Search Results

Search found 128 results on 6 pages for 'lambdas'.

Page 5/6 | < Previous Page | 1 2 3 4 5 6  | Next Page >

  • C#: Is it possible to use expressions or functions as keys in a dictionary?

    - by Svish
    Would it work to use Expression<Func<T>> or Func<T> as keys in a dictionary? For example to cache the result of heavy calculations. For example, changing my very basic cache from a different question of mine a bit: public static class Cache<T> { // Alternatively using Expression<Func<T>> instead private static Dictionary<Func<T>, T> cache; static Cache() { cache = new Dictionary<Func<T>, T>(); } public static T GetResult(Func<T> f) { if (cache.ContainsKey(f)) return cache[f]; return cache[f] = f(); } } Would this even work? Edit: After a quick test, it seems like it actually works. But I discovered that it could probably be more generic, since it would now be one cache per return type... not sure how to change it so that wouldn't happen though... hmm Edit 2: Noo, wait... it actually doesn't. Well, for regular methods it does. But not for lambdas. They get various random method names even if they look the same. Oh well c",)

    Read the article

  • Boost lambda: Invoke method on object

    - by ckarras
    I'm looking at boost::lambda as a way to to make a generic algorithm that can work with any "getter" method of any class. The algorithm is used to detect duplicate values of a property, and I would like for it to work for any property of any class. In C#, I would do something like this: class Dummy { public String GetId() ... public String GetName() ... } IEnumerable<String> FindNonUniqueValues<ClassT> (Func<ClassT,String> propertyGetter) { ... } Example use of the method: var duplicateIds = FindNonUniqueValues<Dummy>(d => d.GetId()); var duplicateNames = FindNonUniqueValues<Dummy>(d => d.GetName()); I can get the for "any class" part to work, using either interfaces or template methods, but have not found yet how to make the "for any method" part work. Is there a way to do something similar to the "d = d.GetId()" lambda in C++ (either with or without Boost)? Alternative, more C++ian solutions to make the algorithm generic are welcome too. I'm using C++/CLI with VS2008, so I can't use C++0x lambdas.

    Read the article

  • Coding the Python way

    - by Aaron Moodie
    I've just spent the last half semester at Uni learning python. I've really enjoyed it, and was hoping for a few tips on how to write more 'pythonic' code. This is the __init__ class from a recent assignment I did. At the time I wrote it, I was trying to work out how I could re-write this using lambdas, or in a neater, more efficient way, but ran out of time. def __init__(self, dir): def _read_files(_, dir, files): for file in files: if file == "classes.txt": class_list = readtable(dir+"/"+file) for item in class_list: Enrol.class_info_dict[item[0]] = item[1:] if item[1] in Enrol.classes_dict: Enrol.classes_dict[item[1]].append(item[0]) else: Enrol.classes_dict[item[1]] = [item[0]] elif file == "subjects.txt": subject_list = readtable(dir+"/"+file) for item in subject_list: Enrol.subjects_dict[item[0]] = item[1] elif file == "venues.txt": venue_list = readtable(dir+"/"+file) for item in venue_list: Enrol.venues_dict[item[0]] = item[1:] elif file.endswith('.roll'): roll_list = readlines(dir+"/"+file) file = os.path.splitext(file)[0] Enrol.class_roll_dict[file] = roll_list for item in roll_list: if item in Enrol.enrolled_dict: Enrol.enrolled_dict[item].append(file) else: Enrol.enrolled_dict[item] = [file] try: os.path.walk(dir, _read_files, None) except: print "There was a problem reading the directory" As you can see, it's a little bulky. If anyone has the time or inclination, I'd really appreciate a few tips on some python best-practices. Thanks.

    Read the article

  • Is there a better way to write this LINQ query?

    - by Raj Aththanayake
    Hi Is there a better simplified way to write this query. My logic is if collection contains customer ids and countrycodes, do the query ordey by customer id ascending. If there are no contain id in CustIDs then do the order by customer name. Is there a better way to write this query? I'm not really familiar with complex lambdas. var custIdResult = (from Customer c in CustomerCollection where (c.CustomerID.ToLower().Contains(param.ToLower()) && (countryCodeFilters.Any(item => item.Equals(c.CountryCode))) ) select c).ToList(); if (custIdResult.Count > 0) { return from Customer c in custIdResult where ( c.CustomerName.ToLower().Contains(param.ToLower()) && countryCodeFilters.Any(item => item.Equals(c.CountryCode))) orderby c.CustomerID ascending select c; } else { return from Customer c in CustomerCollection where (c.CustomerName.ToLower().Contains(param.ToLower()) && countryCodeFilters.Any(item => item.Equals(c.CountryCode))) orderby c.CustomerName descending select c; }

    Read the article

  • Rails original release source code

    - by user547057
    Hi, I've been looking to read some ruby code(specifically Rails) but I don't want to start with the current version of Rails since it has a lot of stuff I don't need and even more stuff that I wouldn't probably understand. I want to read only the core of Rails and supposedly the early versions were small and kind of easy to wrap one's head around(even for a neophyte like me). I have tried searching for the original release of rails, but have not been able to find it. The github repo consists of thousands of commits and I don't want to wade through those. What I want is to know whether there is any place I can get a zip or tar file with the original rails source or even the other early versions. Pointers to links will be very much appreciated. Thanks. p.s I'm new to ruby programming but not programming in general(I know a little python and scheme) and I understand blocks, lambdas and OO stuff, so I think I can tackle the rails source code. If anyone knows of other ruby projects that make for good code reading, i'd love to know of those too.

    Read the article

  • Is there any class in the .NET Framework to represent a holding container for objects?

    - by Charles Prakash Dasari
    I am looking for a class that defines a holding structure for an object. The value for this object could be set at a later time than when this container is created. It is useful to pass such a structure in lambdas or in callback functions etc. Say: class HoldObject<T> { public T Value { get; set; } public bool IsValueSet(); public void WaitUntilHasValue(); } // and then we could use it like so ... HoldObject<byte[]> downloadedBytes = new HoldObject<byte[]>(); DownloadBytes("http://www.stackoverflow.com", sender => downloadedBytes.Value = sender.GetBytes()); It is rather easy to define this structure, but I am trying to see if one is available in FCL. I also want this to be an efficient structure that has all needed features like thread safety, efficient waiting etc. Any help is greatly appreciated.

    Read the article

  • MVC3 View For Loop values initialization

    - by Ryan
    So I have a for loop in my View that is supposed to render out the input boxes. Now inside these input boxes I want to put lables that disappear when you click on them. This is all simple. Now it's probably because my brain was wired for php first, and it has been difficult to get it to think in lambdas and object orientation, but I can't figure out how to do this: @{ for (int i = 0; i < 3; i++) { <div class="editor-label grid_2">User</div> Model.Users[i].UserFirstName = "First Name"; Model.Users[i].UserLastName = "Last Name"; Model.Users[i].UserEmailAddress = "Email Address"; <div class="grid_10"> @Html.TextBoxFor(m => Model.Users[i].UserFirstName, new { @class = "user-input" }) @Html.TextBoxFor(m => Model.Users[i].UserLastName, new { @class = "user-input" }) @Html.TextBoxFor(m => Model.Users[i].UserEmailAddress, new { @class = "user-input-long" }) @Html.CheckBoxFor(m => Model.Users[i].IsUserAdmin) <span>&nbsp;admin?</span> </div> <div class="clear"> </div> } } And initialize the values for the users. And you're probably thinking "Of course that won't work. You're going to get a Null Reference Exception", and you would be correct. I might need to initialize them somewhere else and I don't realize it but I'm just not sure. I've tried the [DefaultValue("First Name")] route and that doesn't work. I'm probably thinking about this wrong, but my brain is already shot from trying to figure out how to wire up these events to the controller, so any help would be appreciated!

    Read the article

  • How to convert a lambda to an std::function using templates

    - by retep998
    Basically, what I want to be able to do is take a lambda with any number of any type of parameters and convert it to an std::function. I've tried the following and neither method works. std::function([](){});//Complains that std::function is missing template parameters template <typename T> void foo(function<T> f){} foo([](){});//Complains that it cannot find a matching candidate The following code does work however, but it is not what I want because it requires explicitly stating the template parameters which does not work for generic code. std::function<void()>([](){}); I've been mucking around with functions and templates all evening and I just can't figure this out, so any help would be much appreciated. As mentioned in a comment, the reason I'm trying to do this is because I'm trying to implement currying in C++ using variadic templates. Unfortunately, this fails horribly when using lambdas. For example, I can pass a standard function using a function pointer. template <typename R, typename...A> void foo(R (*f)(A...)) {} void bar() {} int main() { foo(bar); } However, I can't figure out how to pass a lambda to such a variadic function. Why I'm interested in converting a generic lambda into an std::function is because I can do the following, but it ends up requiring that I explicitly state the template parameters to std::function which is what I am trying to avoid. template <typename R, typename...A> void foo(std::function<R(A...)>) {} int main() { foo(std::function<void()>([](){})); }

    Read the article

  • Please help!! Is there a better way to write this LINQ query

    - by Raj Aththanayake
    Hi Is there a better simplified way to write this query. My logic is if collection contains customer ids and countrycodes, do the query ordey by customer id ascending. If there are no contain id in CustIDs then do the order by customer name. Is there a better way to write this query? I'm not really familiar with complex lambdas. var custIdResult = (from Customer c in CustomerCollection where (c.CustomerID.ToLower().Contains(param.ToLower()) && (countryCodeFilters.Any(item => item.Equals(c.CountryCode))) ) select c).ToList(); if (custIdResult.Count > 0) { return from Customer c in custIdResult ( c.CustomerName.ToLower().Contains(param.ToLower()) && countryCodeFilters.Any(item => item.Equals(c.CountryCode)) ) orderby c.CustomerID ascending select c; } else { return from Customer c in CustomerCollection where ( c.CustomerName.ToLower().Contains(param.ToLower()) && countryCodeFilters.Any(item => item.Equals(c.CountryCode)) ) orderby c.CustomerName descending select c; }

    Read the article

  • boost::function & boost::lambda - call site invocation & accessing _1 and _2 as the type

    - by John Dibling
    Sorry for the confusing title. Let me explain via code: #include <string> #include <boost\function.hpp> #include <boost\lambda\lambda.hpp> #include <iostream> int main() { using namespace boost::lambda; boost::function<std::string(std::string, std::string)> f = _1.append(_2); std::string s = f("Hello", "There"); std::cout << s; return 0; } I'm trying to use function to create a function that uses the labda expressions to create a new return value, and invoke that function at the call site, s = f("Hello", "There"); When I compile this, I get: 1>------ Build started: Project: hacks, Configuration: Debug x64 ------ 1>Compiling... 1>main.cpp 1>.\main.cpp(11) : error C2039: 'append' : is not a member of 'boost::lambda::lambda_functor<T>' 1> with 1> [ 1> T=boost::lambda::placeholder<1> 1> ] Using MSVC 9. My fundamental understanding of function and lambdas may be lacking. The tutorials and docs did not help so far this morning. How do I do what I'm trying to do?

    Read the article

  • A C# implementation of the CallStream pattern

    - by Bertrand Le Roy
    Dusan published this interesting post a couple of weeks ago about a novel JavaScript chaining pattern: http://dbj.org/dbj/?p=514 It’s similar to many existing patterns, but the syntax is extraordinarily terse and it provides a new form of friction-free, plugin-less extensibility mechanism. Here’s a JavaScript example from Dusan’s post: CallStream("#container") (find, "div") (attr, "A", 1) (css, "color", "#fff") (logger); The interesting thing here is that the functions that are being passed as the first argument are arbitrary, they don’t need to be declared as plug-ins. Compare that with a rough jQuery equivalent that could look something like this: $.fn.logger = function () { /* ... */ } $("selector") .find("div") .attr("A", 1) .css("color", "#fff") .logger(); There is also the “each” method in jQuery that achieves something similar, but its syntax is a little more verbose. Of course, that this pattern can be expressed so easily in JavaScript owes everything to the extraordinary way functions are treated in that language, something Douglas Crockford called “the very best part of JavaScript”. One of the first things I thought while reading Dusan’s post was how I could adapt that to C#. After all, with Lambdas and delegates, C# also has its first-class functions. And sure enough, it works really really well. After about ten minutes, I was able to write this: CallStreamFactory.CallStream (p => Console.WriteLine("Yay!")) (Dump, DateTime.Now) (DumpFooAndBar, new { Foo = 42, Bar = "the answer" }) (p => Console.ReadKey()); Where the Dump function is: public static void Dump(object options) { Console.WriteLine(options.ToString()); } And DumpFooAndBar is: public static void DumpFooAndBar(dynamic options) { Console.WriteLine("Foo is {0} and bar is {1}.", options.Foo, options.Bar); } So how does this work? Well, it really is very simple. And not. Let’s say it’s not a lot of code, but if you’re like me you might need an Advil after that. First, I defined the signature of the CallStream method as follows: public delegate CallStream CallStream (Action<object> action, object options = null); The delegate define a call stream as something that takes an action (a function of the options) and an optional options object and that returns a delegate of its own type. Tricky, but that actually works, a delegate can return its own type. Then I wrote an implementation of that delegate that calls the action and returns itself: public static CallStream CallStream (Action<object> action, object options = null) { action(options); return CallStream; } Pretty nice, eh? Well, yes and no. What we are doing here is to execute a sequence of actions using an interesting novel syntax. But for this to be actually useful, you’d need to build a more specialized call stream factory that comes with some sort of context (like Dusan did in JavaScript). For example, you could write the following alternate delegate signature that takes a string and returns itself: public delegate StringCallStream StringCallStream(string message); And then write the following call stream (notice the currying): public static StringCallStream CreateDumpCallStream(string dumpPath) { StringCallStream str = null; var dump = File.AppendText(dumpPath); dump.AutoFlush = true; str = s => { dump.WriteLine(s); return str; }; return str; } (I know, I’m not closing that stream; sure; bad, bad Bertrand) Finally, here’s how you use it: CallStreamFactory.CreateDumpCallStream(@".\dump.txt") ("Wow, this really works.") (DateTime.Now.ToLongTimeString()) ("And that is all."); Next step would be to combine this contextual implementation with the one that takes an action parameter and do some really fun stuff. I’m only scratching the surface here. This pattern could reveal itself to be nothing more than a gratuitous mind-bender or there could be applications that we hardly suspect at this point. In any case, it’s a fun new construct. Or is this nothing new? You tell me… Comments are open :)

    Read the article

  • Creating Property Set Expression Trees In A Developer Friendly Way

    - by Paulo Morgado
    In a previous post I showed how to create expression trees to set properties on an object. The way I did it was not very developer friendly. It involved explicitly creating the necessary expressions because the compiler won’t generate expression trees with property or field set expressions. Recently someone contacted me the help develop some kind of command pattern framework that used developer friendly lambdas to generate property set expression trees. Simply putting, given this entity class: public class Person { public string Name { get; set; } } The person in question wanted to write code like this: var et = Set((Person p) => p.Name = "me"); Where et is the expression tree that represents the property assignment. So, if we can’t do this, let’s try the next best thing that is splitting retrieving the property information from the retrieving the value to assign o the property: var et = Set((Person p) => p.Name, () => "me"); And this is something that the compiler can handle. The implementation of Set receives an expression to retrieve the property information from and another expression the retrieve the value to assign to the property: public static Expression<Action<TEntity>> Set<TEntity, TValue>( Expression<Func<TEntity, TValue>> propertyGetExpression, Expression<Func<TValue>> valueExpression) The implementation of this method gets the property information form the body of the property get expression (propertyGetExpression) and the value expression (valueExpression) to build an assign expression and builds a lambda expression using the same parameter of the property get expression as its parameter: public static Expression<Action<TEntity>> Set<TEntity, TValue>( Expression<Func<TEntity, TValue>> propertyGetExpression, Expression<Func<TValue>> valueExpression) { var entityParameterExpression = (ParameterExpression)(((MemberExpression)(propertyGetExpression.Body)).Expression); return Expression.Lambda<Action<TEntity>>( Expression.Assign(propertyGetExpression.Body, valueExpression.Body), entityParameterExpression); } And now we can use the expression to translate to another context or just compile and use it: var et = Set((Person p) => p.Name, () => name); Console.WriteLine(person.Name); // Prints: p => (p.Name = “me”) var d = et.Compile(); d(person); Console.WriteLine(person.Name); // Prints: me It can even support closures: var et = Set((Person p) => p.Name, () => name); Console.WriteLine(person.Name); // Prints: p => (p.Name = value(<>c__DisplayClass0).name) var d = et.Compile(); name = "me"; d(person); Console.WriteLine(person.Name); // Prints: me name = "you"; d(person); Console.WriteLine(person.Name); // Prints: you Not so useful in the intended scenario (but still possible) is building an expression tree that receives the value to assign to the property as a parameter: public static Expression<Action<TEntity, TValue>> Set<TEntity, TValue>(Expression<Func<TEntity, TValue>> propertyGetExpression) { var entityParameterExpression = (ParameterExpression)(((MemberExpression)(propertyGetExpression.Body)).Expression); var valueParameterExpression = Expression.Parameter(typeof(TValue)); return Expression.Lambda<Action<TEntity, TValue>>( Expression.Assign(propertyGetExpression.Body, valueParameterExpression), entityParameterExpression, valueParameterExpression); } This new expression can be used like this: var et = Set((Person p) => p.Name); Console.WriteLine(person.Name); // Prints: (p, Param_0) => (p.Name = Param_0) var d = et.Compile(); d(person, "me"); Console.WriteLine(person.Name); // Prints: me d(person, "you"); Console.WriteLine(person.Name); // Prints: you The only caveat is that we need to be able to write code to read the property in order to write to it.

    Read the article

  • Introducing jLight &ndash; Talking to the DOM using Silverlight and jQuery.

    - by Timmy Kokke
    Introduction With the recent news about Silverlight on the Windows Phone and all the great Out-Of-Browser features in the upcoming Silverlight 4 you almost forget Silverlight is a browser plugin. It most often runs in a web browser and often as a control. In many cases you need to communicate with the browser to get information about textboxes, events or details about the browser itself. To do this you can use JavaScript from Silverlight. Although Silverlight works the same on every browser, JavaScript does not and it won’t be long before problems arise. To overcome differences in browser I like to use jQuery. The only downside of doing this is that there’s a lot more code needed that you would normally use when you write jQuery in JavaScript. Lately, I had to catch changes is the browser scrollbar and act to the new position. I also had to move the scrollbar when the user dragged around in the Silverlight application. With jQuery it was peanuts to get and set the right attributes, but I found that I had to write a lot of code on Silverlight side.  With a few refactoring I had a separated out the plumbing into a new class and could call only a few methods on that to get the same thing done. The idea for jLight was born. jLight vs. jQuery The main purpose of jLight is to take the ease of use of jQuery and bring it into Silverlight for handling DOM interaction. For example, to change the text color of a DIV to red, in jQuery you would write: jQuery("div").css("color","red"); In jLight the same thing looks like so: jQuery.Select("div").Css("color","red");   Another example. To change the offset in of the last SPAN you could write this in jQuery : jQuery("span:last").offset({left : 10, top : 100});   In jLight this would do the same: jQuery.Select("span:last").Offset(new {left = 10, top = 100 });   Callbacks Nothing too special so far. To get the same thing done using the “normal” HtmlPage.Window.Eval, it wouldn’t require too much effort. But to wire up a handler for events from the browser it’s a whole different story. Normally you need to register ScriptMembers, ScriptableTypes or write some code in JavaScript. jLight takes care of the plumbing and provide you with an simple interface in the same way jQuery would. If you would like to handle the scroll event of the BODY of your html page, you’ll have to bind the event using jQuery and have a function call back to a registered function in Silverlight. In the example below I assume there’s a method “SomeMethod” and it is registered as a ScriptableObject as “RegisteredFromSilverlight” from Silverlight.   jQuery("body:first").scroll(function() { var sl = document.getElementbyId("SilverlightControl"); sl.content.RegisteredFromSilverlight.SomeMethod($(this)); });       Using jLight  in Silverlight the code would be even simpler. The registration of RegisteredFromSilverlight  as ScriptableObject can be omitted.  Besides that, you don’t have to write any JavaScript or evaluate strings with JavaScript.   jQuery.Select("body:first").scroll(SomeMethod);   Lambdas Using a lambda in Silverlight can make it even simpler.  Each is the jQuery equivalent of foreach in C#. It calls a function for every element found by jQuery. In this example all INPUT elements of the text type are selected. The FromObject method is used to create a jQueryObject from an object containing a ScriptObject. The Val method from jQuery is used to get the value of the INPUT elements.   jQuery.Select("input:text").Each((element, index) => { textBox1.Text += jQueryObject.FromObject(element).Val(); return null; });   Ajax One thing jQuery is often used for is making Ajax calls. Making calls to services to external services can be done from Silverlight, but as easy as using jQuery. As an example I would like to show how jLight does this. Below is the entire code behind. It searches my name on twitter and shows the result. This example can be found in the source of the project. The GetJson method passes a Silverlight JsonValue to a callback. This callback instantiates Twit objects and adds them to a ListBox called TwitList.   public partial class DemoPage2 : UserControl { public DemoPage2() { InitializeComponent(); jQuery.Load(); }   private void CallButton_Click(object sender, RoutedEventArgs e) { jQuery.GetJson("http://search.twitter.com/search.json?lang=en&q=sorskoot", Done); }   private void Done(JsonValue arg) { var tweets = new List<Twit>(); foreach (JsonObject result in arg["results"]) { tweets.Add(new Twit() { Text = (string)result["text"], Image = (string)result["profile_image_url"], User = (string)result["from_user"] } ); } TwitList.ItemsSource = tweets; } }   public class Twit { public string User { get; set; } public string Image { get; set; } public string Text { get; set; } }   Conclusion Although jLight is still in development it can be used already.There isn’t much documentation yet, but if you know jQuery jLight isn’t very hard to use.  If you would like to try it, please let me know what you think and report any problems you run in to. jLight can be found at:   http://jlight.codeplex.com

    Read the article

  • Blog Buzz - Devoxx 2011

    - by Janice J. Heiss
    Some day I will make it to Devoxx – for now, I’m content to vicariously follow the blogs of attendees and pick up on what’s happening.  I’ve been doing more blog "fishing," looking for the best commentary on 2011 Devoxx. There’s plenty of food for thought – and the ideas are not half-baked.The bloggers are out in full, offering useful summaries and commentary on Devoxx goings-on.Constantin Partac, a Java developer and a member of Transylvania JUG, a community from Cluj-Napoca/Romania, offers an excellent summary of the Devoxx keynotes. Here’s a sample:“Oracle Opening Keynote and JDK 7, 8, and 9 Presentation•    Oracle is committed to Java and wants to provide support for it on any device.•    JSE 7 for Mac will be released next week.•    Oracle would like Java developers to be involved in JCP, to adopt a JSR and to attend local JUG meetings.•    JEE 7 will be released next year.•    JEE 7 is focused on cloud integration, some of the features are already implemented in glassfish 4 development branch.•    JSE 8 will be release in summer of 2013 due to “enterprise community request” as they can not keep the pace with an 18    month release cycle.•    The main features included in JSE8 are lambda support, project Jigsaw, new Date/Time API, project Coin++ and adding   support for sensors. JSE 9 probably will focus on some of these features:1.    self tuning JVM2.    improved native language integration3.    processing enhancement for big data4.    reification (adding runtime class type info for generic types)5.    unification of primitive and corresponding object classes6.    meta-object protocol in order to use type and methods define in other JVM languages7.    multi-tenancy8.    JVM resource management” Thanks Constantin! Ivan St. Ivanov, of SAP Labs Bulgaria, also commented on the keynotes with a different focus.  He summarizes Henrik Stahl’s look ahead to Java SE 8 and JavaFX 3.0; Cameron Purdy on Java EE and the cloud; celebrated Java Champion Josh Bloch on what’s good and bad about Java; Mark Reinhold’s quick look ahead to Java SE 9; and Brian Goetz on lambdas and default methods in Java SE 8. Here’s St. Ivanov’s account of Josh Bloch’s comments on the pluses of Java:“He started with the virtues of the platform. To name a few:    Tightly specified language primitives and evaluation order – int is always 32 bits and operations are executed always from left  to right, without compilers messing around    Dynamic linking – when you change a class, you need to recompile and rebuild just the jar that has it and not the whole application    Syntax  similarity with C/C++ – most existing developers at that time felt like at home    Object orientations – it was cool at that time as well as functional programming is today    It was statically typed language – helps in faster runtime, better IDE support, etc.    No operator overloading – well, I’m not sure why it is good. Scala has it for example and that’s why it is far better for defining DSLs. But I will not argue with Josh.”It’s worth checking out St. Ivanov’s summary of Bloch’s views on what’s not so great about Java as well. What's Coming in JAX-RS 2.0Marek Potociar, Principal Software Engineer at Oracle and currently specification lead of Java EE RESTful web services API (JAX-RS), blogged on his talk about what's coming in JAX-RS 2.0, scheduled for final release in mid-2012.  Here’s a taste:“Perhaps the most wanted addition to the JAX-RS is the Client API, that would complete the JAX-RS story, that is currently server-side only. In JAX-RS 2.0 we are adding a completely interface-based and fluent client API that blends nicely in with the existing fluent response builder pattern on the server-side. When we started with the client API, the first proposal contained around 30 classes. Thanks to the feedback from our Expert Group we managed to reduce the number of API classes to 14 (2 of them being exceptions)! The resulting is compact while at the same time we still managed to create an API that reflects the method invocation context flow (e.g. once you decide on the target URI and start setting headers on the request, your IDE will not try to offer you a URI setter in the code completion). This is a subtle but very important usability aspect of an API…” Obviously, Devoxx is a great Java conference, one that is hitting this year at a time when much is brewing in the platform and beginning to be anticipated.

    Read the article

  • Issues with ILMerge, Lambda Expressions and VS2010 merging?

    - by John Blumenauer
    A little Background For quite some time now, it’s been possible to merge multiple .NET assemblies into a single assembly using ILMerge in Visual Studio 2008.  This is especially helpful when writing wrapper assemblies for 3rd-party libraries where it’s desirable to minimize the number of assemblies for distribution.  During the merge process, ILMerge will take a set of assemblies and merge them into a single assembly.  The resulting assembly can be either an executable or a DLL and is identified as the primary assembly. Issue During a recent project, I discovered using ILMerge to merge assemblies containing lambda expressions in Visual Studio 2010 is resulting in invalid primary assemblies.  The code below is not where the initial issue was identified, I will merely use it to illustrate the problem at hand. In order to describe the issue, I created a console application and a class library for calculating a few math functions utilizing lambda expressions.  The code is available for download at the bottom of this blog entry. MathLib.cs using System; namespace MathLib { public static class MathHelpers { public static Func<double, double, double> Hypotenuse = (x, y) => Math.Sqrt(x * x + y * y); static readonly Func<int, int, bool> divisibleBy = (int a, int b) => a % b == 0; public static bool IsPrimeNumber(int x) { { for (int i = 2; i <= x / 2; i++) if (divisibleBy(x, i)) return false; return true; }; } } } Program.cs using System; using MathLib; namespace ILMergeLambdasConsole { class Program { static void Main(string[] args) { int n = 19; if (MathHelpers.IsPrimeNumber(n)) { Console.WriteLine(n + " is prime"); } else { Console.WriteLine(n + " is not prime"); } Console.ReadLine(); } } } Not surprisingly, the preceding code compiles, builds and executes without error prior to running the ILMerge tool.   ILMerge Setup In order to utilize ILMerge, the following changes were made to the project. The MathLib.dll assembly was built in release configuration and copied to the MathLib folder.  The following folder hierarchy was used for this example:   The project file for ILMergeLambdasConsole project file was edited to add the ILMerge post-build configuration.  The following lines were added near the bottom of the project file:  <Target Name="AfterBuild" Condition="'$(Configuration)' == 'Release'"> <Exec Command="&quot;..\..\lib\ILMerge\Ilmerge.exe&quot; /ndebug /out:@(MainAssembly) &quot;@(IntermediateAssembly)&quot; @(ReferenceCopyLocalPaths->'&quot;%(FullPath)&quot;', ' ')" /> <Delete Files="@(ReferenceCopyLocalPaths->'$(OutDir)%(DestinationSubDirectory)%(Filename)%(Extension)')" /> </Target> The ILMergeLambdasConsole project was modified to reference the MathLib.dll located in the MathLib folder above. ILMerge and ILMerge.exe.config was copied into the ILMerge folder shown above.  The contents of ILMerge.exe.config are: <?xml version="1.0" encoding="utf-8" ?> <configuration> <startup useLegacyV2RuntimeActivationPolicy="true"> <requiredRuntime safemode="true" imageVersion="v4.0.30319" version="v4.0.30319"/> </startup> </configuration> Post-ILMerge After compiling and building, the MathLib.dll assembly will be merged into the ILMergeLambdasConsole executable.  Unfortunately, executing ILMergeLambdasConsole.exe now results in a crash.  The ILMerge documentation recommends using PEVerify.exe to validate assemblies after merging.  Executing PEVerify.exe against the ILMergeLambdasConsole.exe assembly results in the following error:    Further investigation by using Reflector reveals the divisibleBy method in the MathHelpers class looks a bit questionable after the merge.     Prior to using ILMerge, the same divisibleBy method appeared as the following in Reflector: It’s pretty obvious something has gone awry during the merge process.  However, this is only occurring when building within the Visual Studio 2010 environment.  The same code and configuration built within Visual Studio 2008 executes fine.  I’m still investigating the issue.  If anyone has already experienced this situation and solved it, I would love to hear from you.  However, as of right now, it looks like something has gone terribly wrong when executing ILMerge against assemblies containing Lambdas in Visual Studio 2010. Solution Files ILMergeLambdaExpression

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • The last MVVM you'll ever need?

    - by Nuri Halperin
    As my MVC projects mature and grow, the need to have some omnipresent, ambient model properties quickly emerge. The application no longer has only one dynamic pieced of data on the page: A sidebar with a shopping cart, some news flash on the side – pretty common stuff. The rub is that a controller is invoked in context of a single intended request. The rest of the data, even though it could be just as dynamic, is expected to appear on it's own. There are many solutions to this scenario. MVVM prescribes creating elaborate objects which expose your new data as a property on some uber-object with more properties exposing the "side show" ambient data. The reason I don't love this approach is because it forces fairly acute awareness of the view, and soon enough you have many MVVM objects laying around, and views have to start doing null-checks in order to ensure you really supplied all the values before binding to them. Ick. Just as unattractive is the ViewData dictionary. It's not strongly typed, and in both this and the MVVM approach someone has to populate these properties – n'est pas? Where does that live? With MVC2, we get the formerly-futures  feature Html.RenderAction(). The feature allows you plant a line in a view, of the format: <% Html.RenderAction("SessionInterest", "Session"); %> While this syntax looks very clean, I can't help being bothered by it. MVC was touting a very strong separation of concerns, the Model taking on the role of the business logic, the controller handling route and performing minimal view-choosing operations and the views strictly focused on rendering out angled-bracket tags. The RenderAction() syntax has the view calling some controller and invoking it inline with it's runtime rendering. This – to my taste – embeds too much  knowledge of controllers into the view's code – which was allegedly forbidden.  The one way flow "Controller Receive Data –> Controller invoke Model –> Controller select view –> Controller Hand data to view" now gets a "View calls controller and gets it's own data" which is not so one-way anymore. Ick. I toyed with some other solutions a bit, including some base controllers, special view classes etc. My current favorite though is making use of the ExpandoObject and dynamic features with C# 4.0. If you follow Phil Haack or read a bit from David Heyden you can see the general picture emerging. The game changer is that using the new dynamic syntax, one can sprout properties on an object and make use of them in the view. Well that beats having a bunch of uni-purpose MVVM's any day! Rather than statically exposed properties, we'll just use the capability of adding members at runtime. Armed with new ideas and syntax, I went to work: First, I created a factory method to enrich the focuse object: public static class ModelExtension { public static dynamic Decorate(this Controller controller, object mainValue) { dynamic result = new ExpandoObject(); result.Value = mainValue; result.SessionInterest = CodeCampBL.SessoinInterest(); result.TagUsage = CodeCampBL.TagUsage(); return result; } } This gives me a nice fluent way to have the controller add the rest of the ambient "side show" items (SessionInterest, TagUsage in this demo) and expose them all as the Model: public ActionResult Index() { var data = SyndicationBL.Refresh(TWEET_SOURCE_URL); dynamic result = this.Decorate(data); return View(result); } So now what remains is that my view knows to expect a dynamic object (rather than statically typed) so that the ASP.NET page compiler won't barf: <%@ Page Language="C#" Title="Ambient Demo" MasterPageFile="~/Views/Shared/Ambient.Master" Inherits="System.Web.Mvc.ViewPage<dynamic>" %> Notice the generic ViewPage<dynamic>. It doesn't work otherwise. In the page itself, Model.Value property contains the main data returned from the controller. The nice thing about this, is that the master page (Ambient.Master) also inherits from the generic ViewMasterPage<dynamic>. So rather than the page worrying about all this ambient stuff, the side bars and panels for ambient data all reside in a master page, and can be rendered using the RenderPartial() syntax: <% Html.RenderPartial("TagCloud", Model.SessionInterest as Dictionary<string, int>); %> Note here that a cast is necessary. This is because although dynamic is magic, it can't figure out what type this property is, and wants you to give it a type so its binder can figure out the right property to bind to at runtime. I use as, you can cast if you like. So there we go – no violation of MVC, no explosion of MVVM models and voila – right? Well, I could not let this go without a tweak or two more. The first thing to improve, is that some views may not need all the properties. In that case, it would be a waste of resources to populate every property. The solution to this is simple: rather than exposing properties, I change d the factory method to expose lambdas - Func<T> really. So only if and when a view accesses a member of the dynamic object does it load the data. public static class ModelExtension { // take two.. lazy loading! public static dynamic LazyDecorate(this Controller c, object mainValue) { dynamic result = new ExpandoObject(); result.Value = mainValue; result.SessionInterest = new Func<Dictionary<string, int>>(() => CodeCampBL.SessoinInterest()); result.TagUsage = new Func<Dictionary<string, int>>(() => CodeCampBL.TagUsage()); return result; } } Now that lazy loading is in place, there's really no reason not to hook up all and any possible ambient property. Go nuts! Add them all in – they won't get invoked unless used. This now requires changing the signature of usage on the ambient properties methods –adding some parenthesis to the master view: <% Html.RenderPartial("TagCloud", Model.SessionInterest() as Dictionary<string, int>); %> And, of course, the controller needs to call LazyDecorate() rather than the old Decorate(). The final touch is to introduce a convenience method to the my Controller class , so that the tedium of calling Decorate() everywhere goes away. This is done quite simply by adding a bunch of methods, matching View(object), View(string,object) signatures of the Controller class: public ActionResult Index() { var data = SyndicationBL.Refresh(TWEET_SOURCE_URL); return AmbientView(data); } //these methods can reside in a base controller for the solution: public ViewResult AmbientView(dynamic data) { dynamic result = ModelExtension.LazyDecorate(this, data); return View(result); } public ViewResult AmbientView(string viewName, dynamic data) { dynamic result = ModelExtension.LazyDecorate(this, data); return View(viewName, result); } The call to AmbientView now replaces any call the View() that requires the ambient data. DRY sattisfied, lazy loading and no need to replace core pieces of the MVC pipeline. I call this a good MVC day. Enjoy!

    Read the article

  • Lambda&rsquo;s for .NET made easy&hellip;

    - by mbcrump
    The purpose of my blog is to explain things for a beginner to intermediate c# programmer. I’ve seen several blog post that use lambda expressions always assuming the audience is familiar with them. The purpose of this post is to make them simple and easily understood. Let’s begin with a definition. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. So anonymous function… delegates or expression tree types? I don’t get it??? Confused yet?   Lets break this into a few definitions and jump right into the code. anonymous function – is an "inline" statement or expression that can be used wherever a delegate type is expected. delegate - is a type that references a method. Once a delegate is assigned a method, it behaves exactly like that method. The delegate method can be used like any other method, with parameters and a return value. Expression trees - represent code in a tree-like data structure, where each node is an expression, for example, a method call or a binary operation such as x < y.   Don’t worry if this still sounds confusing, lets jump right into the code with a simple 3 line program. We are going to use a Function Delegate (all you need to remember is that this delegate returns a value.) Lambda expressions are used most commonly with the Func and Action delegates, so you will see an example of both of these. Lambda Expression 3 lines. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Func<int, int> myfunc = x => x *x;             Console.WriteLine(myfunc(6).ToString());             Console.ReadLine();         }       } } Is equivalent to Old way of doing it. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {               Console.WriteLine(myFunc(6).ToString());             Console.ReadLine();         }            static int myFunc(int x)          {              return x * x;            }       } } In the example, there is a single parameter, x, and the expression is x*x. I’m going to stop here to make sure you are still with me. A lambda expression is an unnamed method written in place of a delegate instance. In other words, the compiler converts the lambda expression to either a : A delegate instance An expression tree All lambda have the following form: (parameters) => expression or statement block Now look back to the ones we have created. It should start to sink in. Don’t get stuck on the => form, use it as an identifier of a lambda. A Lamba expression can also be written in the following form: Lambda Expression. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Func<int, int> myFunc = x =>             {                 return x * x;             };               Console.WriteLine(myFunc(6).ToString());             Console.ReadLine();         }       } } This form may be easier to read but consumes more space. Lets try an Action delegate – this delegate does not return a value. Action Delegate example. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             Action<string> myAction = (string x) => { Console.WriteLine(x); };             myAction("michael has made this so easy");                                   Console.ReadLine();         }       } } Lambdas can also capture outer variables (such as the example below) A lambda expression can reference the local variables and parameters of the method in which it’s defined. Outer variables referenced by a lambda expression are called captured variables. Capturing Outer Variables using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             string mike = "Michael";             Action<string> myAction = (string x) => {                 Console.WriteLine("{0}{1}", mike, x);          };             myAction(" has made this so easy");                                   Console.ReadLine();         }       } } Lamba’s can also with a strongly typed list to loop through a collection.   Used w a strongly typed list. using System; using System.Collections.Generic; using System.Linq; using System.Text;   namespace ConsoleApplication7 {     class Program     {          static void Main(string[] args)         {             List<string> list = new List<string>() { "1", "2", "3", "4" };             list.ForEach(s => Console.WriteLine(s));             Console.ReadLine();         }       } } Outputs: 1 2 3 4 I think this will get you started with Lambda’s, as always consult the MSDN documentation for more information. Still confused? Hopefully you are not.

    Read the article

  • C#: Adding Functionality to 3rd Party Libraries With Extension Methods

    - by James Michael Hare
    Ever have one of those third party libraries that you love but it's missing that one feature or one piece of syntactical candy that would make it so much more useful?  This, I truly think, is one of the best uses of extension methods.  I began discussing extension methods in my last post (which you find here) where I expounded upon what I thought were some rules of thumb for using extension methods correctly.  As long as you keep in line with those (or similar) rules, they can often be useful for adding that little extra functionality or syntactical simplification for a library that you have little or no control over. Oh sure, you could take an open source project, download the source and add the methods you want, but then every time the library is updated you have to re-add your changes, which can be cumbersome and error prone.  And yes, you could possibly extend a class in a third party library and override features, but that's only if the class is not sealed, static, or constructed via factories. This is the perfect place to use an extension method!  And the best part is, you and your development team don't need to change anything!  Simply add the using for the namespace the extensions are in! So let's consider this example.  I love log4net!  Of all the logging libraries I've played with, it, to me, is one of the most flexible and configurable logging libraries and it performs great.  But this isn't about log4net, well, not directly.  So why would I want to add functionality?  Well, it's missing one thing I really want in the ILog interface: ability to specify logging level at runtime. For example, let's say I declare my ILog instance like so:     using log4net;     public class LoggingTest     {         private static readonly ILog _log = LogManager.GetLogger(typeof(LoggingTest));         ...     }     If you don't know log4net, the details aren't important, just to show that the field _log is the logger I have gotten from log4net. So now that I have that, I can log to it like so:     _log.Debug("This is the lowest level of logging and just for debugging output.");     _log.Info("This is an informational message.  Usual normal operation events.");     _log.Warn("This is a warning, something suspect but not necessarily wrong.");     _log.Error("This is an error, some sort of processing problem has happened.");     _log.Fatal("Fatals usually indicate the program is dying hideously."); And there's many flavors of each of these to log using string formatting, to log exceptions, etc.  But one thing there isn't: the ability to easily choose the logging level at runtime.  Notice, the logging levels above are chosen at compile time.  Of course, you could do some fun stuff with lambdas and wrap it, but that would obscure the simplicity of the interface.  And yes there is a Logger property you can dive down into where you can specify a Level, but the Level properties don't really match the ILog interface exactly and then you have to manually build a LogEvent and... well, it gets messy.  I want something simple and sexy so I can say:     _log.Log(someLevel, "This will be logged at whatever level I choose at runtime!");     Now, some purists out there might say you should always know what level you want to log at, and for the most part I agree with them.  For the most party the ILog interface satisfies 99% of my needs.  In fact, for most application logging yes you do always know the level you will be logging at, but when writing a utility class, you may not always know what level your user wants. I'll tell you, one of my favorite things is to write reusable components.  If I had my druthers I'd write framework libraries and shared components all day!  And being able to easily log at a runtime-chosen level is a big need for me.  After all, if I want my code to really be re-usable, I shouldn't force a user to deal with the logging level I choose. One of my favorite uses for this is in Interceptors -- I'll describe Interceptors in my next post and some of my favorites -- for now just know that an Interceptor wraps a class and allows you to add functionality to an existing method without changing it's signature.  At the risk of over-simplifying, it's a very generic implementation of the Decorator design pattern. So, say for example that you were writing an Interceptor that would time method calls and emit a log message if the method call execution time took beyond a certain threshold of time.  For instance, maybe if your database calls take more than 5,000 ms, you want to log a warning.  Or if a web method call takes over 1,000 ms, you want to log an informational message.  This would be an excellent use of logging at a generic level. So here was my personal wish-list of requirements for my task: Be able to determine if a runtime-specified logging level is enabled. Be able to log generically at a runtime-specified logging level. Have the same look-and-feel of the existing Debug, Info, Warn, Error, and Fatal calls.    Having the ability to also determine if logging for a level is on at runtime is also important so you don't spend time building a potentially expensive logging message if that level is off.  Consider an Interceptor that may log parameters on entrance to the method.  If you choose to log those parameter at DEBUG level and if DEBUG is not on, you don't want to spend the time serializing those parameters. Now, mine may not be the most elegant solution, but it performs really well since the enum I provide all uses contiguous values -- while it's never guaranteed, contiguous switch values usually get compiled into a jump table in IL which is VERY performant - O(1) - but even if it doesn't, it's still so fast you'd never need to worry about it. So first, I need a way to let users pass in logging levels.  Sure, log4net has a Level class, but it's a class with static members and plus it provides way too many options compared to ILog interface itself -- and wouldn't perform as well in my level-check -- so I define an enum like below.     namespace Shared.Logging.Extensions     {         // enum to specify available logging levels.         public enum LoggingLevel         {             Debug,             Informational,             Warning,             Error,             Fatal         }     } Now, once I have this, writing the extension methods I need is trivial.  Once again, I would typically /// comment fully, but I'm eliminating for blogging brevity:     namespace Shared.Logging.Extensions     {         // the extension methods to add functionality to the ILog interface         public static class LogExtensions         {             // Determines if logging is enabled at a given level.             public static bool IsLogEnabled(this ILog logger, LoggingLevel level)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         return logger.IsDebugEnabled;                     case LoggingLevel.Informational:                         return logger.IsInfoEnabled;                     case LoggingLevel.Warning:                         return logger.IsWarnEnabled;                     case LoggingLevel.Error:                         return logger.IsErrorEnabled;                     case LoggingLevel.Fatal:                         return logger.IsFatalEnabled;                 }                                 return false;             }             // Logs a simple message - uses same signature except adds LoggingLevel             public static void Log(this ILog logger, LoggingLevel level, object message)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.Debug(message);                         break;                     case LoggingLevel.Informational:                         logger.Info(message);                         break;                     case LoggingLevel.Warning:                         logger.Warn(message);                         break;                     case LoggingLevel.Error:                         logger.Error(message);                         break;                     case LoggingLevel.Fatal:                         logger.Fatal(message);                         break;                 }             }             // Logs a message and exception to the log at specified level.             public static void Log(this ILog logger, LoggingLevel level, object message, Exception exception)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.Debug(message, exception);                         break;                     case LoggingLevel.Informational:                         logger.Info(message, exception);                         break;                     case LoggingLevel.Warning:                         logger.Warn(message, exception);                         break;                     case LoggingLevel.Error:                         logger.Error(message, exception);                         break;                     case LoggingLevel.Fatal:                         logger.Fatal(message, exception);                         break;                 }             }             // Logs a formatted message to the log at the specified level.              public static void LogFormat(this ILog logger, LoggingLevel level, string format,                                          params object[] args)             {                 switch (level)                 {                     case LoggingLevel.Debug:                         logger.DebugFormat(format, args);                         break;                     case LoggingLevel.Informational:                         logger.InfoFormat(format, args);                         break;                     case LoggingLevel.Warning:                         logger.WarnFormat(format, args);                         break;                     case LoggingLevel.Error:                         logger.ErrorFormat(format, args);                         break;                     case LoggingLevel.Fatal:                         logger.FatalFormat(format, args);                         break;                 }             }         }     } So there it is!  I didn't have to modify the log4net source code, so if a new version comes out, i can just add the new assembly with no changes.  I didn't have to subclass and worry about developers not calling my sub-class instead of the original.  I simply provide the extension methods and it's as if the long lost extension methods were always a part of the ILog interface! Consider a very contrived example using the original interface:     // using the original ILog interface     public class DatabaseUtility     {         private static readonly ILog _log = LogManager.Create(typeof(DatabaseUtility));                 // some theoretical method to time         IDataReader Execute(string statement)         {             var timer = new System.Diagnostics.Stopwatch();                         // do DB magic                                    // this is hard-coded to warn, if want to change at runtime tough luck!             if (timer.ElapsedMilliseconds > 5000 && _log.IsWarnEnabled)             {                 _log.WarnFormat("Statement {0} took too long to execute.", statement);             }             ...         }     }     Now consider this alternate call where the logging level could be perhaps a property of the class          // using the original ILog interface     public class DatabaseUtility     {         private static readonly ILog _log = LogManager.Create(typeof(DatabaseUtility));                 // allow logging level to be specified by user of class instead         public LoggingLevel ThresholdLogLevel { get; set; }                 // some theoretical method to time         IDataReader Execute(string statement)         {             var timer = new System.Diagnostics.Stopwatch();                         // do DB magic                                    // this is hard-coded to warn, if want to change at runtime tough luck!             if (timer.ElapsedMilliseconds > 5000 && _log.IsLogEnabled(ThresholdLogLevel))             {                 _log.LogFormat(ThresholdLogLevel, "Statement {0} took too long to execute.",                     statement);             }             ...         }     } Next time, I'll show one of my favorite uses for these extension methods in an Interceptor.

    Read the article

  • CodePlex Daily Summary for Friday, March 26, 2010

    CodePlex Daily Summary for Friday, March 26, 2010New Projects.NET settings class generator T4 templates: A couple of T4 templates to generate a Settings class for your .NET project. Allows you to define your application settings in an XML file and have...AlphaPagedList: AlphaPagedList makes it easier for .Net developers to write paging code. Based on PagedList it allows you to take any List<T> and split it based on...C# Projects: C# ProjectsChitme: Aenean feugiat pharetra enim rhoncus viverra. In at nunc nec sem varius bibendum. Aliquam erat volutpat. Nullam fringilla facilisis massa et eleife...CloudCache - Distributed Cache Tier with Azure: Cloudcache makes it easier for you to manage and deploy a distributed caching tier to Windows Azure. Included is a web-dashboard in MVC 2.0, Memcac...Composer: Composer is an extensible Compositional Architecture framework, providing a set of functionality such as Inversion of Control container (IoC), Depe...Data Connection Suite: Data Connection Suite is a set of easy to use data connection string builder dialogs & controls ready to be integrated in any .NET application.DatabaseHandler: Database HandlerEPiServer Blog Page Provider: A example page provider implementation for EPiServer that supports external blog sources for pages, Blogger and WordPress supported out of the box ...Extended MessageBox: ExtendedMessageBox makes it easier to display messages from your Windows applications. Based on the built-in .NET MessageBox class functionality, i...FluentPath: FluentPath implements a modern wrapper around System.IO, using modern patterns such as fluent APIs and Lambdas. By using FluentPath instead of Syst...Halcyone : Silverlight without pain: Halcyone is application framework for Silverlight that should make live of developers easier =)IlluminaRT: Real-time renderingme2: Mista Engine 2MessegeBox RightToLeft Lib: This is really simple lib project for use RTL in MessegeBox class. This just for short code and default option for RTL.MS Word Automation Service: A MS Word Automation service that comsumes a Word template and combines with XML to produce a word document. Currently in production. Must add some...SharePoint - Site Request InfoPath Form Template: This template allow portal user to enter initial information for requesting of creating a new SharePoint site. TextFlow - Text Editor: TextFlow is a fast and light text editor that simplifies day-to-day tasks. You can create letters and documents through TextFlow. It also includes ...TiledLib: A library for using Tiled (http://mapeditor.org) levels in XNA Game Studio projects. Includes a content pipeline extension and runtime library.wcf learning 2010: myWCFprojectsNew Releases.NET settings class generator T4 templates: Example 1: An example project containing the T4 templates and associated files. SingleSite - generate settings for a single site MultiSite - generate setting...AccessibilityChecker: Accessibility Checker V0.1: SharePoint Accessibility Checker V0.1AlphaPagedList: AlphaPagedList v0.9: Initial release of AlphaPagedListASP.Net RIA Controls: Version 1.1 Beta: New XHTML compliant version with alternative content support if no plugin installed.Business & System Analysis Templates and Best Practices: R 00: You may find out here the structured on my own materials from from Luxoft ReqLabs 2009 + short presentation about System Analysis and Modelling. Th...CloudCache - Distributed Cache Tier with Azure: v1.0.0.0: First release! More information at http://blog.shutupandcode.net/?p=935CycleMania Starter Kit EAP - ASP.NET 4 Problem - Design - Solution: Cyclemania 0.08.39: implemented client side functions on remainder of account pagesDevTreks -social budgeting that improves lives and livelihoods: Social Budgeting Web Software, DevTreks alpha 3d: Alpha 3d is a general bug fix -tweaking pagination, navigation, packaging, file system storage, page validation, security, locals, and linked views.Digital Media Processing Project 1: Image Processor: Image Processor 1.01: Supports opening files through Windows Explorer or by drag and drop.Extended MessageBox: ExtendedMessageBox Runtime Version 1.2: Initial releaseExtended MessageBox: SourceCode for Version 1.2: Initial SourceCodeFluent Ribbon Control Suite: Fluent Ribbon Control Suite 1.0: Fluent Ribbon Control Suite 1.0 Includes: Fluent.dll (with .pdb and .xml, debug and release version) Showcase Application Samples Foundation (T...FluentPath: FluentPath Beta: The Beta release of FluentPath.HaterAide ORM: HaterAide ORM 1.5: This version is a, more or less, rewrite of the code base. Also many new features have been added in this release: 1) Foreign keys are now added to...iTuner - The iTunes Companion: iTuner 1.2.3735 Beta: V1.2 allows you to synchronize one or more iTunes playlists to a USB MP3 player. This continues the evolution yet maintains the minimalistic appro...LogWin-Logging Your Computer Activities: LogWin-Logging your computer activities: This program is logging your computer activities and display them as table and pie chart. It is made by native C , HTML Dialog and Google Chart API.MessegeBox RightToLeft Lib: MessegeBoxRTL-1.0.0.0_BIN: My First upload.. This is binary release only. Have fun.MessegeBox RightToLeft Lib: MessegeBoxRTL-1.0.0.0_SRC: My first upload.. This is source code with binary. Have fun.MS Word Automation Service: Alpha: In production already, but who cares. It works.MultiMenu ASP.NET Cascading Menu WebControl: MultiMenu 2.6 ASP.NET Menu: Fixed problems that prevented the menu from working with the XHTML DocTypes Added support for IE 7-8 Added XmlLoading and XmlLoaded events Ad...netgod: LanyoWebBrowser: Lanyo ERP ClientnopCommerce. Open Source online shop e-commerce solution.: nopCommerce 1.50: To see the full list of fixes and changes please visit the release notes page (http://www.nopCommerce.com/ReleaseNotes.aspx).Open NFe: Open NFe v1.9.7: Fontes do DANFe 1.9.7 Trim na conversão TXT para XMLpatterns & practices - Smart Client Guidance: Smart Client Software Factory 2010 Beta Source: The Smart Client Software Factory 2010 provides an integrated set of guidance that assists architects and developers in creating composite smart cl...Physics Helper for Silverlight, WPF, Blend, and Farseer: PhysicsHelper 3.0.0.5 Alpha: This release supports Windows Phone 7 Series Development, along with the Silverlight 3 and WPF support. It requires Visual Studio 2010, plus the Wi...Protein Insight: ProteinInsight V2.0.1: Protein Insight is protein structure visualization system. Visualization rendering engine is based on native C and Direct3D, plug-in is based on CL...PSFGeneric: ERP / CRM business management and administration: PSFGeneric 1.4.0.9000 Manual and power-ups ASNIA: PSFGeneric 1.4.0.9000 Tareas 2.1.0 MySQL Persistente 1.0.3 TM-U220 40 col. Driver 1.0.0 Gestor Contable Básico 1.1.2.1 Cafetería 1.1.6 Catalogo 1....QuestTracker: QuestTracker 0.2: Primary new feature: Import/Export Quest Log. Deleting anything will cause an automatic export prior to deletion, automatically backing up your log...Reusable Library: V1.0.5: A collection of reusable abstractions for enterprise application developer.Reusable Library Demo: Reusable Library Demo v1.0.3: A demonstration of reusable abstractions for enterprise application developerSharePoint - Site Request InfoPath Form Template: SharePoint - Site Request InfoPath Form Template: This template allow portal user to enter initial information for requesting of creating a new SharePoint site To install: 1. Run the SiteRequest.m...Silverlight Gantt Chart: Silverlight Gantt Chart 1.2: Updates include ability to add GanttNodeSections that allow for multiple GanttItems in a single row.Spiral Architecture Driven Development (SADD): SADD v.1.0: This is the First complete Release with the NEW materials now all in English ! The abstract from the main article named "SADD-MSAJ-The Spiral Arc...Spiral Architecture Driven Development (SADD) for Russian: SADD v.1.0: Это Первая Версия полного релиза SADD на русском языке. Отрывок из этой статьи опубликован в Microsoft Architecture Journal #23, вы можете найти в ...Sprite Sheet Packer: 2.3 Release: SpriteSheetPacker now supports saved user settings so the app will now remember your previous values for padding, image size, image options, whethe...Standalone XQuery Implementation in .NET: 1.4: This is version 1.4 of the QueryMachine.XQuery. It's includes bug fixes and performance optimization. Document load time is dramatically increased...TextFlow - Text Editor: Kernel: TextFlow core KernelTextFlow - Text Editor: TextFlow Beta 3 Technical Preview: This is a technical preview of TextFlow and is made to run for 40 days after which it will expire. Changes : 140 Bug fixes Supports Windows(R) 7...TiledLib: TiledLib 1.0: First release of TiledLib. This download is for prebuilt DLLs and a demo project. For the full source code, use the Source Code tab to download the...UnGrouper: Current build: This is a preview build. Hide and show the main window with winkey+a. IMPORTANT NOTE: You must close all applications before launching this build ...VCC: Latest build, v2.1.30325.0: Automatic drop of latest buildWCF Metal: WCFMetal 0.3.0.0: WCFMetal 0.3.0.0Copyright © 2010 John Leitch Distributed under the terms of the GNU General Public License Summary By utilizing LINQ to SQL gene...Web Log Analyzer: Release Indihiang 1.0: For installation and how to use, please read Indihiang portal: http://wiki.indihiang.com What's New in Indihiang 1.0 ? check http://geeks.netindone...異世界の新着動画: Ver. 10-03-25: ニコ生仕様に対応Most Popular ProjectsMetaSharpRawrWBFS ManagerASP.NET Ajax LibrarySilverlight ToolkitMicrosoft SQL Server Product Samples: DatabaseAJAX Control ToolkitLiveUpload to FacebookWindows Presentation Foundation (WPF)ASP.NETMost Active ProjectsRawrjQuery Library for SharePoint Web ServicesBlogEngine.NETFarseer Physics EngineFacebook Developer ToolkitLINQ to TwitterFluent Ribbon Control SuiteTable2ClassNB_Store - Free DotNetNuke Ecommerce Catalog ModulePHPExcel

    Read the article

  • C#/.NET Little Wonders: The Predicate, Comparison, and Converter Generic Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last three weeks, we examined the Action family of delegates (and delegates in general), the Func family of delegates, and the EventHandler family of delegates and how they can be used to support generic, reusable algorithms and classes. This week I will be completing my series on the generic delegates in the .NET Framework with a discussion of three more, somewhat less used, generic delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>. These are older generic delegates that were introduced in .NET 2.0, mostly for use in the Array and List<T> classes.  Though older, it’s good to have an understanding of them and their intended purpose.  In addition, you can feel free to use them yourself, though obviously you can also use the equivalents from the Func family of delegates instead. Predicate<T> – delegate for determining matches The Predicate<T> delegate was a very early delegate developed in the .NET 2.0 Framework to determine if an item was a match for some condition in a List<T> or T[].  The methods that tend to use the Predicate<T> include: Find(), FindAll(), FindLast() Uses the Predicate<T> delegate to finds items, in a list/array of type T, that matches the given predicate. FindIndex(), FindLastIndex() Uses the Predicate<T> delegate to find the index of an item, of in a list/array of type T, that matches the given predicate. The signature of the Predicate<T> delegate (ignoring variance for the moment) is: 1: public delegate bool Predicate<T>(T obj); So, this is a delegate type that supports any method taking an item of type T and returning bool.  In addition, there is a semantic understanding that this predicate is supposed to be examining the item supplied to see if it matches a given criteria. 1: // finds first even number (2) 2: var firstEven = Array.Find(numbers, n => (n % 2) == 0); 3:  4: // finds all odd numbers (1, 3, 5, 7, 9) 5: var allEvens = Array.FindAll(numbers, n => (n % 2) == 1); 6:  7: // find index of first multiple of 5 (4) 8: var firstFiveMultiplePos = Array.FindIndex(numbers, n => (n % 5) == 0); This delegate has typically been succeeded in LINQ by the more general Func family, so that Predicate<T> and Func<T, bool> are logically identical.  Strictly speaking, though, they are different types, so a delegate reference of type Predicate<T> cannot be directly assigned to a delegate reference of type Func<T, bool>, though the same method can be assigned to both. 1: // SUCCESS: the same lambda can be assigned to either 2: Predicate<DateTime> isSameDayPred = dt => dt.Date == DateTime.Today; 3: Func<DateTime, bool> isSameDayFunc = dt => dt.Date == DateTime.Today; 4:  5: // ERROR: once they are assigned to a delegate type, they are strongly 6: // typed and cannot be directly assigned to other delegate types. 7: isSameDayPred = isSameDayFunc; When you assign a method to a delegate, all that is required is that the signature matches.  This is why the same method can be assigned to either delegate type since their signatures are the same.  However, once the method has been assigned to a delegate type, it is now a strongly-typed reference to that delegate type, and it cannot be assigned to a different delegate type (beyond the bounds of variance depending on Framework version, of course). Comparison<T> – delegate for determining order Just as the Predicate<T> generic delegate was birthed to give Array and List<T> the ability to perform type-safe matching, the Comparison<T> was birthed to give them the ability to perform type-safe ordering. The Comparison<T> is used in Array and List<T> for: Sort() A form of the Sort() method that takes a comparison delegate; this is an alternate way to custom sort a list/array from having to define custom IComparer<T> classes. The signature for the Comparison<T> delegate looks like (without variance): 1: public delegate int Comparison<T>(T lhs, T rhs); The goal of this delegate is to compare the left-hand-side to the right-hand-side and return a negative number if the lhs < rhs, zero if they are equal, and a positive number if the lhs > rhs.  Generally speaking, null is considered to be the smallest value of any reference type, so null should always be less than non-null, and two null values should be considered equal. In most sort/ordering methods, you must specify an IComparer<T> if you want to do custom sorting/ordering.  The Array and List<T> types, however, also allow for an alternative Comparison<T> delegate to be used instead, essentially, this lets you perform the custom sort without having to have the custom IComparer<T> class defined. It should be noted, however, that the LINQ OrderBy(), and ThenBy() family of methods do not support the Comparison<T> delegate (though one could easily add their own extension methods to create one, or create an IComparer() factory class that generates one from a Comparison<T>). So, given this delegate, we could use it to perform easy sorts on an Array or List<T> based on custom fields.  Say for example we have a data class called Employee with some basic employee information: 1: public sealed class Employee 2: { 3: public string Name { get; set; } 4: public int Id { get; set; } 5: public double Salary { get; set; } 6: } And say we had a List<Employee> that contained data, such as: 1: var employees = new List<Employee> 2: { 3: new Employee { Name = "John Smith", Id = 2, Salary = 37000.0 }, 4: new Employee { Name = "Jane Doe", Id = 1, Salary = 57000.0 }, 5: new Employee { Name = "John Doe", Id = 5, Salary = 60000.0 }, 6: new Employee { Name = "Jane Smith", Id = 3, Salary = 59000.0 } 7: }; Now, using the Comparison<T> delegate form of Sort() on the List<Employee>, we can sort our list many ways: 1: // sort based on employee ID 2: employees.Sort((lhs, rhs) => Comparer<int>.Default.Compare(lhs.Id, rhs.Id)); 3:  4: // sort based on employee name 5: employees.Sort((lhs, rhs) => string.Compare(lhs.Name, rhs.Name)); 6:  7: // sort based on salary, descending (note switched lhs/rhs order for descending) 8: employees.Sort((lhs, rhs) => Comparer<double>.Default.Compare(rhs.Salary, lhs.Salary)); So again, you could use this older delegate, which has a lot of logical meaning to it’s name, or use a generic delegate such as Func<T, T, int> to implement the same sort of behavior.  All this said, one of the reasons, in my opinion, that Comparison<T> isn’t used too often is that it tends to need complex lambdas, and the LINQ ability to order based on projections is much easier to use, though the Array and List<T> sorts tend to be more efficient if you want to perform in-place ordering. Converter<TInput, TOutput> – delegate to convert elements The Converter<TInput, TOutput> delegate is used by the Array and List<T> delegate to specify how to convert elements from an array/list of one type (TInput) to another type (TOutput).  It is used in an array/list for: ConvertAll() Converts all elements from a List<TInput> / TInput[] to a new List<TOutput> / TOutput[]. The delegate signature for Converter<TInput, TOutput> is very straightforward (ignoring variance): 1: public delegate TOutput Converter<TInput, TOutput>(TInput input); So, this delegate’s job is to taken an input item (of type TInput) and convert it to a return result (of type TOutput).  Again, this is logically equivalent to a newer Func delegate with a signature of Func<TInput, TOutput>.  In fact, the latter is how the LINQ conversion methods are defined. So, we could use the ConvertAll() syntax to convert a List<T> or T[] to different types, such as: 1: // get a list of just employee IDs 2: var empIds = employees.ConvertAll(emp => emp.Id); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.ConvertAll(emp => (int)emp.Salary); Note that the expressions above are logically equivalent to using LINQ’s Select() method, which gives you a lot more power: 1: // get a list of just employee IDs 2: var empIds = employees.Select(emp => emp.Id).ToList(); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.Select(emp => (int)emp.Salary).ToList(); The only difference with using LINQ is that many of the methods (including Select()) are deferred execution, which means that often times they will not perform the conversion for an item until it is requested.  This has both pros and cons in that you gain the benefit of not performing work until it is actually needed, but on the flip side if you want the results now, there is overhead in the behind-the-scenes work that support deferred execution (it’s supported by the yield return / yield break keywords in C# which define iterators that maintain current state information). In general, the new LINQ syntax is preferred, but the older Array and List<T> ConvertAll() methods are still around, as is the Converter<TInput, TOutput> delegate. Sidebar: Variance support update in .NET 4.0 Just like our descriptions of Func and Action, these three early generic delegates also support more variance in assignment as of .NET 4.0.  Their new signatures are: 1: // comparison is contravariant on type being compared 2: public delegate int Comparison<in T>(T lhs, T rhs); 3:  4: // converter is contravariant on input and covariant on output 5: public delegate TOutput Contravariant<in TInput, out TOutput>(TInput input); 6:  7: // predicate is contravariant on input 8: public delegate bool Predicate<in T>(T obj); Thus these delegates can now be assigned to delegates allowing for contravariance (going to a more derived type) or covariance (going to a less derived type) based on whether the parameters are input or output, respectively. Summary Today, we wrapped up our generic delegates discussion by looking at three lesser-used delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>.  All three of these tend to be replaced by their more generic Func equivalents in LINQ, but that doesn’t mean you shouldn’t understand what they do or can’t use them for your own code, as they do contain semantic meanings in their names that sometimes get lost in the more generic Func name.   Tweet Technorati Tags: C#,CSharp,.NET,Little Wonders,delegates,generics,Predicate,Converter,Comparison

    Read the article

  • C#/.NET &ndash; Finding an Item&rsquo;s Index in IEnumerable&lt;T&gt;

    - by James Michael Hare
    Sorry for the long blogging hiatus.  First it was, of course, the holidays hustle and bustle, then my brother and his wife gave birth to their son, so I’ve been away from my blogging for two weeks. Background: Finding an item’s index in List<T> is easy… Many times in our day to day programming activities, we want to find the index of an item in a collection.  Now, if we have a List<T> and we’re looking for the item itself this is trivial: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // can find the exact item using IndexOf() 5: var pos = list.IndexOf(64); This will return the position of the item if it’s found, or –1 if not.  It’s easy to see how this works for primitive types where equality is well defined.  For complex types, however, it will attempt to compare them using EqualityComparer<T>.Default which, in a nutshell, relies on the object’s Equals() method. So what if we want to search for a condition instead of equality?  That’s also easy in a List<T> with the FindIndex() method: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // finds index of first even number or -1 if not found. 5: var pos = list.FindIndex(i => i % 2 == 0);   Problem: Finding an item’s index in IEnumerable<T> is not so easy... This is all well and good for lists, but what if we want to do the same thing for IEnumerable<T>?  A collection of IEnumerable<T> has no indexing, so there’s no direct method to find an item’s index.  LINQ, as powerful as it is, gives us many tools to get us this information, but not in one step.  As with almost any problem involving collections, there are several ways to accomplish the same goal.  And once again as with almost any problem involving collections, the choice of the solution somewhat depends on the situation. So let’s look at a few possible alternatives.  I’m going to express each of these as extension methods for simplicity and consistency. Solution: The TakeWhile() and Count() combo One of the things you can do is to perform a TakeWhile() on the list as long as your find condition is not true, and then do a Count() of the items it took.  The only downside to this method is that if the item is not in the list, the index will be the full Count() of items, and not –1.  So if you don’t know the size of the list beforehand, this can be confusing. 1: // a collection of extra extension methods off IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item in the collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // note if item not found, result is length and not -1! 8: return list.TakeWhile(i => !finder(i)).Count(); 9: } 10: } Personally, I don’t like switching the paradigm of not found away from –1, so this is one of my least favorites.  Solution: Select with index Many people don’t realize that there is an alternative form of the LINQ Select() method that will provide you an index of the item being selected: 1: list.Select( (item,index) => do something here with the item and/or index... ) This can come in handy, but must be treated with care.  This is because the index provided is only as pertains to the result of previous operations (if any).  For example: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // you'd hope this would give you the indexes of the even numbers 5: // which would be 2, 3, 8, but in reality it gives you 0, 1, 2 6: list.Where(item => item % 2 == 0).Select((item,index) => index); The reason the example gives you the collection { 0, 1, 2 } is because the where clause passes over any items that are odd, and therefore only the even items are given to the select and only they are given indexes. Conversely, we can’t select the index and then test the item in a Where() clause, because then the Where() clause would be operating on the index and not the item! So, what we have to do is to select the item and index and put them together in an anonymous type.  It looks ugly, but it works: 1: // extensions defined on IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // finds an item in a collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // if you don't name the anonymous properties they are the variable names 8: return list.Select((item, index) => new { item, index }) 9: .Where(p => finder(p.item)) 10: .Select(p => p.index + 1) 11: .FirstOrDefault() - 1; 12: } 13: }     So let’s look at this, because i know it’s convoluted: First Select() joins the items and their indexes into an anonymous type. Where() filters that list to only the ones matching the predicate. Second Select() picks the index of the matches and adds 1 – this is to distinguish between not found and first item. FirstOrDefault() returns the first item found from the previous clauses or default (zero) if not found. Subtract one so that not found (zero) will be –1, and first item (one) will be zero. The bad thing is, this is ugly as hell and creates anonymous objects for each item tested until it finds the match.  This concerns me a bit but we’ll defer judgment until compare the relative performances below. Solution: Convert ToList() and use FindIndex() This solution is easy enough.  We know any IEnumerable<T> can be converted to List<T> using the LINQ extension method ToList(), so we can easily convert the collection to a list and then just use the FindIndex() method baked into List<T>. 1: // a collection of extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // find the index of an item in the collection similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: return list.ToList().FindIndex(finder); 8: } 9: } This solution is simplicity itself!  It is very concise and elegant and you need not worry about anyone misinterpreting what it’s trying to do (as opposed to the more convoluted LINQ methods above). But the main thing I’m concerned about here is the performance hit to allocate the List<T> in the ToList() call, but once again we’ll explore that in a second. Solution: Roll your own FindIndex() for IEnumerable<T> Of course, you can always roll your own FindIndex() method for IEnumerable<T>.  It would be a very simple for loop which scans for the item and counts as it goes.  There’s many ways to do this, but one such way might look like: 1: // extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item matching a predicate in the enumeration, much like List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: int index = 0; 8: foreach (var item in list) 9: { 10: if (finder(item)) 11: { 12: return index; 13: } 14:  15: index++; 16: } 17:  18: return -1; 19: } 20: } Well, it’s not quite simplicity, and those less familiar with LINQ may prefer it since it doesn’t include all of the lambdas and behind the scenes iterators that come with deferred execution.  But does having this long, blown out method really gain us much in performance? Comparison of Proposed Solutions So we’ve now seen four solutions, let’s analyze their collective performance.  I took each of the four methods described above and run them over 100,000 iterations of lists of size 10, 100, 1000, and 10000 and here’s the performance results.  Then I looked for targets at the begining of the list (best case), middle of the list (the average case) and not in the list (worst case as must scan all of the list). Each of the times below is the average time in milliseconds for one execution as computer over the 100,000 iterations: Searches Matching First Item (Best Case)   10 100 1000 10000 TakeWhile 0.0003 0.0003 0.0003 0.0003 Select 0.0005 0.0005 0.0005 0.0005 ToList 0.0002 0.0003 0.0013 0.0121 Manual 0.0001 0.0001 0.0001 0.0001   Searches Matching Middle Item (Average Case)   10 100 1000 10000 TakeWhile 0.0004 0.0020 0.0191 0.1889 Select 0.0008 0.0042 0.0387 0.3802 ToList 0.0002 0.0007 0.0057 0.0562 Manual 0.0002 0.0013 0.0129 0.1255   Searches Where Not Found (Worst Case)   10 100 1000 10000 TakeWhile 0.0006 0.0039 0.0381 0.3770 Select 0.0012 0.0081 0.0758 0.7583 ToList 0.0002 0.0012 0.0100 0.0996 Manual 0.0003 0.0026 0.0253 0.2514   Notice something interesting here, you’d think the “roll your own” loop would be the most efficient, but it only wins when the item is first (or very close to it) regardless of list size.  In almost all other cases though and in particular the average case and worst case, the ToList()/FindIndex() combo wins for performance, even though it is creating some temporary memory to hold the List<T>.  If you examine the algorithm, the reason why is most likely because once it’s in a ToList() form, internally FindIndex() scans the internal array which is much more efficient to iterate over.  Thus, it takes a one time performance hit (not including any GC impact) to create the List<T> but after that the performance is much better. Summary If you’re concerned about too many throw-away objects, you can always roll your own FindIndex() method, but for sheer simplicity and overall performance, using the ToList()/FindIndex() combo performs best on nearly all list sizes in the average and worst cases.    Technorati Tags: C#,.NET,Litte Wonders,BlackRabbitCoder,Software,LINQ,List

    Read the article

  • CodePlex Daily Summary for Thursday, May 20, 2010

    CodePlex Daily Summary for Thursday, May 20, 2010New ProjectsAlphaChannel: Closed projectAragon Online Client: The Aragon Online Client is a front-end application allowing users to play the online game http://aragon-online.net The client fetches game data a...BISBCarManager: Car managerBlammo.Net: Blammo.Net is a simple logging system that allows for multiple files, has simple configuration, and is modular.C# IMAPI2 Samples: This project is my effort to port the VB Script IMAPI2 samples to C# 4.0 and provide CD/DVD Burning capabilities in C#. This takes advantage of th...DemotToolkit: A toolbox to help you enjoy the demotivators.FMI Silverlight Course: This is the site for the final project of the Silverlight course taught at the Sofia University in the summer semester of 2010.InfoPath Publisher Helper: Building a large set of InfoPath Templates? Bored of the repetive stsadm commands to deploy an online form? This tool will allow you to submit ...JSBallBounce - HTML5 Stereocopy: A demo of basic stereoscopy in HTML5Kindler: Kindler allows you to easily convert simply HTML into documents that can be easily read on the Amazon Kindle.Maybe: Maybe or IfNotNull using lambdas for deep expressions. int? CityId= employee.Maybe(e=>e.Person.Address.City);PopCorn Project : play music with system beeps: PopCorn is an application that can play monophonic music through system beeps. You can launch music on the local machine, or on a remote server thr...RuneScape 2 Chronos - Emulation done right.: RuneScape 2 Chronos is a RuneScape 2 Emulator framework. It is completely open-source and is programmed in a way in which should be simpler for it'...RWEntregas: Projeto do Rogrigo e Wender referente a entregasSilverAmp: A media player to demonstrate lots of new Silverlight 4 features. Running out of browser and reading files from the MyMusic folder are two of them....Silverlight Scheduler: A light-weight silverlight scheduler control.SimpleContainer: SimpleContainer is very simple IoC container that consists of one class that implements two remarkable methods: one for registration and one for re...sqlserverextensions: This project will provide some use operations for files and directories. Further development will include extended string operations.TechWorks Portugal Sample BI Project: Techworks is a complete Microsoft BI sample project customized for Portugal to be used in demo and learning scenarios. It is based in SQL Server 20...Test4Proj: Test4ProjTV Show Renamer: TV Show Renamer is a program that is designed to take files downloaded off the internet and rename them to a more user friendly file name. It is fo...UnFreeZeMouSeW7: This small application disable or enable the standby mode on Windows 7 devices. As the mouse pointer freezes or the latency increase on some device...VianaNET - Videoanalysis for physical motion: The VianaNET project targets physics education. The software enables to analyze the motion of colored objects in life-video and video files. The da...Visual Studio 2010 extension for helping SharePoint 2010 debugging: This is a Visual Studio 2010 extensibility project that extends the debugging support for the built-in SharePoint 2010 tools with new menu items an...Visual Studio 2010 Load Test Plugins Library: Useful plugin library for Visual Studio Load Test 2010 version. (Best for web tests).VMware Lab Manager Powershell Cmdlet: This is a simple powershell cmdlet which connects you with the VMware lab manager internal soap api.Webgame UI: Bot to webgameNew ReleasesActipro WPF Controls Contrib: v2010.1: Minor tweaks and updated to target Actipro WPF Studio 2010.1. Addition of Editors.Interop.Datagrid project, which allows Actipro Editors for WPF t...Blammo.Net: Blammo.Net 1.0: This is the initial release of Blammo.Net.Build Version Increment Add-In Visual Studio: Shared Assembly Info Setup: Example solution that makes use of one shared assembly info file.CSS 360 Planetary Calendar: Zero Feature Release: =============================================================================== Zero Feature Release Version: 0.0 Description: This is a binar...DotNetNuke® Community Edition: 05.04.02: Updated the Installation Wizard's Polish & German language packs. Improved performance of Sql script for listing modules by portal. Improved De...DotNetNuke® Store: 02.01.36: What's New in this release? Bugs corrected: - The reference to resource.zip has been commented in the Install package. Sorry for that it's my mista...Extend SmallBasic: Teaching Extensions v.016: added turtle tree quizExtremeML: ExtremeML v1.0 Beta 2: Following the decision to terminate development of the Premium Edition of ExtremeML, this release includes all code previously restricted to the Pr...InfoPath Publisher Helper: 1st Release: InfoPath Publisher Helper Tool The version is mostly stable. There are some UI errors, which can be ignored. The code has not been cleaned up so t...JSBallBounce - HTML5 Stereocopy: HTML5 Stereoscopic Bouncing Balls Demo: Stereoscopic rendering in HTML5kdar: KDAR 0.0.22: KDAR - Kernel Debugger Anti Rootkit - signature's bases updated - ALPC port jbject check added - tcpip internal critical area checks added - some ...Lightweight Fluent Workflow: Objectflow core: Release Notes Fixed minor defects Framework changes Added IsFalse for boolean conditions Defects fixed IsTrue works with Not operator Installati...LiquidSilver SharePoint Framework: LiquidSilver 0.2.0.0 Beta: Changes in this version: - Fixed a bug in HgListItem when parsing double and int fields. - Added the LiquidSilver.Extra project. - Added the Liquid...Matrix: MatrixPlugin-0.5.1: Works with UniqueRoutes plugin on Google Code Works in Linux (path changes, variable usage etc) Builds .st2plugin by default Adapted to ST3MRDS Samples: MRDS Samples 1.0: Initial Release Please read the installation instructions on the Read Me page carefully before you unzip the samples. This ZIP file contains sourc...PopCorn Project : play music with system beeps: Popcorn v0.1: 1st beta releaseRuneScape 2 Chronos - Emulation done right.: Revision 0: Alpha stage of the Chronos source.SCSI Interface for Multimedia and Block Devices: Release 13 - Integrated Shell, x64 Fixes, and more: Changes from the previous version: - Added an integrated shell browser to the program and removed the Add/Remove File/Folder buttons, since the she...Silverlight Console: Silverlight Console Release 2: Release contains: - Orktane.Console.dll - Orktane.ScriptActions.dll Release targets: - Silverlight 4 Dependencies: - nRoute.Toolkit for Silverlig...SimpleContainer: SimpleContainer: Initial release of SimpleContainer library.Springshield Sample Site for EPiServer CMS: Springshield 1.0: City of Springshield - The accessible sample site for EPiServer CMS 6. Read the readme.txt on how to install.SQL Trim: 20100519: Improved releasesqlserverextensions: V 0.1 alpha: Version 0.1 Alphasvchost viewer: svchost viewer ver. 0.5.0.1: Got some feedback from a user, with some nice ideas so here they are: • Made the program resizable. • Program now saves the size and position when...Tribe.Cache: Tribe.Cache RC: Release Candidate There are breaking changes between BETA and RC :- 1) Cache Dictionary is now not exposed to the client. 2) Completly Thread Sa...TV Show Renamer: TV Show Renamer: This is the first public release. Don't worry that it is version 2.1 that is because i keep adding features to it and then upping the version numbe...UnFreeZeMouSeW7: UnFreeZeMouSeW7 0.1: First releaseVCC: Latest build, v2.1.30519.0: Automatic drop of latest buildVianaNET - Videoanalysis for physical motion: VianaNET V1.1 - alpha: This is the first alpha release of the completely rewritten Viana. Known issues are: - sometimes black frame at initial load of video - no abilit...visinia: visinia_1: The beta is gone, the visinia is here with visinia 1. now you can confidently install visinia use visinia and enjoy visinia. This version of visini...visinia: visinia_1_Src: The beta is gone, the visinia is here with visinia 1. now you can confidently install visinia use visinia and enjoy visinia. This version of visini...Visual Studio 2010 extension for helping SharePoint 2010 debugging: 1.0 First public release: The extension is released as a Visual Studio 2010 solution. See my related blog post at http://pholpar.wordpress.com/2010/05/20/visual-studio-2010-...Visual Studio 2010 Load Test Plugins Library: version 1 stable: version 1 stableVMware Lab Manager Powershell Cmdlet: LMCmdlet 1.0.0: first Release. You need to be an Administrator to install this cmdlet. After you run setup open powershell type: Get-PSSnapin -Registered you sh...WF Personalplaner: Personalplaner v1.7.29.10139: - Wenn ein Schema erstellt wird mit der Checkbox "Als neues Schema speichern" wurde pro Person ein Schema erstellt - Wenn ein Pensum geändert wurde...XAM.NET: XAM 1.0p2 + Issue Tracker 8396: Patch release for Issue Tracker 8396Xrns2XMod: Xrns2XMod 1.2: Fixed 32 bit flac conversion - Thanks to Yuri for updating FlacBox librariesMost Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)patterns & practices – Enterprise LibraryMicrosoft SQL Server Community & SamplesPHPExcelASP.NETMost Active Projectspatterns & practices – Enterprise LibraryRawrPHPExcelGMap.NET - Great Maps for Windows Forms & PresentationCustomer Portal Accelerator for Microsoft Dynamics CRMBlogEngine.NETWindows Azure Command-line Tools for PHP DevelopersCassiniDev - Cassini 3.5/4.0 Developers EditionSQL Server PowerShell ExtensionsFluent Ribbon Control Suite

    Read the article

  • Guest Post: Using IronRuby and .NET to produce the &lsquo;Hello World of WPF&rsquo;

    - by Eric Nelson
    [You might want to also read other GuestPosts on my blog – or contribute one?] On the 26th and 27th of March (2010) myself and Edd Morgan of Microsoft will be popping along to the Scottish Ruby Conference. I dabble with Ruby and I am a huge fan whilst Edd is a “proper Ruby developer”. Hence I asked Edd if he was interested in creating a guest post or two for my blog on IronRuby. This is the second of those posts. If you should stumble across this post and happen to be attending the Scottish Ruby Conference, then please do keep a look out for myself and Edd. We would both love to chat about all things Ruby and IronRuby. And… we should have (if Amazon is kind) a few books on IronRuby with us at the conference which will need to find a good home. This is me and Edd and … the book: Order on Amazon: http://bit.ly/ironrubyunleashed Using IronRuby and .NET to produce the ‘Hello World of WPF’ In my previous post I introduced, to a minor extent, IronRuby. I expanded a little on the basics of by getting a Rails app up-and-running on this .NET implementation of the Ruby language — but there wasn't much to it! So now I would like to go from simply running a pre-existing project under IronRuby to developing a whole new application demonstrating the seamless interoperability between IronRuby and .NET. In particular, we'll be using WPF (Windows Presentation Foundation) — the component of the .NET Framework stack used to create rich media and graphical interfaces. Foundations of WPF To reiterate, WPF is the engine in the .NET Framework responsible for rendering rich user interfaces and other media. It's not the only collection of libraries in the framework with the power to do this — Windows Forms does the trick, too — but it is the most powerful and flexible. Put simply, WPF really excels when you need to employ eye candy. It's all about creating impact. Whether you're presenting a document, video, a data entry form, some kind of data visualisation (which I am most hopeful for, especially in terms of IronRuby - more on that later) or chaining all of the above with some flashy animations, you're likely to find that WPF gives you the most power when developing any of these for a Windows target. Let's demonstrate this with an example. I give you what I like to consider the 'hello, world' of WPF applications: the analogue clock. Today, over my lunch break, I created a WPF-based analogue clock using IronRuby... Any normal person would have just looked at their watch. - Twitter The Sample Application: Click here to see this sample in full on GitHub. Using Windows Presentation Foundation from IronRuby to create a Clock class Invoking the Clock class   Gives you The above is by no means perfect (it was a lunch break), but I think it does the job of illustrating IronRuby's interoperability with WPF using a familiar data visualisation. I'm sure you'll want to dissect the code yourself, but allow me to step through the important bits. (By the way, feel free to run this through ir first to see what actually happens). Now we're using IronRuby - unlike my previous post where we took pure Ruby code and ran it through ir, the IronRuby interpreter, to demonstrate compatibility. The main thing of note is the very distinct parallels between .NET namespaces and Ruby modules, .NET classes and Ruby classes. I guess there's not much to say about it other than at this point, you may as well be working with a purely Ruby graphics-drawing library. You're instantiating .NET objects, but you're doing it with the standard Ruby .new method you know from Ruby as Object#new — although, the root object of all your IronRuby objects isn't actually Object, it's System.Object. You're calling methods on these objects (and classes, for example in the call to System.Windows.Controls.Canvas.SetZIndex()) using the underscored, lowercase convention established for the Ruby language. The integration is so seamless. The fact that you're using a dynamic language on top of .NET's CLR is completely abstracted from you, allowing you to just build your software. A Brief Note on Events Events are a big part of developing client applications in .NET as well as under every other environment I can think of. In case you aren't aware, event-driven programming is essentially the practice of telling your code to call a particular method, or other chunk of code (a delegate) when something happens at an unpredictable time. You can never predict when a user is going to click a button, move their mouse or perform any other kind of input, so the advent of the GUI is what necessitated event-driven programming. This is where one of my favourite aspects of the Ruby language, blocks, can really help us. In traditional C#, for instance, you may subscribe to an event (assign a block of code to execute when an event occurs) in one of two ways: by passing a reference to a named method, or by providing an anonymous code block. You'd be right for seeing the parallel here with Ruby's concept of blocks, Procs and lambdas. As demonstrated at the very end of this rather basic script, we are using .NET's System.Timers.Timer to (attempt to) update the clock every second (I know it's probably not the best way of doing this, but for example's sake). Note: Diverting a little from what I said above, the ticking of a clock is very predictable, yet we still use the event our Timer throws to do this updating as one of many ways to perform that task outside of the main thread. You'll see that all that's needed to assign a block of code to be triggered on an event is to provide that block to the method of the name of the event as it is known to the CLR. This drawback to this is that it only allows the delegation of one code block to each event. You may use the add method to subscribe multiple handlers to that event - pushing that to the end of a queue. Like so: def tick puts "tick tock" end timer.elapsed.add method(:tick) timer.elapsed.add proc { puts "tick tock" } tick_handler = lambda { puts "tick tock" } timer.elapsed.add(tick_handler)   The ability to just provide a block of code as an event handler helps IronRuby towards that very important term I keep throwing around; low ceremony. Anonymous methods are, of course, available in other more conventional .NET languages such as C# and VB but, as usual, feel ever so much more elegant and natural in IronRuby. Note: Whether it's a named method or an anonymous chunk o' code, the block you delegate to the handling of an event can take arguments - commonly, a sender object and some args. Another Brief Note on Verbosity Personally, I don't mind verbose chaining of references in my code as long as it doesn't interfere with performance - as evidenced in the example above. While I love clean code, there's a certain feeling of safety that comes with the terse explicitness of long-winded addressing and the describing of objects as opposed to ambiguity (not unlike this sentence). However, when working with IronRuby, even I grow tired of typing System::Whatever::Something. Some people enjoy simply assuming namespaces and forgetting about them, regardless of the language they're using. Don't worry, IronRuby has you covered. It is completely possible to, with a call to include, bring the contents of a .NET-converted module into context of your IronRuby code - just as you would if you wanted to bring in an 'organic' Ruby module. To refactor the style of the above example, I could place the following at the top of my Clock class: class Clock include System::Windows::Shape include System::Windows::Media include System::Windows::Threading # and so on...   And by doing so, reduce calls to System::Windows::Shapes::Ellipse.new to simply Ellipse.new or references to System::Windows::Threading::DispatcherPriority.Render to a friendlier DispatcherPriority.Render. Conclusion I hope by now you can understand better how IronRuby interoperates with .NET and how you can harness the power of the .NET framework with the dynamic nature and elegant idioms of the Ruby language. The manner and parlance of Ruby that makes it a joy to work with sets of data is, of course, present in IronRuby — couple that with WPF's capability to produce great graphics quickly and easily, and I hope you can visualise the possibilities of data visualisation using these two things. Using IronRuby and WPF together to create visual representations of data and infographics is very exciting to me. Although today, with this project, we're only presenting one simple piece of information - the time - the potential is much grander. My day-to-day job is centred around software development and UI design, specifically in the realm of healthcare, and if you were to pay a visit to our office you would behold, directly above my desk, a large plasma TV with a constantly rotating, animated slideshow of charts and infographics to help members of our team do their jobs. It's an app powered by WPF which never fails to spark some conversation with visitors whose gaze has been hooked. If only it was written in IronRuby, the pleasantly low ceremony and reduced pre-processing time for my brain would have helped greatly. Edd Morgan blog Related Links: Getting PhP and Ruby working on Windows Azure and SQL Azure

    Read the article

  • MVVM Light V4 preview (BL0014) release notes

    - by Laurent Bugnion
    I just pushed to Codeplex an update to the MVVM Light source code. This is an early preview containing some of the features that I want to release later under the version 4. If you find these features useful for your project, please download the source code and build the assemblies. I will appreciate greatly any issue report. This version is labeled “V4.0.0.0/BL0014”. The “BL” string is an old habit that we used in my days at Siemens Building Technologies, called a “base level”. Somehow I like this way of incrementing the “base level” independently of any other consideration (such as alpha, beta, CTP, RTM etc) and continue to use it to tag my software versions. In Microsoft parlance, you could say that this is an early CTP of MVVM Light V4. Caveat The code is unit tested, but as we all know this does not mean that there are no bugs This code has not yet been used in production. Again, your help in testing this is greatly appreciated, so please report all bugs to me! What’s new? The following features have been implemented: Misc Various “maintenance work”. All WPF assemblies (that is .NET35 and .NET4) now allow partially trusted callers. It means that you can use them in am XBAP in partial trust mode. Testing Various test updates Added Windows Phone 7 unit tests Note: For Windows Phone 7, due to an issue in the unit test framework, not all tests can be executed. I had to isolate those tests for the moment. The error was reported to Microsoft. ViewModelBase The constructor is now public to allow serialization (especially useful on the phone to tombstone the state). ViewModelBase.MessengerInstance now returns Messenger.Default unless it is set explicitly. Previously, MessengerInstance was returning null, which was complicating the code. Two new ways to raise the PropertyChanged event have been added. See below for details. Messenger Updated the IMessenger interface with all public members from the Messenger class. Previously some members were missing. A new Unregister method is now available, allowing to unregister a recipient for a given token. RelayCommand RaiseCanExecuteChanged now acts the same in Windows Presentation Foundation than in Silverlight. In previous versions, I was relying on the CommandManager to raise the CanExecuteChanged event in WPF. However, it was found to be too unreliable, and a more direct way of raising the event was found preferable. See below for details. Raising the PropertyChanged event A very much requested update is now included: the ability to raise the PropertyChanged event in a viewmodel without using “magic strings”. Personally, I don’t see strings as a major issue, thanks to two features of the MVVM Light Toolkit: In the DEBUG configuration, every time that the RaisePropertyChanged method is called, the name of the property is checked against all existing properties of the viewmodel. Should the property name be misspelled (because of a typo or refactoring), an exception is thrown, notifying the developer that something is wrong. To avoid impacting the performance, this check is only made in DEBUG configuration, but that should be enough to warn the developers in case they miss a rename. The property name is defined as a public constant in the “mvvminpc” code snippet. This allows checking the property name from another class (for example if the PropertyChanged event is handled in the view). It also allows changing the property name in one place only. However, these two safeguards didn’t satisfy some of the users, who requested another way to raise the PropertyChanged event. In V4, you can now do the following: Using lambdas private int _myProperty; public int MyProperty { get { return _myProperty; } set { if (_myProperty == value) { return; } _myProperty = value; RaisePropertyChanged(() => MyProperty); } } This raises the property changed event using a lambda expression instead of the property name. Light reflection is used to get the name. This supports Intellisense and can easily be refactored. You can also broadcast a PropertyChangedMessage using the Messenger.Default instance with: private int _myProperty; public int MyProperty { get { return _myProperty; } set { if (_myProperty == value) { return; } var oldValue = _myProperty; _myProperty = value; RaisePropertyChanged(() => MyProperty, oldValue, value, true); } } Using no arguments When the RaisePropertyChanged method is called within a setter, you can also omit the property name altogether. This will fail if executed outside of the setter however. Also, to avoid confusion, there is no way to broadcast the PropertyChangedMessage using this syntax. private int _myProperty; public int MyProperty { get { return _myProperty; } set { if (_myProperty == value) { return; } _myProperty = value; RaisePropertyChanged(); } } The old way Of course the “old” way is still supported, without broadcast: public const string MyPropertyName = "MyProperty"; private int _myProperty; public int MyProperty { get { return _myProperty; } set { if (_myProperty == value) { return; } _myProperty = value; RaisePropertyChanged(MyPropertyName); } } And with broadcast: public const string MyPropertyName = "MyProperty"; private int _myProperty; public int MyProperty { get { return _myProperty; } set { if (_myProperty == value) { return; } var oldValue = _myProperty; _myProperty = value; RaisePropertyChanged(MyPropertyName, oldValue, value, true); } } Performance considerations It is notorious that using reflection takes more time than using a string constant to get the property name. However, after measuring for all platforms, I found the differences to be very small. I will measure more and submit the results to the community for evaluation, because some of the results are actually surprising (for example, using the Messenger to broadcast a PropertyChangedMessage does not significantly increase the time taken to raise the PropertyChanged event and update the bindings). For now, I submit this code to you, and would be delighted to hear about your own results. Raising the CanExecuteChanged event manually In WPF, until now, the CanExecuteChanged event for a RelayCommand was raised automatically. Or rather, it was attempted to be raised, using a feature that is only available in WPF called the CommandManager. This class monitors the UI and when something occurs, it queries the state of the CanExecute delegate for all the commands. However, this proved unreliable for the purpose of MVVM: Since very often the value of the CanExecute delegate changes according to non-UI events (for example something changing in the viewmodel or in the model), raising the CanExecuteChanged event manually is necessary. In Silverlight, the CommandManager does not exist, so we had to raise the event manually from the start. This proved more reliable, and I now changed the WPF implementation of the RaiseCanExecuteChanged method to be the exact same in WPF than in Silverlight. For instance, if a command must be enabled when a string property is set to a value other than null or empty string, you can do: public MainViewModel() { MyTestCommand = new RelayCommand( () => DoSomething(), () => !string.IsNullOrEmpty(MyProperty)); } public const string MyPropertyName = "MyProperty"; private string _myProperty = string.Empty; public string MyProperty { get { return _myProperty; } set { if (_myProperty == value) { return; } _myProperty = value; RaisePropertyChanged(MyPropertyName); MyTestCommand.RaiseCanExecuteChanged(); } } Logo update I made a minor change to the logo: Some people found the lack of the word “light” (as in MVVM Light Toolkit) confusing. I thought it was cool, because the feather suggests the idea of lightness, however I can see the point. So I added the word “light” to the logo. Things should be quite clear now. What’s next? This is only the first of a series of releases that will bring MVVM Light to V4. In the next weeks, I will continue to add some very requested features and correct some issues in the code. I will probably continue this fashion of releasing the changes to the public as source code through Codeplex. I would be very interested to hear what you think of that, and to get feedback about the changes. Cheers, Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

< Previous Page | 1 2 3 4 5 6  | Next Page >