Search Results

Search found 5079 results on 204 pages for 'bankers algorithm'.

Page 5/204 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Algorithm for autocomplete?

    - by StackUnderflow
    I am referring to the algorithm that is used to give query suggestions when a user type a search term in google. I am mainly interested in how google algorithm is able to show: 1. Most important results (most likely queries rather than anything that matches) 2. Match substrings 3. Fuzzy matches I know you could use Trie or generalized trie to find matches but it wouldn't meet the above requirements... Similar questions asked earlier here Thanks

    Read the article

  • traveling salesman problem, 2-opt algorithm c# implementation

    - by TAB
    Hello Can someone give me a code sample of 2-opt algorithm for traveling salesman problem. For now im using nearest neighbour to find the path but this method is far from perfec, and after some research i found 2-opt algorithm that would correct that path to the acceptable level. I found some sample apps but withoud source code.

    Read the article

  • Algorithm for computing the inverse of a polynomial

    - by Neville
    I'm looking for an algorithm (or code) to help me compute the inverse a polynomial, I need it for implementing NTRUEncrypt. An algorithm that is easily understandable is what I prefer, there are pseudo-codes for doing this, but they are confusing and difficult to implement, furthermore I can not really understand the procedure from pseudo-code alone. Any algorithms for computing the inverse of a polynomial with respect to a ring of truncated polynomials?

    Read the article

  • Fastest gap sequence for shell sort ?

    - by Tony
    According to Marcin Ciura's Optimal (best known) sequence of increments for shell sort algorithm. The best sequence for shellsort is 1, 4, 10, 23, 57, 132, 301, 701... But how can I generate such a sequence ? In Marcin Ciura's paper he said : Both Knuth’s and Hibbard’s sequences are relatively bad, because they are defined by simple linear recurrences but most algorithm books I searched , they all tend to use Knuth’s sequence : k = 3k + 1 ; because it's easy to generate , what's your way of generating shellsort sequence ?

    Read the article

  • Dynamic Programming Algorithm?

    - by scardin
    I am confused about how best to design this algorithm. A ship has x pirates, where the age of the jth pirate is aj and the weight of the jth pirate is wj. I am thinking of a dynamic programming algorithm, which will find the oldest pirate whose weight is in between twenty-fifth and seventy-fifth percentile of all pirates. But I am clueless as to how to proceed.

    Read the article

  • easiest to code algorithm for rubik's cube

    - by kokokok
    edit : I should rephrase this,what would be a relatively easy algorithm to code in java for solving a rubik's cube. Efficiency is also important but a secondary consideration. orig : what is the easiest algorithm to code for solving a rubik's cube? it could be the least efficient but I am looking for something easy to code right now

    Read the article

  • it means quick-select algorithm?

    - by matin1234
    Hi, I have a question from my homework. I think my teacher needs an algorithm like quick select for this question is this correct? The question: Following a program (Subroutine) as a "black box" is given (for example, inside it is not clear and we do not even inside it) with the worst case linear time, can find the middle of n elements. Using this black box, get a simple linear algorithm that takes input i and find the element which its rank is equal to i (among the n elements) Thanks.

    Read the article

  • another porter stemming algorithm implementation question ?

    - by mike
    Hi, I am trying to implement porter stemming algorithm, but i am having difficualties understanding this point Step 1c (*v*) Y -> I happy -> happi sky -> sky Isn't that the the opposite of what we want to do , why does the algorithim convert the Y into I. for the complete algorithm here http://tartarus.org/~martin/PorterStemmer/def.txt Thanks

    Read the article

  • where can I find the diff algorithm?

    - by dole doug
    Does anyone know where can i find an explanation and implementation of the diff algorithm. First of all i have to recognize that i'm not sure if this is the correct name of the algorithm. For example, how Stackoverflow marks the differences between two edits of the same question? ps: I know C and PHP programming languages. ty

    Read the article

  • Algorithm for dividing very large numbers

    - by pocoa
    I need to write an algorithm(I cannot use any 3rd party library, because this is an assignment) to divide(integer division, floating parts are not important) very large numbers like 100 - 1000 digits. I found http://en.wikipedia.org/wiki/Fourier_division algorithm but I don't know if it's the right way to go. Do you have any suggestions?

    Read the article

  • Algorithm reductions

    - by Marthin
    If I have a algorithm A that i have proven belongs to P can this algorithm also belong to the NPC class or is it strictly P? What about NP? P Belongs to NP right? Thx for any help! /Marthin

    Read the article

  • Algorithm for max integer in an array of integers

    - by gagneet
    Explain which algorithm you would use to implement a function that takes an array of integers and returns the maximum integer in the collection, assuming that the length of the array is less than 1000. Would you use Bubble Sort or Merge Sort and Why? Also, what happens to the above algorithm choice, if the array length is greater than 1000?

    Read the article

  • 3d symmetry search algorithm

    - by aaa
    this may be more appropriate for math overflow, but nevertheless: Given 3d structure (for example molecule), what is a good approach/algorithm to find symmetry (rotational/reflection/inversion/etc.)? I came up with brute force naive algorithm, but it seems there should be better approach. I am not so much interested in genetic algorithms as I would like best symmetry rather then almost the best symmetry link to website/paper would be great. thanks

    Read the article

  • How do I apply different probability factors in an algorithm for a cricket simulation game?

    - by Komal Sharma
    I am trying to write the algorithm for a cricket simulation game which generates runs on each ball between 0 to 6. The run rate or runs generated changes when these factors come into play like skill of the batsman, skill of the bowler, target to be chased. Wickets left. If the batsman is skilled more runs will be generated. There will be a mode of play of the batsman aggressive, normal, defensive. If he plays aggressive chances of getting out will be more. If the chasing target is more the run rate should be more. If the overs are final the run rate should be more. I am using java random number function for this. The code so far I've written is public class Cricket { public static void main(String args[]) { int totalRuns=0; //i is the balls bowled for (int i = 1; i <= 60 ; i++) { int RunsPerBall = (int)(Math.random()*6); //System.out.println(Random); totalRuns=totalRuns+RunsPerBall; } System.out.println(totalRuns); } } Can somebody help me how to apply the factors in the code. I believe probability will be used with this. I am not clear how to apply the probability of the factors stated above in the code.

    Read the article

  • Is it better to hard code data or find an algorithm?

    - by OghmaOsiris
    I've been working on a boardgame that has a hex grid as the board (the upper right grid in the image below) Since the board will never change and the spaces on the board will always be linked to the same other spaces around it, should I just hard code every space with the values that I need? Or should I use various algorithms to calculate links and traversals? To be more specific, my board game is a 4 player game where each player has a 5x5x5x5x5x5 hex grid (again, the upper right grid in th eimage above). The object is to get from the bottom of the grid to the top, with various obstacles in the way, and each players being able to attack eachother from the edge of their grid onto other players based on a range multiplier. Since the players grid will never change and the distance of any arbitrary space from the edge of the grid will always be the same, should I just hard code this number into each of the spaces, or should I still use a breadth first search algorithm when players are attacking? The only con I can think of for hard coding everything is that I'm going to code 9+ 2(5+6+7+8) = 61 individual cells. Is there anything else that I'm missing that I should consider using more complex algorithms?

    Read the article

  • Gomoku array-based AI-algorithm?

    - by Lasse V. Karlsen
    Way way back (think 20+ years) I encountered a Gomoku game source code in a magazine that I typed in for my computer and had a lot of fun with. The game was difficult to win against, but the core algorithm for the computer AI was really simply and didn't account for a lot of code. I wonder if anyone knows this algorithm and has some links to some source or theory about it. The things I remember was that it basically allocated an array that covered the entire board. Then, whenever I, or it, placed a piece, it would add a number of weights to all locations on the board that the piece would possibly impact. For instance (note that the weights are definitely wrong as I don't remember those): 1 1 1 2 2 2 3 3 3 444 1234X4321 3 3 3 2 2 2 1 1 1 Then it simply scanned the array for an open location with the lowest or highest value. Things I'm fuzzy on: Perhaps it had two arrays, one for me and one for itself and there was a min/max weighting? There might've been more to the algorithm, but at its core it was basically an array and weighted numbers Does this ring a bell with anyone at all? Anyone got anything that would help?

    Read the article

  • Looking for a good world map generation algorithm

    - by FalconNL
    I'm working on a Civilization-like game and I'm looking for a good algorithm for generating Earth-like world maps. I've experimented with a few alternatives, but haven't hit on a real winner yet. One option is to generate a heightmap using perlin noise and add water at a level so that about 30% of the world is land. While perlin noise (or similar fractal-based techniques) are frequently used for terrain and is reasonably realistic, it doesn't offer much in the way of control over the number, size and position of the resulting continents, which I'd like to have from a gameplay perspective. See http://farm3.static.flickr.com/2792/4462870263_ff26c40365_o.jpg for an example (sorry, can't post pictures yet). A second option is to start with a randomly positioned one-tile seed (I'm working on a grid of tiles), determine the desired size for the continent and each turn add a tile that is horizontally or vertically adjacent to the existing continent until you've reached the desired size. Repeat for the other continents. This technique is part of the algorithm used in Civilization 4. The problem is that after placing the first few continents, it's possible to pick a starting location that's surrounded by other continents, and thus won't fit the new one. Also, it has a tendency to spawn continents too close together, resulting in something that looks more like a river than continents. See http://farm5.static.flickr.com/4069/4462870383_46e86b155c_o.jpg for an example. Does anyone happen to know a good algorithm for generating realistic continents on a grid-based map while keeping control over their number and relative sizes?

    Read the article

  • help in the Donalds B. Johnson's algorithm, i cannot understand the pseudo code

    - by Pitelk
    Hi , does anyone know the Donald B. Johnson's algorithm which enumarates all the elementary circuits (cycles) in a Directed graph? link text I have the paper he had published in 1975 but I cannot understand the pseudo-code. My goal is to implement this algorithm in java. Some questions i have is for example what is the matrix Ak it refers to. In the pseudo code mentions that Ak:=adjacency structure of strong component K with least vertex in subgraph of G induced by {s,s+1,....n}; Does that mean i have to implement another algorithm that finds the Ak matrix? Another question is what the following means? begin logical f; Does also the line "logical procedure CIRCUIT (integer value v);" means that the circuit procedure returns a logical variable. In the pseudo code also has the line "CIRCUIT := f;" . Does this mean? It would be great if someone could translate this 1970's pseudocode to a more modern type of pseudo code so i can understand it in case you are interested to help but you cannot find the paper please email me at [email protected] and i will send you the paper. Thanks in advance

    Read the article

  • Concurrent cartesian product algorithm in Clojure

    - by jqno
    Is there a good algorithm to calculate the cartesian product of three seqs concurrently in Clojure? I'm working on a small hobby project in Clojure, mainly as a means to learn the language, and its concurrency features. In my project, I need to calculate the cartesian product of three seqs (and do something with the results). I found the cartesian-product function in clojure.contrib.combinatorics, which works pretty well. However, the calculation of the cartesian product turns out to be the bottleneck of the program. Therefore, I'd like to perform the calculation concurrently. Now, for the map function, there's a convenient pmap alternative that magically makes the thing concurrent. Which is cool :). Unfortunately, such a thing doesn't exist for cartesian-product. I've looked at the source code, but I can't find an easy way to make it concurrent myself. Also, I've tried to implement an algorithm myself using map, but I guess my algorithmic skills aren't what they used to be. I managed to come up with something ugly for two seqs, but three was definitely a bridge too far. So, does anyone know of an algorithm that's already concurrent, or one that I can parallelize myself?

    Read the article

  • Looking for ideas how to refactor my (complex) algorithm

    - by _simon_
    I am trying to write my own Game of Life, with my own set of rules. First 'concept', which I would like to apply, is socialization (which basicaly means if the cell wants to be alone or in a group with other cells). Data structure is 2-dimensional array (for now). In order to be able to move a cell to/away from a group of another cells, I need to determine where to move it. The idea is, that I evaluate all the cells in the area (neighbours) and get a vector, which tells me where to move the cell. Size of the vector is 0 or 1 (don't move or move) and the angle is array of directions (up, down, right, left). This is a image with representation of forces to a cell, like I imagined it (but reach could be more than 5): Let's for example take this picture: Forces from lower left neighbour: down (0), up (2), right (2), left (0) Forces from right neighbour : down (0), up (0), right (0), left (2) sum : down (0), up (2), right (0), left (0) So the cell should go up. I could write an algorithm with a lot of if statements and check all cells in the neighbourhood. Of course this algorithm would be easiest if the 'reach' parameter is set to 1 (first column on picture 1). But what if I change reach parameter to 10 for example? I would need to write an algorithm for each 'reach' parameter in advance... How can I avoid this (notice, that the force is growing potentialy (1, 2, 4, 8, 16, 32,...))? Can I use specific design pattern for this problem? Also: the most important thing is not speed, but to be able to extend initial logic. Things to take into consideration: reach should be passed as a parameter i would like to change function, which calculates force (potential, fibonacci) a cell can go to a new place only if this new place is not populated watch for corners (you can't evaluate right and top neighbours in top-right corner for example)

    Read the article

  • Implementation of any Hamiltonian Path Problem algorithm

    - by Julien
    Hi all ! Here is my problem : I have an array of points, the points have three properties : the "x" and "y" coordinates, and a sequence number "n". The "x" and "y" are defined for all the points, the "n" are not. You can access and write them calling points[i]-x, points[i]-y, points[i]-n. i.e. : points[i]->n = var var = points[i]->n So the title maybe ruined the surprise, but I'm looking for a possible implementation of a solution to the Hamiltonian path problem : I need to set the "n" number of each point, so that the sequence is the shortest path (not cycle, the edges have to be disjoint) that goes exactly once through each point. I looked for a solution and I found The Bellman Ford Algorithm but I think it doesn't work since the problem doesn't specify that it has to go through all of the points is it correct ? If it is, does somebody has another algorithm and the implementation ? If the Bellman Ford Algorithm works, how would I implement it ? Thanks a lot, Julien

    Read the article

  • Better ways to implement a modulo operation (algorithm question)

    - by ryxxui
    I've been trying to implement a modular exponentiator recently. I'm writing the code in VHDL, but I'm looking for advice of a more algorithmic nature. The main component of the modular exponentiator is a modular multiplier which I also have to implement myself. I haven't had any problems with the multiplication algorithm- it's just adding and shifting and I've done a good job of figuring out what all of my variables mean so that I can multiply in a pretty reasonable amount of time. The problem that I'm having is with implementing the modulus operation in the multiplier. I know that performing repeated subtractions will work, but it will also be slow. I found out that I could shift the modulus to effectively subtract large multiples of the modulus but I think there might still be better ways to do this. The algorithm that I'm using works something like this (weird pseudocode follows): result,modulus : integer (n bits) (previously defined) shiftcount : integer (initialized to zero) while( (modulus<result) and (modulus(n-1) != 1) ){ modulus = modulus << 1 shiftcount++ } for(i=shiftcount;i>=0;i++){ if(modulus<result){result = result-modulus} if(i!=0){modulus = modulus << 1} } So...is this a good algorithm, or at least a good place to start? Wikipedia doesn't really discuss algorithms for implementing the modulo operation, and whenever I try to search elsewhere I find really interesting but incredibly complicated (and often unrelated) research papers and publications. If there's an obvious way to implement this that I'm not seeing, I'd really appreciate some feedback.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >