Search Results

Search found 50594 results on 2024 pages for 'dynamic class loaders'.

Page 5/2024 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • abstract class extends abstract class in php?

    - by user151841
    I am working on a simple abstract database class. In my usage of this class, I'll want to have some instance be a singleton. I was thinking of having a abstract class that is not a singleton, and then extend it into another abstract class that is a singleton. Is this possible? Recommended?

    Read the article

  • Deriving a class from an abstract class (C++)

    - by cemregoksu
    I have an abstract class with a pure virtual function f() and i want to create a class inherited from that class, and also override function f(). I seperated the header file and the cpp file. I declared the function f(int) in the header file and the definition is in the cpp file. However, the compiler says the derived class is still abstract. How can i fix it?

    Read the article

  • Convert Dynamic to Type and convert Type to Dynamic

    - by Jon Canning
    public static class DynamicExtensions     {         public static T FromDynamic<T>(this IDictionary<string, object> dictionary)         {             var bindings = new List<MemberBinding>();             foreach (var sourceProperty in typeof(T).GetProperties().Where(x => x.CanWrite))             {                 var key = dictionary.Keys.SingleOrDefault(x => x.Equals(sourceProperty.Name, StringComparison.OrdinalIgnoreCase));                 if (string.IsNullOrEmpty(key)) continue;                 var propertyValue = dictionary[key];                 bindings.Add(Expression.Bind(sourceProperty, Expression.Constant(propertyValue)));             }             Expression memberInit = Expression.MemberInit(Expression.New(typeof(T)), bindings);             return Expression.Lambda<Func<T>>(memberInit).Compile().Invoke();         }         public static dynamic ToDynamic<T>(this T obj)         {             IDictionary<string, object> expando = new ExpandoObject();             foreach (var propertyInfo in typeof(T).GetProperties())             {                 var propertyExpression = Expression.Property(Expression.Constant(obj), propertyInfo);                 var currentValue = Expression.Lambda<Func<string>>(propertyExpression).Compile().Invoke();                 expando.Add(propertyInfo.Name.ToLower(), currentValue);             }             return expando as ExpandoObject;         }     }

    Read the article

  • ORACLE RIGHTNOW DYNAMIC AGENT DESKTOP CLOUD SERVICE - Putting the Dynamite into Dynamic Agent Desktop

    - by Andreea Vaduva
    Untitled Document There’s a mountain of evidence to prove that a great contact centre experience results in happy, profitable and loyal customers. The very best Contact Centres are those with high first contact resolution, customer satisfaction and agent productivity. But how many companies really believe they are the best? And how many believe that they can be? We know that with the right tools, companies can aspire to greatness – and achieve it. Core to this is ensuring their agents have the best tools that give them the right information at the right time, so they can focus on the customer and provide a personalised, professional and efficient service. Today there are multiple channels through which customers can communicate with you; phone, web, chat, social to name a few but regardless of how they communicate, customers expect a seamless, quality experience. Most contact centre agents need to switch between lots of different systems to locate the right information. This hampers their productivity, frustrates both the agent and the customer and increases call handling times. With this in mind, Oracle RightNow has designed and refined a suite of add-ins to optimize the Agent Desktop. Each is designed to simplify and adapt the agent experience for any given situation and unify the customer experience across your media channels. Let’s take a brief look at some of the most useful tools available and see how they make a difference. Contextual Workspaces: The screen where agents do their job. Agents don’t want to be slowed down by busy screens, scrolling through endless tabs or links to find what they’re looking for. They want quick, accurate and easy. Contextual Workspaces are fully configurable and through workspace rules apply if, then, else logic to display only the information the agent needs for the issue at hand . Assigned at the Profile level, different levels of agent, from a novice to the most experienced, get a screen that is relevant to their role and responsibilities and ensures their job is done quickly and efficiently the first time round. Agent Scripting: Sometimes, agents need to deliver difficult or sensitive messages while maximising the opportunity to cross-sell and up-sell. After all, contact centres are now increasingly viewed as revenue generators. Containing sophisticated branching logic, scripting helps agents to capture the right level of information and guides the agent step by step, ensuring no mistakes, inconsistencies or missed opportunities. Guided Assistance: This is typically used to solve common troubleshooting issues, displaying a series of question and answer sets in a decision-tree structure. This means agents avoid having to bookmark favourites or rely on written notes. Agents find particular value in these guides - to quickly craft chat and email responses. What’s more, by publishing guides in answers on support pages customers, can resolve issues themselves, without needing to contact your agents. And b ecause it can also accelerate agent ramp-up time, it ensures that even novice agents can solve customer problems like an expert. Desktop Workflow: Take a step back and look at the full customer interaction of your agents. It probably spans multiple systems and multiple tasks. With Desktop Workflows you control the design workflows that span the full customer interaction from start to finish. As sequences of decisions and actions, workflows are unique in that they can create or modify different records and provide automation behind the scenes. This means your agents can save time and provide better quality of service by having the tools they need and the relevant information as required. And doing this boosts satisfaction among your customers, your agents and you – so win, win, win! I have highlighted above some of the tools which can be used to optimise the desktop; however, this is by no means an exhaustive list. In approaching your design, it’s important to understand why and how your customers contact you in the first place. Once you have this list of “whys” and “hows”, you can design effective policies and procedures to handle each category of problem, and then implement the right agent desktop user interface to support them. This will avoid duplication and wasted effort. Five Top Tips to take away: Start by working out “why” and “how” customers are contacting you. Implement a clean and relevant agent desktop to support your agents. If your workspaces are getting complicated consider using Desktop Workflow to streamline the interaction. Enhance your Knowledgebase with Guides. Agents can access them proactively and can be published on your web pages for customers to help themselves. Script any complex, critical or sensitive interactions to ensure consistency and accuracy. Desktop optimization is an ongoing process so continue to monitor and incorporate feedback from your agents and your customers to keep your Contact Centre successful.   Want to learn more? Having attending the 3-day Oracle RightNow Customer Service Administration class your next step is to attend the Oracle RightNow Customer Portal Design and 2-day Dynamic Agent Desktop Administration class. Here you’ll learn not only how to leverage the Agent Desktop tools but also how to optimise your self-service pages to enhance your customers’ web experience.   Useful resources: Review the Best Practice Guide Review the tune-up guide   About the Author: Angela Chandler joined Oracle University as a Senior Instructor through the RightNow Customer Experience Acquisition. Her other areas of expertise include Business Intelligence and Knowledge Management.  She currently delivers the following Oracle RightNow courses in the classroom and as a Live Virtual Class: RightNow Customer Service Administration (3 days) RightNow Customer Portal Design and Dynamic Agent Desktop Administration (2 days) RightNow Analytics (2 days) Rightnow Chat Cloud Service Administration (2 days)

    Read the article

  • C# vector class - Interpolation design decision

    - by Benjamin
    Currently I'm working on a vector class in C# and now I'm coming to the point, where I've to figure out, how i want to implement the functions for interpolation between two vectors. At first I came up with implementing the functions directly into the vector class... public class Vector3D { public static Vector3D LinearInterpolate(Vector3D vector1, Vector3D vector2, double factor) { ... } public Vector3D LinearInterpolate(Vector3D other, double factor { ... } } (I always offer both: a static method with two vectors as parameters and one non-static, with only one vector as parameter) ...but then I got the idea to use extension methods (defined in a seperate class called "Interpolation" for example), since interpolation isn't really a thing only available for vectors. So this could be another solution: public class Vector3D { ... } public static class Interpolation { public static Vector3D LinearInterpolate(this Vector3D vector, Vector3D other, double factor) { ... } } So here an example how you'd use the different possibilities: { var vec1 = new Vector3D(5, 3, 1); var vec2 = new Vector3D(4, 2, 0); Vector3D vec3; vec3 = vec1.LinearInterpolate(vec2, 0.5); //1 vec3 = Vector3D.LinearInterpolate(vec1, vec2, 0.5); //2 //or with extension-methods vec3 = vec1.LinearInterpolate(vec2, 0.5); //3 (same as 1) vec3 = Interpolation.LinearInterpolation(vec1, vec2, 0.5); //4 } So I really don't know which design is better. Also I don't know if there's an ultimate rule for things like this or if it's just about what someone personally prefers. But I really would like to hear your opinions, what's better (and if possible why ).

    Read the article

  • Cannot create class diagram for simple dll class in Visual Studio 2010

    - by xenn_33
    Hi, It seems that there is a really annoying issue in Class Diagram designer in VS (my version is 2010 Ultimate, but the issue is also observed in VS 2008). When I'm trying to create a class diagram for particular simple class from DLL I'm getting the following error: "Some of the selected type(s) cannot be added to the class diagram. Check the code for errors and ensure that all required assemblies ... blah-blah-blah" My code doesn't contain any error. I have multiple class and interface definitions in one separate .cs file, but these classes are really simple - even no calls to unmanaged/interop. Any solution for this?

    Read the article

  • adhoc struct/class in C#?

    - by acidzombie24
    Currently i am using reflection with sql. I find if i want to make a specialize query it is easiest to get the results by creating a new class inheriting from another and adding the 2 members/columns for my specialized query. Then due to reflections in the lib in my c# code i can write foreach(var v in list) { v.AnyMember and v.MyExtraMember) Now instead of having the class scattered around or modifying my main DB.cs file can i define a class inside a function? I know i can create an anonymous object by writing new {name=val, name2=...}; but i need a to pass this class in a generic function func(query, args);

    Read the article

  • Dynamic Type to do away with Reflection

    - by Rick Strahl
    The dynamic type in C# 4.0 is a welcome addition to the language. One thing I’ve been doing a lot with it is to remove explicit Reflection code that’s often necessary when you ‘dynamically’ need to walk and object hierarchy. In the past I’ve had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Here’s a really contrived example, but assume for a second, you’d want to dynamically retrieve a Page.Request.Url.AbsoluteUrl based on a Page instance in an ASP.NET Web Page request. The strongly typed version looks like this: string path = Page.Request.Url.AbsolutePath; Now assume for a second that Page wasn’t available as a strongly typed instance and all you had was an object reference to start with and you couldn’t cast it (right I said this was contrived :-)) If you’re using raw Reflection code to retrieve this you’d end up writing 3 sets of Reflection calls using GetValue(). Here’s some internal code I use to retrieve Property values as part of ReflectionUtils: /// <summary> /// Retrieve a property value from an object dynamically. This is a simple version /// that uses Reflection calls directly. It doesn't support indexers. /// </summary> /// <param name="instance">Object to make the call on</param> /// <param name="property">Property to retrieve</param> /// <returns>Object - cast to proper type</returns> public static object GetProperty(object instance, string property) { return instance.GetType().GetProperty(property, ReflectionUtils.MemberAccess).GetValue(instance, null); } If you want more control over properties and support both fields and properties as well as array indexers a little more work is required: /// <summary> /// Parses Properties and Fields including Array and Collection references. /// Used internally for the 'Ex' Reflection methods. /// </summary> /// <param name="Parent"></param> /// <param name="Property"></param> /// <returns></returns> private static object GetPropertyInternal(object Parent, string Property) { if (Property == "this" || Property == "me") return Parent; object result = null; string pureProperty = Property; string indexes = null; bool isArrayOrCollection = false; // Deal with Array Property if (Property.IndexOf("[") > -1) { pureProperty = Property.Substring(0, Property.IndexOf("[")); indexes = Property.Substring(Property.IndexOf("[")); isArrayOrCollection = true; } // Get the member MemberInfo member = Parent.GetType().GetMember(pureProperty, ReflectionUtils.MemberAccess)[0]; if (member.MemberType == MemberTypes.Property) result = ((PropertyInfo)member).GetValue(Parent, null); else result = ((FieldInfo)member).GetValue(Parent); if (isArrayOrCollection) { indexes = indexes.Replace("[", string.Empty).Replace("]", string.Empty); if (result is Array) { int Index = -1; int.TryParse(indexes, out Index); result = CallMethod(result, "GetValue", Index); } else if (result is ICollection) { if (indexes.StartsWith("\"")) { // String Index indexes = indexes.Trim('\"'); result = CallMethod(result, "get_Item", indexes); } else { // assume numeric index int index = -1; int.TryParse(indexes, out index); result = CallMethod(result, "get_Item", index); } } } return result; } /// <summary> /// Returns a property or field value using a base object and sub members including . syntax. /// For example, you can access: oCustomer.oData.Company with (this,"oCustomer.oData.Company") /// This method also supports indexers in the Property value such as: /// Customer.DataSet.Tables["Customers"].Rows[0] /// </summary> /// <param name="Parent">Parent object to 'start' parsing from. Typically this will be the Page.</param> /// <param name="Property">The property to retrieve. Example: 'Customer.Entity.Company'</param> /// <returns></returns> public static object GetPropertyEx(object Parent, string Property) { Type type = Parent.GetType(); int at = Property.IndexOf("."); if (at < 0) { // Complex parse of the property return GetPropertyInternal(Parent, Property); } // Walk the . syntax - split into current object (Main) and further parsed objects (Subs) string main = Property.Substring(0, at); string subs = Property.Substring(at + 1); // Retrieve the next . section of the property object sub = GetPropertyInternal(Parent, main); // Now go parse the left over sections return GetPropertyEx(sub, subs); } As you can see there’s a fair bit of code involved into retrieving a property or field value reliably especially if you want to support array indexer syntax. This method is then used by a variety of routines to retrieve individual properties including one called GetPropertyEx() which can walk the dot syntax hierarchy easily. Anyway with ReflectionUtils I can  retrieve Page.Request.Url.AbsolutePath using code like this: string url = ReflectionUtils.GetPropertyEx(Page, "Request.Url.AbsolutePath") as string; This works fine, but is bulky to write and of course requires that I use my custom routines. It’s also quite slow as the code in GetPropertyEx does all sorts of string parsing to figure out which members to walk in the hierarchy. Enter dynamic – way easier! .NET 4.0’s dynamic type makes the above really easy. The following code is all that it takes: object objPage = Page; // force to object for contrivance :) dynamic page = objPage; // convert to dynamic from untyped object string scriptUrl = page.Request.Url.AbsolutePath; The dynamic type assignment in the first two lines turns the strongly typed Page object into a dynamic. The first assignment is just part of the contrived example to force the strongly typed Page reference into an untyped value to demonstrate the dynamic member access. The next line then just creates the dynamic type from the Page reference which allows you to access any public properties and methods easily. It also lets you access any child properties as dynamic types so when you look at Intellisense you’ll see something like this when typing Request.: In other words any dynamic value access on an object returns another dynamic object which is what allows the walking of the hierarchy chain. Note also that the result value doesn’t have to be explicitly cast as string in the code above – the compiler is perfectly happy without the cast in this case inferring the target type based on the type being assigned to. The dynamic conversion automatically handles the cast when making the final assignment which is nice making for natural syntnax that looks *exactly* like the fully typed syntax, but is completely dynamic. Note that you can also use indexers in the same natural syntax so the following also works on the dynamic page instance: string scriptUrl = page.Request.ServerVariables["SCRIPT_NAME"]; The dynamic type is going to make a lot of Reflection code go away as it’s simply so much nicer to be able to use natural syntax to write out code that previously required nasty Reflection syntax. Another interesting thing about the dynamic type is that it actually works considerably faster than Reflection. Check out the following methods that check performance: void Reflection() { Stopwatch stop = new Stopwatch(); stop.Start(); for (int i = 0; i < reps; i++) { // string url = ReflectionUtils.GetProperty(Page,"Title") as string;// "Request.Url.AbsolutePath") as string; string url = Page.GetType().GetProperty("Title", ReflectionUtils.MemberAccess).GetValue(Page, null) as string; } stop.Stop(); Response.Write("Reflection: " + stop.ElapsedMilliseconds.ToString()); } void Dynamic() { Stopwatch stop = new Stopwatch(); stop.Start(); dynamic page = Page; for (int i = 0; i < reps; i++) { string url = page.Title; //Request.Url.AbsolutePath; } stop.Stop(); Response.Write("Dynamic: " + stop.ElapsedMilliseconds.ToString()); } The dynamic code runs in 4-5 milliseconds while the Reflection code runs around 200+ milliseconds! There’s a bit of overhead in the first dynamic object call but subsequent calls are blazing fast and performance is actually much better than manual Reflection. Dynamic is definitely a huge win-win situation when you need dynamic access to objects at runtime.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • Dynamic Data Associate Related Table Value?

    - by davemackey
    I have create a LINQ-to-SQL project in Visual Studio 2010 using Dynamic Data. In this project I have two tables. One is called phones_extension and the other phones_ten. The list of columns in phones_extension looks like this: id, extension, prefix, did_flag, len, ten_id, restriction_class_id, sfc_id, name_display, building_id, floor, room, phone_id, department_id In phones_ten it looks like this: id, name, pbxid Now, I'd like to be able to somehow make it so that there is an association (or inheritance?) that essentially results in me being able to make a query like phones_extension.ten and it gives me the result of phones_ten.name. Right now I have to get phones_extension.ten_id and then match that against phones_ten.id - I'm trying to get the DBML to handle this translation automatically. Is this possible?

    Read the article

  • Reference inherited class's <T>ype in a derived class

    - by DRapp
    I don't know if its possible or not, but here's what I need. I'm toying around with something and want to know if its possible since you can't create your own data type based on a sealed type such as int, Int32, Int64, etc. I want to create a top-level class that is defined of a given type with some common stuff. Then, derive this into two subclasses, but in this case, each class is based on either and int or Int64 type. From THAT instance, create an instance of either one and know its yped basis for parameter referenc / return settings. So when I need to create an instance of the "ThisClass", I don't have to know its type basis of either int or Int64, yet IT will know the type and be able to allow methods/functions to be called with the typed... This way, If I want to change my ThisClass definition from SubLevel1 to SubLevel2, I don't have to dance around all different data type definitions. Hope this makes sense.. public class TopLevel<T> { ... } pubic class SubLevel1 : TopLevel<int> { ... } public class SubLevel2 : TopLevel<Int64> { ... } public class ThisClass : SubLevel1 { ... public <based on the Int data type from SubLevel1> SomeFunc() { return <the Int value computed>; } }

    Read the article

  • jquery: set variable based on one class from an element that has more than one class

    - by John
    Hi I'm trying to make a table who's columns and rows highlight on hover (I realise there are jquery plugins out there that will do this, but I'm trying to learn, so thought I'd have a stab at doing it for myself.) Here's what I've got so far: $('th:not(.features), td:not(.features)').hover(highlight); function highlight(){ $('th.highlightCol, td.highlightCol').removeClass('highlightCol'); var col = $(this).attr('class'); $('.' + col).addClass('highlightCol'); }; $('tr').hover(highlightRowOn, highlightRowOff); function highlightRowOn(){ $(this).children('td:not(.highlightCol)').addClass('highlightRow'); }; function highlightRowOff(){ $(this).children('td:not(.highlightCol)').removeClass('highlightRow'); }; This works fine apart from one problem: Each 'td' has a class specific to it's column (package1, package2, package3, package4). It is this that gets passed to the variable (col) to add the class 'highlightCol' to a column when one of its 'td's are hovered on. However, If you move the cursor to a new column along a highlighted row, the 'td' you land on has two classes (highlightedRow and package* ). These both get passed to the variable and as a result the new column does not receive the correct class to highlight. Is there a way for me to target just the 'package* ' class and pass that to the variable while ignoring the 'highlightedRow' class? I hope that's not too jumbled for someone to make sense of and many thanks for any help offered.

    Read the article

  • Accessing a Class Member from a First-Class Function

    - by dbyrne
    I have a case class which takes a list of functions: case class A(q:Double, r:Double, s:Double, l:List[(Double)=>Double]) I have over 20 functions defined. Some of these functions have their own parameters, and some of them also use the q, r, and s values from the case class. Two examples are: def f1(w:Double) = (d:Double) => math.sin(d) * w def f2(w:Double, q:Double) = (d:Double) => d * q * w The problem is that I then need to reference q, r, and s twice when instantiating the case class: A(0.5, 1.0, 2.0, List(f1(3.0), f2(4.0, 0.5))) //0.5 is referenced twice I would like to be able to instantiate the class like this: A(0.5, 1.0, 2.0, List(f1(3.0), f2(4.0))) //f2 already knows about q! What is the best technique to accomplish this? Can I define my functions in a trait that the case class extends? EDIT: The real world application has 7 members, not 3. Only a small number of the functions need access to the members. Most of the functions don't care about them.

    Read the article

  • DBIx::Class base result class

    - by Rob
    Hi there, I am trying to create a model for Catalyst by using DBIx::Class::Schema::Loader. I want the result classes to have a base class I can add methods to. So MyTable.pm inherits from Base.pm which inherits from DBIx::Class::core (default). Somehow I cannot figure out how to do this. my create script is below, can anyone tell me what I am doing wrong? The script creates my model ok, but all resultset classes just directly inherit from DBIx::Class::core without my Base class in between. #!/usr/bin/perl use DBIx::Class::Schema::Loader qw/ make_schema_at /; #specifically for the entities many-2-many relation $ENV{DBIC_OVERWRITE_HELPER_METHODS_OK} = 1; make_schema_at( 'MyApp::Schema', { dump_directory => '/tmp', debug => 1, overwrite_modifications => 1, components => ['EncodedColumn'], #encoded password column use_namespaces => 1, default_resultset_class => 'Base' }, [ 'DBI:mysql:database=mydb;host=localhost;port=3306','rob', '******' ], );

    Read the article

  • Instantiating a class within a class

    - by Ink-Jet
    Hello. I'm trying to instantiate a class within a class, so that the outer class contains the inner class. This is my code: #include <iostream> #include <string> class Inner { private: std::string message; public: Inner(std::string m); void print() const; }; Inner::Inner(std::string m) { message = m; } void Inner::print() const { std::cout << message << std::endl; std::cout << message << std::endl; } class Outer { private: std::string message; Inner in; public: Outer(std::string m); void print() const; }; Outer::Outer(std::string m) { message = m; } void Outer::print() const { std::cout << message << std::endl; } int main() { Outer out("Hello world."); out.print(); return 0; } "Inner in", is my attempt at containing the inner within the outer, however, when I compile, i get an error that there is no matching function for call to Inner::Inner(). What have I done wrong? Thanks.

    Read the article

  • ASP.NET Dynamic Data Deployment Error

    - by rajbk
    You have an ASP.NET 3.5 dynamic data website that works great on your local box. When you deploy it to your production machine and turn on debug, you get the YSD Server Error in '/MyPath/MyApp' Application. Parser Error Description: An error occurred during the parsing of a resource required to service this request. Please review the following specific parse error details and modify your source file appropriately. Parser Error Message: Unknown server tag 'asp:DynamicDataManager'. Source Error: Line 5:  Line 6:  <asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server"> Line 7:      <asp:DynamicDataManager ID="DynamicDataManager1" runat="server" AutoLoadForeignKeys="true" /> Line 8:  Line 9:      <h2><%= table.DisplayName%></h2> Probable Causes The server does not have .NET 3.5 SP1, which includes ASP.NET Dynamic Data, installed. Download it here. The third tagPrefix shown below is missing from web.config <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.DynamicData" assembly="System.Web.DynamicData, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls></pages>     Hope that helps!

    Read the article

  • Learning to implement dynamic language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamic language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language?

    Read the article

  • Private member vector of vector dynamic memory allocation

    - by Geoffroy
    Hello, I'm new to C++ (I learned programming with Fortran), and I would like to allocate dynamically the memory for a multidimensional table. This table is a private member variable : class theclass{ public: void setdim(void); private: std::vector < std::vector <int> > thetable; } I would like to set the dimension of thetable with the function setdim(). void theclass::setdim(void){ this->thetable.assign(1000,std::vector <int> (2000)); } I have no problem compiling this program, but as I execute it, I've got a segmentation fault. The strange thing for me is that this piece (see under) of code does exactly what I want, except that it doesn't uses the private member variable of my class : std::vector < std::vector < int > > thetable; thetable.assign(1000,std::vector <int> (2000)); By the way, I have no trouble if thetable is a 1D vector. In theclass : std::vector < int > thetable; and if in setdim : this->thetable.assign(1000,2); So my question is : why is there such a difference with "assign" between thetable and this-thetable for a 2D vector? And how should I do to do what I want? Thank-you for your help, Best regards, -- Geoffroy

    Read the article

  • moving dynamic disk from Windows to another Windows computer when original Windows is not available

    - by Andrei
    How do I mount dynamic disk on new system without access to the old OS ? I need to move Dynamic data disk from old Windows XP (Pro, SP3) system, where disk crashed, to new Windows system without having access to the old OS. On new system, Dynamic disk shows as "Dynamic - Foreign". Microfoft has instructions for moving Dynamic Disk [1]. But Microsoft assumes having access to the old system. But I do not have acess to the old system. I am struck with "Dynamic - Foreign" static of the disk on new system. Thanks WinXP Pro SP3 [1] http://technet.microsoft.com/en-us/library/cc779854(WS.10).aspx Move Disk to another computer.

    Read the article

  • Java: reusable encapsulation with interface, abstract class or inner classes?

    - by HH
    I try to encapsulate. Exeption from interface, static inner class working, non-static inner class not working, cannot understand terminology: nested classes, inner classes, nested interfaces, interface-abstract-class -- sounds too Repetitive! Exception 'illegal type' from interface apparently because values being constants(?!) static interface userInfo { File startingFile=new File("."); String startingPath="dummy"; try{ startingPath=startingFile.getCanonicalPath(); }catch(Exception e){e.printStackTrace();} } Working code but no succes with non-static inner class import java.io.*; import java.util.*; public class listTest{ public interface hello{String word="hello word from Interface!";} public static class hej{ hej(){} private String hejo="hello hallo from Static class with image"; public void printHallooo(){System.out.println(hejo);} } public class nonStatic{ nonStatic(){} //HOW TO USE IT? public void printNonStatic(){System.out.println("Inside static class with an image!");} } public static void main(String[] args){ //INTERFACE TEST System.out.println(hello.word); //INNNER CLASS STATIC TEST hej h=new hej(); h.printHallooo(); //INNER CLASS NON-STATIC TEST nonStatic ns=new nonStatic(); ns.printNonStatic(); //IS there a way to it without STATIC? } } Output The above code works but how non-staticly? Output: hello word from Interface! hello hallo from Static class with image! StaticPrint without an image of the class! Related Nesting classes inner classes? interfacses

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • C# "Rename" Property in Derived Class

    - by Eric
    When you read this you'll be awfully tempted to give advice like "this is a bad idea for the following reason..." Bear with me. I know there are other ways to approach this. This question should be considered trivia. Lets say you have a class "Transaction" that has properties common to all transactions such as Invoice, Purchase Order, and Sales Receipt. Let's take the simple example of Transaction "Amount", which is the most important monetary amount for a given transaction. public class Transaction { public double Amount { get; set; } public TxnTypeEnum TransactionType { get; set; } } This Amount may have a more specific name in a derived type... at least in the real world. For example, the following values are all actually the same thing: Transaction - Amount Invoice - Subtotal PurchaseOrder - Total Sales Receipt - Amount So now I want a derived class "Invoice" that has a Subtotal rather than the generically-named Amount. Ideally both of the following would be true: In an instance of Transaction, the Amount property would be visible. In an instance of Invoice, the Amount property would be hidden, but the Subtotal property would refer to it internally. Invoice looks like this: public class Invoice : Transaction { new private double? Amount { get { return base.Amount; } set { base.Amount = value; } } // This property should hide the generic property "Amount" on Transaction public double? SubTotal { get { return Amount; } set { Amount = value; } } public double RemainingBalance { get; set; } } But of course Transaction.Amount is still visible on any instance of Invoice. Thanks for taking a look!

    Read the article

  • How to remove CRUD operations from Entity Class

    - by GlutVonSmark
    Trying to get my head around removing dataStore access from my entity classes. Lets say I have an AccountsGroup entity class. I put the all DBAccess into AccountsGroupRepository class. Now should I have a DeleteFromDB method in the AccountsGroup class, that will call the repository? Public Sub DeleteFromDB dim repository as new AccountsGroupRepository(me) repository.DelteFromDB End Sub Or should I just always use repositry whenever I need to delete an entity, and not have the CRUD methods in the entity class? What happens when there is some business logic validation that needs to be done before the delete can proceed. For example if AccountsGroup still has some Accounts in it the delete method should throw an exception. Where do I put that?

    Read the article

  • C# Proposal: Compile Time Static Checking Of Dynamic Objects

    - by Paulo Morgado
    C# 4.0 introduces a new type: dynamic. dynamic is a static type that bypasses static type checking. This new type comes in very handy to work with: The new languages from the dynamic language runtime. HTML Document Object Model (DOM). COM objects. Duck typing … Because static type checking is bypassed, this: dynamic dynamicValue = GetValue(); dynamicValue.Method(); is equivalent to this: object objectValue = GetValue(); objectValue .GetType() .InvokeMember( "Method", BindingFlags.InvokeMethod, null, objectValue, null); Apart from caching the call site behind the scenes and some dynamic resolution, dynamic only looks better. Any typing error will only be caught at run time. In fact, if I’m writing the code, I know the contract of what I’m calling. Wouldn’t it be nice to have the compiler do some static type checking on the interactions with these dynamic objects? Imagine that the dynamic object that I’m retrieving from the GetValue method, besides the parameterless method Method also has a string read-only Property property. This means that, from the point of view of the code I’m writing, the contract that the dynamic object returned by GetValue implements is: string Property { get; } void Method(); Since it’s a well defined contract, I could write an interface to represent it: interface IValue { string Property { get; } void Method(); } If dynamic allowed to specify the contract in the form of dynamic(contract), I could write this: dynamic(IValue) dynamicValue = GetValue(); dynamicValue.Method(); This doesn’t mean that the value returned by GetValue has to implement the IValue interface. It just enables the compiler to verify that dynamicValue.Method() is a valid use of dynamicValue and dynamicValue.OtherMethod() isn’t. If the IValue interface already existed for any other reason, this would be fine. But having a type added to an assembly just for compile time usage doesn’t seem right. So, dynamic could be another type construct. Something like this: dynamic DValue { string Property { get; } void Method(); } The code could now be written like this; DValue dynamicValue = GetValue(); dynamicValue.Method(); The compiler would never generate any IL or metadata for this new type construct. It would only thee used for compile type static checking of dynamic objects. As a consequence, it makes no sense to have public accessibility, so it would not be allowed. Once again, if the IValue interface (or any other type definition) already exists, it can be used in the dynamic type definition: dynamic DValue : IValue, IEnumerable, SomeClass { string Property { get; } void Method(); } Another added benefit would be IntelliSense. I’ve been getting mixed reactions to this proposal. What do you think? Would this be useful?

    Read the article

  • Unable to access A class variables in B Class - Unity-Monodevelop

    - by Syed
    I have made a class including variables in Monodevelop which is: public class GridInfo : MonoBehaviour { public float initPosX; public float initPosY; public bool inUse; public int f; public int g; public int h; public GridInfo parent; public int y,x; } Now I am using its class variable in another class, Map.cs which is: public class Map : MonoBehaviour { public static GridInfo[,] Tile = new GridInfo[17, 23]; void Start() { Tile[0,0].initPosX = initPosX; //Line 49 } } Iam not getting any error on runtime, but when I play in unity it is giving me error NullReferenceException: Object reference not set to an instance of an object Map.Start () (at Assets/Scripts/Map.cs:49) I am not inserting this script in any gameobject, as Map.cs will make a GridInfo type array, I have also tried using variables using GetComponent, where is the problem ?

    Read the article

  • Making Class Diagram for MVC Pattern Project

    - by iMohammad
    I have a question about making a class diagram for an MVC based college senior project. If we have 2 actors of users in my system, lets say Undergrad and Graduate students are the children of abstract class called User. (Generalisation) Each actor has his own features. My question, in such case, do we need to have these two actors in separate classes which inherits from the abstract class User? even though, I'm going to implement them as roles using one Model called User Model ? I think you can see my confusion here. I code using MVC pattern, but I've never made a class diagram for this pattern. Thank you in advance!

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >