Search Results

Search found 103 results on 5 pages for 'perry dahl christensen'.

Page 5/5 | < Previous Page | 1 2 3 4 5 

  • Node.js Adventure - Node.js on Windows

    - by Shaun
    Two weeks ago I had had a talk with Wang Tao, a C# MVP in China who is currently running his startup company and product named worktile. He asked me to figure out a synchronization solution which helps his product in the future. And he preferred me implementing the service in Node.js, since his worktile is written in Node.js. Even though I have some experience in ASP.NET MVC, HTML, CSS and JavaScript, I don’t think I’m an expert of JavaScript. In fact I’m very new to it. So it scared me a bit when he asked me to use Node.js. But after about one week investigate I have to say Node.js is very easy to learn, use and deploy, even if you have very limited JavaScript skill. And I think I became love Node.js. Hence I decided to have a series named “Node.js Adventure”, where I will demonstrate my story of learning and using Node.js in Windows and Windows Azure. And this is the first one.   (Brief) Introduction of Node.js I don’t want to have a fully detailed introduction of Node.js. There are many resource on the internet we can find. But the best one is its homepage. Node.js was created by Ryan Dahl, sponsored by Joyent. It’s consist of about 80% C/C++ for core and 20% JavaScript for API. It utilizes CommonJS as the module system which we will explain later. The official definition of Node.js is Node.js is a platform built on Chrome's JavaScript runtime for easily building fast, scalable network applications. Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-intensive real-time applications that run across distributed devices. First of all, Node.js utilizes JavaScript as its development language and runs on top of V8 engine, which is being used by Chrome. It brings JavaScript, a client-side language into the backend service world. So many people said, even though not that actually, “Node.js is a server side JavaScript”. Additionally, Node.js uses an event-driven, non-blocking IO model. This means in Node.js there’s no way to block currently working thread. Every operation in Node.js executed asynchronously. This is a huge benefit especially if our code needs IO operations such as reading disks, connect to database, consuming web service, etc.. Unlike IIS or Apache, Node.js doesn’t utilize the multi-thread model. In Node.js there’s only one working thread serves all users requests and resources response, as the ST star in the figure below. And there is a POSIX async threads pool in Node.js which contains many async threads (AT stars) for IO operations. When a user have an IO request, the ST serves it but it will not do the IO operation. Instead the ST will go to the POSIX async threads pool to pick up an AT, pass this operation to it, and then back to serve any other requests. The AT will actually do the IO operation asynchronously. Assuming before the AT complete the IO operation there is another user comes. The ST will serve this new user request, pick up another AT from the POSIX and then back. If the previous AT finished the IO operation it will take the result back and wait for the ST to serve. ST will take the response and return the AT to POSIX, and then response to the user. And if the second AT finished its job, the ST will response back to the second user in the same way. As you can see, in Node.js there’s only one thread serve clients’ requests and POSIX results. This thread looping between the users and POSIX and pass the data back and forth. The async jobs will be handled by POSIX. This is the event-driven non-blocking IO model. The performance of is model is much better than the multi-threaded blocking model. For example, Apache is built in multi-threaded blocking model while Nginx is in event-driven non-blocking mode. Below is the performance comparison between them. And below is the memory usage comparison between them. These charts are captured from the video NodeJS Basics: An Introductory Training, which presented at Cloud Foundry Developer Advocate.   Node.js on Windows To execute Node.js application on windows is very simple. First of you we need to download the latest Node.js platform from its website. After installed, it will register its folder into system path variant so that we can execute Node.js at anywhere. To confirm the Node.js installation, just open up a command windows and type “node”, then it will show the Node.js console. As you can see this is a JavaScript interactive console. We can type some simple JavaScript code and command here. To run a Node.js JavaScript application, just specify the source code file name as the argument of the “node” command. For example, let’s create a Node.js source code file named “helloworld.js”. Then copy a sample code from Node.js website. 1: var http = require("http"); 2:  3: http.createServer(function (req, res) { 4: res.writeHead(200, {"Content-Type": "text/plain"}); 5: res.end("Hello World\n"); 6: }).listen(1337, "127.0.0.1"); 7:  8: console.log("Server running at http://127.0.0.1:1337/"); This code will create a web server, listening on 1337 port and return “Hello World” when any requests come. Run it in the command windows. Then open a browser and navigate to http://localhost:1337/. As you can see, when using Node.js we are not creating a web application. In fact we are likely creating a web server. We need to deal with request, response and the related headers, status code, etc.. And this is one of the benefit of using Node.js, lightweight and straightforward. But creating a website from scratch again and again is not acceptable. The good news is that, Node.js utilizes CommonJS as its module system, so that we can leverage some modules to simplify our job. And furthermore, there are about ten thousand of modules available n the internet, which covers almost all areas in server side application development.   NPM and Node.js Modules Node.js utilizes CommonJS as its module system. A module is a set of JavaScript files. In Node.js if we have an entry file named “index.js”, then all modules it needs will be located at the “node_modules” folder. And in the “index.js” we can import modules by specifying the module name. For example, in the code we’ve just created, we imported a module named “http”, which is a build-in module installed alone with Node.js. So that we can use the code in this “http” module. Besides the build-in modules there are many modules available at the NPM website. Thousands of developers are contributing and downloading modules at this website. Hence this is another benefit of using Node.js. There are many modules we can use, and the numbers of modules increased very fast, and also we can publish our modules to the community. When I wrote this post, there are totally 14,608 modules at NPN and about 10 thousand downloads per day. Install a module is very simple. Let’s back to our command windows and input the command “npm install express”. This command will install a module named “express”, which is a MVC framework on top of Node.js. And let’s create another JavaScript file named “helloweb.js” and copy the code below in it. I imported the “express” module. And then when the user browse the home page it will response a text. If the incoming URL matches “/Echo/:value” which the “value” is what the user specified, it will pass it back with the current date time in JSON format. And finally my website was listening at 12345 port. 1: var express = require("express"); 2: var app = express(); 3:  4: app.get("/", function(req, res) { 5: res.send("Hello Node.js and Express."); 6: }); 7:  8: app.get("/Echo/:value", function(req, res) { 9: var value = req.params.value; 10: res.json({ 11: "Value" : value, 12: "Time" : new Date() 13: }); 14: }); 15:  16: console.log("Web application opened."); 17: app.listen(12345); For more information and API about the “express”, please have a look here. Start our application from the command window by command “node helloweb.js”, and then navigate to the home page we can see the response in the browser. And if we go to, for example http://localhost:12345/Echo/Hello Shaun, we can see the JSON result. The “express” module is very populate in NPM. It makes the job simple when we need to build a MVC website. There are many modules very useful in NPM. - underscore: A utility module covers many common functionalities such as for each, map, reduce, select, etc.. - request: A very simple HTT request client. - async: Library for coordinate async operations. - wind: Library which enable us to control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps.   Node.js and IIS I demonstrated how to run the Node.js application from console. Since we are in Windows another common requirement would be, “can I host Node.js in IIS?” The answer is “Yes”. Tomasz Janczuk created a project IISNode at his GitHub space we can find here. And Scott Hanselman had published a blog post introduced about it.   Summary In this post I provided a very brief introduction of Node.js, includes it official definition, architecture and how it implement the event-driven non-blocking model. And then I described how to install and run a Node.js application on windows console. I also described the Node.js module system and NPM command. At the end I referred some links about IISNode, an IIS extension that allows Node.js application runs on IIS. Node.js became a very popular server side application platform especially in this year. By leveraging its non-blocking IO model and async feature it’s very useful for us to build a highly scalable, asynchronously service. I think Node.js will be used widely in the cloud application development in the near future.   In the next post I will explain how to use SQL Server from Node.js.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Understanding Node.js and concept of non-blocking I/O

    - by Saif Bechan
    Recently I became interested in using Node.js to tackle some of the parts of my web-application. I love the part that its full JavaScript and its very light weight so no use anymore to call an JavaScript-PHP call but a lighter JavaScript-JavaScript call. I however do not understand all the concepts explained. Basic concepts Now in the presentation for Node.js Ryan Dahl talks about non-blocking IO and why this is the way we need to create our programs. I can understand the theoretical concept. You just don't wait for a response, you go ahead and do other things. You make a callback for the response, and when the response arrives millions of clock-cycles later, you can fire that. If you have not already I recommend to watch this presentation. It is very easy to follow and pretty detailed. There are some nice concepts explained on how to write your code in a good manner. There are also some examples given and I am going to work with the basic example given. Examples The way we do thing now: puts("Enter your name: "); var name = gets(); puts("Name: " + name); Now the problem with this is that the code is halted at line 1. It blocks your code. The way we need to do things according to node puts("Enter your name: "); gets(function (name) { puts("Name: " + name); }); Now with this your program does not halt, because the input is a function within the output. So the programs continues to work without halting. Questions Now the basic question I have is how does this work in real-life situations. I am talking here for the use in web-applications. The application I am writing does I/O, bit is still does it in am blocking matter. I think that most of the time, if not all, you need to block, because you have to wait on what the response is you have to work with. When you need to get some information from the database, most of the time this data needs to be verified before you can further with the code. Example 1 If you take a login for example. You have to wait for the database to response to return, because you can not do anything else. I can't see a way around this without blocking. Example 2 Going back to the basic example. The use just request something from a database which does not need any verification. You still have to block because you don't have anything to do more. I can not come up with a single example where you want to do other things while you wait for the response to return. Possible answers I have read that this frees up recourses. When you program like this it takes less CPU or memory usage. So this non-blocking IO is ONLY meant to free up recourses and does not have any other practical use. Not that this is not a huge plus, freeing up recourses is always good. Yet I fail to see this as a good solution. because in both of the above examples, the program has to wait for the response of the user. Whether this is inside a function, or just inline, in my opinion there is a program that wait for input. Resources I looked at I have looked at some recourses before I posted this question. They talk a lot about the theoretical concept, which is quite clear. Yet i fail to see some real-life examples where this is makes a huge difference. Stackoverflow: What is in simple words blocking IO and non-blocking IO? Blocking IO vs non-blocking IO; looking for good articles tidy code for asynchronous IO Other recources: Wikipedia: Asynchronous I/O Introduction to non-blocking I/O The C10K problem

    Read the article

  • Xcode newb -- #include can't find my file

    - by morgancodes
    I'm trying to get a third party audio library (STK) working inside Xcode. Along with the standard .h files, many of the implementation files include a file called SKINI.msg. SKINI.msg is in the same directory as all of the header files. The header files are getting included fine, but the compiler complains that it can't find SKINI.msg. What do I need to do to get Xcode to happily include SKINI.msg? Edit: Here's the contents of SKINI.msg: /*********************************************************/ /* Definition of SKINI Message Types and Special Symbols Synthesis toolKit Instrument Network Interface These symbols should have the form: \c __SK_<name>_ where <name> is the string used in the SKINI stream. by Perry R. Cook, 1995 - 2010. */ /*********************************************************/ namespace stk { #define NOPE -32767 #define YEP 1 #define SK_DBL -32766 #define SK_INT -32765 #define SK_STR -32764 #define __SK_Exit_ 999 /***** MIDI COMPATIBLE MESSAGES *****/ /*** (Status bytes for channel=0) ***/ #define __SK_NoteOff_ 128 #define __SK_NoteOn_ 144 #define __SK_PolyPressure_ 160 #define __SK_ControlChange_ 176 #define __SK_ProgramChange_ 192 #define __SK_AfterTouch_ 208 #define __SK_ChannelPressure_ __SK_AfterTouch_ #define __SK_PitchWheel_ 224 #define __SK_PitchBend_ __SK_PitchWheel_ #define __SK_PitchChange_ 49 #define __SK_Clock_ 248 #define __SK_SongStart_ 250 #define __SK_Continue_ 251 #define __SK_SongStop_ 252 #define __SK_ActiveSensing_ 254 #define __SK_SystemReset_ 255 #define __SK_Volume_ 7 #define __SK_ModWheel_ 1 #define __SK_Modulation_ __SK_ModWheel_ #define __SK_Breath_ 2 #define __SK_FootControl_ 4 #define __SK_Portamento_ 65 #define __SK_Balance_ 8 #define __SK_Pan_ 10 #define __SK_Sustain_ 64 #define __SK_Damper_ __SK_Sustain_ #define __SK_Expression_ 11 #define __SK_AfterTouch_Cont_ 128 #define __SK_ModFrequency_ __SK_Expression_ #define __SK_ProphesyRibbon_ 16 #define __SK_ProphesyWheelUp_ 2 #define __SK_ProphesyWheelDown_ 3 #define __SK_ProphesyPedal_ 18 #define __SK_ProphesyKnob1_ 21 #define __SK_ProphesyKnob2_ 22 /*** Instrument Family Specific ***/ #define __SK_NoiseLevel_ __SK_FootControl_ #define __SK_PickPosition_ __SK_FootControl_ #define __SK_StringDamping_ __SK_Expression_ #define __SK_StringDetune_ __SK_ModWheel_ #define __SK_BodySize_ __SK_Breath_ #define __SK_BowPressure_ __SK_Breath_ #define __SK_BowPosition_ __SK_PickPosition_ #define __SK_BowBeta_ __SK_BowPosition_ #define __SK_ReedStiffness_ __SK_Breath_ #define __SK_ReedRestPos_ __SK_FootControl_ #define __SK_FluteEmbouchure_ __SK_Breath_ #define __SK_JetDelay_ __SK_FluteEmbouchure_ #define __SK_LipTension_ __SK_Breath_ #define __SK_SlideLength_ __SK_FootControl_ #define __SK_StrikePosition_ __SK_PickPosition_ #define __SK_StickHardness_ __SK_Breath_ #define __SK_TrillDepth_ 1051 #define __SK_TrillSpeed_ 1052 #define __SK_StrumSpeed_ __SK_TrillSpeed_ #define __SK_RollSpeed_ __SK_TrillSpeed_ #define __SK_FilterQ_ __SK_Breath_ #define __SK_FilterFreq_ 1062 #define __SK_FilterSweepRate_ __SK_FootControl_ #define __SK_ShakerInst_ 1071 #define __SK_ShakerEnergy_ __SK_Breath_ #define __SK_ShakerDamping_ __SK_ModFrequency_ #define __SK_ShakerNumObjects_ __SK_FootControl_ #define __SK_Strumming_ 1090 #define __SK_NotStrumming_ 1091 #define __SK_Trilling_ 1092 #define __SK_NotTrilling_ 1093 #define __SK_Rolling_ __SK_Strumming_ #define __SK_NotRolling_ __SK_NotStrumming_ #define __SK_PlayerSkill_ 2001 #define __SK_Chord_ 2002 #define __SK_ChordOff_ 2003 #define __SK_SINGER_FilePath_ 3000 #define __SK_SINGER_Frequency_ 3001 #define __SK_SINGER_NoteName_ 3002 #define __SK_SINGER_Shape_ 3003 #define __SK_SINGER_Glot_ 3004 #define __SK_SINGER_VoicedUnVoiced_ 3005 #define __SK_SINGER_Synthesize_ 3006 #define __SK_SINGER_Silence_ 3007 #define __SK_SINGER_VibratoAmt_ __SK_ModWheel_ #define __SK_SINGER_RndVibAmt_ 3008 #define __SK_SINGER_VibFreq_ __SK_Expression_ } // stk namespace And here's what the compiler said: CompileC build/StkCompile.build/Debug-iphonesimulator/StkCompile.build/Objects-normal/i386/BandedWG.o "../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp" normal i386 c++ com.apple.compilers.gcc.4_2 cd /Users/morganpackard/Desktop/trashme/StkCompile setenv LANG en_US.US-ASCII setenv PATH "/Developer/Platforms/iPhoneSimulator.platform/Developer/usr/bin:/Developer/usr/bin:/usr/bin:/bin:/usr/sbin:/sbin" /Developer/Platforms/iPhoneSimulator.platform/Developer/usr/bin/gcc-4.2 -x c++ -arch i386 -fmessage-length=0 -pipe -Wno-trigraphs -fpascal-strings -fasm-blocks -O0 -Wreturn-type -Wunused-variable -D__IPHONE_OS_VERSION_MIN_REQUIRED=30000 -isysroot /Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator3.1.2.sdk -fvisibility=hidden -fvisibility-inlines-hidden -mmacosx-version-min=10.5 -gdwarf-2 -iquote /Users/morganpackard/Desktop/trashme/StkCompile/build/StkCompile.build/Debug-iphonesimulator/StkCompile.build/StkCompile-generated-files.hmap -I/Users/morganpackard/Desktop/trashme/StkCompile/build/StkCompile.build/Debug-iphonesimulator/StkCompile.build/StkCompile-own-target-headers.hmap -I/Users/morganpackard/Desktop/trashme/StkCompile/build/StkCompile.build/Debug-iphonesimulator/StkCompile.build/StkCompile-all-target-headers.hmap -iquote /Users/morganpackard/Desktop/trashme/StkCompile/build/StkCompile.build/Debug-iphonesimulator/StkCompile.build/StkCompile-project-headers.hmap -F/Users/morganpackard/Desktop/trashme/StkCompile/build/Debug-iphonesimulator -I/Users/morganpackard/Desktop/trashme/StkCompile/build/Debug-iphonesimulator/include -I/Users/morganpackard/Desktop/trashme/StkCompile/build/StkCompile.build/Debug-iphonesimulator/StkCompile.build/DerivedSources/i386 -I/Users/morganpackard/Desktop/trashme/StkCompile/build/StkCompile.build/Debug-iphonesimulator/StkCompile.build/DerivedSources -include /var/folders/dx/dxSUSyOJFv0MBEh9qC1oJ++++TI/-Caches-/com.apple.Xcode.501/SharedPrecompiledHeaders/StkCompile_Prefix-bopqzvwpuyqltrdumgtjtfrjvtzb/StkCompile_Prefix.pch -c "/Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp" -o /Users/morganpackard/Desktop/trashme/StkCompile/build/StkCompile.build/Debug-iphonesimulator/StkCompile.build/Objects-normal/i386/BandedWG.o /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp:33:21: error: SKINI.msg: No such file or directory /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp: In member function 'virtual void stk::BandedWG::controlChange(int, stk::StkFloat)': /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp:326: error: '__SK_BowPressure_' was not declared in this scope /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp:342: error: '__SK_AfterTouch_Cont_' was not declared in this scope /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp:349: error: '__SK_ModWheel_' was not declared in this scope /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp:357: error: '__SK_ModFrequency_' was not declared in this scope /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp:359: error: '__SK_Sustain_' was not declared in this scope /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp:363: error: '__SK_Portamento_' was not declared in this scope /Users/morganpackard/Desktop/trashme/StkCompile/../../../Data/study/iPhone class/stk-4.4.2/src/BandedWG.cpp:367: error: '__SK_ProphesyRibbon_' was not declared in this scope

    Read the article

< Previous Page | 1 2 3 4 5