Search Results

Search found 1100 results on 44 pages for 'dbo'.

Page 5/44 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • SQL SERVER – Update Statistics are Sampled By Default

    - by pinaldave
    After reading my earlier post SQL SERVER – Create Primary Key with Specific Name when Creating Table on Statistics, I have received another question by a blog reader. The question is as follows: Question: Are the statistics sampled by default? Answer: Yes. The sampling rate can be specified by the user and it can be anywhere between a very low value to 100%. Let us do a small experiment to verify if the auto update on statistics is left on. Also, let’s examine a very large table that is created and statistics by default- whether the statistics are sampled or not. USE [AdventureWorks] GO -- Create Table CREATE TABLE [dbo].[StatsTest]( [ID] [int] IDENTITY(1,1) NOT NULL, [FirstName] [varchar](100) NULL, [LastName] [varchar](100) NULL, [City] [varchar](100) NULL, CONSTRAINT [PK_StatsTest] PRIMARY KEY CLUSTERED ([ID] ASC) ) ON [PRIMARY] GO -- Insert 1 Million Rows INSERT INTO [dbo].[StatsTest] (FirstName,LastName,City) SELECT TOP 1000000 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Update the statistics UPDATE STATISTICS [dbo].[StatsTest] GO -- Shows the statistics DBCC SHOW_STATISTICS ("StatsTest"PK_StatsTest) GO -- Clean up DROP TABLE [dbo].[StatsTest] GO Now let us observe the result of the DBCC SHOW_STATISTICS. The result shows that Resultset is for sure sampling for a large dataset. The percentage of sampling is based on data distribution as well as the kind of data in the table. Before dropping the table, let us check first the size of the table. The size of the table is 35 MB. Now, let us run the above code with lesser number of the rows. USE [AdventureWorks] GO -- Create Table CREATE TABLE [dbo].[StatsTest]( [ID] [int] IDENTITY(1,1) NOT NULL, [FirstName] [varchar](100) NULL, [LastName] [varchar](100) NULL, [City] [varchar](100) NULL, CONSTRAINT [PK_StatsTest] PRIMARY KEY CLUSTERED ([ID] ASC) ) ON [PRIMARY] GO -- Insert 1 Hundred Thousand Rows INSERT INTO [dbo].[StatsTest] (FirstName,LastName,City) SELECT TOP 100000 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Update the statistics UPDATE STATISTICS [dbo].[StatsTest] GO -- Shows the statistics DBCC SHOW_STATISTICS ("StatsTest"PK_StatsTest) GO -- Clean up DROP TABLE [dbo].[StatsTest] GO You can see that Rows Sampled is just the same as Rows of the table. In this case, the sample rate is 100%. Before dropping the table, let us also check the size of the table. The size of the table is less than 4 MB. Let us compare the Result set just for a valid reference. Test 1: Total Rows: 1000000, Rows Sampled: 255420, Size of the Table: 35.516 MB Test 2: Total Rows: 100000, Rows Sampled: 100000, Size of the Table: 3.555 MB The reason behind the sample in the Test1 is that the data space is larger than 8 MB, and therefore it uses more than 1024 data pages. If the data space is smaller than 8 MB and uses less than 1024 data pages, then the sampling does not happen. Sampling aids in reducing excessive data scan; however, sometimes it reduces the accuracy of the data as well. Please note that this is just a sample test and there is no way it can be claimed as a benchmark test. The result can be dissimilar on different machines. There are lots of other information can be included when talking about this subject. I will write detail post covering all the subject very soon. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics

    Read the article

  • SQL SERVER – How to Ignore Columnstore Index Usage in Query

    - by pinaldave
    Earlier I wrote about SQL SERVER – Fundamentals of Columnstore Index and very first question I received in email was as following. “We are using SQL Server 2012 CTP3 and so far so good. In our data warehouse solution we have created 1 non-clustered columnstore index on our large fact table. We have very unique situation but your article did not cover it. We are running few queries on our fact table which is working very efficiently but there is one query which earlier was running very fine but after creating this non-clustered columnstore index this query is running very slow. We dropped the columnstore index and suddenly this one query is running fast but other queries which were benefited by this columnstore index it is running slow. Any workaround in this situation?” In summary the question in simple words “How can we ignore using columnstore index in selective queries?” Very interesting question – you can use I can understand there may be the cases when columnstore index is not ideal and needs to be ignored the same. You can use the query hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX to ignore the columnstore index. SQL Server Engine will use any other index which is best after ignoring the columnstore index. Here is the quick script to prove the same. We will first create sample database and then create columnstore index on the same. Once columnstore index is created we will write simple query. This query will use columnstore index. We will then show the usage of the query hint. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO Now we have created columnstore index so if we run following query it will use for sure the same index. -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO We can specify Query Hint IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX as described in following query and it will not use columnstore index. -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID OPTION (IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX) GO Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO Again, make sure that you use hint sparingly and understanding the proper implication of the same. Make sure that you test it with and without hint and select the best option after review of your administrator. Here is the question for you – have you started to use SQL Server 2012 for your validation and development (not on production)? It will be interesting to know the answer. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Generated sql from LINQ to SQL

    - by Muhammad Kashif Nadeem
    Following code ProductPricesDataContext db = new ProductPricesDataContext(); var products = from p in db.Products where p.ProductFields.Count > 3 select new { ProductIDD = p.ProductId, ProductName = p.ProductName.Contains("hotel"), NumbeOfProd = p.ProductFields.Count, totalFields = p.ProductFields.Sum(o => o.FieldId + o.FieldId) }; Generated follwing sql SELECT [t0].[ProductId] AS [ProductIDD], (CASE WHEN [t0].[ProductName] LIKE '%hotel%' THEN 1 WHEN NOT ([t0].[ProductName] LIKE '%hotel%') THEN 0 ELSE NULL END) AS [ProductName], ( SELECT COUNT(*) FROM [dbo].[ProductField] AS [t2] WHERE [t2].[ProductId] = [t0].[ProductId] ) AS [NumbeOfProd], ( SELECT SUM([t3].[FieldId] + [t3].[FieldId]) FROM [dbo].[ProductField] AS [t3] WHERE [t3].[ProductId] = [t0].[ProductId]) AS [totalFields] FROM [dbo].[Product] AS [t0] WHERE (( SELECT COUNT(*) FROM [dbo].[ProductField] AS [t1] WHERE [t1].[ProductId] = [t0].[ProductId] )) > 3 Why is this CASE statement for ProductName and because of this instead of ProductName i am just getting 0 in my result set. It should generate sql like following, (where ProductName like '%hotel%' SELECT [t0].[ProductId] AS [ProductIDD], [ProductName], ( SELECT COUNT(*) FROM [dbo].[ProductField] AS [t2] WHERE [t2].[ProductId] = [t0].[ProductId] ) AS [NumbeOfProd], ( SELECT SUM([t3].[FieldId] + [t3].[FieldId]) FROM [dbo].[ProductField] AS [t3] WHERE [t3].[ProductId] = [t0].[ProductId]) AS [totalFields] FROM [dbo].[Product] AS [t0] WHERE (( SELECT COUNT(*) FROM [dbo].[ProductField] AS [t1] WHERE [t1].[ProductId] = [t0].[ProductId] )) > 3 AND t0.ProductName like '%hotel%' Thanks.

    Read the article

  • SQL SERVER – Introduction to SQL Server 2014 In-Memory OLTP

    - by Pinal Dave
    In SQL Server 2014 Microsoft has introduced a new database engine component called In-Memory OLTP aka project “Hekaton” which is fully integrated into the SQL Server Database Engine. It is optimized for OLTP workloads accessing memory resident data. In-memory OLTP helps us create memory optimized tables which in turn offer significant performance improvement for our typical OLTP workload. The main objective of memory optimized table is to ensure that highly transactional tables could live in memory and remain in memory forever without even losing out a single record. The most significant part is that it still supports majority of our Transact-SQL statement. Transact-SQL stored procedures can be compiled to machine code for further performance improvements on memory-optimized tables. This engine is designed to ensure higher concurrency and minimal blocking. In-Memory OLTP alleviates the issue of locking, using a new type of multi-version optimistic concurrency control. It also substantially reduces waiting for log writes by generating far less log data and needing fewer log writes. Points to remember Memory-optimized tables refer to tables using the new data structures and key words added as part of In-Memory OLTP. Disk-based tables refer to your normal tables which we used to create in SQL Server since its inception. These tables use a fixed size 8 KB pages that need to be read from and written to disk as a unit. Natively compiled stored procedures refer to an object Type which is new and is supported by in-memory OLTP engine which convert it into machine code, which can further improve the data access performance for memory –optimized tables. Natively compiled stored procedures can only reference memory-optimized tables, they can’t be used to reference any disk –based table. Interpreted Transact-SQL stored procedures, which is what SQL Server has always used. Cross-container transactions refer to transactions that reference both memory-optimized tables and disk-based tables. Interop refers to interpreted Transact-SQL that references memory-optimized tables. Using In-Memory OLTP In-Memory OLTP engine has been available as part of SQL Server 2014 since June 2013 CTPs. Installation of In-Memory OLTP is part of the SQL Server setup application. The In-Memory OLTP components can only be installed with a 64-bit edition of SQL Server 2014 hence they are not available with 32-bit editions. Creating Databases Any database that will store memory-optimized tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is specifically designed to store the checkpoint files needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating the filegroup is almost the same as for creating a regular filestream filegroup, it must also specify the option CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a database that can support memory-optimized tables: CREATE DATABASE InMemoryDB ON PRIMARY(NAME = [InMemoryDB_data], FILENAME = 'D:\data\InMemoryDB_data.mdf', size=500MB), FILEGROUP [SampleDB_mod_fg] CONTAINS MEMORY_OPTIMIZED_DATA (NAME = [InMemoryDB_mod_dir], FILENAME = 'S:\data\InMemoryDB_mod_dir'), (NAME = [InMemoryDB_mod_dir], FILENAME = 'R:\data\InMemoryDB_mod_dir') LOG ON (name = [SampleDB_log], Filename='L:\log\InMemoryDB_log.ldf', size=500MB) COLLATE Latin1_General_100_BIN2; Above example code creates files on three different drives (D:  S: and R:) for the data files and in memory storage so if you would like to run this code kindly change the drive and folder locations as per your convenience. Also notice that binary collation was specified as Windows (non-SQL). BIN2 collation is the only collation support at this point for any indexes on memory optimized tables. It is also possible to add a MEMORY_OPTIMIZED_DATA file group to an existing database, use the below command to achieve the same. ALTER DATABASE AdventureWorks2012 ADD FILEGROUP hekaton_mod CONTAINS MEMORY_OPTIMIZED_DATA; GO ALTER DATABASE AdventureWorks2012 ADD FILE (NAME='hekaton_mod', FILENAME='S:\data\hekaton_mod') TO FILEGROUP hekaton_mod; GO Creating Tables There is no major syntactical difference between creating a disk based table or a memory –optimized table but yes there are a few restrictions and a few new essential extensions. Essentially any memory-optimized table should use the MEMORY_OPTIMIZED = ON clause as shown in the Create Table query example. DURABILITY clause (SCHEMA_AND_DATA or SCHEMA_ONLY) Memory-optimized table should always be defined with a DURABILITY value which can be either SCHEMA_AND_DATA or  SCHEMA_ONLY the former being the default. A memory-optimized table defined with DURABILITY=SCHEMA_ONLY will not persist the data to disk which means the data durability is compromised whereas DURABILITY= SCHEMA_AND_DATA ensures that data is also persisted along with the schema. Indexing Memory Optimized Table A memory-optimized table must always have an index for all tables created with DURABILITY= SCHEMA_AND_DATA and this can be achieved by declaring a PRIMARY KEY Constraint at the time of creating a table. The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count must also be specified. CREATE TABLE Mem_Table ( [Name] VARCHAR(32) NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000), [City] VARCHAR(32) NULL, [State_Province] VARCHAR(32) NULL, [LastModified] DATETIME NOT NULL, ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); Now as you can see in the above query example we have used the clause MEMORY_OPTIMIZED = ON to make sure that it is considered as a memory optimized table and not just a normal table and also used the DURABILITY Clause= SCHEMA_AND_DATA which means it will persist data along with metadata and also you can notice this table has a PRIMARY KEY mentioned upfront which is also a mandatory clause for memory-optimized tables. We will talk more about HASH Indexes and BUCKET_COUNT in later articles on this topic which will be focusing more on Row and Index storage on Memory-Optimized tables. So stay tuned for that as well. Now as we covered the basics of Memory Optimized tables and understood the key things to remember while using memory optimized tables, let’s explore more using examples to understand the Performance gains using memory-optimized tables. I will be using the database which i created earlier in this article i.e. InMemoryDB in the below Demo Exercise. USE InMemoryDB GO -- Creating a disk based table CREATE TABLE dbo.Disktable ( Id INT IDENTITY, Name CHAR(40) ) GO CREATE NONCLUSTERED INDEX IX_ID ON dbo.Disktable (Id) GO -- Creating a memory optimized table with similar structure and DURABILITY = SCHEMA_AND_DATA CREATE TABLE dbo.Memorytable_durable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO -- Creating an another memory optimized table with similar structure but DURABILITY = SCHEMA_Only CREATE TABLE dbo.Memorytable_nondurable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_only) GO -- Now insert 100000 records in dbo.Disktable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Disktable(Name) VALUES('sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Do the same inserts for Memory table dbo.Memorytable_durable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_durable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Now finally do the same inserts for Memory table dbo.Memorytable_nondurable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_nondurable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END The above 3 Inserts took 1.20 minutes, 54 secs, and 2 secs respectively to insert 100000 records on my machine with 8 Gb RAM. This proves the point that memory-optimized tables can definitely help businesses achieve better performance for their highly transactional business table and memory- optimized tables with Durability SCHEMA_ONLY is even faster as it does not bother persisting its data to disk which makes it supremely fast. Koenig Solutions is one of the few organizations which offer IT training on SQL Server 2014 and all its updates. Now, I leave the decision on using memory_Optimized tables on you, I hope you like this article and it helped you understand  the fundamentals of IN-Memory OLTP . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Koenig

    Read the article

  • Solving Slow Query

    - by Chris
    We are installing a new forum (yaf) for our site. One of the stored procedures is extremely slow - in fact it always times out in the browser. If I run it in MSSMS it takes nearly 10 minutes to complete. Is there a way to find out what part of this query if taking so long? The Query: DECLARE @BoardID int DECLARE @UserID int DECLARE @CategoryID int = null DECLARE @ParentID int = null SET @BoardID = 1 SET @UserID = 2 select a.CategoryID, Category = a.Name, ForumID = b.ForumID, Forum = b.Name, Description, Topics = [dbo].[yaf_forum_topics](b.ForumID), Posts = [dbo].[yaf_forum_posts](b.ForumID), Subforums = [dbo].[yaf_forum_subforums](b.ForumID, @UserID), LastPosted = t.LastPosted, LastMessageID = t.LastMessageID, LastUserID = t.LastUserID, LastUser = IsNull(t.LastUserName,(select Name from [dbo].[yaf_User] x where x.UserID=t.LastUserID)), LastTopicID = t.TopicID, LastTopicName = t.Topic, b.Flags, Viewing = (select count(1) from [dbo].[yaf_Active] x JOIN [dbo].[yaf_User] usr ON x.UserID = usr.UserID where x.ForumID=b.ForumID AND usr.IsActiveExcluded = 0), b.RemoteURL, x.ReadAccess from [dbo].[yaf_Category] a join [dbo].[yaf_Forum] b on b.CategoryID=a.CategoryID join [dbo].[yaf_vaccess] x on x.ForumID=b.ForumID left outer join [dbo].[yaf_Topic] t ON t.TopicID = [dbo].[yaf_forum_lasttopic](b.ForumID,@UserID,b.LastTopicID,b.LastPosted) where a.BoardID = @BoardID and ((b.Flags & 2)=0 or x.ReadAccess<>0) and (@CategoryID is null or a.CategoryID=@CategoryID) and ((@ParentID is null and b.ParentID is null) or b.ParentID=@ParentID) and x.UserID = @UserID order by a.SortOrder, b.SortOrder IO Statistics: Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_Active'. Scan count 14, logical reads 28, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_User'. Scan count 0, logical reads 3, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_Topic'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_Category'. Scan count 0, logical reads 28, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_Forum'. Scan count 0, logical reads 488, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_UserGroup'. Scan count 231, logical reads 693, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_ForumAccess'. Scan count 1, logical reads 2, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_AccessMask'. Scan count 1, logical reads 2, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Table 'yaf_UserForum'. Scan count 1, logical reads 0, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Client Statistics: Client Execution Time 11:54:01 Query Profile Statistics Number of INSERT, DELETE and UPDATE statements 0 0.0000 Rows affected by INSERT, DELETE, or UPDATE statements 0 0.0000 Number of SELECT statements 8 8.0000 Rows returned by SELECT statements 19 19.0000 Number of transactions 0 0.0000 Network Statistics Number of server roundtrips 3 3.0000 TDS packets sent from client 3 3.0000 TDS packets received from server 34 34.0000 Bytes sent from client 3166 3166.0000 Bytes received from server 128802 128802.0000 Time Statistics Client processing time 156478 156478.0000 Total execution time 572009 572009.0000 Wait time on server replies 415531 415531.0000 Execution Plan

    Read the article

  • SQL Server indexed view matching of views with joins not working

    - by usr
    Does anyone have experience of when SQL Servr 2008 R2 is able to automatically match indexed view (also known as materialized views) that contain joins to a query? for example the view select dbo.Orders.Date, dbo.OrderDetails.ProductID from dbo.OrderDetails join dbo.Orders on dbo.OrderDetails.OrderID = dbo.Orders.ID cannot be automatically matched to the same exact query. When I select directly from this view ith (noexpand) I actually get a much faster query plan that does a scan on the clustered index of the indexed view. Can I get SQL Server to do this matching automatically? I have quite a few queries and views... I am on enterprise edition of SQL Server 2008 R2.

    Read the article

  • sql stored procedure in visual studio 2008

    - by Greg
    Hi, I want to write stored procedure in visual studio that as a parameter recieves the name of project and runs in database TT and copies data from TT.dbo.LCTemp (where the LC is the name of the project recieved as a parameter) table to "TT.dbo.Points" table. both tables have 3 columns: PT_ID, Projectname and DateCreated I think I have written it wrong, here it is: ALTER PROCEDURE dbo.FromTmpToRegular @project varchar(10) AS BEGIN declare @ptID varchar(20) declare @table varchar(20) set @table = 'TT.dbo.' + @project + 'Temp' set @ptID = @table + '.PT_ID' Insert into TT.dbo.Points Select * from [@table] where [@ptID] Not in(Select PT_ID from TT.dbo.Points) END Any idea what I did wrong? Thanks! :) Greg

    Read the article

  • Which workaround to use for the following SQL deadlock?

    - by Marko
    I found a SQL deadlock scenario in my application during concurrency. I belive that the two statements that cause the deadlock are (note - I'm using LINQ2SQL and DataContext.ExecuteCommand(), that's where this.studioId.ToString() comes into play): exec sp_executesql N'INSERT INTO HQ.dbo.SynchronizingRows ([StudioId], [UpdatedRowId]) SELECT @p0, [t0].[Id] FROM [dbo].[UpdatedRows] AS [t0] WHERE NOT (EXISTS( SELECT NULL AS [EMPTY] FROM [dbo].[ReceivedUpdatedRows] AS [t1] WHERE ([t1].[StudioId] = @p0) AND ([t1].[UpdatedRowId] = [t0].[Id]) ))',N'@p0 uniqueidentifier',@p0='" + this.studioId.ToString() + "'; and exec sp_executesql N'INSERT INTO HQ.dbo.ReceivedUpdatedRows ([UpdatedRowId], [StudioId], [ReceiveDateTime]) SELECT [t0].[UpdatedRowId], @p0, GETDATE() FROM [dbo].[SynchronizingRows] AS [t0] WHERE ([t0].[StudioId] = @p0)',N'@p0 uniqueidentifier',@p0='" + this.studioId.ToString() + "'; The basic logic of my (client-server) application is this: Every time someone inserts or updates a row on the server side, I also insert a row into the table UpdatedRows, specifying the RowId of the modified row. When a client tries to synchronize data, it first copies all of the rows in the UpdatedRows table, that don't contain a reference row for the specific client in the table ReceivedUpdatedRows, to the table SynchronizingRows (the first statement taking part in the deadlock). Afterwards, during the synchronization I look for modified rows via lookup of the SynchronizingRows table. This step is required, otherwise if someone inserts new rows or modifies rows on the server side during synchronization I will miss them and won't get them during the next synchronization (explanation scenario to long to write here...). Once synchronization is complete, I insert rows to the ReceivedUpdatedRows table specifying that this client has received the UpdatedRows contained in the SynchronizingRows table (the second statement taking part in the deadlock). Finally I delete all rows from the SynchronizingRows table that belong to the current client. The way I see it, the deadlock is occuring on tables SynchronizingRows (abbreviation SR) and ReceivedUpdatedRows (abbreviation RUR) during steps 2 and 3 (one client is in step 2 and is inserting into SR and selecting from RUR; while another client is in step 3 inserting into RUR and selecting from SR). I googled a bit about SQL deadlocks and came to a conclusion that I have three options. Inorder to make a decision I need more input about each option/workaround: Workaround 1: The first advice given on the web about SQL deadlocks - restructure tables/queries so that deadlocks don't happen in the first place. Only problem with this is that with my IQ I don't see a way to do the synchronization logic any differently. If someone wishes to dwelve deeper into my current synchronization logic, how and why it is set up the way it is, I'll post a link for the explanation. Perhaps, with the help of someone smarter than me, it's possible to create a logic that is deadlock free. Workaround 2: The second most common advice seems to be the use of WITH(NOLOCK) hint. The problem with this is that NOLOCK might miss or duplicate some rows. Duplication is not a problem, but missing rows is catastrophic! Another option is the WITH(READPAST) hint. On the face of it, this seems to be a perfect solution. I really don't care about rows that other clients are inserting/modifying, because each row belongs only to a specific client, so I may very well skip locked rows. But the MSDN documentaion makes me a bit worried - "When READPAST is specified, both row-level and page-level locks are skipped". As I said, row-level locks would not be a problem, but page-level locks may very well be, since a page might contain rows that belong to multiple clients (including the current one). While there are lots of blog posts specifically mentioning that NOLOCK might miss rows, there seems to be none about READPAST (never) missing rows. This makes me skeptical and nervous to implement it, since there is no easy way to test it (implementing would be a piece of cake, just pop WITH(READPAST) into both statements SELECT clause and job done). Can someone confirm whether the READPAST hint can miss rows? Workaround 3: The final option is to use ALLOW_SNAPSHOT_ISOLATION and READ_COMMITED_SNAPSHOT. This would seem to be the only option to work 100% - at least I can't find any information that would contradict with it. But it is a little bit trickier to setup (I don't care much about the performance hit), because I'm using LINQ. Off the top of my head I probably need to manually open a SQL connection and pass it to the LINQ2SQL DataContext, etc... I haven't looked into the specifics very deeply. Mostly I would prefer option 2 if somone could only reassure me that READPAST will never miss rows concerning the current client (as I said before, each client has and only ever deals with it's own set of rows). Otherwise I'll likely have to implement option 3, since option 1 is probably impossible... I'll post the table definitions for the three tables as well, just in case: CREATE TABLE [dbo].[UpdatedRows]( [Id] [uniqueidentifier] NOT NULL ROWGUIDCOL DEFAULT NEWSEQUENTIALID() PRIMARY KEY CLUSTERED, [RowId] [uniqueidentifier] NOT NULL, [UpdateDateTime] [datetime] NOT NULL, ) ON [PRIMARY] GO CREATE NONCLUSTERED INDEX IX_RowId ON dbo.UpdatedRows ([RowId] ASC) WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO CREATE TABLE [dbo].[ReceivedUpdatedRows]( [Id] [uniqueidentifier] NOT NULL ROWGUIDCOL DEFAULT NEWSEQUENTIALID() PRIMARY KEY NONCLUSTERED, [UpdatedRowId] [uniqueidentifier] NOT NULL REFERENCES [dbo].[UpdatedRows] ([Id]), [StudioId] [uniqueidentifier] NOT NULL REFERENCES, [ReceiveDateTime] [datetime] NOT NULL, ) ON [PRIMARY] GO CREATE CLUSTERED INDEX IX_Studios ON dbo.ReceivedUpdatedRows ([StudioId] ASC) WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO CREATE TABLE [dbo].[SynchronizingRows]( [StudioId] [uniqueidentifier] NOT NULL [UpdatedRowId] [uniqueidentifier] NOT NULL REFERENCES [dbo].[UpdatedRows] ([Id]) PRIMARY KEY CLUSTERED ([StudioId], [UpdatedRowId]) ) ON [PRIMARY] GO PS! Studio = Client. PS2! I just noticed that the index definitions have ALLOW_PAGE_LOCK=ON. If I would turn it off, would that make any difference to READPAST? Are there any negative downsides for turning it off?

    Read the article

  • T-SQL UPDATE trigger help

    - by Tan
    Hi iam trying to make an update trigger in my database. But i get this error every time the triggers trigs. Error MEssage: The row value(s) updated or deleted either do not make the row unique or they alter multiple rows(3rows) and heres my trigger ALTER TRIGGER [dbo].[x1pk_qp_update] ON [dbo].[x1pk] FOR UPDATE AS BEGIN TRY DECLARE @UserId int , @PackareKod int , @PersSign varchar(10) SELECT @PackareKod = q_packarekod , @PersSign = q_perssign FROM INSERTED IF @PersSign IS NOT NULL BEGIN IF EXISTS (SELECT * FROM [QPMardskog].[dbo].[UserAccount] WHERE [Account] = @PackareKod) BEGIN SET @UserId = (SELECT [UserId] FROM [QPMardskog].[dbo].[UserAccount] WHERE [Account] = @PackareKod) UPDATE [QPMardskog].[dbo].[UserAccount] SET [Active] = 1 WHERE [Account] = @PackareKod UPDATE [QPMardskog].[dbo].[User] SET [Active] = 1 WHERE [Id] = @UserId END END END TRY But i only update one row in the table how can it says 3 rows. Please advise.

    Read the article

  • Association in Entity Framework 4

    - by Marsharks
    I have two tables, a problem table and a problem history table. As you can expect, a problem can have many histories associated with it. CREATE TABLE [dbo].[Problem]( [Last_Update] [datetime] NULL, [Problem_Id] [int] NOT NULL, [Incident_Count] [int] NULL ) ALTER TABLE [dbo].[Problem] ADD CONSTRAINT [PK_Problem] PRIMARY KEY CLUSTERED ( [Problem_Id] ASC ) CREATE TABLE [dbo].[Problem_History]( [Last_Update] [datetime] NULL, [Problem_Id] [int] NOT NULL, [Severity_Chg_Flag] [char](1) NULL ) ALTER TABLE [dbo].[Problem_History] ADD [Create_DateTime] [datetime] NOT NULL ALTER TABLE [dbo].[Problem_History] WITH CHECK ADD CONSTRAINT [FK_Problem_History_Problem] FOREIGN KEY([Problem_Id]) REFERENCES [dbo].[Problem] ([Problem_Id]) The problem is when I drag this into an Entity Model, the associations are not included. Any ideas? I would like to point out that the problem history table has no separate key of its own, it shares the problem id

    Read the article

  • How to delete rows based on comparison from Data Flow Task in an SSIS?

    - by vikasde
    I have a DataFlow task with two OLE DB Source objects. This is the SQL I want to achieve using SSIS: Insert into server2.db.dbo.[table2] (...) Select col1, col2, col3 ... from Server1.db.dbo.[table1] where [table1.col1] not in (Select col5 from server2.db.dbo.[table2] Where ...) I am pretty new to SSIS and not sure how to achieve this. I thought I could do this using the Data Flow task and populating the first source with the data from server1.db.dbo.table1 and the second source with server2.db.dbo.[table2] and then do the conditional check before inserting it into server2.db.dbo.[table2]. I am not sure how to do the conditional check though. Any help is appreciated.

    Read the article

  • Problems with inheritance query view and one to many association in entity framework 4

    - by Kazys
    Hi, I have situation in with I stucked and don't know way out. The problem is in my bigger model, but I have made small example which shows the same problem. I have 4 tables. I called them SuperParent, NamedParent, TypedParent and ParentType. NamedParent and TypedParent derives from superParent. TypedParent has one to many association with ParentType. I describe mapping for entities using queryView. The problem is then I want to get TypedParents and Include ParentType I get the following exception: An error occurred while preparing the command definition. See the inner exception for details. --- System.ArgumentException: The ResultType of the specified expression is not compatible with the required type. The expression ResultType is 'Transient.reference[PasibandymaiModel.SuperParent]' but the required type is 'Transient.reference[PasibandymaiModel.TypedParent]'. Parameter name: arguments[1] To get TypedParents I use following code: context.SuperParent.OfType().Include("ParentType"); my edmx file: <edmx:Edmx Version="2.0" xmlns:edmx="http://schemas.microsoft.com/ado/2008/10/edmx"> <!-- EF Runtime content --> <edmx:Runtime> <!-- SSDL content --> <edmx:StorageModels> <Schema Namespace="PasibandymaiModel.Store" Alias="Self" Provider="System.Data.SqlClient" ProviderManifestToken="2005" xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/EntityStoreSchemaGenerator" xmlns="http://schemas.microsoft.com/ado/2009/02/edm/ssdl"> <EntityContainer Name="PasibandymaiModelStoreContainer"> <EntitySet Name="NamedParent" EntityType="PasibandymaiModel.Store.NamedParent" store:Type="Tables" Schema="dbo" /> <EntitySet Name="ParentType" EntityType="PasibandymaiModel.Store.ParentType" store:Type="Tables" Schema="dbo" /> <EntitySet Name="SuperParent" EntityType="PasibandymaiModel.Store.SuperParent" store:Type="Tables" Schema="dbo" /> <EntitySet Name="TypedParent" EntityType="PasibandymaiModel.Store.TypedParent" store:Type="Tables" Schema="dbo" /> <AssociationSet Name="fk_NamedParent_SuperParent" Association="PasibandymaiModel.Store.fk_NamedParent_SuperParent"> <End Role="SuperParent" EntitySet="SuperParent" /> <End Role="NamedParent" EntitySet="NamedParent" /> </AssociationSet> <AssociationSet Name="fk_TypedParent_ParentType" Association="PasibandymaiModel.Store.fk_TypedParent_ParentType"> <End Role="ParentType" EntitySet="ParentType" /> <End Role="TypedParent" EntitySet="TypedParent" /> </AssociationSet> <AssociationSet Name="fk_TypedParent_SuperParent" Association="PasibandymaiModel.Store.fk_TypedParent_SuperParent"> <End Role="SuperParent" EntitySet="SuperParent" /> <End Role="TypedParent" EntitySet="TypedParent" /> </AssociationSet> </EntityContainer> <EntityType Name="NamedParent"> <Key> <PropertyRef Name="ParentId" /> </Key> <Property Name="ParentId" Type="int" Nullable="false" /> <Property Name="Name" Type="nvarchar" Nullable="false" MaxLength="100" /> </EntityType> <EntityType Name="ParentType"> <Key> <PropertyRef Name="ParentTypeId" /> </Key> <Property Name="ParentTypeId" Type="int" Nullable="false" StoreGeneratedPattern="Identity" /> <Property Name="Name" Type="nvarchar" MaxLength="100" /> </EntityType> <EntityType Name="SuperParent"> <Key> <PropertyRef Name="ParentId" /> </Key> <Property Name="ParentId" Type="int" Nullable="false" StoreGeneratedPattern="Identity" /> <Property Name="SomeAttribute" Type="nvarchar" Nullable="false" MaxLength="100" /> </EntityType> <EntityType Name="TypedParent"> <Key> <PropertyRef Name="ParentId" /> </Key> <Property Name="ParentId" Type="int" Nullable="false" /> <Property Name="ParentTypeId" Type="int" Nullable="false"/> </EntityType> <Association Name="fk_NamedParent_SuperParent"> <End Role="SuperParent" Type="PasibandymaiModel.Store.SuperParent" Multiplicity="1" /> <End Role="NamedParent" Type="PasibandymaiModel.Store.NamedParent" Multiplicity="0..1" /> <ReferentialConstraint> <Principal Role="SuperParent"> <PropertyRef Name="ParentId" /> </Principal> <Dependent Role="NamedParent"> <PropertyRef Name="ParentId" /> </Dependent> </ReferentialConstraint> </Association> <Association Name="fk_TypedParent_ParentType"> <End Role="ParentType" Type="PasibandymaiModel.Store.ParentType" Multiplicity="1" /> <End Role="TypedParent" Type="PasibandymaiModel.Store.TypedParent" Multiplicity="*" /> <ReferentialConstraint> <Principal Role="ParentType"> <PropertyRef Name="ParentTypeId" /> </Principal> <Dependent Role="TypedParent"> <PropertyRef Name="ParentTypeId" /> </Dependent> </ReferentialConstraint> </Association> <Association Name="fk_TypedParent_SuperParent"> <End Role="SuperParent" Type="PasibandymaiModel.Store.SuperParent" Multiplicity="1" /> <End Role="TypedParent" Type="PasibandymaiModel.Store.TypedParent" Multiplicity="0..1" /> <ReferentialConstraint> <Principal Role="SuperParent"> <PropertyRef Name="ParentId" /> </Principal> <Dependent Role="TypedParent"> <PropertyRef Name="ParentId" /> </Dependent> </ReferentialConstraint> </Association> <Function Name="ChildDelete" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ChildId" Type="int" Mode="In" /> </Function> <Function Name="ChildInsert" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="Name" Type="nvarchar" Mode="In" /> <Parameter Name="ParentId" Type="int" Mode="In" /> </Function> <Function Name="ChildUpdate" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ChildId" Type="int" Mode="In" /> <Parameter Name="ParentId" Type="int" Mode="In" /> <Parameter Name="Name" Type="nvarchar" Mode="In" /> </Function> <Function Name="NamedParentDelete" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ParentId" Type="int" Mode="In" /> </Function> <Function Name="NamedParentInsert" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="Name" Type="nvarchar" Mode="In" /> <Parameter Name="SomeAttribute" Type="nvarchar" Mode="In" /> </Function> <Function Name="NamedParentUpdate" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ParentId" Type="int" Mode="In" /> <Parameter Name="SomeAttribute" Type="nvarchar" Mode="In" /> <Parameter Name="Name" Type="nvarchar" Mode="In" /> </Function> <Function Name="ParentTypeDelete" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ParentTypeId" Type="int" Mode="In" /> </Function> <Function Name="ParentTypeInsert" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="Name" Type="nvarchar" Mode="In" /> </Function> <Function Name="ParentTypeUpdate" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ParentTypeId" Type="int" Mode="In" /> <Parameter Name="Name" Type="nvarchar" Mode="In" /> </Function> <Function Name="TypedParentDelete" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ParentId" Type="int" Mode="In" /> </Function> <Function Name="TypedParentInsert" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ParentTypeId" Type="int" Mode="In" /> <Parameter Name="SomeAttribute" Type="nvarchar" Mode="In" /> </Function> <Function Name="TypedParentUpdate" Aggregate="false" BuiltIn="false" NiladicFunction="false" IsComposable="false" ParameterTypeSemantics="AllowImplicitConversion" Schema="dbo"> <Parameter Name="ParentId" Type="int" Mode="In" /> <Parameter Name="SomeAttribute" Type="nvarchar" Mode="In" /> <Parameter Name="ParentTypeId" Type="int" Mode="In" /> </Function> </Schema> </edmx:StorageModels> <!-- CSDL content --> <edmx:ConceptualModels> <Schema Namespace="PasibandymaiModel" Alias="Self" xmlns:annotation="http://schemas.microsoft.com/ado/2009/02/edm/annotation" xmlns="http://schemas.microsoft.com/ado/2008/09/edm"> <EntityContainer Name="PasibandymaiEntities" annotation:LazyLoadingEnabled="true"> <EntitySet Name="ParentType" EntityType="PasibandymaiModel.ParentType" /> <EntitySet Name="SuperParent" EntityType="PasibandymaiModel.SuperParent" /> <AssociationSet Name="ParentTypeTypedParent" Association="PasibandymaiModel.ParentTypeTypedParent"> <End Role="ParentType" EntitySet="ParentType" /> <End Role="TypedParent" EntitySet="SuperParent" /> </AssociationSet> </EntityContainer> <EntityType Name="NamedParent" BaseType="PasibandymaiModel.SuperParent"> <Property Type="String" Name="Name" Nullable="false" MaxLength="100" FixedLength="false" Unicode="true" /> </EntityType> <EntityType Name="ParentType"> <Key> <PropertyRef Name="ParentTypeId" /> </Key> <Property Type="Int32" Name="ParentTypeId" Nullable="false" annotation:StoreGeneratedPattern="Identity" /> <Property Type="String" Name="Name" MaxLength="100" FixedLength="false" Unicode="true" /> <NavigationProperty Name="TypedParent" Relationship="PasibandymaiModel.ParentTypeTypedParent" FromRole="ParentType" ToRole="TypedParent" /> </EntityType> <EntityType Name="SuperParent" Abstract="true"> <Key> <PropertyRef Name="ParentId" /> </Key> <Property Type="Int32" Name="ParentId" Nullable="false" annotation:StoreGeneratedPattern="Identity" /> <Property Type="String" Name="SomeAttribute" Nullable="false" MaxLength="100" FixedLength="false" Unicode="true" /> </EntityType> <EntityType Name="TypedParent" BaseType="PasibandymaiModel.SuperParent"> <NavigationProperty Name="ParentType" Relationship="PasibandymaiModel.ParentTypeTypedParent" FromRole="TypedParent" ToRole="ParentType" /> <Property Type="Int32" Name="ParentTypeId" Nullable="false" /> </EntityType> <Association Name="ParentTypeTypedParent"> <End Type="PasibandymaiModel.ParentType" Role="ParentType" Multiplicity="1" /> <End Type="PasibandymaiModel.TypedParent" Role="TypedParent" Multiplicity="*" /> <ReferentialConstraint> <Principal Role="ParentType"> <PropertyRef Name="ParentTypeId" /> </Principal> <Dependent Role="TypedParent"> <PropertyRef Name="ParentTypeId" /> </Dependent> </ReferentialConstraint> </Association> </Schema> </edmx:ConceptualModels> <!-- C-S mapping content --> <edmx:Mappings> <Mapping Space="C-S" xmlns="http://schemas.microsoft.com/ado/2008/09/mapping/cs"> <EntityContainerMapping StorageEntityContainer="PasibandymaiModelStoreContainer" CdmEntityContainer="PasibandymaiEntities"> <EntitySetMapping Name="ParentType"> <QueryView> SELECT VALUE PasibandymaiModel.ParentType(tp.ParentTypeId, tp.Name) FROM PasibandymaiModelStoreContainer.ParentType AS tp </QueryView> </EntitySetMapping> <EntitySetMapping Name="SuperParent"> <QueryView> SELECT VALUE CASE WHEN (np.ParentId IS NOT NULL) THEN PasibandymaiModel.NamedParent(sp.ParentId, sp.SomeAttribute, np.Name) WHEN (tp.ParentId IS NOT NULL) THEN PasibandymaiModel.TypedParent(sp.ParentId, sp.SomeAttribute, tp.ParentTypeId) END FROM PasibandymaiModelStoreContainer.SuperParent AS sp LEFT JOIN PasibandymaiModelStoreContainer.NamedParent AS np ON sp.ParentId = np.ParentId LEFT JOIN PasibandymaiModelStoreContainer.TypedParent AS tp ON sp.ParentId = tp.ParentId </QueryView> <QueryView TypeName="PasibandymaiModel.TypedParent"> SELECT VALUE PasibandymaiModel.TypedParent(sp.ParentId, sp.SomeAttribute, tp.ParentTypeId) FROM PasibandymaiModelStoreContainer.SuperParent AS sp INNER JOIN PasibandymaiModelStoreContainer.TypedParent AS tp ON sp.ParentId = tp.ParentId </QueryView> <QueryView TypeName="PasibandymaiModel.NamedParent"> SELECT VALUE PasibandymaiModel.NamedParent(sp.ParentId, sp.SomeAttribute, np.Name) FROM PasibandymaiModelStoreContainer.SuperParent AS sp INNER JOIN PasibandymaiModelStoreContainer.NamedParent AS np ON sp.ParentId = np.ParentId </QueryView> </EntitySetMapping> </EntityContainerMapping> </Mapping> </edmx:Mappings> </edmx:Runtime> </edmx:Edmx> I have tried using AssociationSetMapping instead of using Association with ReferentialConstraint. But then couldn't insert related entities at once, becouse entity framework didn't provided entity key of inserted entities for related entities. Thanks for any idea

    Read the article

  • It’s time that you ought to know what you don’t know

    - by fatherjack
    There is a famous quote about unknown unknowns and known knowns and so on but I’ll let you review that if you are interested. What I am worried about is that there are things going on in your environment that you ought to know about, indeed you have asked to be told about but you are not getting the information. When you schedule a SQL Agent job you can set it to send an email to an inbox monitored by someone who needs to know and indeed can do something about it. However, what happens if the email process isnt successful? Check your servers with this: USE [msdb] GO /* This code selects the top 10 most recent SQLAgent jobs that failed to complete successfully and where the email notification failed too. Jonathan Allen Jul 2012 */ DECLARE @Date DATETIME SELECT @Date = DATEADD(d, DATEDIFF(d, '19000101', GETDATE()) - 1, '19000101') SELECT TOP 10 [s].[name] , [sjh].[step_name] , [sjh].[sql_message_id] , [sjh].[sql_severity] , [sjh].[message] , [sjh].[run_date] , [sjh].[run_time] , [sjh].[run_duration] , [sjh].[operator_id_emailed] , [sjh].[operator_id_netsent] , [sjh].[operator_id_paged] , [sjh].[retries_attempted] FROM [dbo].[sysjobhistory] AS sjh INNER JOIN [dbo].[sysjobs] AS s ON [sjh].[job_id] = [s].[job_id] WHERE EXISTS ( SELECT * FROM [dbo].[sysjobs] AS s INNER JOIN [dbo].[sysjobhistory] AS s2 ON [s].[job_id] = [s2].[job_id] WHERE [sjh].[job_id] = [s2].[job_id] AND [s2].[message] LIKE '%failed to notify%' AND CONVERT(DATETIME, CONVERT(VARCHAR(15), [s2].[run_date])) >= @date AND [s2].[run_status] = 0 ) AND sjh.[run_status] = 0 AND sjh.[step_id] != 0 AND CONVERT(DATETIME, CONVERT(VARCHAR(15), [run_date])) >= @date ORDER BY [sjh].[run_date] DESC , [sjh].[run_time] DESC go USE [msdb] go /* This code summarises details of SQLAgent jobs that failed to complete successfully and where the email notification failed too. Jonathan Allen Jul 2012 */ DECLARE @Date DATETIME SELECT @Date = DATEADD(d, DATEDIFF(d, '19000101', GETDATE()) - 1, '19000101') SELECT [s].name , [s2].[step_id] , CONVERT(DATETIME, CONVERT(VARCHAR(15), [s2].[run_date])) AS [rundate] , COUNT(*) AS [execution count] FROM [dbo].[sysjobs] AS s INNER JOIN [dbo].[sysjobhistory] AS s2 ON [s].[job_id] = [s2].[job_id] WHERE [s2].[message] LIKE '%failed to notify%' AND CONVERT(DATETIME, CONVERT(VARCHAR(15), [s2].[run_date])) >= @date AND [s2].[run_status] = 0 GROUP BY name , [s2].[step_id] , [s2].[run_date] ORDER BY [s2].[run_dateDESC] These two result sets will show if there are any SQL Agent jobs that have run on your servers that failed and failed to successfully email about the failure. I hope it’s of use to you. Disclaimer – Jonathan is a Friend of Red Gate and as such, whenever they are discussed, will have a generally positive disposition towards Red Gate tools. Other tools are often available and you should always try others before you come back and buy the Red Gate ones. All code in this blog is provided “as is” and no guarantee, warranty or accuracy is applicable or inferred, run the code on a test server and be sure to understand it before you run it on a server that means a lot to you or your manager.

    Read the article

  • SQL SERVER – Index Created on View not Used Often – Observation of the View – Part 2

    - by pinaldave
    Earlier, I have written an article about SQL SERVER – Index Created on View not Used Often – Observation of the View. I received an email from one of the readers, asking if there would no problems when we create the Index on the base table. Well, we need to discuss this situation in two different cases. Before proceeding to the discussion, I strongly suggest you read my earlier articles. To avoid the duplication, I am not going to repeat the code and explanation over here. In all the earlier cases, I have explained in detail how Index created on the View is not utilized. SQL SERVER – Index Created on View not Used Often – Limitation of the View 12 SQL SERVER – Index Created on View not Used Often – Observation of the View SQL SERVER – Indexed View always Use Index on Table As per earlier blog posts, so far we have done the following: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View However, the blog reader who emailed me suggests the extension of the said logic, which is as follows: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View Create Index on the Base Table Write SELECT with ORDER BY on View After doing the last two steps, the question is “Will the query on the View utilize the Index on the View, or will it still use the Index of the base table?“ Let us first run the Create example. USE tempdb GO IF EXISTS (SELECT * FROM sys.views WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[SampleView]')) DROP VIEW [dbo].[SampleView] GO IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[mySampleTable]') AND TYPE IN (N'U')) DROP TABLE [dbo].[mySampleTable] GO -- Create SampleTable CREATE TABLE mySampleTable (ID1 INT, ID2 INT, SomeData VARCHAR(100)) INSERT INTO mySampleTable (ID1,ID2,SomeData) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY o1.name), ROW_NUMBER() OVER (ORDER BY o2.name), o2.name FROM sys.all_objects o1 CROSS JOIN sys.all_objects o2 GO -- Create View CREATE VIEW SampleView WITH SCHEMABINDING AS SELECT ID1,ID2,SomeData FROM dbo.mySampleTable GO -- Create Index on View CREATE UNIQUE CLUSTERED INDEX [IX_ViewSample] ON [dbo].[SampleView] ( ID2 ASC ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO -- Create Index on Original Table -- On Column ID1 CREATE UNIQUE CLUSTERED INDEX [IX_OriginalTable] ON mySampleTable ( ID1 ASC ) GO -- On Column ID2 CREATE UNIQUE NONCLUSTERED INDEX [IX_OriginalTable_ID2] ON mySampleTable ( ID2 ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO Now let us see the execution plans for both of the SELECT statement. Before Index on Base Table (with Index on View): After Index on Base Table (with Index on View): Looking at both executions, it is very clear that with or without, the View is using Indexes. Alright, I have written 11 disadvantages of the Views. Now I have written one case where the View is using Indexes. Anybody who says that I am being harsh on Views can say now that I found one place where Index on View can be helpful. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL View, SQLServer, T SQL, Technology

    Read the article

  • SQL SERVER – Index Created on View not Used Often – Observation of the View

    - by pinaldave
    I always enjoy writing about concepts on Views. Views are frequently used concepts, and so it’s not surprising that I have seen so many misconceptions about this subject. To clear such misconceptions, I have previously written the article SQL SERVER – The Limitations of the Views – Eleven and more…. I also wrote a follow up article wherein I demonstrated that without even creating index on the basic table, the query on the View will not use the View. You can read about this demonstration over here: SQL SERVER – Index Created on View not Used Often – Limitation of the View 12. I promised in that post that I would also write an article where I would demonstrate the condition where the Index will be used. I got many responses suggesting that I can do that with using NOEXPAND; I agree. I have already written about this in my original summary article. Here is a way for you to see how Index created on View can be utilized. We will do the following steps on this exercise: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View USE tempdb GO IF EXISTS (SELECT * FROM sys.views WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[SampleView]')) DROP VIEW [dbo].[SampleView] GO IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[mySampleTable]') AND TYPE IN (N'U')) DROP TABLE [dbo].[mySampleTable] GO -- Create SampleTable CREATE TABLE mySampleTable (ID1 INT, ID2 INT, SomeData VARCHAR(100)) INSERT INTO mySampleTable (ID1,ID2,SomeData) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY o1.name), ROW_NUMBER() OVER (ORDER BY o2.name), o2.name FROM sys.all_objects o1 CROSS JOIN sys.all_objects o2 GO -- Create View CREATE VIEW SampleView WITH SCHEMABINDING AS SELECT ID1,ID2,SomeData FROM dbo.mySampleTable GO -- Create Index on View CREATE UNIQUE CLUSTERED INDEX [IX_ViewSample] ON [dbo].[SampleView] ( ID2 ASC ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO When we check the execution plan for this , we find it clearly that the Index created on the View is utilized. ORDER BY clause uses the Index created on the View. I hope this makes the puzzle simpler on how the Index is used on the View. Again, I strongly recommend reading my earlier series about the limitations of the Views found here: SQL SERVER – The Limitations of the Views – Eleven and more…. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL View, T SQL, Technology

    Read the article

  • More SQL Smells

    - by Nick Harrison
    Let's continue exploring some of the SQL Smells from Phil's list. He has been putting together. Datatype mis-matches in predicates that rely on implicit conversion.(Plamen Ratchev) This is a great example poking holes in the whole theory of "If it works it's not broken" Queries will this probably will generally work and give the correct response. In fact, without careful analysis, you probably may be completely oblivious that there is even a problem. This subtle little problem will needlessly complicate queries and slow them down regardless of the indexes applied. Consider this example: CREATE TABLE [dbo].[Page](     [PageId] [int] IDENTITY(1,1) NOT NULL,     [Title] [varchar](75) NOT NULL,     [Sequence] [int] NOT NULL,     [ThemeId] [int] NOT NULL,     [CustomCss] [text] NOT NULL,     [CustomScript] [text] NOT NULL,     [PageGroupId] [int] NOT NULL;  CREATE PROCEDURE PageSelectBySequence ( @sequenceMin smallint , @sequenceMax smallint ) AS BEGIN SELECT [PageId] , [Title] , [Sequence] , [ThemeId] , [CustomCss] , [CustomScript] , [PageGroupId] FROM [CMS].[dbo].[Page] WHERE Sequence BETWEEN @sequenceMin AND @SequenceMax END  Note that the Sequence column is defined as int while the sequence parameter is defined as a small int. The problem is that the database may have to do a lot of type conversions to evaluate the query. In some cases, this may even negate the indexes that you have in place. Using Correlated subqueries instead of a join   (Dave_Levy/ Plamen Ratchev) There are two main problems here. The first is a little subjective, since this is a non-standard way of expressing the query, it is harder to understand. The other problem is much more objective and potentially problematic. You are taking much of the control away from the optimizer. Written properly, such a query may well out perform a corresponding query written with traditional joins. More likely than not, performance will degrade. Whenever you assume that you know better than the optimizer, you will most likely be wrong. This is the fundmental problem with any hint. Consider a query like this:  SELECT Page.Title , Page.Sequence , Page.ThemeId , Page.CustomCss , Page.CustomScript , PageEffectParams.Name , PageEffectParams.Value , ( SELECT EffectName FROM dbo.Effect WHERE EffectId = dbo.PageEffects.EffectId ) AS EffectName FROM Page INNER JOIN PageEffect ON Page.PageId = PageEffects.PageId INNER JOIN PageEffectParam ON PageEffects.PageEffectId = PageEffectParams.PageEffectId  This can and should be written as:  SELECT Page.Title , Page.Sequence , Page.ThemeId , Page.CustomCss , Page.CustomScript , PageEffectParams.Name , PageEffectParams.Value , EffectName FROM Page INNER JOIN PageEffect ON Page.PageId = PageEffects.PageId INNER JOIN PageEffectParam ON PageEffects.PageEffectId = PageEffectParams.PageEffectId INNER JOIN dbo.Effect ON dbo.Effects.EffectId = dbo.PageEffects.EffectId  The correlated query may just as easily show up in the where clause. It's not a good idea in the select clause or the where clause. Few or No comments. This one is a bit more complicated and controversial. All comments are not created equal. Some comments are helpful and need to be included. Other comments are not necessary and may indicate a problem. I tend to follow the rule of thumb that comments that explain why are good. Comments that explain how are bad. Many people may be shocked to hear the idea of a bad comment, but hear me out. If a comment is needed to explain what is going on or how it works, the logic is too complex and needs to be simplified. Comments that explain why are good. Comments may explain why the sql is needed are good. Comments that explain where the sql is used are good. Comments that explain how tables are related should not be needed if the sql is well written. If they are needed, you need to consider reworking the sql or simplify your data model. Use of functions in a WHERE clause. (Anil Das) Calling a function in the where clause will often negate the indexing strategy. The function will be called for every record considered. This will often a force a full table scan on the tables affected. Calling a function will not guarantee that there is a full table scan, but there is a good chance that it will. If you find that you often need to write queries using a particular function, you may need to add a column to the table that has the function already applied.

    Read the article

  • SQL SERVER – Fundamentals of Columnstore Index

    - by pinaldave
    There are two kind of storage in database. Row Store and Column Store. Row store does exactly as the name suggests – stores rows of data on a page – and column store stores all the data in a column on the same page. These columns are much easier to search – instead of a query searching all the data in an entire row whether the data is relevant or not, column store queries need only to search much lesser number of the columns. This means major increases in search speed and hard drive use. Additionally, the column store indexes are heavily compressed, which translates to even greater memory and faster searches. I am sure this looks very exciting and it does not mean that you convert every single index from row store to column store index. One has to understand the proper places where to use row store or column store indexes. Let us understand in this article what is the difference in Columnstore type of index. Column store indexes are run by Microsoft’s VertiPaq technology. However, all you really need to know is that this method of storing data is columns on a single page is much faster and more efficient. Creating a column store index is very easy, and you don’t have to learn new syntax to create them. You just need to specify the keyword “COLUMNSTORE” and enter the data as you normally would. Keep in mind that once you add a column store to a table, though, you cannot delete, insert or update the data – it is READ ONLY. However, since column store will be mainly used for data warehousing, this should not be a big problem. You can always use partitioning to avoid rebuilding the index. A columnstore index stores each column in a separate set of disk pages, rather than storing multiple rows per page as data traditionally has been stored. The difference between column store and row store approaches is illustrated below: In case of the row store indexes multiple pages will contain multiple rows of the columns spanning across multiple pages. In case of column store indexes multiple pages will contain multiple single columns. This will lead only the columns needed to solve a query will be fetched from disk. Additionally there is good chance that there will be redundant data in a single column which will further help to compress the data, this will have positive effect on buffer hit rate as most of the data will be in memory and due to same it will not need to be retrieved. Let us see small example of how columnstore index improves the performance of the query on a large table. As a first step let us create databaseset which is large enough to show performance impact of columnstore index. The time taken to create sample database may vary on different computer based on the resources. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 Now let us do quick performance test. I have kept STATISTICS IO ON for measuring how much IO following queries take. In my test first I will run query which will use regular index. We will note the IO usage of the query. After that we will create columnstore index and will measure the IO of the same. -- Performance Test -- Comparing Regular Index with ColumnStore Index USE AdventureWorks GO SET STATISTICS IO ON GO -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO -- Table 'MySalesOrderDetail'. Scan count 1, logical reads 342261, physical reads 0, read-ahead reads 0. -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO -- Select Table with Columnstore Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO It is very clear from the results that query is performance extremely fast after creating ColumnStore Index. The amount of the pages it has to read to run query is drastically reduced as the column which are needed in the query are stored in the same page and query does not have to go through every single page to read those columns. If we enable execution plan and compare we can see that column store index performance way better than regular index in this case. Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO In future posts we will see cases where Columnstore index is not appropriate solution as well few other tricks and tips of the columnstore index. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Vote of Disconfidence to Entity Framework

    - by Ricardo Peres
    A friend of mine has found the following problem with Entity Framework 4: Two simple classes and one association between them (one to many): One condition to filter out soft-deleted entities (WHERE Deleted = 0): 100 records in the database; A simple query: 1: var l = ctx.Person.Include("Address").Where(x => (x.Address.Name == "317 Oak Blvd." && x.Address.Number == 926) || (x.Address.Name == "891 White Milton Drive" && x.Address.Number == 497)); Will produce the following SQL: 1: SELECT 2: [Extent1].[Id] AS [Id], 3: [Extent1].[FullName] AS [FullName], 4: [Extent1].[AddressId] AS [AddressId], 5: [Extent202].[Id] AS [Id1], 6: [Extent202].[Name] AS [Name], 7: [Extent202].[Number] AS [Number] 8: FROM [dbo].[Person] AS [Extent1] 9: LEFT OUTER JOIN [dbo].[Address] AS [Extent2] ON ([Extent2].[Deleted] = 0) AND ([Extent1].[AddressId] = [Extent2].[Id]) 10: LEFT OUTER JOIN [dbo].[Address] AS [Extent3] ON ([Extent3].[Deleted] = 0) AND ([Extent1].[AddressId] = [Extent3].[Id]) 11: LEFT OUTER JOIN [dbo].[Address] AS [Extent4] ON ([Extent4].[Deleted] = 0) AND ([Extent1].[AddressId] = [Extent4].[Id]) 12: LEFT OUTER JOIN [dbo].[Address] AS [Extent5] ON ([Extent5].[Deleted] = 0) AND ([Extent1].[AddressId] = [Extent5].[Id]) 13: LEFT OUTER JOIN [dbo].[Address] AS [Extent6] ON ([Extent6].[Deleted] = 0) AND ([Extent1].[AddressId] = [Extent6].[Id]) 14: ... 15: WHERE ((N'317 Oak Blvd.' = [Extent2].[Name]) AND (926 = [Extent3].[Number])) 16: ... And will result in 680 MB of memory being taken! Now, Entity Framework has been historically known for producing less than optimal SQL, but 680 MB for 100 entities?! According to Microsoft, the problem will be addressed in the following version, there is a Connect issue open. There is even a whitepaper, Performance Considerations for Entity Framework 5, which talks about some of the changes and optimizations coming on version 5, but by reading it, I got even more concerned: “Once the cache contains a set number of entries (800), we start a timer that periodically (once-per-minute) sweeps the cache.” Say what?! The next version of Entity Framework will spawn timer threads?! When Code First came along, I thought it was a step in the right direction. Sure, it didn’t include some things that NHibernate did for quite some time – for example, different strategies for Id generation that do not rely on IDENTITY columns, which makes INSERT batching impossible, or support for enumerated types – but I thought these would come with the time. Now, enumerated types have, but so did… timer threads! I’m afraid Entity Framework is becoming a monster.

    Read the article

  • Monitor SQL Server Replication Jobs

    - by Yaniv Etrogi
    The Replication infrastructure in SQL Server is implemented using SQL Server Agent to execute the various components involved in the form of a job (e.g. LogReader agent job, Distribution agent job, Merge agent job) SQL Server jobs execute a binary executable file which is basically C++ code. You can download all the scripts for this article here SQL Server Job Schedules By default each of job has only one schedule that is set to Start automatically when SQL Server Agent starts. This schedule ensures that when ever the SQL Server Agent service is started all the replication components are also put into action. This is OK and makes sense but there is one problem with this default configuration that needs improvement  -  if for any reason one of the components fails it remains down in a stopped state.   Unless you monitor the status of each component you will typically get to know about such a failure from a customer complaint as a result of missing data or data that is not up to date at the subscriber level. Furthermore, having any of these components in a stopped state can lead to more severe problems if not corrected within a short time. The action required to improve on this default settings is in fact very simple. Adding a second schedule that is set as a Daily Reoccurring schedule which runs every 1 minute does the trick. SQL Server Agent’s scheduler module knows how to handle overlapping schedules so if the job is already being executed by another schedule it will not get executed again at the same time. So, in the event of a failure the failed job remains down for at most 60 seconds. Many DBAs are not aware of this capability and so search for more complex solutions such as having an additional dedicated job running an external code in VBS or another scripting language that detects replication jobs in a stopped state and starts them but there is no need to seek such external solutions when what is needed can be accomplished by T-SQL code. SQL Server Jobs Status In addition to the 1 minute schedule we also want to ensure that key components in the replication are enabled so I can search for those components by their Category, and set their status to enabled in case they are disabled, by executing the stored procedure MonitorEnableReplicationAgents. The jobs that I typically have handled are listed below but you may want to extend this, so below is the query to return all jobs along with their category. SELECT category_id, name FROM msdb.dbo.syscategories ORDER BY category_id; Distribution Cleanup LogReader Agent Distribution Agent Snapshot Agent Jobs By default when a publication is created, a snapshot agent job also gets created with a daily schedule. I see more organizations where the snapshot agent job does not need to be executed automatically by the SQL Server Agent  scheduler than organizations who   need a new snapshot generated automatically. To assure this setting is in place I created the stored procedure MonitorSnapshotAgentsSchedules which disables snapshot agent jobs and also deletes the job schedule. It is worth mentioning that when the publication property immediate_sync is turned off then the snapshot files are not created when the Snapshot agent is executed by the job. You control this property when the publication is created with a parameter called @immediate_sync passed to sp_addpublication and for an existing publication you can use sp_changepublication. Implementation The scripts assume the existence of a database named PerfDB. Steps: Run the scripts to create the stored procedures in the PerfDB database. Create a job that executes the stored procedures every hour. -- Verify that the 1_Minute schedule exists. EXEC PerfDB.dbo.MonitorReplicationAgentsSchedules @CategoryId = 10; /* Distribution */ EXEC PerfDB.dbo.MonitorReplicationAgentsSchedules @CategoryId = 13; /* LogReader */ -- Verify all replication agents are enabled. EXEC PerfDB.dbo.MonitorEnableReplicationAgents @CategoryId = 10; /* Distribution */ EXEC PerfDB.dbo.MonitorEnableReplicationAgents @CategoryId = 13; /* LogReader */ EXEC PerfDB.dbo.MonitorEnableReplicationAgents @CategoryId = 11; /* Distribution clean up */ -- Verify that Snapshot agents are disabled and have no schedule EXEC PerfDB.dbo.MonitorSnapshotAgentsSchedules; Want to read more of about replication? Check at my replication posts at my blog.

    Read the article

  • Run database checks but omit large tables or filegroups - New option in Ola Hallengren's Scripts

    - by Greg Low
    One of the things I've always wanted in DBCC CHECKDB is the option to omit particular tables from the check. The situation that I often see is that companies with large databases often have only one or two very large tables. They want to run a DBCC CHECKDB on the database to check everything except those couple of tables due to time constraints. I posted a request on the Connect site about time some time ago: https://connect.microsoft.com/SQLServer/feedback/details/611164/dbcc-checkdb-omit-tables-option The workaround from the product team was that you could script out the checks that you did want to carry out, rather than omitting the ones that you didn't. I didn't overly like this as a workaround as clients often had a very large number of objects that they did want to check and only one or two that they didn't. I've always been impressed with the work that our buddy Ola Hallengren has done on his maintenance scripts. He pinged me recently about my old Connect item and said he was going to implement something similar. The good news is that it's available now. Here are some examples he provided of the newly-supported syntax: EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKDB' EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKALLOC,CHECKTABLE,CHECKCATALOG', @Objects = 'AdventureWorks.Person.Address' EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKALLOC,CHECKTABLE,CHECKCATALOG', @Objects = 'ALL_OBJECTS,-AdventureWorks.Person.Address' EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKFILEGROUP,CHECKCATALOG', @FileGroups = 'AdventureWorks.PRIMARY' EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKFILEGROUP,CHECKCATALOG', @FileGroups = 'ALL_FILEGROUPS,-AdventureWorks.PRIMARY' Note the syntax to omit an object from the list of objects and the option to omit one filegroup. Nice! Thanks Ola! You'll find details here: http://ola.hallengren.com/  

    Read the article

  • Reproducing a Conversion Deadlock

    - by Alexander Kuznetsov
    Even if two processes compete on only one resource, they still can embrace in a deadlock. The following scripts reproduce such a scenario. In one tab, run this: CREATE TABLE dbo.Test ( i INT ) ; GO INSERT INTO dbo.Test ( i ) VALUES ( 1 ) ; GO SET TRANSACTION ISOLATION LEVEL SERIALIZABLE ; BEGIN TRAN SELECT i FROM dbo.Test ; --UPDATE dbo.Test SET i=2 ; After this script has completed, we have an outstanding transaction holding a shared lock. In another tab, let us have that another connection have...(read more)

    Read the article

  • BizTalk and SQL: Alternatives to the SQL receive adapter. Using Msmq to receive SQL data

    - by Leonid Ganeline
    If we have to get data from the SQL database, the standard way is to use a receive port with SQL adapter. SQL receive adapter is a solicit-response adapter. It periodically polls the SQL database with queries. That’s only way it can work. Sometimes it is undesirable. With new WCF-SQL adapter we can use the lightweight approach but still with the same principle, the WCF-SQL adapter periodically solicits the database with queries to check for the new records. Imagine the situation when the new records can appear in very broad time limits, some - in a second interval, others - in the several minutes interval. Our requirement is to process the new records ASAP. That means the polling interval should be near the shortest interval between the new records, a second interval. As a result the most of the poll queries would return nothing and would load the database without good reason. If the database is working under heavy payload, it is very undesirable. Do we have other choices? Sure. We can change the polling to the “eventing”. The good news is the SQL server could issue the event in case of new records with triggers. Got a new record –the trigger event is fired. No new records – no the trigger events – no excessive load to the database. The bad news is the SQL Server doesn’t have intrinsic methods to send the event data outside. For example, we would rather use the adapters that do listen for the data and do not solicit. There are several such adapters-listeners as File, Ftp, SOAP, WCF, and Msmq. But the SQL Server doesn’t have methods to create and save files, to consume the Web-services, to create and send messages in the queue, does it? Can we use the File, FTP, Msmq, WCF adapters to get data from SQL code? Yes, we can. The SQL Server 2005 and 2008 have the possibility to use .NET code inside SQL code. See the SQL Integration. How it works for the Msmq, for example: ·         New record is created, trigger is fired ·         Trigger calls the CLR stored procedure and passes the message parameters to it ·         The CLR stored procedure creates message and sends it to the outgoing queue in the SQL Server computer. ·         Msmq service transfers message to the queue in the BizTalk Server computer. ·         WCF-NetMsmq adapter receives the message from this queue. For the File adapter the idea is the same, the CLR stored procedure creates and stores the file with message, and then the File adapter picks up this file. Using WCF-NetMsmq adapter to get data from SQL I am describing the full set of the deployment and development steps for the case with the WCF-NetMsmq adapter. Development: 1.       Create the .NET code: project, class and method to create and send the message to the MSMQ queue. 2.       Create the SQL code in triggers to call the .NET code. Installation and Deployment: 1.       SQL Server: a.       Register the CLR assembly with .NET (CLR) code b.      Install the MSMQ Services 2.       BizTalk Server: a.       Install the MSMQ Services b.      Create the MSMQ queue c.       Create the WCF-NetMsmq receive port. The detailed description is below. Code .NET code … using System.Xml; using System.Xml.Linq; using System.Xml.Serialization;   //namespace MyCompany.MySolution.MyProject – doesn’t work. The assembly name is MyCompany.MySolution.MyProject // I gave up with the compound namespace. Seems the CLR Integration cannot work with it L. Maybe I’m wrong.     public class Event     {         static public XElement CreateMsg(int par1, int par2, int par3)         {             XNamespace ns = "http://schemas.microsoft.com/Sql/2008/05/TypedPolling/my_storedProc";             XElement xdoc =                 new XElement(ns + "TypedPolling",                     new XElement(ns + "TypedPollingResultSet0",                         new XElement(ns + "TypedPollingResultSet0",                             new XElement(ns + "par1", par1),                             new XElement(ns + "par2", par2),                             new XElement(ns + "par3", par3),                         )                     )                 );             return xdoc;         }     }   //////////////////////////////////////////////////////////////////////// … using System.ServiceModel; using System.ServiceModel.Channels; using System.Transactions; using System.Data; using System.Data.Sql; using System.Data.SqlTypes;   public class MsmqHelper {     [Microsoft.SqlServer.Server.SqlProcedure]     // msmqAddress as "net.msmq://localhost/private/myapp.myqueue";     public static void SendMsg(string msmqAddress, string action, int par1, int par2, int par3)     {         using (TransactionScope scope = new TransactionScope(TransactionScopeOption.Suppress))         {             NetMsmqBinding binding = new NetMsmqBinding(NetMsmqSecurityMode.None);             binding.ExactlyOnce = true;             EndpointAddress address = new EndpointAddress(msmqAddress);               using (ChannelFactory<IOutputChannel> factory = new ChannelFactory<IOutputChannel>(binding, address))             {                 IOutputChannel channel = factory.CreateChannel();                 try                 {                     XElement xe = Event.CreateMsg(par1, par2, par3);                     XmlReader xr = xe.CreateReader();                     Message msg = Message.CreateMessage(MessageVersion.Default, action, xr);                     channel.Send(msg);                     //SqlContext.Pipe.Send(…); // to test                 }                 catch (Exception ex)                 { …                 }             }             scope.Complete();         }     }   SQL code in triggers   -- sp_SendMsg was registered as a name of the MsmqHelper.SendMsg() EXEC sp_SendMsg'net.msmq://biztalk_server_name/private/myapp.myqueue', 'Create', @par1, @par2, @par3   Installation and Deployment On the SQL Server Registering the CLR assembly 1.       Prerequisites: .NET 3.5 SP1 Framework. It could be the issue for the production SQL Server! 2.       For more information, please, see the link http://nielsb.wordpress.com/sqlclrwcf/ 3.       Copy files: >copy “\Windows\Microsoft.net\Framework\v3.0\Windows Communication Foundation\Microsoft.Transactions.Bridge.dll” “\Program Files\Reference Assemblies\Microsoft\Framework\v3.0 \Microsoft.Transactions.Bridge.dll” If your machine is a 64-bit, run two commands: >copy “\Windows\Microsoft.net\Framework\v3.0\Windows Communication Foundation\Microsoft.Transactions.Bridge.dll” “\Program Files (x86)\Reference Assemblies\Microsoft\Framework\v3.0 \Microsoft.Transactions.Bridge.dll” >copy “\Windows\Microsoft.net\Framework64\v3.0\Windows Communication Foundation\Microsoft.Transactions.Bridge.dll” “\Program Files\Reference Assemblies\Microsoft\Framework\v3.0 \Microsoft.Transactions.Bridge.dll” 4.       Execute the SQL code to register the .NET assemblies: -- For x64 OS: CREATE ASSEMBLY SMdiagnostics AUTHORIZATION dbo FROM 'C:\Windows\Microsoft.NET\Framework\v3.0\Windows Communication Foundation\SMdiagnostics.dll' WITH permission_set = unsafe CREATE ASSEMBLY [System.Web] AUTHORIZATION dbo FROM 'C:\Windows\Microsoft.NET\Framework64\v2.0.50727\System.Web.dll' WITH permission_set = unsafe CREATE ASSEMBLY [System.Messaging] AUTHORIZATION dbo FROM 'C:\Windows\Microsoft.NET\Framework\v2.0.50727\System.Messaging.dll' WITH permission_set = unsafe CREATE ASSEMBLY [System.ServiceModel] AUTHORIZATION dbo FROM 'C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\v3.0\System.ServiceModel.dll' WITH permission_set = unsafe CREATE ASSEMBLY [System.Xml.Linq] AUTHORIZATION dbo FROM 'C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5\System.Xml.Linq.dll' WITH permission_set = unsafe   -- For x32 OS: --CREATE ASSEMBLY SMdiagnostics AUTHORIZATION dbo FROM 'C:\Windows\Microsoft.NET\Framework\v3.0\Windows Communication Foundation\SMdiagnostics.dll' WITH permission_set = unsafe --CREATE ASSEMBLY [System.Web] AUTHORIZATION dbo FROM 'C:\Windows\Microsoft.NET\Framework\v2.0.50727\System.Web.dll' WITH permission_set = unsafe --CREATE ASSEMBLY [System.Messaging] AUTHORIZATION dbo FROM 'C:\Windows\Microsoft.NET\Framework\v2.0.50727\System.Messaging.dll' WITH permission_set = unsafe --CREATE ASSEMBLY [System.ServiceModel] AUTHORIZATION dbo FROM 'C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.0\System.ServiceModel.dll' WITH permission_set = unsafe 5.       Register the assembly with the external stored procedure: CREATE ASSEMBLY [HelperClass] AUTHORIZATION dbo FROM ’<FilePath>MyCompany.MySolution.MyProject.dll' WITH permission_set = unsafe where the <FilePath> - the path of the file on this machine! 6. Create the external stored procedure CREATE PROCEDURE sp_SendMsg (        @msmqAddress nvarchar(100),        @Action NVARCHAR(50),        @par1 int,        @par2 int,        @par3 int ) AS EXTERNAL NAME HelperClear.MsmqHelper.SendMsg   Installing the MSMQ Services 1.       Check if the MSMQ service is NOT installed. To check:  Start / Administrative Tools / Computer Management, on the left pane open the “Services and Applications”, search to the “Message Queuing”. If you cannot see it, follow next steps. 2.       Start / Control Panel / Programs and Features 3.       Click “Turn Windows Features on or off” 4.       Click Features, click “Add Features” 5.       Scroll down the feature list; open the “Message Queuing” / “Message Queuing Services”; and check the “Message Queuing Server” option  6.       Click Next; Click Install; wait to the successful finish of the installation Creating the MSMQ queue We don’t need to create the queue on the “sender” side. On the BizTalk Server Installing the MSMQ Services The same is as for the SQL Server. Creating the MSMQ queue 1.       Start / Administrative Tools / Computer Management, on the left pane open the “Services and Applications”, open the “Message Queuing”, and open the “Private Queues”. 2.       Right-click the “Private Queues”; choose New; choose “Private Queue”. 3.       Type the Queue name as ’myapp.myqueue'; check the “Transactional” option. Creating the WCF-NetMsmq receive port I will not go through this step in all details. It is straightforward. URI for this receive location should be 'net.msmq://localhost/private/myapp.myqueue'. Notes ·         The biggest problem is usually on the step the “Registering the CLR assembly”. It is hard to predict where are the assemblies from the assembly list, what version should be used, x86 or x64. It is pity of such “rude” integration of the SQL with .NET. ·         In couple cases the new WCF-NetMsmq port was not able to work with the queue. Try to replace the WCF- NetMsmq port with the WCF-Custom port with netMsmqBinding. It was working fine for me. ·         To test how messages go through the queue you can turn on the Journal /Enabled option for the queue. I used the QueueExplorer utility to look to the messages in Journal. The Computer Management can also show the messages but it shows only small part of the message body and in the weird format. The QueueExplorer can do the better job; it shows the whole body and Xml messages are in good color format.

    Read the article

  • Run database checks but omit large tables or filegroups - New option in Ola Hallengren's Scripts

    - by Greg Low
    One of the things I've always wanted in DBCC CHECKDB is the option to omit particular tables from the check. The situation that I often see is that companies with large databases often have only one or two very large tables. They want to run a DBCC CHECKDB on the database to check everything except those couple of tables due to time constraints. I posted a request on the Connect site about time some time ago: https://connect.microsoft.com/SQLServer/feedback/details/611164/dbcc-checkdb-omit-tables-option The workaround from the product team was that you could script out the checks that you did want to carry out, rather than omitting the ones that you didn't. I didn't overly like this as a workaround as clients often had a very large number of objects that they did want to check and only one or two that they didn't. I've always been impressed with the work that our buddy Ola Hallengren has done on his maintenance scripts. He pinged me recently about my old Connect item and said he was going to implement something similar. The good news is that it's available now. Here are some examples he provided of the newly-supported syntax: EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKDB' EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKALLOC,CHECKTABLE,CHECKCATALOG', @Objects = 'AdventureWorks.Person.Address' EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKALLOC,CHECKTABLE,CHECKCATALOG', @Objects = 'ALL_OBJECTS,-AdventureWorks.Person.Address' EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKFILEGROUP,CHECKCATALOG', @FileGroups = 'AdventureWorks.PRIMARY' EXECUTE dbo.DatabaseIntegrityCheck @Databases = 'AdventureWorks', @CheckCommands = 'CHECKFILEGROUP,CHECKCATALOG', @FileGroups = 'ALL_FILEGROUPS,-AdventureWorks.PRIMARY' Note the syntax to omit an object from the list of objects and the option to omit one filegroup. Nice! Thanks Ola! You'll find details here: http://ola.hallengren.com/  

    Read the article

  • Sql Server 2008 Create Foreign Key Manually

    - by tgriffiths
    I have inherited an old database which wasn't designed very well. It is a Sql Server 2008 database which is missing quite a lot of Foreign Key relationships. Below shows two of the tables, and I am trying to manually create a FK relationship between dbo.app_status.status_id and dbo.app_additional_info.application_id I am using SQL Server Management Studio when trying to create the relationship using the query below USE myDatabase; GO ALTER TABLE dbo.app_additional_info ADD CONSTRAINT FK_AddInfo_AppStatus FOREIGN KEY (application_id) REFERENCES dbo.app_status (status_id) ON DELETE CASCADE ON UPDATE CASCADE ; GO However, I receive this error when I run the query The ALTER TABLE statement conflicted with the FOREIGN KEY constraint "FK_AddInfo_AppStatus". The conflict occurred in database "myDatabase", table "dbo.app_status", column 'status_id'. I am wondering if the query is failing because each table already contains approximately 130,000 records? Please help. Thanks.

    Read the article

  • Query Performance Degrades with High Number of Logical Reads

    - by electricsk8
    I'm using Confio Ignite8 to derive this information, and monitor waits. I have one query that runs frequently, and I notice that on some days there is an extremely high number of logical reads incurred, +300,000,000 for 91,000 executions. On a good day, the logical reads are much lower, 18,000,000 for 94,000 executions. The execution plan for the query utilizes clustered index seeks, and is below. StmtText |--Nested Loops(Inner Join, OUTER REFERENCES:([f].[ParentId])) |--Clustered Index Seek(OBJECT:([StructuredFN].[dbo].[Folder].[PK_Folders] AS [f]), SEEK:([f].[FolderId]=(8125)), WHERE:([StructuredFN].[dbo].[Folder].[DealId] as [f].[DealId]=(300)) ORDERED FORWARD) |--Clustered Index Seek(OBJECT:([StructuredFN].[dbo].[Folder].[PK_Folders] AS [p]), SEEK:([p].[FolderId]=[StructuredFN].[dbo].[Folder].[ParentId] as [f].[ParentId]), WHERE:([StructuredFN].[dbo].[Folder].[DealId] as [p].[DealId]=(300)) ORDERED FORWARD) Output from showstatistics io ... Table 'Folder'. Scan count 0, logical reads 4, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. Any ideas on how to troubleshoot where these high logical reads come from on certain days, and others nothing?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >