Search Results

Search found 104 results on 5 pages for 'forte'.

Page 5/5 | < Previous Page | 1 2 3 4 5 

  • Java Generics, JPA 2, J2EE, JSF 2, GWT, Ajax, Oracle's Java Strategies, Flex, iPhone, Agile ALM, Gra

    - by Kim Won
    Great Indian Developer Summit 2010 – India's Biggest Polyglot Conference and Workshops for IT Software Professionals Bangalore, April 9, 2010: The GIDS.Java Conference and Workshops has announced the complete program of over 50 sessions on the present and future of the Java language and VM, how they are evolving to meet the community's ever-changing needs, and some of the cutting-edge tools, technologies & techniques used for building robust enterprise Java applications today. The GIDs.Java track at Great Indian Developer Summit takes place 22 and 23 April 2010, at the Indian Institute of Science in Bangalore. As one of the longest running independent developer conferences in India, GIDS.Java at the Great Indian Developer Summit 2010 is uniquely positioned to provide a blend of practical, pragmatic and immediately applicable knowledge and a glimpse of the future of technology. During 22 and 23 April 2010, GIDS.Java offers a multi-track conference, workshops, expo show floor, and networking opportunities. The first keynote at GIDS.Java "Pointy Haired Bosses and Pragmatic Programmers" is led by Dr. Venkat Subramaniam. He speaks about how each of us has a professional responsibility to be objective and make decisions that will help us and our teams be productive and deliver results. Venkat will pick on some fallacies, lay down facts, and discuss how to stay professional and objective in our daily efforts. The second keynote of the day explains the practical features that make the Cloud so interesting, and why everyone should start using it in their everyday life. Simone Brunozzi, Amazon Web Services Technology Evangelist, will detail technical examples, business details all mixed with a lot of Italian humor to ensure audience enjoy this talk without a single line of code. The third keynote of the day gives an exciting overview of directions in the Java space for Oracle, featuring concrete signs of Oracles heavy investment, a clear concise strategy overview, and deep dives into some of the most interesting pieces of technology being developed in the Java Platform Group today; such as JavaEE, JDK7, JavaFX, and our exciting new visual tools. Featuring demos by a Java evangelism team star, Simon Ritter, this talk takes you top to bottom in Java Technology. Featured talks at GID.Web include: Good, Bad, and Ugly of Java Generics, Venkat Subramaniam Pure Java Ajax: An Overview of GWT 2.0, Marty Hall How JPA 2.0 Makes a Good Thing Even Better, Mike Keith Building Enterprise RIAs with Adobe Flex and Java, Sujit Reddy G Integrated Ajax Support in JSF 2.0, Marty Hall Design Patterns in Java and Groovy, Venkat Subramaniam A Gentle Introduction to iPhone and Obj-C for Java Developers, Matthew McCullough Cloud Computing: Azure for Java Developers, Janakiram MSV Ajax Support in the Prototype JavaScript Library, Marty Hall First steps to IT Heaven Through the Cloud. Part III: .Java, Simone Brunozi Building Web 2.0 User Interfaces for Web Service Models using JSF, Frank Nimphius and Jobinesh P Acceptance Test Driven Development, John Tobin and Mohammed Mohsinali Architecting Your Java Applications for the Cloud, Praveen Srivatsa Effective Java, Venkat Subramaniam The Amazing Groovy Weight-loss Plan, Scott Davis Enterprise Modeling - from Conceptual Planning to Technical Blueprints, J Sripad Java Collections Renaissance, Donald Raab and Vlad Zakharov Power 7 and IBM J9VM, Himanshu Goyal A Whistle-stop Tour of Maven 3.0, Matthew McCullough Mass Volume Opportunities for Java Developers, Jouko Nuottila Emerging Technology Complex Event Processing, Duvvuri Srinivas Agile ALM for Distributed Development, Karthi Swaminathan Dim Sum Grails - A Sampler of Practical Non Database-Driven Grails Applications, Scott Davis Diagnosing Performance Bottlenecks in J2EE, Deepak Kaul Business Driven Identity Management, Suneet Agera Combining Java EE with OSGi using Eclipse Gemini, Mike Keith Workshop: Essence of Functional Programming, Venkat Subramaniam Workshop: Agile Development, Tools, and Teams and Scrum Certification, Stephen Forte Workshop: Cloud Computing Boot Camp on the Google App Engine, Matthew McCullough Workshop: Building Your First Amazon App, Simone Brunozzi Workshop: The 180-min AJAX and JSON Spike Class, Scott Davis Workshop: PHP + Adobe Flex = Killer RIA, Shyamprasad P Workshop: User Expereince Evaluation Model Walkthrough, Sanna Häiväläinen Workshop: Building Data Centric Applications using Adobe Flex and Java, Prashant Singh Workshop: Monetizing your Apps with PayPal X Payments Platform, Khurram Khan, Praveen Alavilli Sponsors of Great Indian Developer Summit 2010 include: Platinum sponsors Microsoft, Oracle Forum Nokia and Adobe; Gold sponsors Intel and SAP; Silver sponsors Quest Software, PayPal, Telerik and AMT. About Great Indian Developer Summit Great Indian Developer Summit is the gold standard for India's software developer ecosystem for gaining exposure to and evaluating new projects, tools, services, platforms, languages, software and standards. Packed with premium knowledge, action plans and advise from been-there-done-it veterans, creators, and visionaries, the 2010 edition of Great Indian Developer Summit features focused sessions, case studies, workshops and power panels that will transform you into a force to reckon with. Featuring 3 co-located conferences: GIDS.NET, GIDS.Web, GIDS.Java and an exclusive day of in-depth tutorials - GIDS.Workshops, from 20 April to 24 April at the IISc campus in Bangalore. At GIDS you'll participate in hundreds of sessions encompassing the full range of Microsoft computing, Java, Agile, RIA, Rich Web, open source/standards, languages, frameworks and platforms, practical tutorials that deep dive into technical skill and best practices, inspirational keynote presentations, an Expo Hall featuring dozens of the latest projects and products activities, engaging networking events, and the interact with the best and brightest of speakers from around the world. For further information on GIDS 2010, please visit the summit on the web http://www.developersummit.com/ A Saltmarch Media Press Release E: [email protected] Ph: +91 80 4005 1000

    Read the article

  • CodePlex Daily Summary for Tuesday, June 07, 2011

    CodePlex Daily Summary for Tuesday, June 07, 2011Popular ReleasesSCCM Client Actions Tool: SCCM Client Actions Tool v0.5: SCCM Client Actions Tool v0.5 is currently the most stable version and includes all of the functionality requested so far. It comes as a ZIP file that contains three files: ClientActionsTool.hta – The tool itself. Cmdkey.exe – command line tool for managing cached credentials. This is needed for alternate credentials feature when running the HTA on Windows XP. Cmdkey.exe is natively available starting from Windows Vista. Config.ini – A configuration file for default settings. This file is...AcDown????? - Anime&Comic Downloader: AcDown????? v3.0 Beta5: ??AcDown?????????????,??????????????,????、????。?????Acfun????? ????32??64? Windows XP/Vista/7 ????????????? ??:????????Windows XP???,?????????.NET Framework 2.0???(x86)?.NET Framework 2.0???(x64),?????"?????????"??? ??v3.0 Beta5 ?????????? ???? ?? ???????? ???"????????"?? ????????????? ????????/???? ?? ???"????"??? ?? ??????????? ?? ?? ??????????? ?? ?????????????????? ??????????????????? ???????????????? ????????????Discussions???????? ????AcDown??????????????VFPX: GoFish 4 Beta 1: Current beta is Build 144 (released 2011-06-07 ) See the GoFish4 info page for details and video link: http://vfpx.codeplex.com/wikipage?title=GoFishOnTopReplica: Release 3.3.2: Incremental update over 3.3 and 3.3.1. Added Polish language translation (thanks to Jan Romanczyk). Added German language translation (thanks to Eric Hoffmann). Fixed some localization issues.SQL Compact Query Analyzer: Build 0.3.0.0: Beta build of SQL Compact Query Analyzer Features: - Execute SQL Queries against a SQL Server Compact Edition database - Easily edit the contents of the database - Supports SQLCE 3.1, 3.5 and 4.0 Prerequisites: - .NET Framework 4.0ShowUI: Write-UI -in PowerShell: ShowUI: ShowUI is a PowerShell module to help you write rich user interfaces in script.SharePoint 2010 FBA Pack: SharePoint 2010 FBA Pack 1.0.3: Fixed User Management screen when "RequiresQuestionAndAnswer" set to true Reply to Email Address can now be customized User Management page now only displays users that reside in the membership database Web parts have been changed to inherit from System.Web.UI.WebControls.WebParts.WebPart, so that they will display on anonymous application pages For installation and configuration steps see here.Babylon Toolkit: Babylon.Toolkit v1.0.4: Note about samples: In order to run samples, you need to configure visual studio to run them as an "Out-of-browser application". in order to do that, go to the property page of a sample project, go to the Debug tab, and check the "Out-of-browser application" radio. New features : New Effects BasicEffect3Lights (3 dir lights instead of 1 position light) CartoonEffect (work in progress) SkinnedEffect (with normal and specular map support) SplattingEffect (for multi-texturing with smooth ...SizeOnDisk: 1.0.8.2: With installerTerrariViewer: TerrariViewer v2.5: Added new items associated with Terraria v1.0.3 to the character editor. Fixed multiple bugs with Piggy Bank EditorySterling NoSQL OODB for .NET 4.0, Silverlight 4 and 5, and Windows Phone 7: Sterling OODB v1.5: Welcome to the Sterling 1.5 RTM. This version is backwards compatible without modification to the 1.4 beta. For the 1.0, you will need to upgrade your database. Please see this discussion for details. You must modify your 1.0 code for persistence. The 1.5 version defaults to an in-memory driver. To save to isolated storage or use one of the new mechanisms, see the available drivers and pass an instance of the appropriate one to your database (different databases may use different drivers). ...EnhSim: EnhSim 2.4.6 BETA: 2.4.6 BETAThis release supports WoW patch 4.1 at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 - Added in the proper...Grammar and Spell Checking Plugin for Windows Live Writer: Grammar Checker Plugin v1.0: First version of the grammar checker plugin for Windows Live Writer.patterns & practices: Project Silk: Project Silk Community Drop 10 - June 3, 2011: Changes from previous drop: Many code changes: please see the readme.mht for details. New "Application Notifications" chapter. Updated "Server-Side Implementation" chapter. Guidance Chapters Ready for Review The Word documents for the chapters are included with the source code in addition to the CHM to help you provide feedback. The PDF is provided as a separate download for your convenience. Installation Overview To install and run the reference implementation, you must perform the fol...Claims Based Identity & Access Control Guide: Release Candidate: Highlights of this release This is the release candidate drop of the new "Claims Identity Guide" edition. In this release you will find: All code samples, including all ACS v2: ACS as a Federation Provider - Showing authentication with LiveID, Google, etc. ACS as a FP with Multiple Business Partners. ACS and REST endpoints. Using a WP7 client with REST endpoints. All ACS specific chapters. Two new chapters on SharePoint (SSO and Federation) All revised v1 chapters We are now ...Terraria Map Generator: TerrariaMapTool 1.0.0.4 Beta: 1) Fixed the generated map.html file so that the file:/// is included in the base path. 2) Added the ability to use parallelization during generation. This will cause the program to use as many threads as there are physical cores. 3) Fixed some background overdraw.DotRas: DotRas v1.2 (Version 1.2.4168): This release includes compiled (and signed) versions of the binaries, PDBs, CHM help documentation, along with both C# and VB.NET examples. Please don't forget to rate the release! If you find a bug, please open a work item and give as much description as possible. Stack traces, which operating system(s) you're targeting, and build type is also very helpful for bug hunting. If you find something you believe to be a bug but are not sure, create a new discussion on the discussions board. Thank...BIDS Helper: BIDS Helper 1.5: New Features Duplicate Role feature for SSAS Biml Package Generator feature for SSIS Fixes and Updates Fixes issue with Printer Friendly Dimension Usage not working from the cube right-click menu Integrated new SSIS Expression Editor Control (http://expressioneditor.codeplex.com - v1.0.3.0) SSIS variable move dialog includes improved validation as well as UI enhancements SSIS Expression List now supports variables, constraints and nested objects, as well as UI enhancements New Enab...Caliburn Micro: WPF, Silverlight and WP7 made easy.: Caliburn.Micro v1.1 RTW: Download ContentsDebug and Release Assemblies Samples Changes.txt License.txt Release Highlights For WP7A new Tombstoning API based on ideas from Fluent NHibernate A new Launcher/Chooser API Strongly typed Navigation SimpleContainer included The full phone lifecycle is made easy to work with ie. we figure out whether your app is actually Resurrecting or just Continuing for you For WPFSupport for the Client Profile Better support for WinForms integration All PlatformsA power...VidCoder: 0.9.1: Added color coding to the Log window. Errors are highlighted in red, HandBrake logs are in black and VidCoder logs are in dark blue. Moved enqueue button to the right with the other control buttons. Added logic to report failures when errors are logged during the encode or when the encode finishes prematurely. Added Copy button to Log window. Adjusted audio track selection box to always show the full track name. Changed encode job progress bar to also be colored yellow when the enco...New ProjectsALogger: Alogger is a simple logger for time execution of methods. Uses Postsharp and SQL Server Compact. How to use?? Add Attribute to your method to check their speed of execution and its ready Sample: [AspectLogTime("Category")] private void SpeedMethod(string name) { //do something.. } Is it too simple? Azure WCF with WAS Portsharing: Sample WCF project with an Azure Webrole that supports TCP endpoints on the same port as Web (port 80). This is accomplished with the TCPPortSharing service. This project is a starter project to enable WAS (Windows Activation Service) with Windows Azure.DotNetToscana: DotNetToscana è lo User Group Toscano su .NET, un gruppo senza fini di lucro formato da persone con una forte passione per l’informatica e in particolare per prodotti e tecnologie legate al Microsoft .NET Framework.Email: Email providereriser: sandboxFacturación CFDI para Microempresas: Proyecto que pretende ayudar a la microempresa a realizar su transición de usar factura en papel a formato electrónicoFolder To SharePoint Metadata Migrator (Folders2SP): PowerShell 2.0 script to facilitate migration of SharePoint/Folder structure to a SPS2010 document library using words in the folders to set taxonomy field values, and web services to lookup source metadata and retrieve versions. Use Case: Migrate MOSS library to SPS library.Gestor de tikets de soporte técnico: Una aplicacion basada en ASP.NET que permite gestionar tikets de soporte técnicoGoogle Doc Uploader: Very simple application that allows you to upload documents to your own google document area with the right click of a mouse button.HTML App Host Framework for Phone 7: This is an HTML Application Host framework for building HTML/JavaScript for Windows Phone 7 with mango this will be for HTML5. The framework consists of controls needed to support embed html apps in a standard xap format used by the market place for deploying to phone 7.MOBZKeys: Press a hotkey to expand text fragments in any application. Unobtrusive, fully configurable from the task bar.MVC_imovies: Proyecto de tesis.RandomRat: RandomRat is a program for generating random sets that meet specific criteriaScenario Testing: Scenario Testing is an interactive tool to define your test scenarios by dragging and dropping methods to be tested. It is build using Workflow Foundation 4 (WF 4). The test scenarios can be saved and loaded again for testing.SEProject: SEProject Sharepoint 2010 Diagnostic Log Compression: This sharepoint extention helps you to compress,copy or move sharepoint uls log files to another location with a scheduled time for backup purpose.Snowball: Snowball is an in progress 2D Game Engine written in C#. It uses SlimDX under the covers but the underlying technology is abstracted away from the end user.T24 Project: T24 ProjectTaller Monitor: Taller MonitorTeam Build Deployer: Team Build Deployer makes it easy to deploy web application projects using Team Build 2010. The solution is written in C#, and enhanced build scripts, and enables Team build to use the built in web application deployment packaging configured found in Visual Studio 2010. This solution is intended to make continuous deployment easy and secure and reusable for any Visual Studio 2010 web application.Test SiteDataQuery SharePoint 2010: Software to testing SiteDataQuery Sharepoint 2010TextWrapper: A IIS managed module that enables word wrap of plain text content. Supports GZip and Deflate encoding. This module increases readability of text files that contain long lines.UMC Information System Alumni Center Website: This project is our final task for course Internet Programming II at Study Program of Information System, Faculty of Technology and Science at University of Ma Chung (UMC). UMC is private educational institution, first university in Indonesia applying Microsoft technology thoroughly called the total solution, which established in Malang, East Java, Indonesia. We named our project 'UMC Information System Alumni Center'. It doesn't mean this project is really used to be official website for ...WeatherDotCom Module for Orchard CMS: Using the Weather Channel feeds, you can connect to weather.com and pull in weather conditions for a particular search term. A live working demonstration of this module can be found on my website at jasongaylord.comWindows Phone Essentials: This library is focused on making the common things you have to do in every windows phone application, like persist application settings, use tasks/choosers, log/trace, threading/asynchronous development etc. testable.Wpf .Net Profiler: A .net profiler with wpf and sqlite

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Conceal packet loss in PCM stream

    - by ZeroDefect
    I am looking to use 'Packet Loss Concealment' to conceal lost PCM frames in an audio stream. Unfortunately, I cannot find a library that is accessible without all the licensing restrictions and code bloat (...up for some suggestions though). I have located some GPL code written by Steve Underwood for the Asterisk project which implements PLC. There are several limitations; although, as Steve suggests in his code, his algorithm can be applied to different streams with a bit of work. Currently, the code works with 8kHz 16-bit signed mono streams. Variations of the code can be found through a simple search of Google Code Search. My hope is that I can adapt the code to work with other streams. Initially, the goal is to adjust the algorithm for 8+ kHz, 16-bit signed, multichannel audio (all in a C++ environment). Eventually, I'm looking to make the code available under the GPL license in hopes that it could be of benefit to others... Attached is the code below with my efforts. The code includes a main function that will "drop" a number of frames with a given probability. Unfortunately, the code does not quite work as expected. I'm receiving EXC_BAD_ACCESS when running in gdb, but I don't get a trace from gdb when using 'bt' command. Clearly, I'm trampimg on memory some where but not sure exactly where. When I comment out the *amdf_pitch* function, the code runs without crashing... int main (int argc, char *argv[]) { std::ifstream fin("C:\\cc32kHz.pcm"); if(!fin.is_open()) { std::cout << "Failed to open input file" << std::endl; return 1; } std::ofstream fout_repaired("C:\\cc32kHz_repaired.pcm"); if(!fout_repaired.is_open()) { std::cout << "Failed to open output repaired file" << std::endl; return 1; } std::ofstream fout_lossy("C:\\cc32kHz_lossy.pcm"); if(!fout_lossy.is_open()) { std::cout << "Failed to open output repaired file" << std::endl; return 1; } audio::PcmConcealer Concealer; Concealer.Init(1, 16, 32000); //Generate random numbers; srand( time(NULL) ); int value = 0; int probability = 5; while(!fin.eof()) { char arr[2]; fin.read(arr, 2); //Generate's random number; value = rand() % 100 + 1; if(value <= probability) { char blank[2] = {0x00, 0x00}; fout_lossy.write(blank, 2); //Fill in data; Concealer.Fill((int16_t *)blank, 1); fout_repaired.write(blank, 2); } else { //Write data to file; fout_repaired.write(arr, 2); fout_lossy.write(arr, 2); Concealer.Receive((int16_t *)arr, 1); } } fin.close(); fout_repaired.close(); fout_lossy.close(); return 0; } PcmConcealer.hpp /* * Code adapted from Steve Underwood of the Asterisk Project. This code inherits * the same licensing restrictions as the Asterisk Project. */ #ifndef __PCMCONCEALER_HPP__ #define __PCMCONCEALER_HPP__ /** 1. What does it do? The packet loss concealment module provides a suitable synthetic fill-in signal, to minimise the audible effect of lost packets in VoIP applications. It is not tied to any particular codec, and could be used with almost any codec which does not specify its own procedure for packet loss concealment. Where a codec specific concealment procedure exists, the algorithm is usually built around knowledge of the characteristics of the particular codec. It will, therefore, generally give better results for that particular codec than this generic concealer will. 2. How does it work? While good packets are being received, the plc_rx() routine keeps a record of the trailing section of the known speech signal. If a packet is missed, plc_fillin() is called to produce a synthetic replacement for the real speech signal. The average mean difference function (AMDF) is applied to the last known good signal, to determine its effective pitch. Based on this, the last pitch period of signal is saved. Essentially, this cycle of speech will be repeated over and over until the real speech resumes. However, several refinements are needed to obtain smooth pleasant sounding results. - The two ends of the stored cycle of speech will not always fit together smoothly. This can cause roughness, or even clicks, at the joins between cycles. To soften this, the 1/4 pitch period of real speech preceeding the cycle to be repeated is blended with the last 1/4 pitch period of the cycle to be repeated, using an overlap-add (OLA) technique (i.e. in total, the last 5/4 pitch periods of real speech are used). - The start of the synthetic speech will not always fit together smoothly with the tail of real speech passed on before the erasure was identified. Ideally, we would like to modify the last 1/4 pitch period of the real speech, to blend it into the synthetic speech. However, it is too late for that. We could have delayed the real speech a little, but that would require more buffer manipulation, and hurt the efficiency of the no-lost-packets case (which we hope is the dominant case). Instead we use a degenerate form of OLA to modify the start of the synthetic data. The last 1/4 pitch period of real speech is time reversed, and OLA is used to blend it with the first 1/4 pitch period of synthetic speech. The result seems quite acceptable. - As we progress into the erasure, the chances of the synthetic signal being anything like correct steadily fall. Therefore, the volume of the synthesized signal is made to decay linearly, such that after 50ms of missing audio it is reduced to silence. - When real speech resumes, an extra 1/4 pitch period of sythetic speech is blended with the start of the real speech. If the erasure is small, this smoothes the transition. If the erasure is long, and the synthetic signal has faded to zero, the blending softens the start up of the real signal, avoiding a kind of "click" or "pop" effect that might occur with a sudden onset. 3. How do I use it? Before audio is processed, call plc_init() to create an instance of the packet loss concealer. For each received audio packet that is acceptable (i.e. not including those being dropped for being too late) call plc_rx() to record the content of the packet. Note this may modify the packet a little after a period of packet loss, to blend real synthetic data smoothly. When a real packet is not available in time, call plc_fillin() to create a sythetic substitute. That's it! */ /*! Minimum allowed pitch (66 Hz) */ #define PLC_PITCH_MIN(SAMPLE_RATE) ((double)(SAMPLE_RATE) / 66.6) /*! Maximum allowed pitch (200 Hz) */ #define PLC_PITCH_MAX(SAMPLE_RATE) ((SAMPLE_RATE) / 200) /*! Maximum pitch OLA window */ //#define PLC_PITCH_OVERLAP_MAX(SAMPLE_RATE) ((PLC_PITCH_MIN(SAMPLE_RATE)) >> 2) /*! The length over which the AMDF function looks for similarity (20 ms) */ #define CORRELATION_SPAN(SAMPLE_RATE) ((20 * (SAMPLE_RATE)) / 1000) /*! History buffer length. The buffer must also be at leat 1.25 times PLC_PITCH_MIN, but that is much smaller than the buffer needs to be for the pitch assessment. */ //#define PLC_HISTORY_LEN(SAMPLE_RATE) ((CORRELATION_SPAN(SAMPLE_RATE)) + (PLC_PITCH_MIN(SAMPLE_RATE))) namespace audio { typedef struct { /*! Consecutive erased samples */ int missing_samples; /*! Current offset into pitch period */ int pitch_offset; /*! Pitch estimate */ int pitch; /*! Buffer for a cycle of speech */ float *pitchbuf;//[PLC_PITCH_MIN]; /*! History buffer */ short *history;//[PLC_HISTORY_LEN]; /*! Current pointer into the history buffer */ int buf_ptr; } plc_state_t; class PcmConcealer { public: PcmConcealer(); ~PcmConcealer(); void Init(int channels, int bit_depth, int sample_rate); //Process a block of received audio samples. int Receive(short amp[], int frames); //Fill-in a block of missing audio samples. int Fill(short amp[], int frames); void Destroy(); private: int amdf_pitch(int min_pitch, int max_pitch, short amp[], int channel_index, int frames); void save_history(plc_state_t *s, short *buf, int channel_index, int frames); void normalise_history(plc_state_t *s); /** Holds the states of each of the channels **/ std::vector< plc_state_t * > ChannelStates; int plc_pitch_min; int plc_pitch_max; int plc_pitch_overlap_max; int correlation_span; int plc_history_len; int channel_count; int sample_rate; bool Initialized; }; } #endif PcmConcealer.cpp /* * Code adapted from Steve Underwood of the Asterisk Project. This code inherits * the same licensing restrictions as the Asterisk Project. */ #include "audio/PcmConcealer.hpp" /* We do a straight line fade to zero volume in 50ms when we are filling in for missing data. */ #define ATTENUATION_INCREMENT 0.0025 /* Attenuation per sample */ #if !defined(INT16_MAX) #define INT16_MAX (32767) #define INT16_MIN (-32767-1) #endif #ifdef WIN32 inline double rint(double x) { return floor(x + 0.5); } #endif inline short fsaturate(double damp) { if (damp > 32767.0) return INT16_MAX; if (damp < -32768.0) return INT16_MIN; return (short)rint(damp); } namespace audio { PcmConcealer::PcmConcealer() : Initialized(false) { } PcmConcealer::~PcmConcealer() { Destroy(); } void PcmConcealer::Init(int channels, int bit_depth, int sample_rate) { if(Initialized) return; if(channels <= 0 || bit_depth != 16) return; Initialized = true; channel_count = channels; this->sample_rate = sample_rate; ////////////// double min = PLC_PITCH_MIN(sample_rate); int imin = (int)min; double max = PLC_PITCH_MAX(sample_rate); int imax = (int)max; plc_pitch_min = imin; plc_pitch_max = imax; plc_pitch_overlap_max = (plc_pitch_min >> 2); correlation_span = CORRELATION_SPAN(sample_rate); plc_history_len = correlation_span + plc_pitch_min; ////////////// for(int i = 0; i < channel_count; i ++) { plc_state_t *t = new plc_state_t; memset(t, 0, sizeof(plc_state_t)); t->pitchbuf = new float[plc_pitch_min]; t->history = new short[plc_history_len]; ChannelStates.push_back(t); } } void PcmConcealer::Destroy() { if(!Initialized) return; while(ChannelStates.size()) { plc_state_t *s = ChannelStates.at(0); if(s) { if(s->history) delete s->history; if(s->pitchbuf) delete s->pitchbuf; memset(s, 0, sizeof(plc_state_t)); delete s; } ChannelStates.erase(ChannelStates.begin()); } ChannelStates.clear(); Initialized = false; } //Process a block of received audio samples. int PcmConcealer::Receive(short amp[], int frames) { if(!Initialized) return 0; int j = 0; for(int k = 0; k < ChannelStates.size(); k++) { int i; int overlap_len; int pitch_overlap; float old_step; float new_step; float old_weight; float new_weight; float gain; plc_state_t *s = ChannelStates.at(k); if (s->missing_samples) { /* Although we have a real signal, we need to smooth it to fit well with the synthetic signal we used for the previous block */ /* The start of the real data is overlapped with the next 1/4 cycle of the synthetic data. */ pitch_overlap = s->pitch >> 2; if (pitch_overlap > frames) pitch_overlap = frames; gain = 1.0 - s->missing_samples * ATTENUATION_INCREMENT; if (gain < 0.0) gain = 0.0; new_step = 1.0/pitch_overlap; old_step = new_step*gain; new_weight = new_step; old_weight = (1.0 - new_step)*gain; for (i = 0; i < pitch_overlap; i++) { int index = (i * channel_count) + j; amp[index] = fsaturate(old_weight * s->pitchbuf[s->pitch_offset] + new_weight * amp[index]); if (++s->pitch_offset >= s->pitch) s->pitch_offset = 0; new_weight += new_step; old_weight -= old_step; if (old_weight < 0.0) old_weight = 0.0; } s->missing_samples = 0; } save_history(s, amp, j, frames); j++; } return frames; } //Fill-in a block of missing audio samples. int PcmConcealer::Fill(short amp[], int frames) { if(!Initialized) return 0; int j =0; for(int k = 0; k < ChannelStates.size(); k++) { short *tmp = new short[plc_pitch_overlap_max]; int i; int pitch_overlap; float old_step; float new_step; float old_weight; float new_weight; float gain; short *orig_amp; int orig_len; orig_amp = amp; orig_len = frames; plc_state_t *s = ChannelStates.at(k); if (s->missing_samples == 0) { // As the gap in real speech starts we need to assess the last known pitch, //and prepare the synthetic data we will use for fill-in normalise_history(s); s->pitch = amdf_pitch(plc_pitch_min, plc_pitch_max, s->history + plc_history_len - correlation_span - plc_pitch_min, j, correlation_span); // We overlap a 1/4 wavelength pitch_overlap = s->pitch >> 2; // Cook up a single cycle of pitch, using a single of the real signal with 1/4 //cycle OLA'ed to make the ends join up nicely // The first 3/4 of the cycle is a simple copy for (i = 0; i < s->pitch - pitch_overlap; i++) s->pitchbuf[i] = s->history[plc_history_len - s->pitch + i]; // The last 1/4 of the cycle is overlapped with the end of the previous cycle new_step = 1.0/pitch_overlap; new_weight = new_step; for ( ; i < s->pitch; i++) { s->pitchbuf[i] = s->history[plc_history_len - s->pitch + i]*(1.0 - new_weight) + s->history[plc_history_len - 2*s->pitch + i]*new_weight; new_weight += new_step; } // We should now be ready to fill in the gap with repeated, decaying cycles // of what is in pitchbuf // We need to OLA the first 1/4 wavelength of the synthetic data, to smooth // it into the previous real data. To avoid the need to introduce a delay // in the stream, reverse the last 1/4 wavelength, and OLA with that. gain = 1.0; new_step = 1.0/pitch_overlap; old_step = new_step; new_weight = new_step; old_weight = 1.0 - new_step; for (i = 0; i < pitch_overlap; i++) { int index = (i * channel_count) + j; amp[index] = fsaturate(old_weight * s->history[plc_history_len - 1 - i] + new_weight * s->pitchbuf[i]); new_weight += new_step; old_weight -= old_step; if (old_weight < 0.0) old_weight = 0.0; } s->pitch_offset = i; } else { gain = 1.0 - s->missing_samples*ATTENUATION_INCREMENT; i = 0; } for ( ; gain > 0.0 && i < frames; i++) { int index = (i * channel_count) + j; amp[index] = s->pitchbuf[s->pitch_offset]*gain; gain -= ATTENUATION_INCREMENT; if (++s->pitch_offset >= s->pitch) s->pitch_offset = 0; } for ( ; i < frames; i++) { int index = (i * channel_count) + j; amp[i] = 0; } s->missing_samples += orig_len; save_history(s, amp, j, frames); delete [] tmp; j++; } return frames; } void PcmConcealer::save_history(plc_state_t *s, short *buf, int channel_index, int frames) { if (frames >= plc_history_len) { /* Just keep the last part of the new data, starting at the beginning of the buffer */ //memcpy(s->history, buf + len - plc_history_len, sizeof(short)*plc_history_len); int frames_to_copy = plc_history_len; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * (i + frames - plc_history_len)) + channel_index; s->history[i] = buf[index]; } s->buf_ptr = 0; return; } if (s->buf_ptr + frames > plc_history_len) { /* Wraps around - must break into two sections */ //memcpy(s->history + s->buf_ptr, buf, sizeof(short)*(plc_history_len - s->buf_ptr)); short *hist_ptr = s->history + s->buf_ptr; int frames_to_copy = plc_history_len - s->buf_ptr; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * i) + channel_index; hist_ptr[i] = buf[index]; } frames -= (plc_history_len - s->buf_ptr); //memcpy(s->history, buf + (plc_history_len - s->buf_ptr), sizeof(short)*len); frames_to_copy = frames; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * (i + (plc_history_len - s->buf_ptr))) + channel_index; s->history[i] = buf[index]; } s->buf_ptr = frames; return; } /* Can use just one section */ //memcpy(s->history + s->buf_ptr, buf, sizeof(short)*len); short *hist_ptr = s->history + s->buf_ptr; int frames_to_copy = frames; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * i) + channel_index; hist_ptr[i] = buf[index]; } s->buf_ptr += frames; } void PcmConcealer::normalise_history(plc_state_t *s) { short *tmp = new short[plc_history_len]; if (s->buf_ptr == 0) return; memcpy(tmp, s->history, sizeof(short)*s->buf_ptr); memcpy(s->history, s->history + s->buf_ptr, sizeof(short)*(plc_history_len - s->buf_ptr)); memcpy(s->history + plc_history_len - s->buf_ptr, tmp, sizeof(short)*s->buf_ptr); s->buf_ptr = 0; delete [] tmp; } int PcmConcealer::amdf_pitch(int min_pitch, int max_pitch, short amp[], int channel_index, int frames) { int i; int j; int acc; int min_acc; int pitch; pitch = min_pitch; min_acc = INT_MAX; for (i = max_pitch; i <= min_pitch; i++) { acc = 0; for (j = 0; j < frames; j++) { int index1 = (channel_count * (i+j)) + channel_index; int index2 = (channel_count * j) + channel_index; //std::cout << "Index 1: " << index1 << ", Index 2: " << index2 << std::endl; acc += abs(amp[index1] - amp[index2]); } if (acc < min_acc) { min_acc = acc; pitch = i; } } std::cout << "Pitch: " << pitch << std::endl; return pitch; } } P.S. - I must confess that digital audio is not my forte...

    Read the article

< Previous Page | 1 2 3 4 5