Search Results

Search found 69812 results on 2793 pages for 'file encryption'.

Page 5/2793 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Does GPG allow encryption of multiple files using a wild card like *filename*? [on hold]

    - by user47427
    I am trying to automate the encryption of files on a windows server using a .bat file I created. As long as the filename is hardcoded in the .bat file this works. I want to encrypt numerous files using this .bat file but files are not encrypted when I use wildcards in the filename like filename.txt. I've been trying various version of the following command at the DOS prompt to no avail. All attempts have returned syntax for usage. C:\gpg -v --batch -- yes --always-trust -e -r <encryption-key> *part-of-the-file-name* usage: gpg [options] --encrypt [filename] I received the same usage message with this command: C:\gpg -v --batch -- yes --always-trust -e -r --encrypt part-of-the-file-name I tried without the -v and some of the other options and I still received the same message. I have spent hours today searching the internet for an answer and I can't find one anywhere? Please help.

    Read the article

  • PHP File Downloading Questions

    - by nsearle
    Hey All! I am currently running into some problems with user's downloading a file stored on my server. I have code set up to auto download a file once the user hits the download button. It is working for all files, but when the size get's larger than 30 MB it is having issues. Is there a limit on user download? Also, I have supplied my example code and am wondering if there is a better practice than using the PHP function 'file_get_contents'. Thank You all for the help! $path = $_SERVER['DOCUMENT_ROOT'] . '../path/to/file/'; $filename = 'filename.zip'; $filesize = filesize($path . $filename); @header("Content-type: application/zip"); @header("Content-Disposition: attachment; filename=$filename"); @header("Content-Length: $filesize") echo file_get_contents($path . $filename);

    Read the article

  • Using Multiple File Handles for Single File

    - by Ryan Rosario
    I have an O(n^2) operation that requires me to read line i from a file, and then compare line i to every line in the file. This repeats for all i. I wrote the following code to do this with 2 file handles, but it does not yield the result I am looking for. I imagine this is a simple error on my part. IN1 = open("myfile.dat","r") IN2 = open("myfile.dat","r") for line1 in IN1: for line2 in IN2: print line1.strip(), line2.strip() IN1.close() IN2.close() The result: Hello Hello Hello World Hello This Hello is Hello an Hello Example Hello of Hello Using Hello Two Hello File Hello Pointers Hello to Hello Read Hello One Hello File The output should contain 15^2 lines.

    Read the article

  • Using our own certificate authority for business email encryption

    - by LumenAlbum
    I've read the available similar questions on serverfault but I haven't quite found a definite answer to the security aspect of it - hence here's my question: I'm administrator of an office working with tax data and we want to start using certificate-based eMail encryption with our clients. Considering the prices for issued certificates by VeriSign & Co I was wondering if we couldn't issue the necessary certificates with a certificate authority of our own. I realize that they do not offer the trust hierarchy that commercial certificates do but I don't see why we would need that. Most of our clients have small businesses and only 20% of them even exchange data with us via email. So if we were to issue certificates for those 20% and our employees, that would enable us to use encrypted emails. Of course they would have to trust our certificate authority and thus once receive our public root certificate. But if we would hand them out to them (or install it) personally, they'd know that it really is our certificate. Is thery a huge security risk that I am missing here? As long as nobody has access to our certificate authority server nobody should be able to interfere with security, right? And the client certificates would be generated and handed out by us, as well... Please advise me if I am making an error in judgement here and thank you in advance.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • How to Disable Home Folder Encryption After Installing Ubuntu

    - by Chris Hoffman
    Ubuntu offers to encrypt your home directory during installation. The encryption has some drawbacks – there’s a performance penalty and recovering your files is more difficult. If you change your mind later, you can remove the encryption without reinstalling Ubuntu. The process of removing the encryption involves creating a backup copy of your home directory without encryption, deleting the existing home directory, removing the encryption utilities, and moving the unencrypted copy back into place. HTG Explains: What Is RSS and How Can I Benefit From Using It? HTG Explains: Why You Only Have to Wipe a Disk Once to Erase It HTG Explains: Learn How Websites Are Tracking You Online

    Read the article

  • what is file verification system for php project or licence checking the configuration files

    - by Jayapal Chandran
    Hi, My colleague asked me a question like "license check to config file". when i searched i got this http://www.google.com/search?q=file+verification+system&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a and in the result i got this http://integrit.sourceforge.net/texinfo/integrit.html but could not grasp much of its idea. Here is my thoughts... Our project is written in codeigniter. The project owner is providing it to their customer. The owner is a business partner with that concept. Besides, the owner needs control of the project code so that the customer will not break rules with him like changing the code or moving it go another server or validity. So the owner needs a system to enable disable the site. Let me give an example... owner.com will have an admin panel where he can either disable or enable the client.com. when he disables the client.com should display a custom message instead of loading the files. client.com is written i a way that i will process requests from owner.com and also the other way round. so, here i want a list of the concepts with which we can implement the ownership and control over client.com any suggestions, links, references, answers will be helpful. If i am missing something in my question i will update my question according to your comments if any so that the users can give in their idea without confusing of what i had asked. THX

    Read the article

  • Full disk encryption on dual boot system using TrueCrypt

    - by Anders Hovgaard
    I'm thinking about encrypting my whole harddrive for example using TrueCrypt, which I've used for encrypting file containers for a while. It is possible to encrypt the whole harddisk through the program and then add a password secured bootloader before the actual bootloader. Is it possible to do this on a dualboot system with Windows 7 and Fedora 15 currently using Grub as the main bootloader? If so, is it possible to reinstall a system later or will that ruin the whole setup? Thanks

    Read the article

  • How can I do individual file encryption on Dropbox?

    - by Scaine
    I'd like to set a single directory inside Dropbox in which files are encrypted on a file-by-file basis. At the moment, I use a 2Mb Truecrypt container inside my Dropbox which I then have to mount manually, access/change the files within, then unmount manually. At that point, the entire 2Mb uploads to Dropbox. This is a pain for a number of reasons : Dropbox sync will only occur when the Truecrypt container is unmounted, because Dropbox only syncs files that aren't locked and mounting a container locks it. A single byte change to one file inside that container results in the whole 2Mb being uploaded again. It doesn't scale - I was originally using a 10Mb container, but obviously the bigger the container, the longer it takes to sync when it's unmounted. I was wondering if I can somehow use LUKS to implement file-by-file encryption to get round the "container" issues.

    Read the article

  • Is it fair for us to conclude XOR string encryption is less secure than well known encryption (Say Blowfish)

    - by Yan Cheng CHEOK
    I was wondering, is it fair to conclude, XOR string encryption is less secure than other encryption method, say Blowfish This is because for both methods, their input are Unencrypted string A secret key string XOR(string value,string key) { string retval(value); short unsigned int klen=key.length(); short unsigned int vlen=value.length(); short unsigned int k=0; short unsigned int v=0; for(v;v<vlen;v++) { retval[v]=value[v]^key[k]; k=(++k<klen?k:0); } return retval; } Is there any proof that XOR encryption method is more easy to be "broken" than Blowfish if the same key is being chosen?

    Read the article

  • RSA encryption results in server execution timeout

    - by Nilambari
    Hi, I am using PHP Crypt_RSA (http://pear.php.net/package/Crypt_RSA) for encrypting and decrypting the contents. Contents are of 1kb size. Following are the results: keylength = 1024 Encryption function takes time: 225 secs keylength = 2048 Encryption function takes time: 115 secs I need to reduce this execution time as most of the live apache servers have 120 sec limit for execution time. How to reduce this execution time? RSA alorithm docs says the only 1024 - 2048 keys are generated. I ACTUALLY tried to generate larger key, but it always results in execution timeout. How do i work on reducing encryption - decryption execution time? Thanks, Nila

    Read the article

  • C# CF: file encryption/decryption on the fly

    - by nuttynibbles
    Hi, i've seen many article on encrypt/decrypt of file and typically a button is used to choose the file for encrypt and another button to decrypt the file. i've seen some application like truecrypt and probably others which does file encryption on-the-fly with transparent. this means that when a encrypted file is clicked to access, it will automatically decrypt and play/open the file. then when the file is closed, it will automatically encrypt again. some have said that the only way to detect file open is through file system filter. but is there other ways to do this in c# compact framework?

    Read the article

  • Two-key encryption/decryption?

    - by Matt
    I'm looking to store some fairly sensitive data using PHP and MySQL and will be using some form of reversible encryption to do so since I need to get the data back out in plain text for it to be of any use. I'll be deriving the encryption key from the users' username/password combination but I'm stumped for what to do in the (inevitable) event of a password being forgotten. I realise that the purpose of encryption is that it can only be undone using the correct key but this must have been addressed before.. I'm trying to get my head around whether or not public key cryptography would apply to the problem but all I can think of is that the private key will still need to be correct to decrypt the data.. Any ideas?

    Read the article

  • C# connectionString encryption questions

    - by 5YrsLaterDBA
    I am learning how to encrypt the ConnectionString for our C# (3.5) Application. I read the .Net Framwork Developer Guide (http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx) about securing connection string. but not fully understand the contents. It says "The connection string can only be decrypted on the computer on which it was encrypted." We have a release machine which will build our application which will generate the OurApp.exe.config and then install it to many product machines. Is that meam we have to have this encryption process separated with our application and run it at individual product machine? We may use the "RSAProtectedConfigurationProvider". It mentioned we need encryption key for that provider. when and how we should provide the encryption key? thanks,

    Read the article

  • NAS4Free disk encryption and ZFS error

    - by MiNT
    I have installed a NAS4Free on a VM, and as recommended, i installed it on a 1GB virtual disk, and assigned another disk 500GB to this VM for file storage. I have created the disk, encrypted it, created a ZFS virtual disk, and then a ZFS storage pool. Everything was working. On every restart of this VM i needed to go on and mount the encrypted drive. Recently i upgraded the host machine, and now i cant mount or make it work. I have tried removing everything and setting up from scratch everything, with the exception of formating the disk, i have used an encrypted one without formating it. Does anybody have any suggestion on how can i at least get back my data, can i mount somehow the encrypted drive even in another utility, just need to get back the data that were on it.

    Read the article

  • Is full partition encryption the only sure way to make Ubuntu safe from external access?

    - by fred.bear
    (By "external access", I mean eg. via a Live CD, or another OS on the same dual-boot machine) A friend wants to try Ubuntu. He's fed up with Vista grinding to a crawl (the kids? :), so he likes the "potential" security offered by Ubuntu, but because the computer will be multi-booting Ubuntu (primary) and 2 Vistas (one for him, if he ever needs it again, and the other one for the kids to screw up (again). However, he is concerned about any non-Ubuntu access to the Ubuntu partitions (and also to his Vista partition)... I believe TrueCrypt will do the job for his Vista, but I'd like to know what the best encryption system for Ubuntu is... If TrueCrypt works for Ubuntu, it may be the best option for him, as it would be the same look and feel for both. Ubuntu will be installed with 3 partitions; 1) root 2) home 3) swap.. Will Ubuntu's boot loader clash with TrueCrypt's encrypted partition? PS.. Is encryption a suitable solution?

    Read the article

  • IPhone/Objective-c RSA encryption

    - by Paul
    Hello, I have been google-ing and researching for an answer on how to do a simple RSA encryption using objective-c on an iphone. The main problem i have is that i have been supplied the Exponent and Modulus as an NSData object and i need to then convert them to a SecKeyRef object in order to perform the RSA encryption. Does anyone have any idea how to do that or have any useful hints? Many thanks!

    Read the article

  • [AS3/C#] Byte encryption ( DES-CBC zero pad )

    - by mark_dj
    Hi there, Currently writing my own AMF TcpSocketServer. Everything works good so far i can send and recieve objects and i use some serialization/deserialization code. Now i started working on the encryption code and i am not so familiar with this stuff. I work with bytes , is DES-CBC a good way to encrypt this stuff? Or are there other more performant/secure ways to send my data? Note that performance is a must :). When i call: ReadAmf3Object with the decrypter specified i get an: InvalidOperationException thrown by my ReadAmf3Object function when i read out the first byte the Amf3TypeCode isn't specified ( they range from 0 to 16 i believe (Bool, String, Int, DateTime, etc) ). I got Typecodes varying from 97 to 254? Anyone knows whats going wrong? I think it has something to do with the encryption part. Since the deserializer works fine w/o the encryption. I am using the right padding/mode/key? I used: http://code.google.com/p/as3crypto/ as as3 encryption/decryption library. And i wrote an Async tcp server with some abuse of the threadpool ;) Anyway here some code: C# crypter initalization code System.Security.Cryptography.DESCryptoServiceProvider crypter = new DESCryptoServiceProvider(); crypter.Padding = PaddingMode.Zeros; crypter.Mode = CipherMode.CBC; crypter.Key = Encoding.ASCII.GetBytes("TESTTEST"); AS3 private static var _KEY:ByteArray = Hex.toArray(Hex.fromString("TESTTEST")); private static var _TYPE:String = "des-cbc"; public static function encrypt(array:ByteArray):ByteArray { var pad:IPad = new NullPad; var mode:ICipher = Crypto.getCipher(_TYPE, _KEY, pad); pad.setBlockSize(mode.getBlockSize()); mode.encrypt(array); return array; } public static function decrypt(array:ByteArray):ByteArray { var pad:IPad = new NullPad; var mode:ICipher = Crypto.getCipher(_TYPE, _KEY, pad); pad.setBlockSize(mode.getBlockSize()); mode.decrypt(array); return array; } C# read/unserialize/decrypt code public override object Read(int length) { object d; using (MemoryStream stream = new MemoryStream()) { stream.Write(this._readBuffer, 0, length); stream.Position = 0; if (this.Decrypter != null) { using (CryptoStream c = new CryptoStream(stream, this.Decrypter, CryptoStreamMode.Read)) using (AmfReader reader = new AmfReader(c)) { d = reader.ReadAmf3Object(); } } else { using (AmfReader reader = new AmfReader(stream)) { d = reader.ReadAmf3Object(); } } } return d; }

    Read the article

  • Do encryption algorithms require an internal hashing algorithm?

    - by Rudi
    When I use C# to implement the AES symmetric encryption cipher, I noticed: PasswordDeriveBytes derivedPassword = new PasswordDeriveBytes(password, saltBytesArray, hashAlgorithmName, numPasswordIterations); Why do I need to use a hashing algorithm for AES encryption? Aren't they separate? Or is the hashing algorithm only used to create a secure key? The AES algorithm doesn't use a hashing algorithm internally does it?

    Read the article

  • tripledes encryption not yielding same results in PHP and C#

    - by Jones
    When I encrypt with C# I get arTdPqWOg6VppOqUD6mGITjb24+x5vJjfAufNQ4DN7rVEtpDmhFnMeJGg4n5y1BN static void Main(string[] args) { Encoding byteEncoder = Encoding.Default; String key = "ShHhd8a08JhJiho98ayslcjh"; String message = "Let us meet at 9 o'clock at the secret place."; String encryption = Encrypt(message, key, false); String decryption = Decrypt(encryption , key, false); Console.WriteLine("Message: {0}", message); Console.WriteLine("Encryption: {0}", encryption); Console.WriteLine("Decryption: {0}", decryption); } public static string Encrypt(string toEncrypt, string key, bool useHashing) { byte[] keyArray; byte[] toEncryptArray = UTF8Encoding.UTF8.GetBytes(toEncrypt); if (useHashing) { MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider(); keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key)); } else keyArray = UTF8Encoding.UTF8.GetBytes(key); TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider(); tdes.Key = keyArray; tdes.Mode = CipherMode.ECB; tdes.Padding = PaddingMode.PKCS7; ICryptoTransform cTransform = tdes.CreateEncryptor(); byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length); return Convert.ToBase64String(resultArray, 0, resultArray.Length); } public static string Decrypt(string toDecrypt, string key, bool useHashing) { byte[] keyArray; byte[] toEncryptArray = Convert.FromBase64String(toDecrypt); if (useHashing) { MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider(); keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key)); } else keyArray = UTF8Encoding.UTF8.GetBytes(key); TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider(); tdes.Key = keyArray; tdes.Mode = CipherMode.ECB; tdes.Padding = PaddingMode.PKCS7; ICryptoTransform cTransform = tdes.CreateDecryptor(); byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length); return UTF8Encoding.UTF8.GetString(resultArray); } When I encrypt with PHP I get: arTdPqWOg6VppOqUD6mGITjb24+x5vJjfAufNQ4DN7rVEtpDmhFnMVM+W/WFlksR <?php $key = "ShHhd8a08JhJiho98ayslcjh"; $input = "Let us meet at 9 o'clock at the secret place."; $td = mcrypt_module_open('tripledes', '', 'ecb', ''); $iv = mcrypt_create_iv (mcrypt_enc_get_iv_size($td), MCRYPT_RAND); mcrypt_generic_init($td, $key, $iv); $encrypted_data = mcrypt_generic($td, $input); mcrypt_generic_deinit($td); mcrypt_module_close($td); echo base64_encode($encrypted_data); ?> I don't know enough about cryptography to figure out why. Any ideas? Thanks.

    Read the article

  • Access Encryption

    - by Karthick
    Hi, I tried to use this logic http://www.databasejournal.com/features/msaccess/article.php/3752701/Secure-Microsoft-Access-Passwords-and-Encryption-in-Access-2007.htm I have an existing access database 2007, i want to encrypt it, when i tried to implement the 128-bit from the above link, unfortunately when i open the DB in notepad i don't see Microsoft cryptographic 1.0 encryption although i followed the exact steps. Any inputs? Please help me with other approaches too. Thanks in advance, Karthick

    Read the article

  • Is Md5 Encryption Symmetric or Asymmetric?

    - by PF1
    For my iPhone application, Apple wants to know if my password encryption (md5) is greater then 64-bit symmetric or greater then 1024-bit symmetric. I have not been able to find it online, so I am wondering if anyone knows the answer. In addition, is this considered an appropriate encryption technology for passwords, or should I use something different? Thanks for any help!

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >