Search Results

Search found 35216 results on 1409 pages for 'dynamic html'.

Page 5/1409 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Sending html email to bat! program (C#)

    - by Marcin
    Hi, I`m trying to send an html email, witch will be recieved via bat! program. Mail is sending from c# code. I set up IsBodyHtml = true; My html code is : <html> <head> <title>Mail</title> </head> <body> <map name="planetmap"> <area shape="rect" coords="20,29,303,155" href="http://mysite.com" alt="this is my site" /> <area shape="rect" coords="372,23,479,103" href="http://somesite.com/" alt="somesite" /> <area shape="rect" coords="35,345,169,408" href="anotherlink.com" alt="" /> <area shape="rect" coords="178,348,332,409" href="http://www.lastsite.com/" alt="lastsite" /> </map> <img src="cid:mail" usemap ="#planetmap" border="0"/> </body> </html> this mail is displayed in outlook well but in bat! it is only an image ( map is not working). can anyone tell me what did i do bad? Regards Marcin

    Read the article

  • Dynamic Type to do away with Reflection

    - by Rick Strahl
    The dynamic type in C# 4.0 is a welcome addition to the language. One thing I’ve been doing a lot with it is to remove explicit Reflection code that’s often necessary when you ‘dynamically’ need to walk and object hierarchy. In the past I’ve had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Here’s a really contrived example, but assume for a second, you’d want to dynamically retrieve a Page.Request.Url.AbsoluteUrl based on a Page instance in an ASP.NET Web Page request. The strongly typed version looks like this: string path = Page.Request.Url.AbsolutePath; Now assume for a second that Page wasn’t available as a strongly typed instance and all you had was an object reference to start with and you couldn’t cast it (right I said this was contrived :-)) If you’re using raw Reflection code to retrieve this you’d end up writing 3 sets of Reflection calls using GetValue(). Here’s some internal code I use to retrieve Property values as part of ReflectionUtils: /// <summary> /// Retrieve a property value from an object dynamically. This is a simple version /// that uses Reflection calls directly. It doesn't support indexers. /// </summary> /// <param name="instance">Object to make the call on</param> /// <param name="property">Property to retrieve</param> /// <returns>Object - cast to proper type</returns> public static object GetProperty(object instance, string property) { return instance.GetType().GetProperty(property, ReflectionUtils.MemberAccess).GetValue(instance, null); } If you want more control over properties and support both fields and properties as well as array indexers a little more work is required: /// <summary> /// Parses Properties and Fields including Array and Collection references. /// Used internally for the 'Ex' Reflection methods. /// </summary> /// <param name="Parent"></param> /// <param name="Property"></param> /// <returns></returns> private static object GetPropertyInternal(object Parent, string Property) { if (Property == "this" || Property == "me") return Parent; object result = null; string pureProperty = Property; string indexes = null; bool isArrayOrCollection = false; // Deal with Array Property if (Property.IndexOf("[") > -1) { pureProperty = Property.Substring(0, Property.IndexOf("[")); indexes = Property.Substring(Property.IndexOf("[")); isArrayOrCollection = true; } // Get the member MemberInfo member = Parent.GetType().GetMember(pureProperty, ReflectionUtils.MemberAccess)[0]; if (member.MemberType == MemberTypes.Property) result = ((PropertyInfo)member).GetValue(Parent, null); else result = ((FieldInfo)member).GetValue(Parent); if (isArrayOrCollection) { indexes = indexes.Replace("[", string.Empty).Replace("]", string.Empty); if (result is Array) { int Index = -1; int.TryParse(indexes, out Index); result = CallMethod(result, "GetValue", Index); } else if (result is ICollection) { if (indexes.StartsWith("\"")) { // String Index indexes = indexes.Trim('\"'); result = CallMethod(result, "get_Item", indexes); } else { // assume numeric index int index = -1; int.TryParse(indexes, out index); result = CallMethod(result, "get_Item", index); } } } return result; } /// <summary> /// Returns a property or field value using a base object and sub members including . syntax. /// For example, you can access: oCustomer.oData.Company with (this,"oCustomer.oData.Company") /// This method also supports indexers in the Property value such as: /// Customer.DataSet.Tables["Customers"].Rows[0] /// </summary> /// <param name="Parent">Parent object to 'start' parsing from. Typically this will be the Page.</param> /// <param name="Property">The property to retrieve. Example: 'Customer.Entity.Company'</param> /// <returns></returns> public static object GetPropertyEx(object Parent, string Property) { Type type = Parent.GetType(); int at = Property.IndexOf("."); if (at < 0) { // Complex parse of the property return GetPropertyInternal(Parent, Property); } // Walk the . syntax - split into current object (Main) and further parsed objects (Subs) string main = Property.Substring(0, at); string subs = Property.Substring(at + 1); // Retrieve the next . section of the property object sub = GetPropertyInternal(Parent, main); // Now go parse the left over sections return GetPropertyEx(sub, subs); } As you can see there’s a fair bit of code involved into retrieving a property or field value reliably especially if you want to support array indexer syntax. This method is then used by a variety of routines to retrieve individual properties including one called GetPropertyEx() which can walk the dot syntax hierarchy easily. Anyway with ReflectionUtils I can  retrieve Page.Request.Url.AbsolutePath using code like this: string url = ReflectionUtils.GetPropertyEx(Page, "Request.Url.AbsolutePath") as string; This works fine, but is bulky to write and of course requires that I use my custom routines. It’s also quite slow as the code in GetPropertyEx does all sorts of string parsing to figure out which members to walk in the hierarchy. Enter dynamic – way easier! .NET 4.0’s dynamic type makes the above really easy. The following code is all that it takes: object objPage = Page; // force to object for contrivance :) dynamic page = objPage; // convert to dynamic from untyped object string scriptUrl = page.Request.Url.AbsolutePath; The dynamic type assignment in the first two lines turns the strongly typed Page object into a dynamic. The first assignment is just part of the contrived example to force the strongly typed Page reference into an untyped value to demonstrate the dynamic member access. The next line then just creates the dynamic type from the Page reference which allows you to access any public properties and methods easily. It also lets you access any child properties as dynamic types so when you look at Intellisense you’ll see something like this when typing Request.: In other words any dynamic value access on an object returns another dynamic object which is what allows the walking of the hierarchy chain. Note also that the result value doesn’t have to be explicitly cast as string in the code above – the compiler is perfectly happy without the cast in this case inferring the target type based on the type being assigned to. The dynamic conversion automatically handles the cast when making the final assignment which is nice making for natural syntnax that looks *exactly* like the fully typed syntax, but is completely dynamic. Note that you can also use indexers in the same natural syntax so the following also works on the dynamic page instance: string scriptUrl = page.Request.ServerVariables["SCRIPT_NAME"]; The dynamic type is going to make a lot of Reflection code go away as it’s simply so much nicer to be able to use natural syntax to write out code that previously required nasty Reflection syntax. Another interesting thing about the dynamic type is that it actually works considerably faster than Reflection. Check out the following methods that check performance: void Reflection() { Stopwatch stop = new Stopwatch(); stop.Start(); for (int i = 0; i < reps; i++) { // string url = ReflectionUtils.GetProperty(Page,"Title") as string;// "Request.Url.AbsolutePath") as string; string url = Page.GetType().GetProperty("Title", ReflectionUtils.MemberAccess).GetValue(Page, null) as string; } stop.Stop(); Response.Write("Reflection: " + stop.ElapsedMilliseconds.ToString()); } void Dynamic() { Stopwatch stop = new Stopwatch(); stop.Start(); dynamic page = Page; for (int i = 0; i < reps; i++) { string url = page.Title; //Request.Url.AbsolutePath; } stop.Stop(); Response.Write("Dynamic: " + stop.ElapsedMilliseconds.ToString()); } The dynamic code runs in 4-5 milliseconds while the Reflection code runs around 200+ milliseconds! There’s a bit of overhead in the first dynamic object call but subsequent calls are blazing fast and performance is actually much better than manual Reflection. Dynamic is definitely a huge win-win situation when you need dynamic access to objects at runtime.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • Dynamic Data Associate Related Table Value?

    - by davemackey
    I have create a LINQ-to-SQL project in Visual Studio 2010 using Dynamic Data. In this project I have two tables. One is called phones_extension and the other phones_ten. The list of columns in phones_extension looks like this: id, extension, prefix, did_flag, len, ten_id, restriction_class_id, sfc_id, name_display, building_id, floor, room, phone_id, department_id In phones_ten it looks like this: id, name, pbxid Now, I'd like to be able to somehow make it so that there is an association (or inheritance?) that essentially results in me being able to make a query like phones_extension.ten and it gives me the result of phones_ten.name. Right now I have to get phones_extension.ten_id and then match that against phones_ten.id - I'm trying to get the DBML to handle this translation automatically. Is this possible?

    Read the article

  • HTML ENCODE & DECODE

    - by Zerotoinfinite
    Hi All, I am looking for a HTML editor, and I found many links through google like this http://online-html-editor.org/ Now I have written something on it: Let say the below content Heading The'la;skdlajlsdjansdkahskdkhaksdhkhaskdhkhaskhdkashdkhaksda asdljalsjdljalsdjljalsdjljalsdjljalsdlajs;fl'ajduyasdahsldjkagsdhasvdjyhlasjdgklastgians,dkasjdlhakhsdl amsdka;sdlyasdalshdlj,asdh,asdjg,absdlasd/.malskdla'slduljds,vaskkd;jas;dl'asldu'alsdaskd;lk'as;d 'a sd;jasldj;asdaklsdka'sld'sai'dkabskdm;;lsidaasfhdlasjd;ljaspodi;ajsd;lka'sld ' ad' a;fj;ljas;dfjalshdoiauslkfdnkasfnlka's;dkap[sd'alsd;jlaksfdkajsdfh;alsd; asdkasjd;kaskd;as;dk;aksd;ajsdlkjalksjdlasjdkgasfkjashdjashdkasfdkjashkdasdjo[uipuhlkasdjlkajsdljalsjdlkajsdljaljsdljalsjdlkaslkjdlkasdjlasjdlkjaslkdjlasjdlasudqpeohw09iqwpekjqwehlj bool tt = new bool(); if (txtStatus.Text == "true") tt = true; else tt = false; Now I want to save this content into the database and display as a normal text on a page. While extracting I can use Server.HTMLDecode, but I am facing problem while inserting this html data which I have copied from the sites. Please help. Thanks in advance.

    Read the article

  • Regex to parse a multiline HTML

    - by dreamer
    am trying to parse a multi-line html file using regex. HTML code: < td>Details< /td> < /tr> < tr class=d1> < td>uss_vod_translator< /td> Regex Expression: if ($line =~ m/Details<\/td>\s*<\/tr>\s*<tr\s*class=d1>\s*<td>(\w*)<\/td>/) { print "$1"; } I am using /s* (space) for multi-line, but it is not working. I searched about it, even used /\? for multi-line but that too did not work. Can any one please suggest me how to parse a multiline HTML?

    Read the article

  • Regex to match 2 things in 1 HTML file

    - by CyberK
    Hi, I have a HTML file which contains the following: <img src="MATCH1" bla="blabla"> <something:else bla="blabla" bla="bla"><something:else2 something="something"> <something image="MATCH2" bla="abc"> Now I need a regex to match both MATCH1 and MATCH2 Also the HTML contains multiple parts like this, so it can be in the HTML 1, 2, 3 of x times.. When I say: <img\s*src="(.*?)".*?<something\s*image="(.*?)" It doesn't match it. What am I missing here? Thanks in advance!

    Read the article

  • JQuery Validate Dynamic Table

    - by Richard
    I'm using the JQuery validation plug to validate my entire form. I also have a dynamic table on my registration page where the user can register more people. I can validate the rest of the form fine but my goal is to validate the table inputs just the same. Here is my jfiddle code: tables I don't know why the add line won't work there but it definitely works on my page. Anyway, that code ends up validate ONLY the first row of my table, but I want it to validate every single row. Can anyone see any problems with the code?

    Read the article

  • ASP.NET Dynamic Data Deployment Error

    - by rajbk
    You have an ASP.NET 3.5 dynamic data website that works great on your local box. When you deploy it to your production machine and turn on debug, you get the YSD Server Error in '/MyPath/MyApp' Application. Parser Error Description: An error occurred during the parsing of a resource required to service this request. Please review the following specific parse error details and modify your source file appropriately. Parser Error Message: Unknown server tag 'asp:DynamicDataManager'. Source Error: Line 5:  Line 6:  <asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server"> Line 7:      <asp:DynamicDataManager ID="DynamicDataManager1" runat="server" AutoLoadForeignKeys="true" /> Line 8:  Line 9:      <h2><%= table.DisplayName%></h2> Probable Causes The server does not have .NET 3.5 SP1, which includes ASP.NET Dynamic Data, installed. Download it here. The third tagPrefix shown below is missing from web.config <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.DynamicData" assembly="System.Web.DynamicData, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls></pages>     Hope that helps!

    Read the article

  • Learning to implement dynamic language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamic language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language?

    Read the article

  • Why html frame behave differently in Firefox and IE8 ?

    - by Frank
    I use html frame on my webiste, it's been running for I while, usually I only use Firefox to surf the net, my site looks and functions ok, but today I suddenly found IE8 has a problem with the frame on my site, if I click on the top menu items, it's supposed to display the content in the lower part of the frame, it does this correctly in Firefox, but in IE8, it displays the content in the upper part of the frame and replaces the menu items. In order to give more details, I'll include a simplified version of my html pages, at the top level there are two items, an index.html page and a file directory, all the pages except the index.html are in the directory, so it looks like this : index.html Dir_Docs 00_Home.html 00_Install_Java.html 00_Top_Menu.html 01_Home_Menu.html 01_Install_Java_Menu.html 10_Home_Welcome.html 10_How_To_Install_Java.html [ index.html ] <Html> <Head><Title>Java Applications : Tv_Panel, Java_Sound, Biz Manager and Web Academy</Title></Head> <Frameset Rows="36,*" Border=5 Bordercolor=#006B9F> <Frame Src=Dir_Docs/00_Top_Menu.html Frameborder=YES Scrolling=no Marginheight=1 Marginwidth=1> <Frame Src=Dir_Docs/00_Home.html Name=lower_frame Marginheight=1 Marginwidth=1> </Frameset> </Html> [ 00_Home.html ] <Html> <Head><Title>NMJava Application Development</Title></Head> <Frameset Cols="217,*" Align=center BorderColor="#006B9F"> <Frame Src=01_Home_Menu.html Frameborder=YES Name=side_menu Marginheight=1 Marginwidth=1> <Frame Src=10_Home_Welcome.html Name=content Marginheight=1 Marginwidth=1> </Frameset> </Html> [ 00_Install_Java.html ] <Html> <Head> <Title>Install Java</Title> </Head> <Frameset Cols="217,*" Align=center BorderColor="#006B9F"> <Frame Src=01_Install_Java_Menu.html Frameborder=YES Name=side_menu Marginheight=1 Marginwidth=1> <Frame Src=10_How_To_Install_Java.html Name=content Marginheight=1 Marginwidth=1> </Frameset> </Html> [ 00_Top_Menu.html ] <Html> <Head>Top Menu</Head> <Body> <Center> <Base target=lower_frame> <Table Border=1 Cellpadding=3 Width=100%> <Tr> <Td Align=Center Bgcolor=#3366FF><A Href=00_Home.html><Font Size=4 Color=White>Home</Font></A></Td> <Td Align=Center Bgcolor=#3366FF><A Href=00_Install_Java.html><Font Size=4 Color=White>Install Java</Font></A></Td> </Tr> </Table> </Center> </Body> </Html> [ 01_Home_Menu.html ] <Html> <Head><Title>Home Menu</Title></Head> <Base Target=content> <Body Bgcolor=#7799DD> <Center> <Table Border=1 Width=100%> <Tr><Td Align=center Bgcolor=#66AAFF><A Href=10_Home_Welcome.html>Welcome</A></Td></Tr> </Table> </Center> </Body> </Html> [ 01_Install_Java_Menu.html ] <Html> <Head><Title>Install Java</Title></Head> <Base Target=content> <Body Bgcolor=#7799DD> <Center> <Table Border=1 Width=100%> <Tr><Td Align=Center Bgcolor=#66AAFF><A Href=10_How_To_Install_Java.html>How To Install Java ?</A></Td></Tr> </Table> </Center> </Body> </Html> [ 10_Home_Welcome.html ] <Html> <Head><Title>NMJava For Software Development</Title></Head> <Body> <Center> <P> <Font Size=5 Color=blue>Welcome To NMJava For Software Development</Font> <P> </Center> </Body> </Html> [ 10_How_To_Install_Java.html ] <Html> <Head> <Title>Install Java</Title> </Head> <Body> <Center> <Br> <Font Size=5 Color=#0022AE><A Href=http://java.com/en/download/index.jsp>How To Install Java ?</A></Font> <Br> <P> <Table Width=90% Cellspacing=5 Cellpadding=5> <Tr><Td><Font Color=#0022AE> You need JRE 6 (Java Runtime Environment) to run the programs on this site. You may or may not have Java already installed on your PC, you can find out by going to the following site, if you don't have the latest version, you can install/upgrade it, it's free from Sun/Oracle at :<Font Size=4> <A Href=http://java.com/en/download/index.jsp>http://java.com/en/download/index.jsp</A></Font>.<P> </Font></Td></Tr> </Table> </Center> </Body> </Html> What's wrong with them, why the two browsers behave differently, and how to fix this ? My site is at : http://nmjava.com , in case you want to see more details. Frank

    Read the article

  • moving dynamic disk from Windows to another Windows computer when original Windows is not available

    - by Andrei
    How do I mount dynamic disk on new system without access to the old OS ? I need to move Dynamic data disk from old Windows XP (Pro, SP3) system, where disk crashed, to new Windows system without having access to the old OS. On new system, Dynamic disk shows as "Dynamic - Foreign". Microfoft has instructions for moving Dynamic Disk [1]. But Microsoft assumes having access to the old system. But I do not have acess to the old system. I am struck with "Dynamic - Foreign" static of the disk on new system. Thanks WinXP Pro SP3 [1] http://technet.microsoft.com/en-us/library/cc779854(WS.10).aspx Move Disk to another computer.

    Read the article

  • How to embed functionality into HTML email?

    - by Crashalot
    We want to let users click a thumbs up or thumbs down button from an HTML email, without causing the clicking to open a browser window. Is there a way to essentially embed limited web functionality (i.e., clicking an icon, showing confirmation) within HTML emails? Thanks!

    Read the article

  • HTML email: tables or divs?

    - by j-man86
    Does the HTML/CSS for an html email newsletter need to be in table format, or can I use DIVs with equal assurance it will display well cross email-client? I've downloaded a number of templates to see how they're done, upon which to base my own, and they all seem to use tables. Any insight much appreciated, thanks!

    Read the article

  • parsing HTML on the iPhone

    - by Ben Alpert
    Can anyone recommend a C or Objective-C library for HTML parsing? It needs to handle messy HTML code that won't quite validate. Does such a library exist, or am I better off just trying to use regular expressions?

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • C# Proposal: Compile Time Static Checking Of Dynamic Objects

    - by Paulo Morgado
    C# 4.0 introduces a new type: dynamic. dynamic is a static type that bypasses static type checking. This new type comes in very handy to work with: The new languages from the dynamic language runtime. HTML Document Object Model (DOM). COM objects. Duck typing … Because static type checking is bypassed, this: dynamic dynamicValue = GetValue(); dynamicValue.Method(); is equivalent to this: object objectValue = GetValue(); objectValue .GetType() .InvokeMember( "Method", BindingFlags.InvokeMethod, null, objectValue, null); Apart from caching the call site behind the scenes and some dynamic resolution, dynamic only looks better. Any typing error will only be caught at run time. In fact, if I’m writing the code, I know the contract of what I’m calling. Wouldn’t it be nice to have the compiler do some static type checking on the interactions with these dynamic objects? Imagine that the dynamic object that I’m retrieving from the GetValue method, besides the parameterless method Method also has a string read-only Property property. This means that, from the point of view of the code I’m writing, the contract that the dynamic object returned by GetValue implements is: string Property { get; } void Method(); Since it’s a well defined contract, I could write an interface to represent it: interface IValue { string Property { get; } void Method(); } If dynamic allowed to specify the contract in the form of dynamic(contract), I could write this: dynamic(IValue) dynamicValue = GetValue(); dynamicValue.Method(); This doesn’t mean that the value returned by GetValue has to implement the IValue interface. It just enables the compiler to verify that dynamicValue.Method() is a valid use of dynamicValue and dynamicValue.OtherMethod() isn’t. If the IValue interface already existed for any other reason, this would be fine. But having a type added to an assembly just for compile time usage doesn’t seem right. So, dynamic could be another type construct. Something like this: dynamic DValue { string Property { get; } void Method(); } The code could now be written like this; DValue dynamicValue = GetValue(); dynamicValue.Method(); The compiler would never generate any IL or metadata for this new type construct. It would only thee used for compile type static checking of dynamic objects. As a consequence, it makes no sense to have public accessibility, so it would not be allowed. Once again, if the IValue interface (or any other type definition) already exists, it can be used in the dynamic type definition: dynamic DValue : IValue, IEnumerable, SomeClass { string Property { get; } void Method(); } Another added benefit would be IntelliSense. I’ve been getting mixed reactions to this proposal. What do you think? Would this be useful?

    Read the article

  • Formatting HTML lists using CSS

    - by pwaring
    I'm trying to recreate list in HTML which has clauses and subclauses like this: 1. Main Clause (a) Sub clause (b) Sub clause 2. Another main clause (a) Sub clause The problems I'm running into are: If I use the existing HTML elements (ol and li) there doesn't seem to be a list style for (a) - I can have a. b. c. or A. B. C. but not (a) (b) (c). If I don't use the existing HTML elements and start using span tags, then if a subclause runs beyond the end of the line it appears underneath the clause number, rather than being indented. Like so: (a) Very long subclause which goes over one line when what I really want is the behaviour from lists, which is: (a) Very long subclause which goes over one line Is there any way to get round these two problems at the same time? I'd prefer to use semantic HTML and CSS for styling, but having the clauses spaced correctly is more important than doing things 'the right way'. I may need subsubclauses at some point (i.e. (i), (ii) etc.), so I can't assume that (a) will be the maximum clause depth.

    Read the article

  • Tip: Replacing Html.Encode Calls With New Html Encoding Syntax

    Like the well disciplined secure developer that you are, when you built your ASP.NET MVC 1.0 application, you remembered to call Html.Encode every time you output a value that came from user input. Didnt you? Well, in ASP.NET MVC 2 running on ASP.NET 4, those calls can be replaced with the new HTML encoding syntax (aka code nugget). Ive written a three part series on the topic. Html Encoding Code Blocks With ASP.NET 4 Html Encoding Nuggets With ASP.NET MVC 2 Using AntiXss as the default...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Why is HTML/Javascript minification beneficial

    - by Channel72
    Why is HTML/Javascript minification beneficial when the HTTP protocol already supports gzip data compression? I realize that Javascript/HTML minification has the potential to significantly reduce the size of Javascript/HTML files by removing unnecessary whitespace, and perhaps renaming variables to a few letters each, but doesn't the LZW algorithm do especially well when there are many repeated characters (e.g. lots of whitespace?) I realize that some Javascript minification tools do more than just reduce size. Google's closure compiler, for example, also tries to improve code performance by inlining functions and doing other analyses. But the primary purpose of Javascript minification is usually to reduce file size. I also realize there are other reasons you might want to minify aside from performace, such as code obfuscation. But again, that reason is not usually emphasized as much as performance gain and file size reduction. For example, Closure Compiler is not advertised as an obfuscation tool, but as a code size reducer and download-speed enhancer. So, how much performance do you really gain from Javascript/HTML minification when you're already significantly reducing file size with gzip compression?

    Read the article

  • Html.LabelFor and Html.TextBoxFor generate empy html code

    - by Ceridan
    I'm writing my first ASP.NET MVC application and there is one big problem for me. I want to make a control which will represent a form, but when I try to generate labels and textboxes it returns to me empty page. So, this is my model file (MyModel.cs): namespace MyNamespace.Models { public class MyModel { [Required(ErrorMessage = "You have to fill this field")] [DisplayName("Input name")] public string Name{ get; set; } } } This is MyFormControlView.ascx file with my control: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<MyNamespace.Models.MyModel>"%> <div> <% using (Html.BeginForm()) { Html.LabelFor(m => m.Name); Html.TextBoxFor(m => m.Name); Html.ValidationMessageFor(m => m.Name); } %> </div> And this is my Index.aspx file where I render the control: <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Main.Master" Inherits="System.Web.Mvc.ViewPage<System.Collections.IEnumerable>" %> <asp:Content runat="server" ID="MainContent" ContentPlaceHolderID="MainContent"> This is my control test! <%Html.RenderPartial("MyFormControlView", new MyNamespace.Models.MyModel { Name = "MyTestName"}); %> </asp:Content> So, when I run my application the result is lonely caption: "This is my control test!" and there are no label or textbox on the generated page. If I inspect the source code of the generated page I can see my block, but it's inner text is empty. Please, could you help me?

    Read the article

  • How do I extract HTML content using Regex in PHP

    - by gAMBOOKa
    I know, i know... regex is not the best way to extract HTML text. But I need to extract article text from a lot of pages, I can store regexes in the database for each website. I'm not sure how XML parsers would work with multiple websites. You'd need a separate function for each website. In any case, I don't know much about regexes, so bear with me. I've got an HTML page in a format similar to this <html> <head>...</head> <body> <div class=nav>...</div><p id="someshit" /> <div class=body>....</div> <div class=footer>...</div> </body> I need to extract the contents of the body class container. I tried this. $pattern = "/<div class=\"body\">\(.*?\)<\/div>/sui" $text = $htmlPageAsIs; if (preg_match($pattern, $text, $matches)) echo "MATCHED!"; else echo "Sorry gambooka, but your text is in another castle."; What am I doing wrong? My text ends up in another castle.

    Read the article

  • Using embedded standard HTML forms with ASP.NET

    - by RM
    I have a standard aspx page with which I need to add another standard HTML form into and have it submit to another location (external site), however whenever I press the submit button the page seems to do a post back rather than using the sub-forms action url. A mock up of what the form relationships is below. Note in the real deployment the form will be part of a content area of a master page layout, so the form needs to submit independantly from the master page form. <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server"> <title>Untitled Page</title> </head> <body> <form id="form1" runat="server"> <div> <form id="subscribe_form" method="post" action="https://someothersite.com" name="em_subscribe_form" > <input type="text" id="field1" name="field1" /> <input id="submitsubform" type="submit" value="Submit" /> </form> </div> </form> </body> </html>

    Read the article

  • Jquery .html() function returns html out of nested order

    - by forcripesake
    I have a method which returns a persisted html template from a database. The template is of the format: <div id="item_collection"> <div id="item_x"> <p id="item_x_headline"><h2>Some Headline</h2></p> <p id="item_x_excerpt>Some text here</p> </div> <div id="item_x+1"> <p id="item_x+1_headline"><h1>Some Headline</h1></p> <p id="item_x+1_excerpt>Some text here</p> </div> ...and so on. </div> However after I run the following: alert(data); //check that the template is in order. It Is. $('#template_area').html(data); the Html is now: <div id="item_collection"> <div id="item_x"> <p id="item_x_headline"></p> <!--Note The Lack of Nesting --> <h2>Some Headline</h2> <p id="item_x_excerpt>Some text here</p> </div> <div id="item_x+1"> <p id="item_x+1_headline"></p> <!--Note The Lack of Nesting --> <h1>Some Headline</h1> <p id="item_x+1_excerpt>Some text here</p> </div> ...and so on. </div> So what gives? Is there a better way to replace the empty template_area's content than the .html() method?

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >