Search Results

Search found 5298 results on 212 pages for 'marching cubes algorithm'.

Page 5/212 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Shuffling algorithm with no "self-mapping"?

    - by OregonTrail
    To randomly shuffle an array, with no bias towards any particular permutation, there is the Knuth Fischer-Yeats algorithm. In Python: #!/usr/bin/env python import sys from random import randrange def KFYShuffle(items): i = len(items) - 1 while i > 0: j = randrange(i+1) # 0 <= j <= i items[j], items[i] = items[i], items[j] i = i - 1 return items print KFYShuffle(range(int(sys.argv[1]))) There is also Sattolo's algorithm, which produces random cycles. In Python: #!/usr/bin/env python import sys from random import randrange def SattoloShuffle(items): i = len(items) while i > 1: i = i - 1 j = randrange(i) # 0 <= j <= i-1 items[j], items[i] = items[i], items[j] return items print SattoloShuffle(range(int(sys.argv[1]))) I'm currently writing a simulation with the following specifications for a shuffling algorithm: The algorithm is unbiased. If a true random number generator was used, no permutation would be more likely than any other. No number ends up at its original index. The input to the shuffle will always be A[i] = i for i from 0 to N-1 Permutations are produced that are not cycles, but still meet specification 2. The cycles produced by Sattolo's algorithm meet specification 2, but not specification 1 or 3. I've been working at creating an algorithm that meets these specifications, what I came up with was equivalent to Sattolo's algorithm. Does anyone have an algorithm for this problem?

    Read the article

  • An implementation of Sharir's or Aurenhammer's deterministic algorithm for calculating the intersect

    - by RGrey
    The problem of finding the intersection/union of 'N' discs/circles on a flat plane was first proposed by M. I. Shamos in his 1978 thesis: Shamos, M. I. “Computational Geometry” Ph.D. thesis, Yale Univ., New Haven, CT 1978. Since then, in 1985, Micha Sharir presented an O(n log2n) time and O(n) space deterministic algorithm for the disc intersection/union problem (based on modified Voronoi diagrams): Sharir, M. Intersection and closest-pair problems for a set of planar discs. SIAM .J Comput. 14 (1985), pp. 448-468. In 1988, Franz Aurenhammer presented a more efficient O(n log n) time and O(n) space algorithm for circle intersection/union using power diagrams (generalizations of Voronoi diagrams): Aurenhammer, F. Improved algorithms for discs and balls using power diagrams. Journal of Algorithms 9 (1985), pp. 151-161. Earlier in 1983, Paul G. Spirakis also presented an O(n^2) time deterministic algorithm, and an O(n) probabilistic algorithm: Spirakis, P.G. Very Fast Algorithms for the Area of the Union of Many Circles. Rep. 98, Dept. Comput. Sci., Courant Institute, New York University, 1983. I've been searching for any implementations of the algorithms above, focusing on computational geometry packages, and I haven't found anything yet. As neither appear trivial to put into practice, it would be really neat if someone could point me in the right direction!

    Read the article

  • average case running time of linear search algorithm

    - by Brahadeesh
    Hi all. I am trying to derive the average case running time for deterministic linear search algorithm. The algorithm searches an element x in an unsorted array A in the order A[1], A[2], A[3]...A[n]. It stops when it finds the element x or proceeds until it reaches the end of the array. I searched on wikipedia and the answer given was (n+1)/(k+1) where k is the number of times x is present in the array. I approached in another way and am getting a different answer. Can anyone please give me the correct proof and also let me know whats wrong with my method? E(T)= 1*P(1) + 2*P(2) + 3*P(3) ....+ n*P(n) where P(i) is the probability that the algorithm runs for 'i' time (i.e. compares 'i' elements). P(i)= (n-i)C(k-1) * (n-k)! / n! Here, (n-i)C(k-1) is (n-i) Choose (k-1). As the algorithm has reached the ith step, the rest of k-1 x's must be in the last n-i elements. Hence (n-i)C(k-i). (n-k)! is the total number of ways of arranging the rest non x numbers, and n! is the total number of ways of arranging the n elements in the array. I am not getting (n+1)/(k+1) on simplifying.

    Read the article

  • Adaptive user interface/environment algorithm

    - by WowtaH
    Hi all, I'm working on an information system (in C#) that (while my users use it) gathers statistical data on what pieces of information (tables & records) each user is requesting the most, and what parts of the interface he/she uses most. I'm using this statistical data to make the application adaptive to the user's needs, both in the way the interface presents itself (eg: tab/pane-ordering) as in the way of using the frequently viewed information to (eg:) show higher in search results/suggestion-lists. What i'm looking for is an algorithm/formula to determine the current 'hotness'/relevance of these objects for a specific user. A simple 'hitcounter' for each object won't be sufficient because the user might view some information quite frequently for a period of time, and then moving on to the next, making the old information less relevant. So i think my algorithm also needs some sort of sliding/historical principle to account for the changing popularity of the objects in the application over time. So, the question is: Does anybody have some sort of algorithm that accounts for that 'popularity over time' ? Preferably with some explanation on the parameters :) Thanks! PS I've looked at other posts like http://stackoverflow.com/questions/32397/popularity-algorithm but i could't quite port it to my specific case. Any help is appreciated.

    Read the article

  • Algorithm for creating a school timetable.

    - by cand
    Hello all. I've been wondering if there are known solutions for algorithm of creating a school timetable. Basically, it's about optimizing "hour-dispersion" (both in teachers and classes case) for given class-subject-teacher associations. We can assume that we have sets of classes, lesson subjects and teachers associated with each other at the input and that timetable should fit between 8AM and 4PM. I guess that there is probably no accurate algorithm for that, but maybe someone knows a good approximation or hints for developing it. P.S. I know, there was http://stackoverflow.com/questions/1259686/school-timetable-generation-algorithm-closed , but unlike in that case, I'm not looking for actual implementation, rather for thoughts on how to do it or why it's impossible.

    Read the article

  • Algorithm to generate all possible letter combinations of given string down to 2 letters

    - by Alan
    Algorithm to generate all possible letter combinations of given string down to 2 letters Trying to create an Anagram solver in AS3, such as this one found here: http://homepage.ntlworld.com/adam.bozon/anagramsolver.htm I'm having a problem wrapping my brain around generating all possible letter combinations for the various lengths of strings. If I was only generating permutations for a fixed length, it wouldn't be such a problem for me... but I'm looking to reduce the length of the string and obtain all the possible permutations from the original set of letters for a string with a max length smaller than the original string. For example, say I want a string length of 2, yet I have a 3 letter string of “abc”, the output would be: ab ac ba bc ca cb. Ideally the algorithm would produce a complete list of possible combinations starting with the original string length, down to the smallest string length of 2. I have a feeling there is probably a small recursive algorithm to do this, but can't wrap my brain around it. I'm working in AS3. Thanks!

    Read the article

  • Algorithm for digit summing?

    - by Joe
    I'm searching for an algorithm for Digit summing. Let me outline the basic principle: Say you have a number: 18268. 1 + 8 + 2 + 6 + 8 = 25 2 + 5 = 7 And 7 is our final number. It's basically adding each number of the whole number until we get down to a single (also known as a 'core') digit. It's often used by numerologists. I'm searching for an algorithm (doesn't have to be language in-specific) for this. I have searched Google for the last hour with terms such as digit sum algorithm and whatnot but got no suitable results. Any help would be great, thanks.

    Read the article

  • Stable random color algorithm

    - by Olmo
    Here we have an interesting real-world algorithm requirement involving colors. 1) Nice random colors: In ordeeing to draw a beautifull chart (i.e: pie chart) we need to pick a random set of Colors that: a) are different enought b) Play nicely Doesnt Look hard. For example u fix bright and saturation and divide hue in steps of 360/Num_sectors 2) Stable: given Pie1 with sectors with labes ('A','B','C') and Pie2 with sector with labels ('B','C','D'), will be nice if color('B',pie1)= color('B',pie2) and the same for 'C' and so on, so people don't get crazy when seeing similar updated charts, even if some sectors appear some dissapeared or the number of sectors changed. The label is the only stable thing. 3) hard-coded colors: the algorithm allows hardcoded label-color relationships as an input but stills doing a good work (1 & 2) for the rest of free labels. I think this algorithm, even if it looks quite ad-hoc, will be usefull in more then one situation. Any ideas?

    Read the article

  • Efficient algorithm to generate all solutions of a linear diophantine equation with ai=1

    - by Ben
    I am trying to generate all the solutions for the following equations for a given H. With H=4 : 1) ALL solutions for x_1 + x_2 + x_3 + x_4 =4 2) ALL solutions for x_1 + x_2 + x_3 = 4 3) ALL solutions for x_1 + x_2 = 4 4) ALL solutions for x_1 =4 For my problem, there are always 4 equations to solve (independently from the others). There are a total of 2^(H-1) solutions. For the previous one, here are the solutions : 1) 1 1 1 1 2) 1 1 2 and 1 2 1 and 2 1 1 3) 1 3 and 3 1 and 2 2 4) 4 Here is an R algorithm which solve the problem. library(gtools) H<-4 solutions<-NULL for(i in seq(H)) { res<-permutations(H-i+1,i,repeats.allowed=T) resum<-apply(res,1,sum) id<-which(resum==H) print(paste("solutions with ",i," variables",sep="")) print(res[id,]) } However, this algorithm makes more calculations than needed. I am sure it is possible to go faster. By that, I mean not generating the permutations for which the sums is H Any idea of a better algorithm for a given H ?

    Read the article

  • Using Dijkstra's algorithm with negative edges?

    - by Riddler
    Most books explain the reason the algorithm doesn't work with negative edges as nodes are deleted from the priority queue after the node is arrived at since the algorithm assumes the shortest distance has been found. However since negative edges can reduce the distance, a future shorter distance might be found; but since the node is deleted it cannot be updated. Wouldn't an obvious solution to this be to not delete the node? Why not keep the node in the queue, so if a future shorter distance is found, it can be updated? If I am misunderstanding the problem, what is preventing the algorithm from being used with negative edges?

    Read the article

  • What algorithm can I use to detect simple shapes in a 4x4 matrix?

    - by ion
    I'm working on a simple multiplayer game that receives a random 4x4 matrix from a server and extracts a shape from it. For example: XXOO OXOO XXOX XXOO XOOX and XOOO XXXX OXXX So in the first matrix the shape I want to parse is: oo o oo and the 2nd: oo oo ooo I know there must be an algorithm for this because I saw this kind of behavior on some puzzle games but I have no idea how to go about to detecting them or even where to start. So my question is: How do I detect what shape is in the matrix and how do I differentiate between multiple colors? (it doesn't come only in X and O, it comes in a maximum of 4). Additionally, the shape must be a minimum of 4 blocks.

    Read the article

  • Extreme Optimization – Numerical Algorithm Support

    - by JoshReuben
    Function Delegates Many calculations involve the repeated evaluation of one or more user-supplied functions eg Numerical integration. The EO MathLib provides delegate types for common function signatures and the FunctionFactory class can generate new delegates from existing ones. RealFunction delegate - takes one Double parameter – can encapsulate most of the static methods of the System.Math class, as well as the classes in the Extreme.Mathematics.SpecialFunctions namespace: var sin = new RealFunction(Math.Sin); var result = sin(1); BivariateRealFunction delegate - takes two Double parameters: var atan2 = new BivariateRealFunction (Math.Atan2); var result = atan2(1, 2); TrivariateRealFunction delegate – represents a function takes three Double arguments ParameterizedRealFunction delegate - represents a function taking one Integer and one Double argument that returns a real number. The Pow method implements such a function, but the arguments need order re-arrangement: static double Power(int exponent, double x) { return ElementaryFunctions.Pow(x, exponent); } ... var power = new ParameterizedRealFunction(Power); var result = power(6, 3.2); A ComplexFunction delegate - represents a function that takes an Extreme.Mathematics.DoubleComplex argument and also returns a complex number. MultivariateRealFunction delegate - represents a function that takes an Extreme.Mathematics.LinearAlgebra.Vector argument and returns a real number. MultivariateVectorFunction delegate - represents a function that takes a Vector argument and returns a Vector. FastMultivariateVectorFunction delegate - represents a function that takes an input Vector argument and an output Matrix argument – avoiding object construction  The FunctionFactory class RealFromBivariateRealFunction and RealFromParameterizedRealFunction helper methods - transform BivariateRealFunction or a ParameterizedRealFunction into a RealFunction delegate by fixing one of the arguments, and treating this as a new function of a single argument. var tenthPower = FunctionFactory.RealFromParameterizedRealFunction(power, 10); var result = tenthPower(x); Note: There is no direct way to do this programmatically in C# - in F# you have partial value functions where you supply a subset of the arguments (as a travelling closure) that the function expects. When you omit arguments, F# generates a new function that holds onto/remembers the arguments you passed in and "waits" for the other parameters to be supplied. let sumVals x y = x + y     let sumX = sumVals 10     // Note: no 2nd param supplied.     // sumX is a new function generated from partially applied sumVals.     // ie "sumX is a partial application of sumVals." let sum = sumX 20     // Invokes sumX, passing in expected int (parameter y from original)  val sumVals : int -> int -> int val sumX : (int -> int) val sum : int = 30 RealFunctionsToVectorFunction and RealFunctionsToFastVectorFunction helper methods - combines an array of delegates returning a real number or a vector into vector or matrix functions. The resulting vector function returns a vector whose components are the function values of the delegates in the array. var funcVector = FunctionFactory.RealFunctionsToVectorFunction(     new MultivariateRealFunction(myFunc1),     new MultivariateRealFunction(myFunc2));  The IterativeAlgorithm<T> abstract base class Iterative algorithms are common in numerical computing - a method is executed repeatedly until a certain condition is reached, approximating the result of a calculation with increasing accuracy until a certain threshold is reached. If the desired accuracy is achieved, the algorithm is said to converge. This base class is derived by many classes in the Extreme.Mathematics.EquationSolvers and Extreme.Mathematics.Optimization namespaces, as well as the ManagedIterativeAlgorithm class which contains a driver method that manages the iteration process.  The ConvergenceTest abstract base class This class is used to specify algorithm Termination , convergence and results - calculates an estimate for the error, and signals termination of the algorithm when the error is below a specified tolerance. Termination Criteria - specify the success condition as the difference between some quantity and its actual value is within a certain tolerance – 2 ways: absolute error - difference between the result and the actual value. relative error is the difference between the result and the actual value relative to the size of the result. Tolerance property - specify trade-off between accuracy and execution time. The lower the tolerance, the longer it will take for the algorithm to obtain a result within that tolerance. Most algorithms in the EO NumLib have a default value of MachineConstants.SqrtEpsilon - gives slightly less than 8 digits of accuracy. ConvergenceCriterion property - specify under what condition the algorithm is assumed to converge. Using the ConvergenceCriterion enum: WithinAbsoluteTolerance / WithinRelativeTolerance / WithinAnyTolerance / NumberOfIterations Active property - selectively ignore certain convergence tests Error property - returns the estimated error after a run MaxIterations / MaxEvaluations properties - Other Termination Criteria - If the algorithm cannot achieve the desired accuracy, the algorithm still has to end – according to an absolute boundary. Status property - indicates how the algorithm terminated - the AlgorithmStatus enum values:NoResult / Busy / Converged (ended normally - The desired accuracy has been achieved) / IterationLimitExceeded / EvaluationLimitExceeded / RoundOffError / BadFunction / Divergent / ConvergedToFalseSolution. After the iteration terminates, the Status should be inspected to verify that the algorithm terminated normally. Alternatively, you can set the ThrowExceptionOnFailure to true. Result property - returns the result of the algorithm. This property contains the best available estimate, even if the desired accuracy was not obtained. IterationsNeeded / EvaluationsNeeded properties - returns the number of iterations required to obtain the result, number of function evaluations.  Concrete Types of Convergence Test classes SimpleConvergenceTest class - test if a value is close to zero or very small compared to another value. VectorConvergenceTest class - test convergence of vectors. This class has two additional properties. The Norm property specifies which norm is to be used when calculating the size of the vector - the VectorConvergenceNorm enum values: EuclidianNorm / Maximum / SumOfAbsoluteValues. The ErrorMeasure property specifies how the error is to be measured – VectorConvergenceErrorMeasure enum values: Norm / Componentwise ConvergenceTestCollection class - represent a combination of tests. The Quantifier property is a ConvergenceTestQuantifier enum that specifies how the tests in the collection are to be combined: Any / All  The AlgorithmHelper Class inherits from IterativeAlgorithm<T> and exposes two methods for convergence testing. IsValueWithinTolerance<T> method - determines whether a value is close to another value to within an algorithm's requested tolerance. IsIntervalWithinTolerance<T> method - determines whether an interval is within an algorithm's requested tolerance.

    Read the article

  • Algorithm for autocomplete?

    - by StackUnderflow
    I am referring to the algorithm that is used to give query suggestions when a user type a search term in google. I am mainly interested in how google algorithm is able to show: 1. Most important results (most likely queries rather than anything that matches) 2. Match substrings 3. Fuzzy matches I know you could use Trie or generalized trie to find matches but it wouldn't meet the above requirements... Similar questions asked earlier here Thanks

    Read the article

  • traveling salesman problem, 2-opt algorithm c# implementation

    - by TAB
    Hello Can someone give me a code sample of 2-opt algorithm for traveling salesman problem. For now im using nearest neighbour to find the path but this method is far from perfec, and after some research i found 2-opt algorithm that would correct that path to the acceptable level. I found some sample apps but withoud source code.

    Read the article

  • Algorithm for computing the inverse of a polynomial

    - by Neville
    I'm looking for an algorithm (or code) to help me compute the inverse a polynomial, I need it for implementing NTRUEncrypt. An algorithm that is easily understandable is what I prefer, there are pseudo-codes for doing this, but they are confusing and difficult to implement, furthermore I can not really understand the procedure from pseudo-code alone. Any algorithms for computing the inverse of a polynomial with respect to a ring of truncated polynomials?

    Read the article

  • Fastest gap sequence for shell sort ?

    - by Tony
    According to Marcin Ciura's Optimal (best known) sequence of increments for shell sort algorithm. The best sequence for shellsort is 1, 4, 10, 23, 57, 132, 301, 701... But how can I generate such a sequence ? In Marcin Ciura's paper he said : Both Knuth’s and Hibbard’s sequences are relatively bad, because they are defined by simple linear recurrences but most algorithm books I searched , they all tend to use Knuth’s sequence : k = 3k + 1 ; because it's easy to generate , what's your way of generating shellsort sequence ?

    Read the article

  • Dynamic Programming Algorithm?

    - by scardin
    I am confused about how best to design this algorithm. A ship has x pirates, where the age of the jth pirate is aj and the weight of the jth pirate is wj. I am thinking of a dynamic programming algorithm, which will find the oldest pirate whose weight is in between twenty-fifth and seventy-fifth percentile of all pirates. But I am clueless as to how to proceed.

    Read the article

  • easiest to code algorithm for rubik's cube

    - by kokokok
    edit : I should rephrase this,what would be a relatively easy algorithm to code in java for solving a rubik's cube. Efficiency is also important but a secondary consideration. orig : what is the easiest algorithm to code for solving a rubik's cube? it could be the least efficient but I am looking for something easy to code right now

    Read the article

  • it means quick-select algorithm?

    - by matin1234
    Hi, I have a question from my homework. I think my teacher needs an algorithm like quick select for this question is this correct? The question: Following a program (Subroutine) as a "black box" is given (for example, inside it is not clear and we do not even inside it) with the worst case linear time, can find the middle of n elements. Using this black box, get a simple linear algorithm that takes input i and find the element which its rank is equal to i (among the n elements) Thanks.

    Read the article

  • another porter stemming algorithm implementation question ?

    - by mike
    Hi, I am trying to implement porter stemming algorithm, but i am having difficualties understanding this point Step 1c (*v*) Y -> I happy -> happi sky -> sky Isn't that the the opposite of what we want to do , why does the algorithim convert the Y into I. for the complete algorithm here http://tartarus.org/~martin/PorterStemmer/def.txt Thanks

    Read the article

  • where can I find the diff algorithm?

    - by dole doug
    Does anyone know where can i find an explanation and implementation of the diff algorithm. First of all i have to recognize that i'm not sure if this is the correct name of the algorithm. For example, how Stackoverflow marks the differences between two edits of the same question? ps: I know C and PHP programming languages. ty

    Read the article

  • Algorithm for dividing very large numbers

    - by pocoa
    I need to write an algorithm(I cannot use any 3rd party library, because this is an assignment) to divide(integer division, floating parts are not important) very large numbers like 100 - 1000 digits. I found http://en.wikipedia.org/wiki/Fourier_division algorithm but I don't know if it's the right way to go. Do you have any suggestions?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >