Search Results

Search found 7065 results on 283 pages for 'cpu sockets'.

Page 5/283 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Ubuntu 12.04 GNOME Terminal (3.4.1.1) Xorg 100% CPU

    - by EaZ
    after upgrading Ubuntu 11.04 to 12.04 (x64 arch) maximizing or resizing GNOME Terminal (3.4.1.1) windows larger cause the Xorg (1.11.3) or X process to utilize 100% CPU. Resizing smaller, moving windows or minimizing do not seem to have the same impact but by no means are snappy either. I'm running on a Dell E6500 laptop (upgraded from 11.04) running the nvidia proprietary drivers v. 295.49 (Quadro NVS 160M) with compiz 0.9.7.8. Other terminals such as xterm/uxterm are unaffected. Hoping it has to do with some configuration settings but not sure where to look (nvidia/compiz/gnome/X?). Thanks!

    Read the article

  • Kworker consuming %100 CPU

    - by yusuf
    I have a process, named kworker which is continuously consuming 100% of the CPU's computing capacity. I have tried several possible solutions over a period of 3 months, but to no avail. I even got to upgrade to u + 1 (Ubuntu 12.10 Quantal Quetzal), but my effort was, again, fruitless. I desperately need some help, because, as is, this process is draining my computer's battery so fast, that makes linux usage a disappointing experience. It is noteworthy, that I do not have any such issues when I use windows, which results in twice as much battery life.

    Read the article

  • How to read oom-killer syslog messages?

    - by Grant
    I have a Ubuntu 12.04 server which sometimes dies completely - no SSH, no ping, nothing until it is physically rebooted. After the reboot, I see in syslog that the oom-killer killed, well, pretty much everything. There's a lot of detailed memory usage information in them. How do I read these logs to see what caused the OOM issue? The server has far more memory than it needs, so it shouldn't be running out of memory. Oct 25 07:28:04 nldedip4k031 kernel: [87946.529511] oom_kill_process: 9 callbacks suppressed Oct 25 07:28:04 nldedip4k031 kernel: [87946.529514] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529516] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529518] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:04 nldedip4k031 kernel: [87946.529519] Call Trace: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529525] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529528] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529530] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529532] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529535] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529537] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529541] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529543] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529546] [] vfs_read+0x8c/0x160 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529548] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529550] [] sys_read+0x3d/0x70 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529554] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529555] Mem-Info: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529556] DMA per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529557] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529558] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529560] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529561] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529562] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529563] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529564] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529565] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529566] Normal per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529567] CPU 0: hi: 186, btch: 31 usd: 179 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529568] CPU 1: hi: 186, btch: 31 usd: 182 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529569] CPU 2: hi: 186, btch: 31 usd: 132 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529570] CPU 3: hi: 186, btch: 31 usd: 175 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529571] CPU 4: hi: 186, btch: 31 usd: 91 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529572] CPU 5: hi: 186, btch: 31 usd: 173 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529573] CPU 6: hi: 186, btch: 31 usd: 159 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529574] CPU 7: hi: 186, btch: 31 usd: 164 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529575] HighMem per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529576] CPU 0: hi: 186, btch: 31 usd: 165 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529577] CPU 1: hi: 186, btch: 31 usd: 183 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529578] CPU 2: hi: 186, btch: 31 usd: 185 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529579] CPU 3: hi: 186, btch: 31 usd: 138 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529580] CPU 4: hi: 186, btch: 31 usd: 155 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529581] CPU 5: hi: 186, btch: 31 usd: 104 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529582] CPU 6: hi: 186, btch: 31 usd: 133 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529583] CPU 7: hi: 186, btch: 31 usd: 170 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_anon:5523 inactive_anon:354 isolated_anon:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_file:2815 inactive_file:6849119 isolated_file:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] unevictable:0 dirty:449 writeback:10 unstable:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] free:1304125 slab_reclaimable:104672 slab_unreclaimable:3419 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529588] mapped:2661 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529591] DMA free:4252kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:4kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11564kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529594] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529599] Normal free:44052kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:616kB inactive_file:568kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:0kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:407124kB slab_unreclaimable:13672kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:2083 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529602] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529606] HighMem free:5168196kB min:512kB low:402312kB high:804112kB active_anon:22092kB inactive_anon:1416kB active_file:10640kB inactive_file:27395920kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:1796kB writeback:40kB mapped:10640kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:04 nldedip4k031 kernel: [87946.529609] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529611] DMA: 6*4kB 6*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4232kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529616] Normal: 297*4kB 180*8kB 119*16kB 73*32kB 67*64kB 47*128kB 35*256kB 13*512kB 5*1024kB 1*2048kB 1*4096kB = 44052kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529622] HighMem: 1*4kB 6*8kB 27*16kB 11*32kB 2*64kB 1*128kB 0*256kB 0*512kB 4*1024kB 1*2048kB 1260*4096kB = 5168196kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529627] 6852076 total pagecache pages Oct 25 07:28:04 nldedip4k031 kernel: [87946.529628] 0 pages in swap cache Oct 25 07:28:04 nldedip4k031 kernel: [87946.529629] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529630] Free swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529631] Total swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.571914] 8437743 pages RAM Oct 25 07:28:04 nldedip4k031 kernel: [87946.571916] 8209409 pages HighMem Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 159556 pages reserved Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 6862034 pages shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571918] 123540 pages non-shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571919] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:04 nldedip4k031 kernel: [87946.571927] [ 421] 0 421 709 152 3 0 0 upstart-udev-br Oct 25 07:28:04 nldedip4k031 kernel: [87946.571929] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571931] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571932] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571934] [ 764] 0 764 712 103 1 0 0 upstart-socket- Oct 25 07:28:04 nldedip4k031 kernel: [87946.571936] [ 772] 103 772 815 164 5 0 0 dbus-daemon Oct 25 07:28:04 nldedip4k031 kernel: [87946.571938] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571940] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571942] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571943] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571945] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571947] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571949] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571950] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571952] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:04 nldedip4k031 kernel: [87946.571954] [ 948] 0 948 902 159 3 0 0 irqbalance Oct 25 07:28:04 nldedip4k031 kernel: [87946.571956] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:04 nldedip4k031 kernel: [87946.571957] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571959] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:04 nldedip4k031 kernel: [87946.571961] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571963] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571965] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571967] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571969] [ 1090] 33 1090 6175 1451 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571971] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571972] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571974] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571976] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571978] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571980] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571982] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:04 nldedip4k031 kernel: [87946.571984] [ 2573] 0 2573 3394 1689 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571986] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571988] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571990] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:04 nldedip4k031 kernel: [87946.571992] Out of memory: Kill process 421 (upstart-udev-br) score 1 or sacrifice child Oct 25 07:28:04 nldedip4k031 kernel: [87946.572407] Killed process 421 (upstart-udev-br) total-vm:2836kB, anon-rss:156kB, file-rss:452kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.573107] init: upstart-udev-bridge main process (421) killed by KILL signal Oct 25 07:28:04 nldedip4k031 kernel: [87946.573126] init: upstart-udev-bridge main process ended, respawning Oct 25 07:28:34 nldedip4k031 kernel: [87976.461570] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461573] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461576] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:34 nldedip4k031 kernel: [87976.461578] Call Trace: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461585] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461588] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461591] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461595] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461599] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461602] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461606] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461609] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461613] [] vfs_read+0x8c/0x160 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461616] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461619] [] sys_read+0x3d/0x70 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461624] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461626] Mem-Info: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461628] DMA per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461629] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461631] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461633] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461634] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461636] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461638] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461639] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461641] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461642] Normal per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461644] CPU 0: hi: 186, btch: 31 usd: 61 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461646] CPU 1: hi: 186, btch: 31 usd: 49 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461647] CPU 2: hi: 186, btch: 31 usd: 8 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461649] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461651] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461652] CPU 5: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461654] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461656] CPU 7: hi: 186, btch: 31 usd: 30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461657] HighMem per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461658] CPU 0: hi: 186, btch: 31 usd: 4 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461660] CPU 1: hi: 186, btch: 31 usd: 204 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461662] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461663] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461665] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461667] CPU 5: hi: 186, btch: 31 usd: 31 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461668] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461670] CPU 7: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_anon:5441 inactive_anon:412 isolated_anon:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_file:2668 inactive_file:6922842 isolated_file:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461675] unevictable:0 dirty:836 writeback:0 unstable:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461676] free:1231664 slab_reclaimable:105781 slab_unreclaimable:3399 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461677] mapped:2649 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461682] DMA free:4248kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11560kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:5687 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461686] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461693] Normal free:44184kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:20kB inactive_file:1096kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:4kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:411564kB slab_unreclaimable:13592kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1816 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461697] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461703] HighMem free:4878224kB min:512kB low:402312kB high:804112kB active_anon:21764kB inactive_anon:1648kB active_file:10652kB inactive_file:27690268kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:3340kB writeback:0kB mapped:10592kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:34 nldedip4k031 kernel: [87976.461708] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461711] DMA: 8*4kB 7*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4248kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461719] Normal: 272*4kB 178*8kB 76*16kB 52*32kB 42*64kB 36*128kB 23*256kB 20*512kB 7*1024kB 2*2048kB 1*4096kB = 44176kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461727] HighMem: 1*4kB 45*8kB 31*16kB 24*32kB 5*64kB 3*128kB 1*256kB 2*512kB 4*1024kB 2*2048kB 1188*4096kB = 4877852kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461736] 6925679 total pagecache pages Oct 25 07:28:34 nldedip4k031 kernel: [87976.461737] 0 pages in swap cache Oct 25 07:28:34 nldedip4k031 kernel: [87976.461739] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461740] Free swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461741] Total swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.524951] 8437743 pages RAM Oct 25 07:28:34 nldedip4k031 kernel: [87976.524953] 8209409 pages HighMem Oct 25 07:28:34 nldedip4k031 kernel: [87976.524954] 159556 pages reserved Oct 25 07:28:34 nldedip4k031 kernel: [87976.524955] 6936141 pages shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524956] 124602 pages non-shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524957] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:34 nldedip4k031 kernel: [87976.524966] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524968] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524971] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524973] [ 764] 0 764 712 103 3 0 0 upstart-socket- Oct 25 07:28:34 nldedip4k031 kernel: [87976.524976] [ 772] 103 772 815 164 2 0 0 dbus-daemon Oct 25 07:28:34 nldedip4k031 kernel: [87976.524979] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524981] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524983] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524986] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524988] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524990] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524992] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524995] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524997] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:34 nldedip4k031 kernel: [87976.524999] [ 948] 0 948 902 159 5 0 0 irqbalance Oct 25 07:28:34 nldedip4k031 kernel: [87976.525002] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:34 nldedip4k031 kernel: [87976.525004] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525007] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:34 nldedip4k031 kernel: [87976.525009] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525012] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.525014] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525017] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525019] [ 1090] 33 1090 6175 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525021] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525024] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525026] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525029] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525031] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525033] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525036] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:34 nldedip4k031 kernel: [87976.525038] [ 2573] 0 2573 3394 1689 3 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525040] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525043] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525045] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:34 nldedip4k031 kernel: [87976.525048] [ 2847] 0 2847 709 89 0 0 0 upstart-udev-br Oct 25 07:28:34 nldedip4k031 kernel: [87976.525050] Out of memory: Kill process 764 (upstart-socket-) score 1 or sacrifice child Oct 25 07:28:34 nldedip4k031 kernel: [87976.525484] Killed process 764 (upstart-socket-) total-vm:2848kB, anon-rss:204kB, file-rss:208kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.526161] init: upstart-socket-bridge main process (764) killed by KILL signal Oct 25 07:28:34 nldedip4k031 kernel: [87976.526180] init: upstart-socket-bridge main process ended, respawning Oct 25 07:28:44 nldedip4k031 kernel: [87986.439671] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439674] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439676] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:44 nldedip4k031 kernel: [87986.439678] Call Trace: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439684] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439686] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439688] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439691] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439694] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439696] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439699] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439702] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439704] [] vfs_read+0x8c/0x160 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439707] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439709] [] sys_read+0x3d/0x70 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439712] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] Mem-Info: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] DMA per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439716] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439717] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439718] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439719] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439720] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439721] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439722] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439723] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439724] Normal per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439725] CPU 0: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439726] CPU 1: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439727] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439728] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439729] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:33:48 nldedip4k031 kernel: imklog 5.8.6, log source = /proc/kmsg started. Oct 25 07:33:48 nldedip4k031 rsyslogd: [origin software="rsyslogd" swVersion="5.8.6" x-pid="2880" x-info="http://www.rsyslog.com"] start Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's groupid changed to 103 Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's userid changed to 101 Oct 25 07:33:48 nldedip4k031 rsyslogd-2039: Could not open output pipe '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ]

    Read the article

  • How much faster is a 64bit CPU than 32bit CPU? [closed]

    - by W.N.
    I just need the result in theory. I'm not an expert in computer architecture, just a software developer. Most of my friends think 64bit-CPU is 2 times faster than 32bit-CPU. But I think 64-CPU is 2 ^ 2 = 4 times faster than 32bit-CPU (in theory). Which is the right answer to this question? And, if there were 128bit-CPU, how many times would it faster than a 32bit-CPU? PS: I searched with Google, and found a link that referred to benchmarks that supported my answer. I've seen a benchmark where 64bit was 4x faster but that was with a particular encryption where the extra registers available made the difference

    Read the article

  • chrome memory and cpu footprint

    - by nmizar
    I've searched the forums for an answer but I couldn't find quite the answer I was looking for [1] , so I thought I it could as well be of interest to more people around here. I carry out a big part of my job on the browser (or for the browser, if you want to put it that way). I tend to use Chrome, because it's got natively many of the newest features that I need (DevTools stuff, mainly but not only). BTW, I'm usually running the last available Chrome version/build on a desktop Vaio with 4GB RAM and dual core CPU and Ubuntu 12.04 as distro and Gnome as window manager. So, I was curious about a) why does Chrome spawn so many threads even opening only three of four tabs and b) is there any way to allocate more memory to Chrome to prevent its performance from degrading? Thanks in advance, Nacho PS [1] I found threads about Chrome freezing or running out of memory but not about the reasons for this being so or for avoiding it to happen. PPS Of course, I could always buy a newer and more capable machine and that is exactly what I'm trying to evaluate: is this a question of outdated hardware or the problem will keep appearing on any (decently but not hugely sized) machine?

    Read the article

  • php-fpm + persistent sockets = 502 bad gateway

    - by leeoniya
    Put on your reading glasses - this will be a long-ish one. First, what I'm doing. I'm building a web-app interface for some particularly slow tcp devices. Opening a socket to them takes 200ms and an fwrite/fread cycle takes another 300ms. To reduce the need for both of these actions on each request, I'm opening a persistent tcp socket which reduces the response time by the aforementioned 200ms. I was hoping PHP-FPM would share the persistent connections between requests from different clients (and indeed it does!), but there are some issues which I havent been able to resolve after 2 days of interneting, reading logs and modifying settings. I have somewhat narrowed it down though. Setup: Ubuntu 13.04 x64 Server (fully updated) on Linode PHP 5.5.0-6~raring+1 (fpm-fcgi) nginx/1.5.2 Relevent config: nginx worker_processes 4; php-fpm/pool.d pm = dynamic pm.max_children = 2 pm.start_servers = 2 pm.min_spare_servers = 2 Let's go from coarse to fine detail of what happens. After a fresh start I have 4x nginx processes and 2x php5-fpm processes waiting to handle requests. Then I send requests every couple seconds to the script. The first take a while to open the socket connection and returns with the data in about 500ms, the second returns data in 300ms (yay it's re-using the socket), the third also succeeds in about 300ms, the fourth request = 502 Bad Gateway, same with the 5th. Sixth request once again returns data, except now it took 500ms again. The process repeats for several cycles after which every 4 requests result in 2x 502 Bad Gateways and 2x 500ms Data responses. If I double all the fpm pool values and have 4x php-fpm processes running, the cycles settles in with 4x successful 500ms responses followed by 4x Bad Gateway errors. If I don't use persistent sockets, this issue goes away but then every request is 500ms. What I suspect is happening is the persistent socket keeps each php-fpm process from idling and ties it up, so the next one gets chosen until none are left and as they error out, maybe they are restarted and become available on the next round-robin loop ut the socket dies with the process. I haven't yet checked the 'slowlog', but the nginx error log shows lots of this: *188 recv() failed (104: Connection reset by peer) while reading response header from upstream, client:... All the suggestions on the internet regarding fixing nginx/php-fpm/502 bad gateway relate to high load or fcgi_pass misconfiguration. This is not the case here. Increasing buffers/sizes, changing timeouts, switching from unix socket to tcp socket for fcgi_pass, upping connection limits on the system....none of this stuff applies here. I've had some other success with setting pm = ondemand rather than dynamic, but as soon as the initial fpm-process gets killed off after idling, the persistent socket is gone for all subsequent php-fpm spawns. For the php script, I'm using stream_socket_client() with a STREAM_CLIENT_PERSISTENT flag. A while/stream_select() loop to detect socket data and fread($sock, 4096) to grab the data. I don't call fclose() obviously. If anyone has some additional questions or advice on how to get a persistent socket without tying up the php-fpm processes beyond the request completion, or maybe some other things to try, I'd appreciate it. some useful links: Nginx + php-fpm - recv() error Nginx + php-fpm "504 Gateway Time-out" error with almost zero load (on a test-server) Nginx + PHP-FPM "error 104 Connection reset by peer" causes occasional duplicate posts http://www.linuxquestions.org/questions/programming-9/php-pfsockopen-552084/ http://stackoverflow.com/questions/14268018/concurrent-use-of-a-persistent-php-socket http://devzone.zend.com/303/extension-writing-part-i-introduction-to-php-and-zend/#Heading3 http://stackoverflow.com/questions/242316/how-to-keep-a-php-stream-socket-alive http://php.net/manual/en/install.fpm.configuration.php https://www.google.com/search?q=recv%28%29+failed+%28104:+Connection+reset+by+peer%29+while+reading+response+header+from+upstream+%22502%22&ei=mC1XUrm7F4WQyAHbv4H4AQ&start=10&sa=N&biw=1920&bih=953&dpr=1

    Read the article

  • Asynchronous sockets in C#

    - by IVlad
    I'm confused about the correct way of using asynchronous socket methods in C#. I will refer to these two articles to explain things and ask my questions: MSDN article on asynchronous client sockets and devarticles.com article on socket programming. My question is about the BeginReceive() method. The MSDN article uses these two functions to handle receiving data: private static void Receive(Socket client) { try { // Create the state object. StateObject state = new StateObject(); state.workSocket = client; // Begin receiving the data from the remote device. client.BeginReceive( state.buffer, 0, StateObject.BufferSize, 0, new AsyncCallback(ReceiveCallback), state); } catch (Exception e) { Console.WriteLine(e.ToString()); } } private static void ReceiveCallback( IAsyncResult ar ) { try { // Retrieve the state object and the client socket // from the asynchronous state object. StateObject state = (StateObject) ar.AsyncState; Socket client = state.workSocket; // Read data from the remote device. int bytesRead = client.EndReceive(ar); if (bytesRead > 0) { // There might be more data, so store the data received so far. state.sb.Append(Encoding.ASCII.GetString(state.buffer,0,bytesRead)); // Get the rest of the data. client.BeginReceive(state.buffer,0,StateObject.BufferSize,0, new AsyncCallback(ReceiveCallback), state); } else { // All the data has arrived; put it in response. if (state.sb.Length > 1) { response = state.sb.ToString(); } // Signal that all bytes have been received. receiveDone.Set(); } } catch (Exception e) { Console.WriteLine(e.ToString()); } } While the devarticles.com tutorial passes null for the last parameter of the BeginReceive method, and goes on to explain that the last parameter is useful when we're dealing with multiple sockets. Now my questions are: What is the point of passing a state to the BeginReceive method if we're only working with a single socket? Is it to avoid using a class field? It seems like there's little point in doing it, but maybe I'm missing something. How can the state parameter help when dealing with multiple sockets? If I'm calling client.BeginReceive(...), won't all the data be read from the client socket? The devarticles.com tutorial makes it sound like in this call: m_asynResult = m_socClient.BeginReceive (theSocPkt.dataBuffer,0,theSocPkt.dataBuffer.Length, SocketFlags.None,pfnCallBack,theSocPkt); Data will be read from the theSocPkt.thisSocket socket, instead of from the m_socClient socket. In their example the two are one and the same, but what happens if that is not the case? I just don't really see where that last argument is useful or at least how it helps with multiple sockets. If I have multiple sockets, I still need to call BeginReceive on each of them, right?

    Read the article

  • Where is my CPU usage going?

    - by Josh
    My Ubuntu 10.04 Lucid virtual machine is saying it's at 100% CPU usage... but all I'm running is Thunderbird. According to top, CPU usage should be ~25.9%... How do I interpret this conflicting output from top? top - 13:55:26 up 3:35, 4 users, load average: 3.03, 2.59, 2.48 Tasks: 178 total, 1 running, 177 sleeping, 0 stopped, 0 zombie Cpu(s): 16.0%us, 79.7%sy, 0.0%ni, 0.0%id, 0.0%wa, 1.3%hi, 3.0%si, 0.0%st Mem: 509364k total, 479108k used, 30256k free, 3092k buffers Swap: 2096440k total, 58380k used, 2038060k free, 225116k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 7708 jnet 20 0 480m 109m 17m S 18.4 22.1 21:59.14 thunderbird-bin 4615 jnet 20 0 5488 1268 1040 S 2.3 0.2 5:00.03 nx-rootless-ses 7124 jnet 20 0 56688 27m 4812 S 2.0 5.5 6:35.09 nxagent 6724 nx 20 0 9628 1400 636 S 1.6 0.3 3:26.59 sshd 30106 root 20 0 2544 1236 908 R 0.7 0.2 0:00.33 top 19 root 20 0 0 0 0 S 0.3 0.0 0:22.45 ata/0 38 root 20 0 0 0 0 S 0.3 0.0 0:05.53 scsi_eh_1 345 root 20 0 0 0 0 S 0.3 0.0 0:04.72 kjournald 1719 root 20 0 3260 1192 944 S 0.3 0.2 0:17.36 vmware-guestd 1 root 20 0 2804 1356 940 S 0.0 0.3 0:01.99 init 2 root 20 0 0 0 0 S 0.0 0.0 0:00.01 kthreadd 3 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0 4 root 20 0 0 0 0 S 0.0 0.0 0:00.15 ksoftirqd/0 5 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0 ... Specifically I'm referring to the fact that the CPU usage totals show 0% idle time: Cpu(s): 16.0%us, 79.7%sy, 0.0%ni, 0.0%id, 0.0%wa, 1.3%hi, 3.0%si, 0.0%st Yet when adding up the percentages in the %CPU column I get 25.9%, not 100%!

    Read the article

  • Ubuntu on VPS becomes unresponsive: BUG: soft lockup - CPU#0 stuck for 22s

    - by Bhante Nandiya
    We have a VPS running Ubuntu, on Xen. The problem is this, about once a day, for about 20-50 minutes, at a random time, the server becomes completely unresponsive to the outside world. After this period, it becomes responsive again, as if nothing had happened, it doesn't lose uptime, it doesn't restart. It just starts responding again as if it had been in suspended animation. These outages occur under conditions of non-exceptional memory and cpu, for example 70% mem, 5% cpu. I have stopped all non-essential services so the usage is very even. These outages don't particularly occur during times of increased memory/cpu (during daily tasks), they sometimes occur at times of very low cpu use (<2%), but in the past also occured during swapping. These blackouts have been occurring both under Ubuntu 12.04 LTS, and Ubuntu 14.04 LTS - no change at all (I upgraded Ubuntu specifically to see if it helped this problem). It is possible to log into our webhosts site, and use their administration console to see error messages from during this time. Presumably, these messages are from the Xen virtualization, the main message goes like this: BUG: soft lockp - CPU#0 stuck for 22s! [ksoftireqd/0:3] (repeats many times) SysRq : Emergency Sync (Sometimes this is the only message in the console) Others seen previously under different load situations include: BUG: soft lockup - CPU#0 stuck for 22s! [swapper/0:0] (repeated many times) or: INFO: rcu_sched detected stall on CPU 0 (t=15000 jiffies) (repeated many times with t getting bigger) From googling around I've tried various kernel parameters such as nohz=off and acpi=off to no avail. All tech support has said is that other Ubuntu installations are not suffering the same problem. Anyone got any ideas or experience with this problem?

    Read the article

  • Apache using 100% CPU, once again

    - by CBenni
    Recently, apache2 started using 100% of CPU power: top gives me From other, similar threads, I took the tip to use mod_status. Aside from HUGE amounts of NULL requests, it gives: CPU Usage: u2.16 s1.32 cu0 cs0 - .0835% CPU load 1.2 requests/sec - 17.6 kB/second - 14.6 kB/request 8 requests currently being processed, 42 idle workers The access and error logs do not show anything surprising or intriguing at all. Note the .8% CPU usage. Another tip was to use strace: root@server:~# strace -p 1956 Process 1956 attached - interrupt to quit restart_syscall(<... resuming interrupted call ...> And remains like this for at least half an hour, without producing any additional output. Restarting apache fixed the problem for less than a second The server runs a few custom python scripts aswell as a django-powered website on apache2 (up-to-date), but even turning the scripts off (or not having them active in the first place) did not change anything. After I stopped apache and powered my server off, powered it on a few minutes afterwards and restarted all my services, the CPU usage remained low for several hours, just in order to pop up again randomly (?) The DigitalOcean CPU stats on my server are: You can see how the CPU usage was super high for almost half a day until I restarted the bot - just to remain stable for several hours and then pop up again. I am completely at a loss of words and don't know what I could do to find out what piece of my code is giving me these problems or if apache itself is the cause... Therefore I would greatly appreciate any hints to the questions: What else can I try to do? Which things might I not have checked? Is this definitely in my own code? How do you find what part of python code crashes an app via a infinite loop or similar?

    Read the article

  • How to migrate existing udp application to raw sockets

    - by osgx
    Hello Is there a tutorial for migration from plain udp sockets (linux, C99/C++, recv syscall is used) to the raw sockets? According to http://aschauf.landshut.org/fh/linux/udp_vs_raw/ch03s04.html raw socket is much faster than udp. Application is client-server. client is proprietary and must use exactly same procotol as it was with udp server. But server can be a bit faster with raw sockets. What parts of udp I must to implement in server? Is there a "quick migration" libraries?

    Read the article

  • Handling Incoming Data from Multiple Sockets in Python

    - by user859434
    Background: I have a current implementation that receives data from about 120 different socket connections in python. In my current implementation, I handle each of these separate socket connections with a dedicated thread for each. Each of these threads parse the data and eventually store it within a shared locked dictionary. These sockets DO NOT have uniform data rates, some sockets get more data than others. Question: Is this the best way to handle incoming data in python, or does python have a better way on handling multiple sockets per thread?

    Read the article

  • Is there an alternative to HTML Web Sockets, now that Firefox 4 has disabled them?

    - by Pino
    I've been checking out some of the latest multiplayer engines in HTML all supporting multi-user games (Very nice) - I believe all these engines use Web Sockets for communication. That’s why we’ve decided to disable support for WebSocket in Firefox 4, starting with beta 8 due to a protocol-level security issue. Beta 7 of Firefox has support for the -76 version of the protocol, the same version that’s included with Chrome and Safari. Beta 8 of Firefox 4 will remove that support. Anne van Kesteren of Opera also announced that Opera are dropping Websocket support. We are confident that other browser developers will follow. Source: Websockets Disabled in FireFox 4 I've just come accross the above, so no sockets in Firefox 4 or Opera.... thats big. Is anyone aware of an alternate or is it Chrome or do we need to just sit and wait for the next release of the major browsers. More info : Rocket Engine appears to work with all browsers including IE8 (http://rocketpack.fi/engine/) what will it be using as a method of communication?

    Read the article

  • How do I increase the buffer size for domain sockets in OS X 10.6

    - by Chas. Owens
    In Linux I have no problem dumping tons of data into a domain socket, but the same code on OS X 10.6.2 blows up after about 65 records. The socket reader code looks like #!/usr/bin/perl use strict; use warnings; use IO::Socket; unlink "foo"; my $sock = IO::Socket::UNIX->new ( Local => 'foo', Type => SOCK_DGRAM, Timeout => 600, ) or die "Could not create socket: $!\n"; while (<$sock>) { chomp; print "[$_]\n"; } And the client code looks like #!/usr/bin/perl use strict; use warnings; use IO::Socket; my $sock = IO::Socket::UNIX->new ( Peer => 'foo', Type => SOCK_DGRAM, Timeout => 600, ) or die "Could not create socket: $!\n"; for my $i (1 .. 1_000_000) { print $sock "$i\n" or die $!; } close $sock; The error message I get is No buffer space available at write.pl line 15.. It seems fairly obvious that there is a difference in the buffer size between Linux and OS X, but I don't know how to set it OS X (or what the possible negative side effects might be).

    Read the article

  • How do I increase the buffer size for domain sockets in OS X 10.6

    - by Chas. Owens
    In Linux I have no problem dumping tons of data into a domain socket, but the same code on OS X 10.6.2 blows up after about 65 records. The socket reader code looks like #!/usr/bin/perl use strict; use warnings; use IO::Socket; unlink "foo"; my $sock = IO::Socket::UNIX->new ( Local => 'foo', Type => SOCK_DGRAM, Timeout => 600, ) or die "Could not create socket: $!\n"; while (<$sock>) { chomp; print "[$_]\n"; } And the client code looks like #!/usr/bin/perl use strict; use warnings; use IO::Socket; my $sock = IO::Socket::UNIX->new ( Peer => 'foo', Type => SOCK_DGRAM, Timeout => 600, ) or die "Could not create socket: $!\n"; for my $i (1 .. 1_000_000) { print $sock "$i\n" or die $!; } close $sock; The error message I get is No buffer space available at write.pl line 15.. It seems fairly obvious that there is a difference in the buffer size between Linux and OS X, but I don't know how to set it OS X (or what the possible negative side effects might be).

    Read the article

  • C# Sockets and Proxy Servers

    - by Tristan
    Hi Guys, I'm trying to make some source code for a library I downloaded work with a proxy server. The library uses sockets to connect to a server but if the client using the library is behind a proxy server it can't connect. Does anyone know how I can modify the socket to be able to connect to the server through a proxy server? I really want to just do this with the sockets in the library without having to change too much code to use WebRequest or something similar Cheers -Tristan

    Read the article

  • Sockets server design advice

    - by Rob
    We are writing a socket server in c# and need some advice on the design. Background: Clients (from mobile devices) connect to our server app and we leave their socket open so we can send data back down to them whenever we need to. The amount of data varies but we generally send/receive data from each client every few seconds, so it's quite intensive. The amount of simultaneous connections can range from 50-500 (and more in the future). We have already written a server app using async sockets and it works, however we've come across some stumbling blocks and we need to make sure that what we're doing is correct. We have a collection which holds our client states (we have no socket/connection pool at the moment, should we?). Each time a client connects we create a socket and then wait for them to send us some data and in receiveCallBack we add their clientstate object to our connections dictionary (once we have verified who they are). When a client object then signs off we shutdown their socket and then close it as well as remove them from our collection of clients dictionary. Presumably everything happens in the right order, everything works as expected. However, almost everyday it stops accepting connections, or so we think, either that or it connects but doesn't actually do anything past that and we can't work out why it's just stopping. There are few things that we'r'e unsure about 1) Should we be creating some kind of connection pool as opposed to just a dictionary of client sockets 2) What happens to the sockets that connect but then don't get added to our dictionary, they just linger around in memory doing nothing, should we create ANOTHER dictionary that holds the sockets as soon as they are created? 3) What's the best way of finding if clients are no longer connected? We've read some many methods but we're not sure of the best one to use, send data or read data, if so how? 4) If we loop through the connections dictonary to check for disposed clients, should we be locking the dictionary, if so how does this affect other clients objects trying to use it at the same time, will it throw an error or just wait? 5) We often get disposedSocketException within ReceiveCallBack method at random times, does this mean we are safe to remove that socket from the collection? We can't seem to find any production type examples which show any of this working. Any advice would be greatly received

    Read the article

  • PHP Sockets Not Working

    - by isurulucky
    Hi, I switched from Lighttpd server to WAMP and then found sockets in php are not working. But php is configured and working. (phpinfo() works) I removed the comment for the php_sockets.dll in php.ini @ C:\wamp\bin\php\php5.2.5.but still gives the error "Fatal error: Call to undefined function socket_create()". Any more configurations to do to enable sockets in php in WAMP? (php_sockets.dll is there as well, I've checked) Thank You!

    Read the article

  • .NET Sockets and Proxy Servers

    - by Tristan
    I'm trying to make some source code for a library I downloaded work with a proxy server. The library uses sockets to connect to a server but if the client using the library is behind a proxy server it can't connect. Does anyone know how I can modify the socket to be able to connect to the server through a proxy server? I really want to just do this with the sockets in the library without having to change too much code to use WebRequest or something similar

    Read the article

  • Send A DataSet via Sockets in .NET

    - by FinancialRadDeveloper
    I had written a Web Service to return a DataSet back to my ASP.Net site and this was working fine. However due to security issues and also the ability to get certain references installed, I have to move this to an App Server and so doing it as a Windows Service and communicating with the ASP.Net site now via sockets. Is there a way I can easily give the Website a serialized DataSet via Sockets from my App Server so I can read this in and then just carry on using the code I currently have to bind this to a GridView?

    Read the article

  • ESXi and Windows Server CPU parking

    - by Chris J
    For those that don't know, CPU parking is a feature in recent Windows Server releases that allows Windows to pretty much drop a CPU core to zero use, and having nothing use it. It's been introduced as a power-saving measure. There's more detail about it here, amongst other places. However what I'm curious about is whether this matter on a virtualised guest - or is CPU parking more of a hindrance than a help, given that the physical CPUs are managed by ESXi, not Windows, and that a parked CPU is less likely to deal with traffic unless the scheduler deems there's enough work to unpark the CPU? I've not found anything about this - I do suspect it will be very much based on a given workload, but I've not seen any discussion (unlike, say, whether hyper-threading has any effect, which seems to be discussed regularly). Whilst I do understand the "test with your workload" I was wondering if there was any advice/guidelines out there that I've missed.

    Read the article

  • HIGH CPU usage by PHP on a VPS Magento Server

    - by Anil
    My server running magento is 4gb ram and 4 core cpu. But still i am struggling with the high CPU usage. I only have 10 visitors at any given point of time. I am not sure if the PHP has to take this high % CPU usage. Attached is the TOP result. top - 09:18:32 up 2 days, 15:44, 1 user, load average: 1.16, 2.02, 1.99 Tasks: 179 total, 2 running, 177 sleeping, 0 stopped, 0 zombie Cpu(s): 46.7%us, 3.9%sy, 0.1%ni, 46.9%id, 1.0%wa, 0.0%hi, 0.0%si, 1.4%st Mem: 3919972k total, 3164968k used, 755004k free, 530820k buffers Swap: 1048568k total, 379352k used, 669216k free, 1536388k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 15897 vpsadmin 20 0 431m 168m 54m R 91.7 4.4 2:16.16 php-cgi 12308 vpsadmin 20 0 404m 163m 73m S 29.3 4.3 15:15.90 php-cgi 3644 mysql 20 0 1528m 80m 4944 S 9.8 2.1 1899:58 mysqld 4969 apache 20 0 471m 6228 2824 S 2.0 0.2 0:18.53 httpd 16148 root 20 0 15024 1220 864 R 2.0 0.0 0:00.01 top 1 root 20 0 19364 1064 844 S 0.0 0.0 0:02.50 init

    Read the article

  • Is it possible to control my CPU frequency?

    - by Tim
    My laptop's CPU Type is: Mobile AMD Turion 64 ML-30, 1600 MHz (8 x 200) I was wondering how to find out if its CPU frequency is controllable? What softwares or other ways can control my CPU frequency? My OSes are Windows XP and Ubuntu. Can I control CPU frequency so that the CPU temperature can be controlled not to exceed some temperature? Thanks and regards! More information: My laptop is Acer Aspire 5000. Its motherboard is reported by Speccy as: Manufacturer: Acer, Inc. Model: Lugano M Version: Not Applicable Chipset Vendor: SiS Chipset Model: 760GX Chipset Revision: 03 Southbridge Vendor: SiS Southbridge Model: LPC Bridge Southbridge Revision: 25 BIOS Brand: Acer Version: 3A19 Date: 05/17/05

    Read the article

  • About the External Graphics Card and CPU usage

    - by Balaji
    Hi, We are Rendering 16 live Streams at our client machine through one of our applications and the resolution of the video streams are as 4CIF/MPEG4/25FPS/4000Kbits. The configuration fo the client machine is below. HP Desktop Machine: Microsoft Windows XP Intel (R) Core2 Duo CPU E8400 @ 3.00 GHz 2.99 GHz, 1.94 GB of RAM Intel (R) Q45/Q43 Series Express Chipset (Inbuild) The CPU usage of the machine peaks 99% for 16 straems. After some discussion, we had decided to install external graphics card to reduce the CPU usage. So that, we have tried following graphics cards. NVIDIA Quadro NVS 440 - 128 MB Radeon HD 4350 - 512 MB GDDR2 Redeon HD 4350 - 1GB DDR2 ASUS EAH 4350 Silent 1GB DDR2 But the performance wise no difference, even worst. So, what is the pupuse of these external graphics cards? Really it will reduce the CPU usage? What parameters have to check, if we want to reduce the CPU usage? Please do the needful as soon as possible. Regards Balaji

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >