, DirectX) effect framework abstraction of Effects have Techniques, Techniques have Passes, Passes have States & Shader Programs. An effect, according to COLLADA, defines the equations necessary for the visual appearance of geometry and screen-space image processing. Keeping with the abstraction, effects contain techniques. Each effect can contain one or many techniques (i.e. ways to generate the effect), each of which describes a different method for rendering that effect. The technique could be relate to quality (e.g. high precision, high LOD, etc.), or in-game-situation (e.g. night/day, power-up-mode, etc.). Techniques hold a description of the textures, samplers, shaders, parameters, & passes necessary for rendering this effect using one method. Some algorithms require several passes to render the effect. Pipeline descriptions are broken into an ordered collection of Pass objects. A pass provides a static declaration of all the render states, shaders, & settings for "one rendering pipeline" (i.e. one pass). Meshes usually contain a series of materials that define the model. According to the COLLADA spec (again), a material instantiates an effect, fills its parameters with values, & selects a technique. But I see material defined differently in other places, such as just the Lambert, Blinn, Phong "material types/shaded surfaces", or as Metal, Plastic, Wood, etc. In game dev forums, people often talk about implementing a "material/effect system". Is the material not an instance of an effect? Ergo, if I had effect objects, stored in a collection, & each effect instance object with there own parameter setting, then there is no need for the concept of a material... Or am I interpreting it wrong? Please help by contributing your interpretations as I want to be clear on a distinction (if any), & don't want to miss out on the concept of a material if it should be implemented to follow the abstraction of the DirectX FX framework & COLLADA definitions closely.

    Read the article

  • Is the Windows Start button an example of poor mapping? [migrated]

    - by user336359
    In my recent course on HCI, I've been told that start button on Windows systems is an example of poor mapping. The reason for that, as explained in materials, is that it doesn't start anything, but rather reveals a menu. I think that this is only valid if you approaching this from low level of abstraction (meaning that the button must start something). If you on the other hand take a view on this from higher level of abstraction, as of "Place where I start most of my tasks", i.e. This is the place where you are start*ing the task of switching off your computer This is the place where you are start*ing the task of searching for something on your computer This is the place where you are start*ing the task of running a program This is the place where you are start*ing the task ... Then I think it makes perfect sense and has perfect mapping. Is this a sensible interpretation?

    Read the article

  • Question About Example In Robert C Martin's _Clean Code_

    - by Jonah
    This is a question about the concept of a function doing only one thing. It won't make sense without some relevant passages for context, so I'll quote them here. They appear on pgs 37-38: To say this differently, we want to be able to read the program as though it were a set of TO paragraphs, each of which is describing the current level of abstraction and referencing subsequent TO paragraphs at the next level down. To include the setups and teardowns, we include setups, then we include the test page content, and then we include the teardowns. To include the setups, we include the suite setup if this is a suite, then we include the regular setup. It turns out to be very dif?cult for programmers to learn to follow this rule and write functions that stay at a single level of abstraction. But learning this trick is also very important. It is the key to keeping functions short and making sure they do “one thing.” Making the code read like a top-down set of TO paragraphs is an effective technique for keeping the abstraction level consistent. He then gives the following example of poor code: public Money calculatePay(Employee e) throws InvalidEmployeeType { switch (e.type) { case COMMISSIONED: return calculateCommissionedPay(e); case HOURLY: return calculateHourlyPay(e); case SALARIED: return calculateSalariedPay(e); default: throw new InvalidEmployeeType(e.type); } } and explains the problems with it as follows: There are several problems with this function. First, it’s large, and when new employee types are added, it will grow. Second, it very clearly does more than one thing. Third, it violates the Single Responsibility Principle7 (SRP) because there is more than one reason for it to change. Fourth, it violates the Open Closed Principle8 (OCP) because it must change whenever new types are added. Now my questions. To begin, it's clear to me how it violates the OCP, and it's clear to me that this alone makes it poor design. However, I am trying to understand each principle, and it's not clear to me how SRP applies. Specifically, the only reason I can imagine for this method to change is the addition of new employee types. There is only one "axis of change." If details of the calculation needed to change, this would only affect the submethods like "calculateHourlyPay()" Also, while in one sense it is obviously doing 3 things, those three things are all at the same level of abstraction, and can all be put into a TO paragraph no different from the example one: TO calculate pay for an employee, we calculate commissioned pay if the employee is commissioned, hourly pay if he is hourly, etc. So aside from its violation of the OCP, this code seems to conform to Martin's other requirements of clean code, even though he's arguing it does not. Can someone please explain what I am missing? Thanks.

    Read the article

  • Examples of Hierarchical-Model-View-Controller (HMVC)?

    - by Stephen
    Hi, I'm interested in the Presentation-Abstraction-Control? (aka Hierarchical-Model-View-Controller (HMVC)) Architectural Pattern for constructing complex user interfaces (GUI or web) and was wondering if anyone was aware of any examples in the wild where I could read the code? My list so far; Cairngorm framework for Adobe Flex any others I'm aware of the JavaWorld article and associated letters cited in the wikipedia article http://en.wikipedia.org/wiki/Presentation-abstraction-control

    Read the article

  • What to Learn after C++?

    - by Stephen Whitmore
    I have been learning C++ for a while now, I find it very powerful. But, the problem is the the level of abstraction is not much and I have to do memory management myself. What are the languages that I can use which uses a higher level of abstraction.

    Read the article

  • Abstracting functionality

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/22/abstracting-functionality.aspxWhat is more important than data? Functionality. Yes, I strongly believe we should switch to a functionality over data mindset in programming. Or actually switch back to it. Focus on functionality Functionality once was at the core of software development. Back when algorithms were the first thing you heard about in CS classes. Sure, data structures, too, were important - but always from the point of view of algorithms. (Niklaus Wirth gave one of his books the title “Algorithms + Data Structures” instead of “Data Structures + Algorithms” for a reason.) The reason for the focus on functionality? Firstly, because software was and is about doing stuff. Secondly because sufficient performance was hard to achieve, and only thirdly memory efficiency. But then hardware became more powerful. That gave rise to a new mindset: object orientation. And with it functionality was devalued. Data took over its place as the most important aspect. Now discussions revolved around structures motivated by data relationships. (John Beidler gave his book the title “Data Structures and Algorithms: An Object Oriented Approach” instead of the other way around for a reason.) Sure, this data could be embellished with functionality. But nevertheless functionality was second. When you look at (domain) object models what you mostly find is (domain) data object models. The common object oriented approach is: data aka structure over functionality. This is true even for the most modern modeling approaches like Domain Driven Design. Look at the literature and what you find is recommendations on how to get data structures right: aggregates, entities, value objects. I´m not saying this is what object orientation was invented for. But I´m saying that´s what I happen to see across many teams now some 25 years after object orientation became mainstream through C++, Delphi, and Java. But why should we switch back? Because software development cannot become truly agile with a data focus. The reason for that lies in what customers need first: functionality, behavior, operations. To be clear, that´s not why software is built. The purpose of software is to be more efficient than the alternative. Money mainly is spent to get a certain level of quality (e.g. performance, scalability, security etc.). But without functionality being present, there is nothing to work on the quality of. What customers want is functionality of a certain quality. ASAP. And tomorrow new functionality needs to be added, existing functionality needs to be changed, and quality needs to be increased. No customer ever wanted data or structures. Of course data should be processed. Data is there, data gets generated, transformed, stored. But how the data is structured for this to happen efficiently is of no concern to the customer. Ask a customer (or user) whether she likes the data structured this way or that way. She´ll say, “I don´t care.” But ask a customer (or user) whether he likes the functionality and its quality this way or that way. He´ll say, “I like it” (or “I don´t like it”). Build software incrementally From this very natural focus of customers and users on functionality and its quality follows we should develop software incrementally. That´s what Agility is about. Deliver small increments quickly and often to get frequent feedback. That way less waste is produced, and learning can take place much easier (on the side of the customer as well as on the side of developers). An increment is some added functionality or quality of functionality.[1] So as it turns out, Agility is about functionality over whatever. But software developers’ thinking is still stuck in the object oriented mindset of whatever over functionality. Bummer. I guess that (at least partly) explains why Agility always hits a glass ceiling in projects. It´s a clash of mindsets, of cultures. Driving software development by demanding small increases in functionality runs against thinking about software as growing (data) structures sprinkled with functionality. (Excuse me, if this sounds a bit broad-brush. But you get my point.) The need for abstraction In the end there need to be data structures. Of course. Small and large ones. The phrase functionality over data does not deny that. It´s not functionality instead of data or something. It´s just over, i.e. functionality should be thought of first. It´s a tad more important. It´s what the customer wants. That´s why we need a way to design functionality. Small and large. We need to be able to think about functionality before implementing it. We need to be able to reason about it among team members. We need to be able to communicate our mental models of functionality not just by speaking about them, but also on paper. Otherwise reasoning about it does not scale. We learned thinking about functionality in the small using flow charts, Nassi-Shneiderman diagrams, pseudo code, or UML sequence diagrams. That´s nice and well. But it does not scale. You can use these tools to describe manageable algorithms. But it does not work for the functionality triggered by pressing the “1-Click Order” on an amazon product page for example. There are several reasons for that, I´d say. Firstly, the level of abstraction over code is negligible. It´s essentially non-existent. Drawing a flow chart or writing pseudo code or writing actual code is very, very much alike. All these tools are about control flow like code is.[2] In addition all tools are computationally complete. They are about logic which is expressions and especially control statements. Whatever you code in Java you can fully (!) describe using a flow chart. And then there is no data. They are about control flow and leave out the data altogether. Thus data mostly is assumed to be global. That´s shooting yourself in the foot, as I hope you agree. Even if it´s functionality over data that does not mean “don´t think about data”. Right to the contrary! Functionality only makes sense with regard to data. So data needs to be in the picture right from the start - but it must not dominate the thinking. The above tools fail on this. Bottom line: So far we´re unable to reason in a scalable and abstract manner about functionality. That´s why programmers are so driven to start coding once they are presented with a problem. Programming languages are the only tool they´ve learned to use to reason about functional solutions. Or, well, there might be exceptions. Mathematical notation and SQL may have come to your mind already. Indeed they are tools on a higher level of abstraction than flow charts etc. That´s because they are declarative and not computationally complete. They leave out details - in order to deliver higher efficiency in devising overall solutions. We can easily reason about functionality using mathematics and SQL. That´s great. Except for that they are domain specific languages. They are not general purpose. (And they don´t scale either, I´d say.) Bummer. So to be more precise we need a scalable general purpose tool on a higher than code level of abstraction not neglecting data. Enter: Flow Design. Abstracting functionality using data flows I believe the solution to the problem of abstracting functionality lies in switching from control flow to data flow. Data flow very naturally is not about logic details anymore. There are no expressions and no control statements anymore. There are not even statements anymore. Data flow is declarative by nature. With data flow we get rid of all the limiting traits of former approaches to modeling functionality. In addition, nomen est omen, data flows include data in the functionality picture. With data flows, data is visibly flowing from processing step to processing step. Control is not flowing. Control is wherever it´s needed to process data coming in. That´s a crucial difference and needs some rewiring in your head to be fully appreciated.[2] Since data flows are declarative they are not the right tool to describe algorithms, though, I´d say. With them you don´t design functionality on a low level. During design data flow processing steps are black boxes. They get fleshed out during coding. Data flow design thus is more coarse grained than flow chart design. It starts on a higher level of abstraction - but then is not limited. By nesting data flows indefinitely you can design functionality of any size, without losing sight of your data. Data flows scale very well during design. They can be used on any level of granularity. And they can easily be depicted. Communicating designs using data flows is easy and scales well, too. The result of functional design using data flows is not algorithms (too low level), but processes. Think of data flows as descriptions of industrial production lines. Data as material runs through a number of processing steps to be analyzed, enhances, transformed. On the top level of a data flow design might be just one processing step, e.g. “execute 1-click order”. But below that are arbitrary levels of flows with smaller and smaller steps. That´s not layering as in “layered architecture”, though. Rather it´s a stratified design à la Abelson/Sussman. Refining data flows is not your grandpa´s functional decomposition. That was rooted in control flows. Refining data flows does not suffer from the limits of functional decomposition against which object orientation was supposed to be an antidote. Summary I´ve been working exclusively with data flows for functional design for the past 4 years. It has changed my life as a programmer. What once was difficult is now easy. And, no, I´m not using Clojure or F#. And I´m not a async/parallel execution buff. Designing the functionality of increments using data flows works great with teams. It produces design documentation which can easily be translated into code - in which then the smallest data flow processing steps have to be fleshed out - which is comparatively easy. Using a systematic translation approach code can mirror the data flow design. That way later on the design can easily be reproduced from the code if need be. And finally, data flow designs play well with object orientation. They are a great starting point for class design. But that´s a story for another day. To me data flow design simply is one of the missing links of systematic lightweight software design. There are also other artifacts software development can produce to get feedback, e.g. process descriptions, test cases. But customers can be delighted more easily with code based increments in functionality. ? No, I´m not talking about the endless possibilities this opens for parallel processing. Data flows are useful independently of multi-core processors and Actor-based designs. That´s my whole point here. Data flows are good for reasoning and evolvability. So forget about any special frameworks you might need to reap benefits from data flows. None are necessary. Translating data flow designs even into plain of Java is possible. ?

    Read the article

  • Vertex Buffers in opengl

    - by JB
    I'm making a small 3d graphics game/demo for personal learning. I know d3d9 and quite a bit about d3d11 but little about opengl at the moment so I'm intending to abstract out the actual rendering of the graphics so that my scene graph and everything "above" it needs to know little about how to actually draw the graphics. I intend to make it work with d3d9 then add d3d11 support and finally opengl support. Just as a learning exercise to learn about 3d graphics and abstraction. I don't know much about opengl at this point though, and don't want my abstract interface to expose anything that isn't simple to implement in opengl. Specifically I'm looking at vertex buffers. In d3d they are essentially an array of structures, but looking at the opengl interface the equivalent seems to be vertex arrays. However these seem to be organised rather differently where you need a separate array for vertices, one for normals, one for texture coordinates etc and set the with glVertexPointer, glTexCoordPointer etc. I was hoping to be able to implement a VertexBuffer interface much like the the directx one but it looks like in d3d you have an array of structures and in opengl you need a separate array for each element which makes finding a common abstraction quite hard to make efficient. Is there any way to use opengl in a similar way to directx? Or any suggestions on how to come up with a higher level abstraction that will work efficiently with both systems?

    Read the article

  • Webforms vs. MVC. Once you start using MVC.. Do you ever go back to webforms?

    - by punkouter
    I checked out MVC months ago and didn't really get it.. but recently as I have become a better programmer I think it is making sense.. Here is my theory.. tell me if I got it Right In the 90s for Microsoft Devs we had Classic ASP. This mixed VBscript and HTML on the same page. So you needed to create all the HTML yourself and mix HTML and VBScript. This was not considered Ideal. Then .NET came along and everyone liked it because it was similiar to event driven VB 6 style programming. It created this abstraction of binding data to ASP Servier controls. It made getting Enumerated data easy to get on the screen with one line. Then recently Jquery and SOA concepts are mixed together.. Now people think.. Why create this extra layer of abstraction when I can just directly use .NET as a data provider and use jquery AJAX calls to get the data and create the HTML with it directly .. no need for the Webforms abstraction layer.. Sowe are back to creating HTML directly like we did in 1999. So MVC is all about saying Stop pretending like WEb programming is a VB6 app! Generate HTML directly! Am I missing anything? So I wonder.. for you people out there using MVC... is it the sort of things that once you get used to it you never want to go back to webforms??

    Read the article

  • Is there a language more general than Lisp?

    - by Jon Purdy
    I've been programming for a long time, and writing in Lisp (well, mostly Scheme) for a little less. My experience in these languages (and other functional languages) has informed my ability to write clean code even with less powerful tools. Lisp-family languages have lovely facilities for implementing every abstraction in common use: S-expressions generalise structure. Macros generalise syntax. Continuations generalise flow control. But I'm dissatisfied. Somehow, I want more. Is there a language that's more general? More powerful? As great as Lisp is, I find it hard to believe no one has come up with anything (dare I say) better. I'm well aware that ordinarily a question like this ought to be closed for its argumentative nature. But there seems to be a broad consensus that Lisp represents the theoretical pinnacle of programming language design. I simply refuse to accept that without some kind of proof. Which I guess amounts to questioning whether the lambda calculus is in fact the ideal abstraction of computation.

    Read the article

  • Is an event loop just a for/while loop with optimized polling?

    - by Alan
    I'm trying to understand what an event loop is. Often the explanation is that in the event loop, you do something until you're notified that an event occurred. You than handle the event and continue doing what you did before. To map the above definition with an example. I have a server which 'listens' in a event loop, and when a socket connection is detected, the data from it gets read and displayed, after which the server goes to the listening it did before. However, this event happening and us getting notified 'just like that' are to much for me to handle. You can say: "It's not 'just like that' you have to register an event listener". But what's an event listener but a function which for some reason isn't returning. Is it in it's own loop, waiting to be notified when an event happens? Should the event listener also register an event listener? Where does it end? Events are a nice abstraction to work with, however just an abstraction. I believe that in the end, polling is unavoidable. Perhaps we are not doing it in our code, but the lower levels (the programming language implementation or the OS) are doing it for us. It basically comes down to the following pseudo code which is running somewhere low enough so it doesn't result in busy waiting: while(True): do stuff check if event has happened (poll) do other stuff This is my understanding of the whole idea, and i would like to hear if this is correct. I am open in accepting that the whole idea is fundamentally wrong, in which case I would like the correct explanation. Best regards

    Read the article

  • Is there really anything to gain with complex design? [duplicate]

    - by SB2055
    This question already has an answer here: What is enterprise software, exactly? 8 answers I've been working for a consulting firm for some time, with clients of various sizes, and I've seen web applications ranging in complexity from really simple: MVC Service Layer EF DB To really complex: MVC UoW DI / IoC Repository Service UI Tests Unit Tests Integration Tests But on both ends of the spectrum, the quality requirements are about the same. In simple projects, new devs / consultants can hop on, make changes, and contribute immediately, without having to wade through 6 layers of abstraction to understand what's going on, or risking misunderstanding some complex abstraction and costing down the line. In all cases, there was never a need to actually make code swappable or reusable - and the tests were never actually maintained past the first iteration because requirements changed, it was too time-consuming, deadlines, business pressure, etc etc. So if - in the end - testing and interfaces aren't used rapid development (read: cost-savings) is a priority the project's requirements will be changing a lot while in development ...would it be wrong to recommend a super-simple architecture, even to solve a complex problem, for an enterprise client? Is it complexity that defines enterprise solutions, or is it the reliability, # concurrent users, ease-of-maintenance, or all of the above? I know this is a very vague question, and any answer wouldn't apply to all cases, but I'm interested in hearing from devs / consultants that have been in the business for a while and that have worked with these varying degrees of complexity, to hear if the cool-but-expensive abstractions are worth the overall cost, at least while the project is in development.

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • any real MVC library in PHP (for GUI apps)

    - by mario
    I'm wondering if there are any abstraction frameworks for one of the PHP gui libraries. We have PHP-GTK, a PHP/Tk interface, and seemingly also PHP-QT. (Not tried any.) I know that writing against the raw Gtk+ interface in Python is just bearable, and it therefore seems not very enticing for PHP. I assume it's the same for Qt, and Tk is pretty low-level too. So I'm looking for something that provides a nicer object structure atop any of the three. Primarily TreeViews are always a chore and php-gtk callbacks are weird in PHP, so I'd like a simplification for that. If it eases adding the GUI/View atop my business logic without much control code, that might already help. And so since GUI apps are an area where MVC or MVP would actually make sense, I'd like to know if any library for that exists. Btw, recently rediscovered PHP interface preprocessor, but that's rather low-level and just provides a simple widget/interface abstraction for Gtk/ncurses/pdf/xhtml output.

    Read the article

  • What are Windows code pages?

    - by Mike D
    I'm trying to gain a basic understanding of what is meant by a Windows code page. I kind of get the feeling it's a translation between a given 8 bit value and some 'abstraction' for a given character graphic. I made the following experiment. I created a "" character literal with two versions of the letter u with an umlaut. One created using the ALT 129 (uses code page 437) value and one using the ALT 0252 (uses code page 1252) value. When I examined the literal both characters had the value 252. Is 252 the universal 8 bit abstraction for u with an umlaut? Is it the Unicode value? Aside from keyboard input are there any library routines or system calls that use code pages? For example is there a function to translate a string using a given code table (as above for the ALT 129 value)?

    Read the article

  • Windows code pages, what are they?

    - by Mike D
    I'm trying to gain a basic understanding of what is meant by a Windows code page. I kind of get the feeling it's a translation between a given 8 bit value and some 'abstraction' for a given character graphic. I made the following experiment. I created a "" character literal with two versions of the letter u with an umlaut. One created using the ALT 129 (uses code page 437) value and one using the ALT 0252 (uses code page 1252) value. When I examined the literal both characters had the value 252. Is 252 the universal 8 bit abstraction for u with an umlaut? Is it the Unicode value? Aside from keyboard input are there any library routines or system calls that use code pages? For example is there a function to translate a string using a given code table (as above for the ALT 129 value)?

    Read the article

  • End User Ad-Hoc Reporting Tool: Microsoft SQL Server Management Studio or Microsoft Access?

    - by schultkl
    Our centralized IT department has suggested two primary ad hoc query tools for our general user base of approximately 200 staff members: Microsoft SQL Server Management Studio 2008 (SSMS) Microsoft Access 2003 Environment The backend database is a read-only Microsoft SQL Server 2005 database. The schema is 400+ tables; allowing access to the raw data for our general staff would be a disaster. We will be building an "abstraction layer" over the raw data for our general staff to run ad hoc queries against. The abstraction layer will most likely contain a number of views. A number of users have basic knowledge in Microsoft Access; none have used SSMS. Which of the above tools (or alternative) would be best for a decidedly non-techie user base of approximately 200 people? What are the pros and cons of each? Also, the IT department has suggested teaching people T-SQL so they may use SSMS. Is this reasonable?

    Read the article

  • Bitwise operators versus .NET abstractions for bit manipulation in C# prespective

    - by Leron
    I'm trying to get basic skills in working with bits using C#.NET. I posted an example yesterday with a simple problem that needs bit manipulation which led me to the fact that there are two main approaches - using bitwise operators or using .NET abstractions such as BitArray (Please let me know if there are more build-in tools for working with bits other than BitArray in .NET and how to find more info for them if there are?). I understand that bitwise operators work faster but using BitArray is something much more easier for me, but one thing I really try to avoid is learning bad practices. Even though my personal preferences are for the .NET abstraction(s) I want to know which i actually better to learn and use in a real program. Thinking about it I'm tempted to think that .NET abstractions are not that bad at, after all there must be reason to be there and maybe being a beginner it's more natural to learn the abstraction and later on improve my skills with low level operations, but this is just random thoughts.

    Read the article

  • Any good opensource SharePoint components that can abstract you from the inner SharePoint plumbings?

    - by JL
    I am looking for a good reusable set of components that can be used to communicate with SharePoint via web services, preferably open source. I want some abstraction from CAML and WebDav and SharePoint Web Services that could help me speed up my development time. Ideally I want to select, insert, update and delete from lists, manage attachments in list items, download items from sharepoint, retrieve user meta data from owner info. This sort of thing. Does any such abstraction exist for Sharepoint that use SharePoints web service model, obviously the use of the MOSS Component API is out of the question because it will only run on the hosted MOSS server, and I am writing an SOA app. Thank you

    Read the article

  • Start a thread using a method pointer

    - by Michael
    Hi ! I'm trying to develop a thread abstraction (POSIX thread and thread from the Windows API), and I would very much like it to be able to start them with a method pointer, and not a function pointer. What I would like to do is an abstraction of thread being a class with a pure virtual method "runThread", which would be implanted in the future threaded class. I don't know yet about the Windows thread, but to start a POSIX thread, you need a function pointer, and not a method pointer. And I can't manage to find a way to associate a method with an instance so it could work as a function. I probably just can't find the keywords (and I've been searching a lot), I think it's pretty much what Boost::Bind() does, so it must exist. Can you help me ?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >