Search Results

Search found 666 results on 27 pages for 'disadvantages'.

Page 5/27 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Dynamic character animation - Using the physics engine or not

    - by Lex Webb
    I'm planning on building a dynamic reactant animation engine for the characters in my 2D Game. I have already built templates for a skeleton based animation system using key frames and interpolation to specify a limbs position at any given moment in time. I am using Farseer physics (an extension of Box2D) in Monogame/XNA in C# My real question lies in how i go about tying this character animation into the physics engine. I have two options: Moving limbs using physics engine - applying a interpolated force to each limb (dynamic body) in order to attempt to get it to its position as donated by the skeleton animation. Moving limbs by simply changing the position of a fixed body - Updating the new position of each limb manually, attempting to take into account physics collisions. Then stepping the physics after the animation to allow for environment interaction. Each of these methods have their distinct advantages and disadvantages. Physics based movement Advantages: Possibly more natural/realistic movement Better interaction with game objects as force applying to objects colliding with characters would be calculated for me. No need to convert to dynamic bodies when reacting to projectiles/death/fighting. Disadvantages: Possible difficulty in calculating correct amount of force to move a limb a certain distance at a constant rate. Underlying character balance system would need to be created that would need to be robust enough to prevent characters falling over at the touch of a feather. Added code complexity and processing time for the above. Static Object movement Advantages: Easy to interpolate movement of limbs between game steps Moving limbs is as simple as applying a rotation to the skeleton bone. Greater control over limbs, wont need to worry about characters falling over as all animation would be pre-defined. Disadvantages: Possible unnatural movement (Depends entirely on my animation skills!) Bad physics collision reactions with physics engine (Dynamic bodies simply slide out of the way of static objects) Need to calculate collisions with physics objects and my limbs myself and apply directional forces to them. Hard to account for slopes/stairs/non standard planes when animating walking/running animations. Need to convert objects to dynamic when reacting to projectile/fighting/death physics objects. The Question! As you can see, i have thought about this extensively, i have also had Google into physics based animation and have found mostly dissertation papers! Which is filling me with sense that it may a lot more advanced than my mathematics skills. My question is mostly subjective based on my findings above/any experience you may have: Which of the above methods should i use when creating my game? I am willing to spend the time to get a physics solution working if you think it would be possible. In the end i want to provide the most satisfying experience for the gamer, as well as a robust and dynamic system i can use to animate pretty much anything i need.

    Read the article

  • Depending on another open source library: copy/paste code or include

    - by user5794
    I'm working on a large class and started implementing new features that need graphics. I started writing the graphics functions myself, but I know that open source libraries exist that can provide me with this functionality without me having to write it myself. The problem is that I prefer the class to be self-sufficient and not dependent on any other library. If I don't write it myself, I would have to ask the user to make sure a graphics library is already installed (less user-friendly). If I write it myself, I do a lot more work than I have to. I could also copy/paste some of the relevant code into my own class, but not sure about the disadvantages of doing this (it's an open source library that matches my license, so I'm not concerned with legality, just programming-wise if there are disadvantages). So what should I do: copy paste code from the external library write the code myself so it's truly self-sufficient ask the user to download and install another library

    Read the article

  • should singleton be life-time available or should it be destroyable?

    - by Manoj R
    Should the singleton be designed so that it can be created and destroyed at any time in program or should it be created so that it is available in life-time of program. Which one is best practice? What are the advantages and disadvantages of both? EDIT :- As per the link shared by Mat, the singleton should be static. But then what are the disadvantages of making it destroyable? One advantage is it memory can be saved when it is not useful.

    Read the article

  • Adding functionality to any TextReader

    - by strager
    I have a Location class which represents a location somewhere in a stream. (The class isn't coupled to any specific stream.) The location information will be used to match tokens to location in the input in my parser, to allow for nicer error reporting to the user. I want to add location tracking to a TextReader instance. This way, while reading tokens, I can grab the location (which is updated by the TextReader as data is read) and give it to the token during the tokenization process. I am looking for a good approach on accomplishing this goal. I have come up with several designs. Manual location tracking Every time I need to read from the TextReader, I call AdvanceString on the Location object of the tokenizer with the data read. Advantages Very simple. No class bloat. No need to rewrite the TextReader methods. Disadvantages Couples location tracking logic to tokenization process. Easy to forget to track something (though unit testing helps with this). Bloats existing code. Plain TextReader wrapper Create a LocatedTextReaderWrapper class which surrounds each method call, tracking a Location property. Example: public class LocatedTextReaderWrapper : TextReader { private TextReader source; public Location Location { get; set; } public LocatedTextReaderWrapper(TextReader source) : this(source, new Location()) { } public LocatedTextReaderWrapper(TextReader source, Location location) { this.Location = location; this.source = source; } public override int Read(char[] buffer, int index, int count) { int ret = this.source.Read(buffer, index, count); if(ret >= 0) { this.location.AdvanceString(string.Concat(buffer.Skip(index).Take(count))); } return ret; } // etc. } Advantages Tokenization doesn't know about Location tracking. Disadvantages User needs to create and dispose a LocatedTextReaderWrapper instance, in addition to their TextReader instance. Doesn't allow different types of tracking or different location trackers to be added without layers of wrappers. Event-based TextReader wrapper Like LocatedTextReaderWrapper, but decouples it from the Location object raising an event whenever data is read. Advantages Can be reused for other types of tracking. Tokenization doesn't know about Location tracking or other tracking. Can have multiple, independent Location objects (or other methods of tracking) tracking at once. Disadvantages Requires boilerplate code to enable location tracking. User needs to create and dispose the wrapper instance, in addition to their TextReader instance. Aspect-orientated approach Use AOP to perform like the event-based wrapper approach. Advantages Can be reused for other types of tracking. Tokenization doesn't know about Location tracking or other tracking. No need to rewrite the TextReader methods. Disadvantages Requires external dependencies, which I want to avoid. I am looking for the best approach in my situation. I would like to: Not bloat the tokenizer methods with location tracking. Not require heavy initialization in user code. Not have any/much boilerplate/duplicated code. (Perhaps) not couple the TextReader with the Location class. Any insight into this problem and possible solutions or adjustments are welcome. Thanks! (For those who want a specific question: What is the best way to wrap the functionality of a TextReader?) I have implemented the "Plain TextReader wrapper" and "Event-based TextReader wrapper" approaches and am displeased with both, for reasons mentioned in their disadvantages.

    Read the article

  • Multiple or single index in Lucene?

    - by Bruno Reis
    I have to index different kinds of data (text documents, forum messages, user profile data, etc) that should be searched together (ie, a single search would return results of the different kinds of data). What are the advantages and disadvantages of having multiple indexes, one for each type of data? And the advantages and disadvantages of having a single index for all kinds of data? Thank you.

    Read the article

  • Jumbo Packet in 1 Gigabit Ethernet- help

    - by user322374
    Hi, I would like to know about Jumbo Packets using UDP in 1 Giga etherent. What are the delays in such system? i think of using jumbo packets in my system because i need to transfer a lot of data between 2 computers. i tried to find information about the delays and what are the disadvantages using jumbo packets in 1 gigabit- i didn't find a lot. (I find many advantages but i would like to know also the disadvantages) Thank you very much for the help,

    Read the article

  • Why use Hibernate/nHibernate?

    - by ProgrammingPope
    I have found myself doing a lot of work to get nHibernate setup and am left wondering: Why use a framework like Hibernate/NHibernate? I am sure that quite a few people love the framework but I am unclear on the advantages and disadvantages. What are the advantages and disadvantages of lazy loading, and are there other features to Hibernate? Is there anything that makes a framework like this easier to use (best practices, other frameworks, etc)?

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

  • Would an immutable keyword in Java be a good idea?

    - by berry120
    Generally speaking, the more I use immutable objects in Java the more I'm thinking they're a great idea. They've got lots of advantages from automatically being thread-safe to not needing to worry about cloning or copy constructors. This has got me thinking, would an "immutable" keyword go amiss? Obviously there's the disadvantages with adding another reserved word to the language, and I doubt it will actually happen primarily for the above reason - but ignoring that I can't really see many disadvantages. At present great care has to be taken to make sure objects are immutable, and even then a dodgy javadoc comment claiming a component object is immutable when it's in fact not can wreck the whole thing. There's also the argument that even basic objects like string aren't truly immutable because they're easily vunerable to reflection attacks. If we had an immutable keyword the compiler could surely recursively check and give an iron clad guarantee that all instances of a class were immutable, something that can't presently be done. Especially with concurrency becoming more and more used, I personally think it'd be good to add a keyword to this effect. But are there any disadvantages or implementation details I'm missing that makes this a bad idea?

    Read the article

  • DNSCurve vs DNSSEC

    - by Bill Gray
    Can someone informed, please give a lengthy reply about the differences and advantages/disadvantages of both approaches? I am not a DNS expert, not a programmer. I have a decent basic understanding of DNS, and enough knowledge to understand how things like the kaminsky bug work. From what I understand, DNSCurve has stronger encryption, is far simpler to setup, and an altogether better solution. DNSSEC is needlessly complicated and uses breakable encryption, however it provides end to end security, something DNSCurve does not. However, many of the articles I have read have seemed to indicate that end to end security is of little use or makes no difference. So which is true? Which is the better solution, or what are the disadvantages/advantages of each? edit: I would appreciate if someone could explain what is gained by encrypting the message contents, when the goal is authentication rather than confidentiality. The proof that keys are 1024bit RSA keys is here.

    Read the article

  • For a Javascript library, what is the best or standard way to support extensibility

    - by Michael Best
    Specifically, I want to support "plugins" that modify the behavior of parts of the library. I couldn't find much information on the web about this subject. But here are my ideas for how a library could be extensible. The library exports an object with both public and "protected" functions. A plugin can replace any of those functions, thus modifying the library's behavior. Advantages of this method are that it's simple and that the plugin's functions can have full access to the library's "protected" functions. Disadvantages are that the library may be harder to maintain with a larger set of exposed functions and it could be hard to debug if multiple plugins are involved (how to know which plugin modified which function?). The library provides an "add plugin" function that accepts an object with a specific interface. Internally, the library will use the plugin instead of it's own code if appropriate. With this method, the internals of the library can be rearranged more freely as long as it still supports the same plugin interface. This could also support having different plugin interfaces to modify different parts of the library. A disadvantage of this method is that the plugins may have to re-implement code that is already part of the library since the library's internal functions are not exported. The library provides a "set implementation" function that accepts an object inherited from a specific base object. The library's public API calls functions in the implementation object for any functionality that can be modified and the base implementation object includes the core functionality, with both external (to the API) and internal functions. A plugin creates a new implementation object, which inherits from the base object and replaces any functions it wants to modify. This combines advantages and disadvantages of both the other methods.

    Read the article

  • What happened to Perl?

    - by llasa
    I will try to keep this as objective as possible. I've been dealing with PHP since 3 years know, I have always known of Perl but never really "dived" into it. So I took a look at some Perl code examples and I thought: Wow, It's like PHP just failed at cloning it. My questions are: What is bad about Perl? What are the disadvantages that made it so extremely unpopular so that it is actually dying right know? Why could PHP take over? What does PHP have (or what did it have in the times of PHP4) that made it rise in popularity compared to Perl? I'm rather young and the questions above are a bit subjective and I think you can only really answer them when you have experienced the rise of PHP along with the fall of Perl. Unless my question before I hope that this one here can be more or less completely answered. There have to be definite disadvantages Perl has compared to PHP that made it fall.

    Read the article

  • How would MVVM be for games?

    - by Benny Jobigan
    Particularly for 2d games, and particularly silverlight/wpf games. If you think about it, you can divide a game object into its view (the graphic on the screen) and a view-model/model (the state, ai, and other data for the object). In silverlight, it seems common to make each object a user control, putting the model and view into a single object. I suppose the advantage of this is simplicity. But, perhaps it's less clean or has some disadvantages in terms of the underlying "game engine". What are your thoughts on this matter? What are some advantages and disadvantages of using the MVVM pattern for game development? How about performance? All thoughts are welcome.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >