Search Results

Search found 488 results on 20 pages for 'rick schott'.

Page 5/20 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Dynamic Code for type casting Generic Types 'generically' in C#

    - by Rick Strahl
    C# is a strongly typed language and while that's a fundamental feature of the language there are more and more situations where dynamic types make a lot of sense. I've written quite a bit about how I use dynamic for creating new type extensions: Dynamic Types and DynamicObject References in C# Creating a dynamic, extensible C# Expando Object Creating a dynamic DataReader for dynamic Property Access Today I want to point out an example of a much simpler usage for dynamic that I use occasionally to get around potential static typing issues in C# code especially those concerning generic types. TypeCasting Generics Generic types have been around since .NET 2.0 I've run into a number of situations in the past - especially with generic types that don't implement specific interfaces that can be cast to - where I've been unable to properly cast an object when it's passed to a method or assigned to a property. Granted often this can be a sign of bad design, but in at least some situations the code that needs to be integrated is not under my control so I have to make due with what's available or the parent object is too complex or intermingled to be easily refactored to a new usage scenario. Here's an example that I ran into in my own RazorHosting library - so I have really no excuse, but I also don't see another clean way around it in this case. A Generic Example Imagine I've implemented a generic type like this: public class RazorEngine<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase, new() You can now happily instantiate new generic versions of this type with custom template bases or even a non-generic version which is implemented like this: public class RazorEngine : RazorEngine<RazorTemplateBase> { public RazorEngine() : base() { } } To instantiate one: var engine = new RazorEngine<MyCustomRazorTemplate>(); Now imagine that the template class receives a reference to the engine when it's instantiated. This code is fired as part of the Engine pipeline when it gets ready to execute the template. It instantiates the template and assigns itself to the template: var template = new TBaseTemplateType() { Engine = this } The problem here is that possibly many variations of RazorEngine<T> can be passed. I can have RazorTemplateBase, RazorFolderHostTemplateBase, CustomRazorTemplateBase etc. as generic parameters and the Engine property has to reflect that somehow. So, how would I cast that? My first inclination was to use an interface on the engine class and then cast to the interface.  Generally that works, but unfortunately here the engine class is generic and has a few members that require the template type in the member signatures. So while I certainly can implement an interface: public interface IRazorEngine<TBaseTemplateType> it doesn't really help for passing this generically templated object to the template class - I still can't cast it if multiple differently typed versions of the generic type could be passed. I have the exact same issue in that I can't specify a 'generic' generic parameter, since there's no underlying base type that's common. In light of this I decided on using object and the following syntax for the property (and the same would be true for a method parameter): public class RazorTemplateBase :MarshalByRefObject,IDisposable { public object Engine {get;set; } } Now because the Engine property is a non-typed object, when I need to do something with this value, I still have no way to cast it explicitly. What I really would need is: public RazorEngine<> Engine { get; set; } but that's not possible. Dynamic to the Rescue Luckily with the dynamic type this sort of thing can be mitigated fairly easily. For example here's a method that uses the Engine property and uses the well known class interface by simply casting the plain object reference to dynamic and then firing away on the properties and methods of the base template class that are common to all templates:/// <summary> /// Allows rendering a dynamic template from a string template /// passing in a model. This is like rendering a partial /// but providing the input as a /// </summary> public virtual string RenderTemplate(string template,object model) { if (template == null) return string.Empty; // if there's no template markup if(!template.Contains("@")) return template; // use dynamic to get around generic type casting dynamic engine = Engine; string result = engine.RenderTemplate(template, model); if (result == null) throw new ApplicationException("RenderTemplate failed: " + engine.ErrorMessage); return result; } Prior to .NET 4.0  I would have had to use Reflection for this sort of thing which would have a been a heck of a lot more verbose, but dynamic makes this so much easier and cleaner and in this case at least the overhead is negliable since it's a single dynamic operation on an otherwise very complex operation call. Dynamic as  a Bailout Sometimes this sort of thing often reeks of a design flaw, and I agree that in hindsight this could have been designed differently. But as is often the case this particular scenario wasn't planned for originally and removing the generic signatures from the base type would break a ton of other code in the framework. Given the existing fairly complex engine design, refactoring an interface to remove generic types just to make this particular code work would have been overkill. Instead dynamic provides a nice and simple and relatively clean solution. Now if there were many other places where this occurs I would probably consider reworking the code to make this cleaner but given this isolated instance and relatively low profile operation use of dynamic seems a valid choice for me. This solution really works anywhere where you might end up with an inheritance structure that doesn't have a common base or interface that is sufficient. In the example above I know what I'm getting but there's no common base type that I can cast to. All that said, it's a good idea to think about use of dynamic before you rush in. In many situations there are alternatives that can still work with static typing. Dynamic definitely has some overhead compared to direct static access of objects, so if possible we should definitely stick to static typing. In the example above the application already uses dynamics extensively for dynamic page page templating and passing models around so introducing dynamics here has very little additional overhead. The operation itself also fires of a fairly resource heavy operation where the overhead of a couple of dynamic member accesses are not a performance issue. So, what's your experience with dynamic as a bailout mechanism? © Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Process.Start() and ShellExecute() fails with URLs on Windows 8

    - by Rick Strahl
    Since I installed Windows 8 I've noticed that a number of my applications appear to have problems opening URLs. That is when I click on a link inside of a Windows application, either nothing happens or there's an error that occurs. It's happening both to my own applications and a host of Windows applications I'm running. At first I thought this was an issue with my default browser (Chrome) but after switching the default browser to a few others and experimenting a bit I noticed that the errors occur - oddly enough - only when I run an application as an Administrator. I also tried switching to FireFox and Opera as my default browser and saw exactly the same behavior. The scenario for this is a bit bizarre: Running on Windows 8 Call Process.Start() (or ShellExecute() in Win32 API) with a URL or an HTML file Run 'As Administrator' (works fine under non-elevated user account!) or with UAC off A browser other than Internet Explorer is set as your Default Web Browser Talk about a weird scenario: Something that doesn't work when you run as an Administrator which is supposed to have rights to everything on the system! Instead running under an Admin account - either elevated with a User Account Control prompt or even when running as a full Administrator fails. It appears that this problem does not occur for everyone, but when I looked for a solution to this, I saw quite a few posts in relation to this with no clear resolutions. I have three Windows 8 machines running here in the office and all three of them showed this behavior. Lest you think this is just a programmer's problem - this can affect any software running on your system that needs to run under administrative rights. Try it out Now, in order for this next example to fail, any browser but Internet Explorer has to be your default browser and even then it may not fail depending on how you installed your browser. To see if this is a problem create a small Console application and call Process.Start() with a URL in it:namespace Win8ShellBugConsole { class Program { static void Main(string[] args) { Console.WriteLine("Launching Url..."); Process.Start("http://microsoft.com"); Console.Write("Press any key to continue..."); Console.ReadKey(); Console.WriteLine("\r\n\r\nLaunching image..."); Process.Start(Path.GetFullPath(@"..\..\sailbig.jpg")); Console.Write("Press any key to continue..."); Console.ReadKey(); } } } Compile this code. Then execute the code from Explorer (not from Visual Studio because that may change the permissions). If you simply run the EXE and you're not running as an administrator, you'll see the Web page pop up in the browser as well as the image loading. Now run the same thing with Run As Administrator: Now when you run it you get a nice error when Process.Start() is fired: The same happens if you are running with User Account Control off altogether - ie. you are running as a full admin account. Now if you comment out the URL in the code above and just fire the image display - that works just fine in any user mode. As does opening any other local file type or even starting a new EXE locally (ie. Process.Start("c:\windows\notepad.exe"). All that works, EXCEPT for URLs. The code above uses Process.Start() in .NET but the same happens in Win32 Applications that use the ShellExecute API. In some of my older Fox apps ShellExecute returns an error code of 31 - which is No Shell Association found. What's the Deal? It turns out the problem has to do with the way browsers are registering themselves on Windows. Internet Explorer - being a built-in application in Windows 8 - apparently does this correctly, but other browsers possibly don't or at least didn't at the time I installed them. So even Chrome, which continually updates itself, has a recent version that apparently has this registration issue fixed, I was unable to simply set IE as my default browser then use Chrome to 'Set as Default Browser'. It still didn't work. Neither did using the Set Program Associations dialog which lets you assign what extensions are mapped to by a given application. Each application provides a set of extension/moniker mappings that it supports and this dialog lets you associate them on a system wide basis. This also did not work for Chrome or any of the other browsers at first. However, after repeated retries here eventually I did manage to get FireFox to work, but not any of the others. What Works? Reinstall the Browser In the end I decided on the hard core pull the plug solution: Totally uninstall and re-install Chrome in this case. And lo and behold, after reinstall everything was working fine. Now even removing the association for Chrome, switching to IE as the default browser and then back to Chrome works. But, even though the version of Chrome I was running before uninstalling and reinstalling is the same as I'm running now after the reinstall now it works. Of course I had to find out the hard way, before Richard commented with a note regarding what the issue is with Chrome at least: http://code.google.com/p/chromium/issues/detail?id=156400 As expected the issue is a registration issue - with keys not being registered at the machine level. Reading this I'm still not sure why this should be a problem - an elevated account still runs under the same user account (ie. I'm still rickstrahl even if I Run As Administrator), so why shouldn't an app be able to read my Current User registry hive? And also that doesn't quite explain why if I register the extensions using Run As Administrator in Chrome when using Set as Default Browser). But in the end it works… Not so fast It's now a couple of days later and still there are some oddball problems although this time they appear to be purely Chrome issues. After the reinstall Chrome seems to pop up properly with ShellExecute() calls both in regular user and Admin mode. However, it now looks like Chrome is actually running two completely separate user profiles for each. For example, when I run Visual Studio in Admin mode and go to View in browser, Chrome complains that it was installed in Admin mode and can't launch (WTF?). Then you retry a few times later and it ends up working. When launched that way some of the plug-ins installed don't show up with the effect that sometimes they're visible sometimes they're not. Also Chrome seems to loose my configuration and Google sign in between sessions now, presumably when switching user modes. Add-ins installed in admin mode don't show up in user mode and vice versa. Ah, this is lovely. Did I mention that I freaking hate UAC precisely because of this kind of bullshit. You can never tell exactly what account your app is running under, and apparently apps also have a hard time trying to put data into the right place that works for both scenarios. And as my recent post on using Windows Live accounts shows it's yet another level of abstraction ontop of the underlying system identity that can cause all sort of small side effect headaches like this. Hopefully, most of you are skirting this issue altogether - having installed more recent versions of your favorite browsers. If not, hopefully this post will take you straight to reinstallation to fix this annoying issue.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Windows  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Physical Directories vs. MVC View Paths

    - by Rick Strahl
    This post falls into the bucket of operator error on my part, but I want to share this anyway because it describes an issue that has bitten me a few times now and writing it down might keep it a little stronger in my mind. I've been working on an MVC project the last few days, and at the end of a long day I accidentally moved one of my View folders from the MVC Root Folder to the project root. It must have been at the very end of the day before shutting down because tests and manual site navigation worked fine just before I quit for the night. I checked in changes and called it a night. Next day I came back, started running the app and had a lot of breaks with certain views. Oddly custom routes to these controllers/views worked, but stock /{controller}/{action} routes would not. After a bit of spelunking I realized that "Hey one of my View Folders is missing", which made some sense given the error messages I got. I looked in the recycle bin - nothing there, so rather than try to figure out what the hell happened, just restored from my last SVN checkin. At this point the folders are back… but… view access  still ends up breaking for this set of views. Specifically I'm getting the Yellow Screen of Death with: CS0103: The name 'model' does not exist in the current context Here's the full error: Server Error in '/ClassifiedsWeb' Application. Compilation ErrorDescription: An error occurred during the compilation of a resource required to service this request. Please review the following specific error details and modify your source code appropriately.Compiler Error Message: CS0103: The name 'model' does not exist in the current contextSource Error: Line 1: @model ClassifiedsWeb.EntryViewModel Line 2: @{ Line 3: ViewBag.Title = Model.Entry.Title + " - " + ClassifiedsBusiness.App.Configuration.ApplicationName; Source File: c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Classifieds\Show.cshtml    Line: 1 Compiler Warning Messages: Show Detailed Compiler Output: Show Complete Compilation Source: Version Information: Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.272 Here's what's really odd about this error: The views now do exist in the /Views/Classifieds folder of the project, but it appears like MVC is trying to execute the views directly. This is getting pretty weird, man! So I hook up some break points in my controllers to see if my controller actions are getting fired - and sure enough it turns out they are not - but only for those views that were previously 'lost' and then restored from SVN. WTF? At this point I'm thinking that I must have messed up one of the config files, but after some more spelunking and realizing that all the other Controller views work, I give up that idea. Config's gotta be OK if other controllers and views are working. Root Folders and MVC Views don't mix As I mentioned the problem was the fact that I inadvertantly managed to drag my View folder to the root folder of the project. Here's what this looks like in my FUBAR'd project structure after I copied back /Views/Classifieds folder from SVN: There's the actual root folder in the /Views folder and the accidental copy that sits of the root. I of course did not notice the /Classifieds folder at the root because it was excluded and didn't show up in the project. Now, before you call me a complete idiot remember that this happened by accident - an accidental drag probably just before shutting down for the night. :-) So why does this break? MVC should be happy with views in the /Views/Classifieds folder right? While MVC might be happy, IIS is not. The fact that there is a physical folder on disk takes precedence over MVC's routing. In other words if a URL exists that matches a route the pysical path is accessed first. What happens here is that essentially IIS is trying to execute the .cshtml pages directly without ever routing to the Controller methods. In the error page I showed above my clue should have been that the view was served as: c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Classifieds\Show.cshtml rather than c:\Projects2010\Clients\GorgeNet\Classifieds\ClassifiedsWeb\Views\Classifieds\Show.cshtml But of course I didn't notice that right away, just skimming to the end and looking at the file name. The reason that /classifieds/list actually fires that file is that the ASP.NET Web Pages engine looks for physical files on disk that match a path. IOW, when calling Web Pages you drop the .cshtml off the Razor page and IIS will serve that just fine. So: /classifieds/list looks and tries to find /classifieds/list.cshtml and executes that script. And that is exactly what's happening. Web Pages is trying to execute the .cshtml file and it fails because Web Pages knows nothing about the @model tag which is an MVC specific template extension. This is why my breakpoints in the controller methods didn't fire and it also explains why the error mentions that the @model key word is invalid (@model is an MVC provided template enhancement to the Razor Engine). The solution of course is super simple: Delete the accidentally created root folder and the problem is solved. Routing and Physical Paths I've run into problems with this before actually. In the past I've had a number of applications that had a physical /Admin folder which also would conflict with an MVC Admin controller. More than once I ended up wondering why the index route (/Admin/) was not working properly. If a physical /Admin folder exists /Admin will not route to the Index action (or whatever default action you have set up, but instead try to list the directory or show the default document in the folder. The only way to force the index page through MVC is to explicitly use /Admin/Index. Makes perfect sense once you realize the physical folder is there, but that's easy to forget in an MVC application. As you might imagine after a few times of running into this I gave up on the Admin folder and moved everything into MVC views to handle those operations. Still it's one of those things that can easily bite you, because the behavior and error messages seem to point at completely different  problems. Moral of the story is: If you see routing problems where routes are not reaching obvious controller methods, always check to make sure there's isn't a physical path being mapped by IIS instead. That way you won't feel stupid like I did after trying a million things for about an hour before discovering my sloppy mousing behavior :-)© Rick Strahl, West Wind Technologies, 2005-2012Posted in MVC   IIS7   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Changing an HTML Form's Target with jQuery

    - by Rick Strahl
    This is a question that comes up quite frequently: I have a form with several submit or link buttons and one or more of the buttons needs to open a new Window. How do I get several buttons to all post to the right window? If you're building ASP.NET forms you probably know that by default the Web Forms engine sends button clicks back to the server as a POST operation. A server form has a <form> tag which expands to this: <form method="post" action="default.aspx" id="form1"> Now you CAN change the target of the form and point it to a different window or frame, but the problem with that is that it still affects ALL submissions of the current form. If you multiple buttons/links and they need to go to different target windows/frames you can't do it easily through the <form runat="server"> tag. Although this discussion uses ASP.NET WebForms as an example, realistically this is a general HTML problem although likely more common in WebForms due to the single form metaphor it uses. In ASP.NET MVC for example you'd have more options by breaking out each button into separate forms with its own distinct target tag. However, even with that option it's not always possible to break up forms - for example if multiple targets are required but all targets require the same form data to the be posted. A common scenario here is that you might have a button (or link) that you click where you still want some server code to fire but at the end of the request you actually want to display the content in a new window. A common operation where this happens is report generation: You click a button and the server generates a report say in PDF format and you then want to display the PDF result in a new window without killing the content in the current window. Assuming you have other buttons on the same Page that need to post to base window how do you get the button click to go to a new window? Can't  you just use a LinkButton or other Link Control? At first glance you might think an easy way to do this is to use an ASP.NET LinkButton to do this - after all a LinkButton creates a hyper link that CAN accept a target and it also posts back to the server, right? However, there's no Target property, although you can set the target HTML attribute easily enough. Code like this looks reasonable: <asp:LinkButton runat="server" ID="btnNewTarget" Text="New Target" target="_blank" OnClick="bnNewTarget_Click" /> But if you try this you'll find that it doesn't work. Why? Because ASP.NET creates postbacks with JavaScript code that operates on the current window/frame: <a id="btnNewTarget" target="_blank" href="javascript:__doPostBack(&#39;btnNewTarget&#39;,&#39;&#39;)">New Target</a> What happens with a target tag is that before the JavaScript actually executes a new window is opened and the focus shifts to the new window. The new window of course is empty and has no __doPostBack() function nor access to the old document. So when you click the link a new window opens but the window remains blank without content - no server postback actually occurs. Natch that idea. Setting the Form Target for a Button Control or LinkButton So, in order to send Postback link controls and buttons to another window/frame, both require that the target of the form gets changed dynamically when the button or link is clicked. Luckily this is rather easy to do however using a little bit of script code and jQuery. Imagine you have two buttons like this that should go to another window: <asp:LinkButton runat="server" ID="btnNewTarget" Text="New Target" OnClick="ClickHandler" /> <asp:Button runat="server" ID="btnButtonNewTarget" Text="New Target Button" OnClick="ClickHandler" /> ClickHandler in this case is any routine that generates the output you want to display in the new window. Generally this output will not come from the current page markup but is generated externally - like a PDF report or some report generated by another application component or tool. The output generally will be either generated by hand or something that was generated to disk to be displayed with Response.Redirect() or Response.TransmitFile() etc. Here's the dummy handler that just generates some HTML by hand and displays it: protected void ClickHandler(object sender, EventArgs e) { // Perform some operation that generates HTML or Redirects somewhere else Response.Write("Some custom output would be generated here (PDF, non-Page HTML etc.)"); // Make sure this response doesn't display the page content // Call Response.End() or Response.Redirect() Response.End(); } To route this oh so sophisticated output to an alternate window for both the LinkButton and Button Controls, you can use the following simple script code: <script type="text/javascript"> $("#btnButtonNewTarget,#btnNewTarget").click(function () { $("form").attr("target", "_blank"); }); </script> So why does this work where the target attribute did not? The difference here is that the script fires BEFORE the target is changed to the new window. When you put a target attribute on a link or form the target is changed as the very first thing before the link actually executes. IOW, the link literally executes in the new window when it's done this way. By attaching a click handler, though we're not navigating yet so all the operations the script code performs (ie. __doPostBack()) and the collection of Form variables to post to the server all occurs in the current page. By changing the target from within script code the target change fires as part of the form submission process which means it runs in the correct context of the current page. IOW - the input for the POST is from the current page, but the output is routed to a new window/frame. Just what we want in this scenario. Voila you can dynamically route output to the appropriate window.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  HTML  jQuery  

    Read the article

  • IntelliSense for Razor Hosting in non-Web Applications

    - by Rick Strahl
    When I posted my Razor Hosting article a couple of weeks ago I got a number of questions on how to get IntelliSense to work inside of Visual Studio while editing your templates. The answer to this question is mainly dependent on how Visual Studio recognizes assemblies, so a little background is required. If you open a template just on its own as a standalone file by clicking on it say in Explorer, Visual Studio will open up with the template in the editor, but you won’t get any IntelliSense on any of your related assemblies that you might be using by default. It’ll give Intellisense on base System namespace, but not on your imported assembly types. This makes sense: Visual Studio has no idea what the assembly associations for the single file are. There are two options available to you to make IntelliSense work for templates: Add the templates as included files to your non-Web project Add a BIN folder to your template’s folder and add all assemblies required there Including Templates in your Host Project By including templates into your Razor hosting project, Visual Studio will pick up the project’s assembly references and make IntelliSense available for any of the custom types in your project and on your templates. To see this work I moved the \Templates folder from the samples from the Debug\Bin folder into the project root and included the templates in the WinForm sample project. Here’s what this looks like in Visual Studio after the templates have been included:   Notice that I take my original example and type cast the Context object to the specific type that it actually represents – namely CustomContext – by using a simple code block: @{ CustomContext Model = Context as CustomContext; } After that assignment my Model local variable is in scope and IntelliSense works as expected. Note that you also will need to add any namespaces with the using command in this case: @using RazorHostingWinForm which has to be defined at the very top of a Razor document. BTW, while you can only pass in a single Context 'parameter’ to the template with the default template I’ve provided realize that you can also assign a complex object to Context. For example you could have a container object that references a variety of other objects which you can then cast to the appropriate types as needed: @{ ContextContainer container = Context as ContextContainer; CustomContext Model = container.Model; CustomDAO DAO = container.DAO; } and so forth. IntelliSense for your Custom Template Notice also that you can get IntelliSense for the top level template by specifying an inherits tag at the top of the document: @inherits RazorHosting.RazorTemplateFolderHost By specifying the above you can then get IntelliSense on your base template’s properties. For example, in my base template there are Request and Response objects. This is very useful especially if you end up creating custom templates that include your custom business objects as you can get effectively see full IntelliSense from the ‘page’ level down. For Html Help Builder for example, I’d have a Help object on the page and assuming I have the references available I can see all the way into that Help object without even having to do anything fancy. Note that the @inherits key is a GREAT and easy way to override the base template you normally specify as the default template. It allows you to create a custom template and as long as it inherits from the base template it’ll work properly. Since the last post I’ve also made some changes in the base template that allow hooking up some simple initialization logic so it gets much more easy to create custom templates and hook up custom objects with an IntializeTemplate() hook function that gets called with the Context and a Configuration object. These objects are objects you can pass in at runtime from your host application and then assign to custom properties on your template. For example the default implementation for RazorTemplateFolderHost does this: public override void InitializeTemplate(object context, object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; // Just use the entire ConfigData as the model, but in theory // configData could contain many objects or values to set on // template properties this.Model = config.ConfigData as TModel; } to set up a strongly typed Model and the Request object. You can do much more complex hookups here of course and create complex base template pages that contain all the objects that you need in your code with strong typing. Adding a Bin folder to your Template’s Root Path Including templates in your host project works if you own the project and you’re the only one modifying the templates. However, if you are distributing the Razor engine as a templating/scripting solution as part of your application or development tool the original project is likely not available and so that approach is not practical. Another option you have is to add a Bin folder and add all the related assemblies into it. You can also add a Web.Config file with assembly references for any GAC’d assembly references that need to be associated with the templates. Between the web.config and bin folder Visual Studio can figure out how to provide IntelliSense. The Bin folder should contain: The RazorHosting.dll Your host project’s EXE or DLL – renamed to .dll if it’s an .exe Any external (bin folder) dependent assemblies Note that you most likely also want a reference to the host project if it contains references that are going to be used in templates. Visual Studio doesn’t recognize an EXE reference so you have to rename the EXE to DLL to make it work. Apparently the binary signature of EXE and DLL files are identical and it just works – learn something new everyday… For GAC assembly references you can add a web.config file to your template root. The Web.config file then should contain any full assembly references to GAC components: <configuration> <system.web> <compilation debug="true"> <assemblies> <add assembly="System.Web.Mvc, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> <add assembly="System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" /> <add assembly="System.Web.Extensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> </assemblies> </compilation> </system.web> </configuration> And with that you should get full IntelliSense. Note that if you add a BIN folder and you also have the templates in your Visual Studio project Visual Studio will complain about reference conflicts as it’s effectively seeing both the project references and the ones in the bin folder. So it’s probably a good idea to use one or the other but not both at the same time :-) Seeing IntelliSense in your Razor templates is a big help for users of your templates. If you’re shipping an application level scripting solution especially it’ll be real useful for your template consumers/users to be able to get some quick help on creating customized templates – after all that’s what templates are all about – easy customization. Making sure that everything is referenced in your bin folder and web.config is a good idea and it’s great to see that Visual Studio (and presumably WebMatrix/Visual Web Developer as well) will be able to pick up your custom IntelliSense in Razor templates.© Rick Strahl, West Wind Technologies, 2005-2011Posted in Razor  

    Read the article

  • Adding proper THEAD sections to a GridView

    - by Rick Strahl
    I’m working on some legacy code for a customer today and dealing with a page that has my favorite ‘friend’ on it: A GridView control. The ASP.NET GridView control (and also the older DataGrid control) creates some pretty messed up HTML. One of the more annoying things it does is to generate all rows including the header into the page in the <tbody> section of the document rather than in a properly separated <thead> section. Here’s is typical GridView generated HTML output: <table class="tablesorter blackborder" cellspacing="0" rules="all" border="1" id="Table1" style="border-collapse:collapse;"> <tr> <th scope="col">Name</th> <th scope="col">Company</th> <th scope="col">Entered</th><th scope="col">Balance</th> </tr> <tr> <td>Frank Hobson</td><td>Hobson Inc.</td> <td>10/20/2010 12:00:00 AM</td><td>240.00</td> </tr> ... </table> Notice that all content – both the headers and the body of the table – are generated directly under the <table> tag and there’s no explicit use of <tbody> or <thead> (or <tfooter> for that matter). When the browser renders this the document some default settings kick in and the DOM tree turns into something like this: <table> <tbody> <tr> <-- header <tr> <—detail row <tr> <—detail row </tbody> </table> Now if you’re just rendering the Grid server side and you’re applying all your styles through CssClass assignments this isn’t much of a problem. However, if you want to style your grid more generically using hierarchical CSS selectors it gets a lot more tricky to format tables that don’t properly delineate headers and body content. Also many plug-ins and other JavaScript utilities that work on tables require a properly formed table layout, and many of these simple won’t work out of the box with a GridView. For example, one of the things I wanted to do for this app is use the jQuery TableSorter plug-in which – not surprisingly – requires to work of table headers in the DOM document. Out of the box, the TableSorter plug-in doesn’t work with GridView controls, because the lack of a <thead> section to work on. Luckily with a little help of some jQuery scripting there’s a real easy fix to this problem. Basically, if we know the GridView generated table has a header in it, code like the following will move the headers from <tbody> to <thead>: <script type="text/javascript"> $(document).ready(function () { // Fix up GridView to support THEAD tags $("#gvCustomers tbody").before("<thead><tr></tr></thead>"); $("#gvCustomers thead tr").append($("#gvCustomers th")); $("#gvCustomers tbody tr:first").remove(); $("#gvCustomers").tablesorter({ sortList: [[1, 0]] }); }); </script> And voila you have a table that now works with the TableSorter plug-in. If you use GridView’s a lot you might want something a little more generic so the following does the same thing but should work more generically on any GridView/DataGrid missing its <thead> tag: function fixGridView(tableEl) {            var jTbl = $(tableEl);         if(jTbl.find("tbody>tr>th").length > 0) {         jTbl.find("tbody").before("<thead><tr></tr></thead>");         jTbl.find("thead tr").append(jTbl.find("th"));         jTbl.find("tbody tr:first").remove();     } } which you can call like this: $(document).ready(function () { fixGridView( $("#gvCustomers") ); $("#gvCustomers").tablesorter({ sortList: [[1, 0]] }); }); Server Side THEAD Rendering [updated from comments 11/21/2010] Several commenters pointed out that you can also do this on the server side by using the GridView.HeaderRow.TableSection property to force rendering with a proper table header. I was unaware of this option actually – not exactly an easy one to discover. One issue here is that timing of this needs to happen during the databinding process so you need to use an event handler: this.gvCustomers.DataBound += (object o, EventArgs ev) => { gvCustomers.HeaderRow.TableSection = TableRowSection.TableHeader; }; this.gvCustomers.DataSource = custList; this.gvCustomers.DataBind(); You can apply the same logic for the FooterRow. It’s beyond me why this rendering mode isn’t the default for a GridView – why would you ever want to have a table that doesn’t use a THEAD section??? But I disgress :-) I don’t use GridViews much anymore – opting for more flexible approaches using ListViews or even plain code based views or other custom displays that allow more control over layout, but I still see a lot of old code that does use them old clunkers including my own :) (gulp) and this does make life a little bit easier especially if you’re working with any of the jQuery table related plug-ins that expect a proper table structure.© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  jQuery  

    Read the article

  • HTML5 Input type=date Formatting Issues

    - by Rick Strahl
    One of the nice features in HTML5 is the abililty to specify a specific input type for HTML text input boxes. There a host of very useful input types available including email, number, date, datetime, month, number, range, search, tel, time, url and week. For a more complete list you can check out the MDN reference. Date input types also support automatic validation which can be useful in some scenarios but maybe can get in the way at other times. One of the more common input types, and one that can most benefit of a custom UI for selection is of course date input. Almost every application could use a decent date representation and HTML5's date input type seems to push into the right direction. It'd be nice if you could just say:<form action="DateTest.html"> <label for="FromDate">Enter a Date:</label> <input type="date" id="FromDate" name="FromDate" value="11/08/2012" class="date" /> <hr /> <input type="submit" id="btnSubmit" name="btnSubmit" value="Save Date" class="smallbutton" /> </form> but if you'd expect to just work, you're likely to be pretty disappointed. Problem #1: Browser Support For starters there's browser support. Out of the major browsers only the latest versions of WebKit and Opera based browsers seem to support date input. Neither FireFox, nor any version of Internet Explorer (including the new touch enabled IE10 in Windows RT) support input type=date. Browser support is an issue, but it would be OK if it wasn't for problem #2. Problem #2: Date Formatting If you look at my date input from before:<input type="date" id="FromDate" name="FromDate" value="11/08/2012" class="date" /> You can see that my date is formatted in local date format (ie. en-us). Now when I run this sadly the form that comes up in Chrome (and also iOS mobile browsers) comes up like this: Chrome isn't recognizing my local date string. Instead it's expecting my date format to be provided in ISO 8601 format which is: 2012-11-08 So if I change the date input field to:<input type="date" id="FromDate" name="FromDate" value="2012-10-08" class="date" /> I correctly get the date field filled in: Also when I pick a date with the DatePicker the date value is also returned is also set to the ISO date format. Yet notice how the date is still formatted to the local date time format (ie. en-US format). So if I pick a new date: and then save, the value field is set back to: 2012-11-15 using the ISO format. The same is true for Opera and iOS browsers and I suspect any other WebKit style browser and their date pickers. So to summarize input type=date: Expects ISO 8601 format dates to display intial values Sets selected date values to ISO 8601 Now what? This would sort of make sense, if all browsers supported input type=date. It'd be easy because you could just format dates appropriately when you set the date value into the control by applying the appropriate culture formatting (ie. .ToString("yyyy-MM-dd") ). .NET is actually smart enough to pick up the date on the other end for modelbinding when ISO 8601 is used. For other environments this might be a bit more tricky. input type=date is clearly the way to go forward. Date controls implemented in HTML are going the way of the dodo, given the intricacies of mobile platforms and scaling for both desktop and mobile. I've been using jQuery UI Datepicker for ages but once going to mobile, that's no longer an option as the control doesn't scale down well for mobile apps (at least not without major re-styling). It also makes a lot of sense for the browser to provide this functionality - creating a consistent date input experience across apps only makes sense, which is why I find it baffling that neither FireFox nor IE 10 deign it necessary to support date input natively. The problem is that a large number of even the latest and greatest browsers don't support this. So now you're stuck with not knowing what date format you have to serve since neither the local format, nor the ISO format works in all cases. For my current app I just broke down and used the ISO format and so I'll live with the non-local date format. <input type="date" id="ToDate" name="ToDate" value="2012-11-08" class="date"/> Here's what this looks like on Chrome: Here's what it looks like on my iPhone: Both Chrome and the phone do this the way it should be. For the phone especially this demonstrates why we'd want this - the built-in date picker there certainly beats manually trying to edit the date using finger gymnastics, and it's one of the easiest ways to pick a date I can think of (ie. easier to use than your typical date picker). Finally here's what the date looks like in FireFox: Certainly this is not the ideal date format, but it's clear enough I suppose. If users enter a date in local US format and that works as well (but won't work for other locales). It'll have to do. Over time one can only hope that other browsers will finally decide to implement this functionality natively to provide a unique experience. Until then, incomplete solutions it is. Related Posts Html 5 Input Types - How useful is this really going to be?© Rick Strahl, West Wind Technologies, 2005-2012Posted in HTML5  HTML   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Monitoring Html Element CSS Changes in JavaScript

    - by Rick Strahl
    [ updated Feb 15, 2011: Added event unbinding to avoid unintended recursion ] Here's a scenario I've run into on a few occasions: I need to be able to monitor certain CSS properties on an HTML element and know when that CSS element changes. For example, I have a some HTML element behavior plugins like a drop shadow that attaches to any HTML element, but I then need to be able to automatically keep the shadow in sync with the window if the  element dragged around the window or moved via code. Unfortunately there's no move event for HTML elements so you can't tell when it's location changes. So I've been looking around for some way to keep track of the element and a specific CSS property, but no luck. I suspect there's nothing native to do this so the only way I could think of is to use a timer and poll rather frequently for the property. I ended up with a generic jQuery plugin that looks like this: (function($){ $.fn.watch = function (props, func, interval, id) { /// <summary> /// Allows you to monitor changes in a specific /// CSS property of an element by polling the value. /// when the value changes a function is called. /// The function called is called in the context /// of the selected element (ie. this) /// </summary> /// <param name="prop" type="String">CSS Properties to watch sep. by commas</param> /// <param name="func" type="Function"> /// Function called when the value has changed. /// </param> /// <param name="interval" type="Number"> /// Optional interval for browsers that don't support DOMAttrModified or propertychange events. /// Determines the interval used for setInterval calls. /// </param> /// <param name="id" type="String">A unique ID that identifies this watch instance on this element</param> /// <returns type="jQuery" /> if (!interval) interval = 200; if (!id) id = "_watcher"; return this.each(function () { var _t = this; var el$ = $(this); var fnc = function () { __watcher.call(_t, id) }; var itId = null; var data = { id: id, props: props.split(","), func: func, vals: [props.split(",").length], fnc: fnc, origProps: props, interval: interval }; $.each(data.props, function (i) { data.vals[i] = el$.css(data.props[i]); }); el$.data(id, data); hookChange(el$, id, data.fnc); }); function hookChange(el$, id, fnc) { el$.each(function () { var el = $(this); if (typeof (el.get(0).onpropertychange) == "object") el.bind("propertychange." + id, fnc); else if ($.browser.mozilla) el.bind("DOMAttrModified." + id, fnc); else itId = setInterval(fnc, interval); }); } function __watcher(id) { var el$ = $(this); var w = el$.data(id); if (!w) return; var _t = this; if (!w.func) return; // must unbind or else unwanted recursion may occur el$.unwatch(id); var changed = false; var i = 0; for (i; i < w.props.length; i++) { var newVal = el$.css(w.props[i]); if (w.vals[i] != newVal) { w.vals[i] = newVal; changed = true; break; } } if (changed) w.func.call(_t, w, i); // rebind event hookChange(el$, id, w.fnc); } } $.fn.unwatch = function (id) { this.each(function () { var el = $(this); var fnc = el.data(id).fnc; try { if (typeof (this.onpropertychange) == "object") el.unbind("propertychange." + id, fnc); else if ($.browser.mozilla) el.unbind("DOMAttrModified." + id, fnc); else clearInterval(id); } // ignore if element was already unbound catch (e) { } }); return this; } })(jQuery); With this I can now monitor movement by monitoring say the top CSS property of the element. The following code creates a box and uses the draggable (jquery.ui) plugin and a couple of custom plugins that center and create a shadow. Here's how I can set this up with the watcher: $("#box") .draggable() .centerInClient() .shadow() .watch("top", function() { $(this).shadow(); },70,"_shadow"); ... $("#box") .unwatch("_shadow") .shadow("remove"); This code basically sets up the window to be draggable and initially centered and then a shadow is added. The .watch() call then assigns a CSS property to monitor (top in this case) and a function to call in response. The component now sets up a setInterval call and keeps on pinging this property every time. When the top value changes the supplied function is called. While this works and I can now drag my window around with the shadow following suit it's not perfect by a long shot. The shadow move is delayed and so drags behind the window, but using a higher timer value is not appropriate either as the UI starts getting jumpy if the timer's set with too small of an increment. This sort of monitor can be useful for other things as well where operations are maybe not quite as time critical as a UI operation taking place. Can anybody see a better a better way of capturing movement of an element on the page?© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  JavaScript  jQuery  

    Read the article

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • Modern/Metro Internet Explorer: What were they thinking???

    - by Rick Strahl
    As I installed Windows 8.1 last week I decided that I really should take a closer look at Internet Explorer in the Modern/Metro environment again. Right away I ran into two issues that are real head scratchers to me.Modern Split Windows don't resize Viewport but Zoom OutThis one falls in the "WTF, really?" department: It looks like Modern Internet Explorer's Modern doesn't resize the browser window as every other browser (including IE 11 on the desktop) does, but rather tries to adjust the zoom to the width of the browser. This means that if you use the Modern IE browser and you split the display between IE and another application, IE will be zoomed out, with text becoming much, much smaller, rather than resizing the browser viewport and adjusting the pixel width as you would when a browser window is typically resized.Here's what I'm talking about in a couple of pictures. First here's the full screen Internet Explorer version (this shot is resized down since it's full screen at 1080p, click to see the full image):This brings up the first issue which is: On the desktop who wants to browse a site full screen? Most sites aren't fully optimized for 1080p widescreen experience and frankly most content that wide just looks weird. Even in typical 10" resolutions of 1280 width it's weird to look at things this way. At least this issue can be worked around with @media queries and either constraining the view, or adding additional content to make use of the extra space. Still running a desktop browser full screen is not optimal on a desktop machine - ever.Regardless, this view, while oversized, is what I expect: Everything is rendered in the right ratios, with font-size and the responsive design styling properly respected.But now look what happens when you split the desktop windows and show half desktop and have modern IE (this screen shot is not resized but cropped - this is actual size content as you can see in the cropped Twitter window on the right half of the screen):What's happening here is that IE is zooming out of the content to make it fit into the smaller width, shrinking the content rather than resizing the viewport's pixel width. In effect it looks like the pixel width stays at 1080px and the viewport expands out height-wise in response resulting in some crazy long portrait view.There goes responsive design - out the window literally. If you've built your site using @media queries and fixed viewport sizes, Internet Explorer completely screws you in this split view. On my 1080p monitor, the site shown at a little under half width becomes completely unreadable as the fonts are too small and break up. As you go into split view and you resize the window handle the content of the browser gets smaller and smaller (and effectively longer and longer on the bottom) effectively throwing off any responsive layout to the point of un-readability even on a big display, let alone a small tablet screen.What could POSSIBLY be the benefit of this screwed up behavior? I checked around a bit trying different pages in this shrunk down view. Other than the Microsoft home page, every page I went to was nearly unreadable at a quarter width. The only page I found that worked 'normally' was the Microsoft home page which undoubtedly is optimized just for Internet Explorer specifically.Bottom Address Bar opaquely overlays ContentAnother problematic feature for me is the browser address bar on the bottom. Modern IE shows the status bar opaquely on the bottom, overlaying the content area of the Web Page - until you click on the page. Until you do though, the address bar overlays the bottom content solidly. And not just a little bit but by good sizable chunk.In the application from the screen shot above I have an application toolbar on the bottom and the IE Address bar completely hides that bottom toolbar when the page is first loaded, until the user clicks into the content at which point the address bar shrinks down to a fat border style bar with a … on it. Toolbars on the bottom are pretty common these days, especially for mobile optimized applications, so I'd say this is a common use case. But even if you don't have toolbars on the bottom maybe there's other fixed content on the bottom of the page that is vital to display. While other browsers often also show address bars and then later hide them, these other browsers tend to resize the viewport when the address bar status changes, so the content can respond to the size change. Not so with Modern IE. The address bar overlays content and stays visible until content is clicked. No resize notification or viewport height change is sent to the browser.So basically Internet Explorer is telling me: "Our toolbar is more important than your content!" - AND gives me no chance to re-act to that behavior. The result on this page/application is that the user sees no actionable operations until he or she clicks into the content area, which is terrible from a UI perspective as the user has no idea what options are available on initial load.It's doubly confounding in that IE is running in full screen mode and has an the entire height of the screen at its disposal - there's plenty of real estate available to not require this sort of hiding of content in the first place. Heck, even Windows Phone with its more constrained size doesn't hide content - in fact the address bar on Windows Phone 8 is always visible.What were they thinking?Every time I use anything in the Modern Metro interface in Windows 8/8.1 I get angry.  I can pretty much ignore Metro/Modern for my everyday usage, but unfortunately with Internet Explorer in the modern shell I have to live with, because there will be users using it to access my sites. I think it's inexcusable by Microsoft to build such a crappy shell around the browser that impacts the actual usability of Web content. In both of the cases above I can only scratch my head at what could have possibly motivated anybody designing the UI for the browser to make these screwed up choices, that manipulate the content in a totally unmaintainable way.© Rick Strahl, West Wind Technologies, 2005-2013Posted in Windows  HTML5   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Compatible case?

    - by Rick
    Hello everyone, first of all, I'm not sure where this question should go. So I've looked around and found the 'hardware' tag used in superuser.com please forgive me if I'm posting this on the wrong site. I'm new to the hardware part of computers. I've been looking around for a few months and now is the time to make my choice. I want to build my own computer and I think I got all the items I need. I want to know if the case and the motherboard I've chosen are compatible or if you could tell me how to check if they're compatible I want to know if they fit. Here's the motherboard/processor/memory package And this* is the case I'd like to fit it in. I'm sure that all the other stuff I might need I have with me already. Thanks in advance -Rick *See my comment, I may not post two hyperlinks due to spam protection

    Read the article

  • Dynamic Type to do away with Reflection

    - by Rick Strahl
    The dynamic type in C# 4.0 is a welcome addition to the language. One thing I’ve been doing a lot with it is to remove explicit Reflection code that’s often necessary when you ‘dynamically’ need to walk and object hierarchy. In the past I’ve had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Here’s a really contrived example, but assume for a second, you’d want to dynamically retrieve a Page.Request.Url.AbsoluteUrl based on a Page instance in an ASP.NET Web Page request. The strongly typed version looks like this: string path = Page.Request.Url.AbsolutePath; Now assume for a second that Page wasn’t available as a strongly typed instance and all you had was an object reference to start with and you couldn’t cast it (right I said this was contrived :-)) If you’re using raw Reflection code to retrieve this you’d end up writing 3 sets of Reflection calls using GetValue(). Here’s some internal code I use to retrieve Property values as part of ReflectionUtils: /// <summary> /// Retrieve a property value from an object dynamically. This is a simple version /// that uses Reflection calls directly. It doesn't support indexers. /// </summary> /// <param name="instance">Object to make the call on</param> /// <param name="property">Property to retrieve</param> /// <returns>Object - cast to proper type</returns> public static object GetProperty(object instance, string property) { return instance.GetType().GetProperty(property, ReflectionUtils.MemberAccess).GetValue(instance, null); } If you want more control over properties and support both fields and properties as well as array indexers a little more work is required: /// <summary> /// Parses Properties and Fields including Array and Collection references. /// Used internally for the 'Ex' Reflection methods. /// </summary> /// <param name="Parent"></param> /// <param name="Property"></param> /// <returns></returns> private static object GetPropertyInternal(object Parent, string Property) { if (Property == "this" || Property == "me") return Parent; object result = null; string pureProperty = Property; string indexes = null; bool isArrayOrCollection = false; // Deal with Array Property if (Property.IndexOf("[") > -1) { pureProperty = Property.Substring(0, Property.IndexOf("[")); indexes = Property.Substring(Property.IndexOf("[")); isArrayOrCollection = true; } // Get the member MemberInfo member = Parent.GetType().GetMember(pureProperty, ReflectionUtils.MemberAccess)[0]; if (member.MemberType == MemberTypes.Property) result = ((PropertyInfo)member).GetValue(Parent, null); else result = ((FieldInfo)member).GetValue(Parent); if (isArrayOrCollection) { indexes = indexes.Replace("[", string.Empty).Replace("]", string.Empty); if (result is Array) { int Index = -1; int.TryParse(indexes, out Index); result = CallMethod(result, "GetValue", Index); } else if (result is ICollection) { if (indexes.StartsWith("\"")) { // String Index indexes = indexes.Trim('\"'); result = CallMethod(result, "get_Item", indexes); } else { // assume numeric index int index = -1; int.TryParse(indexes, out index); result = CallMethod(result, "get_Item", index); } } } return result; } /// <summary> /// Returns a property or field value using a base object and sub members including . syntax. /// For example, you can access: oCustomer.oData.Company with (this,"oCustomer.oData.Company") /// This method also supports indexers in the Property value such as: /// Customer.DataSet.Tables["Customers"].Rows[0] /// </summary> /// <param name="Parent">Parent object to 'start' parsing from. Typically this will be the Page.</param> /// <param name="Property">The property to retrieve. Example: 'Customer.Entity.Company'</param> /// <returns></returns> public static object GetPropertyEx(object Parent, string Property) { Type type = Parent.GetType(); int at = Property.IndexOf("."); if (at < 0) { // Complex parse of the property return GetPropertyInternal(Parent, Property); } // Walk the . syntax - split into current object (Main) and further parsed objects (Subs) string main = Property.Substring(0, at); string subs = Property.Substring(at + 1); // Retrieve the next . section of the property object sub = GetPropertyInternal(Parent, main); // Now go parse the left over sections return GetPropertyEx(sub, subs); } As you can see there’s a fair bit of code involved into retrieving a property or field value reliably especially if you want to support array indexer syntax. This method is then used by a variety of routines to retrieve individual properties including one called GetPropertyEx() which can walk the dot syntax hierarchy easily. Anyway with ReflectionUtils I can  retrieve Page.Request.Url.AbsolutePath using code like this: string url = ReflectionUtils.GetPropertyEx(Page, "Request.Url.AbsolutePath") as string; This works fine, but is bulky to write and of course requires that I use my custom routines. It’s also quite slow as the code in GetPropertyEx does all sorts of string parsing to figure out which members to walk in the hierarchy. Enter dynamic – way easier! .NET 4.0’s dynamic type makes the above really easy. The following code is all that it takes: object objPage = Page; // force to object for contrivance :) dynamic page = objPage; // convert to dynamic from untyped object string scriptUrl = page.Request.Url.AbsolutePath; The dynamic type assignment in the first two lines turns the strongly typed Page object into a dynamic. The first assignment is just part of the contrived example to force the strongly typed Page reference into an untyped value to demonstrate the dynamic member access. The next line then just creates the dynamic type from the Page reference which allows you to access any public properties and methods easily. It also lets you access any child properties as dynamic types so when you look at Intellisense you’ll see something like this when typing Request.: In other words any dynamic value access on an object returns another dynamic object which is what allows the walking of the hierarchy chain. Note also that the result value doesn’t have to be explicitly cast as string in the code above – the compiler is perfectly happy without the cast in this case inferring the target type based on the type being assigned to. The dynamic conversion automatically handles the cast when making the final assignment which is nice making for natural syntnax that looks *exactly* like the fully typed syntax, but is completely dynamic. Note that you can also use indexers in the same natural syntax so the following also works on the dynamic page instance: string scriptUrl = page.Request.ServerVariables["SCRIPT_NAME"]; The dynamic type is going to make a lot of Reflection code go away as it’s simply so much nicer to be able to use natural syntax to write out code that previously required nasty Reflection syntax. Another interesting thing about the dynamic type is that it actually works considerably faster than Reflection. Check out the following methods that check performance: void Reflection() { Stopwatch stop = new Stopwatch(); stop.Start(); for (int i = 0; i < reps; i++) { // string url = ReflectionUtils.GetProperty(Page,"Title") as string;// "Request.Url.AbsolutePath") as string; string url = Page.GetType().GetProperty("Title", ReflectionUtils.MemberAccess).GetValue(Page, null) as string; } stop.Stop(); Response.Write("Reflection: " + stop.ElapsedMilliseconds.ToString()); } void Dynamic() { Stopwatch stop = new Stopwatch(); stop.Start(); dynamic page = Page; for (int i = 0; i < reps; i++) { string url = page.Title; //Request.Url.AbsolutePath; } stop.Stop(); Response.Write("Dynamic: " + stop.ElapsedMilliseconds.ToString()); } The dynamic code runs in 4-5 milliseconds while the Reflection code runs around 200+ milliseconds! There’s a bit of overhead in the first dynamic object call but subsequent calls are blazing fast and performance is actually much better than manual Reflection. Dynamic is definitely a huge win-win situation when you need dynamic access to objects at runtime.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • Making Sense of ASP.NET Paths

    - by Rick Strahl
    ASP.Net includes quite a plethora of properties to retrieve path information about the current request, control and application. There's a ton of information available about paths on the Request object, some of it appearing to overlap and some of it buried several levels down, and it can be confusing to find just the right path that you are looking for. To keep things straight I thought it a good idea to summarize the path options along with descriptions and example paths. I wrote a post about this a long time ago in 2004 and I find myself frequently going back to that page to quickly figure out which path I’m looking for in processing the current URL. Apparently a lot of people must be doing the same, because the original post is the second most visited even to this date on this blog to the tune of nearly 500 hits per day. So, I decided to update and expand a bit on the original post with a little more information and clarification based on the original comments. Request Object Paths Available Here's a list of the Path related properties on the Request object (and the Page object). Assume a path like http://www.west-wind.com/webstore/admin/paths.aspx for the paths below where webstore is the name of the virtual. .blackborder td { border-bottom: solid 1px silver; border-left: solid 1px silver; } Request Property Description and Value ApplicationPath Returns the web root-relative logical path to the virtual root of this app. /webstore/ PhysicalApplicationPath Returns local file system path of the virtual root for this app. c:\inetpub\wwwroot\webstore PhysicalPath Returns the local file system path to the current script or path. c:\inetpub\wwwroot\webstore\admin\paths.aspx Path FilePath CurrentExecutionFilePath All of these return the full root relative logical path to the script page including path and scriptname. CurrentExcecutionFilePath will return the ‘current’ request path after a Transfer/Execute call while FilePath will always return the original request’s path. /webstore/admin/paths.aspx AppRelativeCurrentExecutionFilePath Returns an ASP.NET root relative virtual path to the script or path for the current request. If in  a Transfer/Execute call the transferred Path is returned. ~/admin/paths.aspx PathInfo Returns any extra path following the script name. If no extra path is provided returns the root-relative path (returns text in red below). string.Empty if no PathInfo is available. /webstore/admin/paths.aspx/ExtraPathInfo RawUrl Returns the full root relative URL including querystring and extra path as a string. /webstore/admin/paths.aspx?sku=wwhelp40 Url Returns a fully qualified URL including querystring and extra path. Note this is a Uri instance rather than string. http://www.west-wind.com/webstore/admin/paths.aspx?sku=wwhelp40 UrlReferrer The fully qualified URL of the page that sent the request. This is also a Uri instance and this value is null if the page was directly accessed by typing into the address bar or using an HttpClient based Referrer client Http header. http://www.west-wind.com/webstore/default.aspx?Info Control.TemplateSourceDirectory Returns the logical path to the folder of the page, master or user control on which it is called. This is useful if you need to know the path only to a Page or control from within the control. For non-file controls this returns the Page path. /webstore/admin/ As you can see there’s a ton of information available there for each of the three common path formats: Physical Path is an OS type path that points to a path or file on disk. Logical Path is a Web path that is relative to the Web server’s root. It includes the virtual plus the application relative path. ~/ (Root-relative) Path is an ASP.NET specific path that includes ~/ to indicate the virtual root Web path. ASP.NET can convert virtual paths into either logical paths using Control.ResolveUrl(), or physical paths using Server.MapPath(). Root relative paths are useful for specifying portable URLs that don’t rely on relative directory structures and very useful from within control or component code. You should be able to get any necessary format from ASP.NET from just about any path or script using these mechanisms. ~/ Root Relative Paths and ResolveUrl() and ResolveClientUrl() ASP.NET supports root-relative virtual path syntax in most of its URL properties in Web Forms. So you can easily specify a root relative path in a control rather than a location relative path: <asp:Image runat="server" ID="imgHelp" ImageUrl="~/images/help.gif" /> ASP.NET internally resolves this URL by using ResolveUrl("~/images/help.gif") to arrive at the root-relative URL of /webstore/images/help.gif which uses the Request.ApplicationPath as the basepath to replace the ~. By convention any custom Web controls also should use ResolveUrl() on URL properties to provide the same functionality. In your own code you can use Page.ResolveUrl() or Control.ResolveUrl() to accomplish the same thing: string imgPath = this.ResolveUrl("~/images/help.gif"); imgHelp.ImageUrl = imgPath; Unfortunately ResolveUrl() is limited to WebForm pages, so if you’re in an HttpHandler or Module it’s not available. ASP.NET Mvc also has it’s own more generic version of ResolveUrl in Url.Decode: <script src="<%= Url.Content("~/scripts/new.js") %>" type="text/javascript"></script> which is part of the UrlHelper class. In ASP.NET MVC the above sort of syntax is actually even more crucial than in WebForms due to the fact that views are not referencing specific pages but rather are often path based which can lead to various variations on how a particular view is referenced. In a Module or Handler code Control.ResolveUrl() unfortunately is not available which in retrospect seems like an odd design choice – URL resolution really should happen on a Request basis not as part of the Page framework. Luckily you can also rely on the static VirtualPathUtility class: string path = VirtualPathUtility.ToAbsolute("~/admin/paths.aspx"); VirtualPathUtility also many other quite useful methods for dealing with paths and converting between the various kinds of paths supported. One thing to watch out for is that ToAbsolute() will throw an exception if a query string is provided and doesn’t work on fully qualified URLs. I wrote about this topic with a custom solution that works fully qualified URLs and query strings here (check comments for some interesting discussions too). Similar to ResolveUrl() is ResolveClientUrl() which creates a fully qualified HTTP path that includes the protocol and domain name. It’s rare that this full resolution is needed but can be useful in some scenarios. Mapping Virtual Paths to Physical Paths with Server.MapPath() If you need to map root relative or current folder relative URLs to physical URLs or you can use HttpContext.Current.Server.MapPath(). Inside of a Page you can do the following: string physicalPath = Server.MapPath("~/scripts/ww.jquery.js")); MapPath is pretty flexible and it understands both ASP.NET style virtual paths as well as plain relative paths, so the following also works. string physicalPath = Server.MapPath("scripts/silverlight.js"); as well as dot relative syntax: string physicalPath = Server.MapPath("../scripts/jquery.js"); Once you have the physical path you can perform standard System.IO Path and File operations on the file. Remember with physical paths and IO or copy operations you need to make sure you have permissions to access files and folders based on the Web server user account that is active (NETWORK SERVICE, ASPNET typically). Note the Server.MapPath will not map up beyond the virtual root of the application for security reasons. Server and Host Information Between these settings you can get all the information you may need to figure out where you are at and to build new Url if necessary. If you need to build a URL completely from scratch you can get access to information about the server you are accessing: Server Variable Function and Example SERVER_NAME The of the domain or IP Address wwww.west-wind.com or 127.0.0.1 SERVER_PORT The port that the request runs under. 80 SERVER_PORT_SECURE Determines whether https: was used. 0 or 1 APPL_MD_PATH ADSI DirectoryServices path to the virtual root directory. Note that LM typically doesn’t work for ADSI access so you should replace that with LOCALHOST or the machine’s NetBios name. /LM/W3SVC/1/ROOT/webstore Request.Url and Uri Parsing If you still need more control over the current request URL or  you need to create new URLs from an existing one, the current Request.Url Uri property offers a lot of control. Using the Uri class and UriBuilder makes it easy to retrieve parts of a URL and create new URLs based on existing URL. The UriBuilder class is the preferred way to create URLs – much preferable over creating URIs via string concatenation. Uri Property Function Scheme The URL scheme or protocol prefix. http or https Port The port if specifically specified. DnsSafeHost The domain name or local host NetBios machine name www.west-wind.com or rasnote LocalPath The full path of the URL including script name and extra PathInfo. /webstore/admin/paths.aspx Query The query string if any ?id=1 The Uri class itself is great for retrieving Uri parts, but most of the properties are read only if you need to modify a URL in order to change it you can use the UriBuilder class to load up an existing URL and modify it to create a new one. Here are a few common operations I’ve needed to do to get specific URLs: Convert the Request URL to an SSL/HTTPS link For example to take the current request URL and converted  it to a secure URL can be done like this: UriBuilder build = new UriBuilder(Request.Url); build.Scheme = "https"; build.Port = -1; // don't inject port Uri newUri = build.Uri; string newUrl = build.ToString(); Retrieve the fully qualified URL without a QueryString AFAIK, there’s no native routine to retrieve the current request URL without the query string. It’s easy to do with UriBuilder however: UriBuilder builder = newUriBuilder(Request.Url); builder.Query = ""; stringlogicalPathWithoutQuery = builder.ToString(); What else? I took a look through the old post’s comments and addressed as many of the questions and comments that came up in there. With a few small and silly exceptions this update post handles most of these. But I’m sure there are a more things that go in here. What else would be useful to put onto this post so it serves as a nice all in one place to go for path references? If you think of something leave a comment and I’ll try to update the post with it in the future.© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • ASP.NET GZip Encoding Caveats

    - by Rick Strahl
    GZip encoding in ASP.NET is pretty easy to accomplish using the built-in GZipStream and DeflateStream classes and applying them to the Response.Filter property.  While applying GZip and Deflate behavior is pretty easy there are a few caveats that you have watch out for as I found out today for myself with an application that was throwing up some garbage data. But before looking at caveats let’s review GZip implementation for ASP.NET. ASP.NET GZip/Deflate Basics Response filters basically are applied to the Response.OutputStream and transform it as data is written to it through the ASP.NET Response object. So a Response.Write eventually gets written into the output stream which if a filter is also written through the filter stream’s interface. To perform the actual GZip (and Deflate) encoding typically used by Web pages .NET includes the GZipStream and DeflateStream stream classes which can be readily assigned to the Repsonse.OutputStream. With these two stream classes in place it’s almost trivially easy to create a couple of reusable methods that allow you to compress your HTTP output. In my standard WebUtils utility class (from the West Wind West Wind Web Toolkit) created two static utility methods – IsGZipSupported and GZipEncodePage – that check whether the client supports GZip encoding and then actually encodes the current output (note that although the method includes ‘Page’ in its name this code will work with any ASP.NET output). /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("deflate")) { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } else { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } } } As you can see the actual assignment of the Filter is as simple as: Response.Filter = new DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); which applies the filter to the OutputStream. You also need to ensure that your response reflects the new GZip or Deflate encoding and ensure that any pages that are cached in Proxy servers can differentiate between pages that were encoded with the various different encodings (or no encoding). To use this utility function now is trivially easy: In any ASP.NET code that wants to compress its Response output you simply use: protected void Page_Load(object sender, EventArgs e) { WebUtils.GZipEncodePage(); Entry = WebLogFactory.GetEntry(); var entries = Entry.GetLastEntries(App.Configuration.ShowEntryCount, "pk,Title,SafeTitle,Body,Entered,Feedback,Location,ShowTopAd", "TEntries"); if (entries == null) throw new ApplicationException("Couldn't load WebLog Entries: " + Entry.ErrorMessage); this.repEntries.DataSource = entries; this.repEntries.DataBind(); } Here I use an ASP.NET page, but the above WebUtils.GZipEncode() method call will work in any ASP.NET application type including HTTP Handlers. The only requirement is that the filter needs to be applied before any other output is sent to the OutputStream. For example, in my CallbackHandler service implementation by default output over a certain size is GZip encoded. The output that is generated is JSON or XML and if the output is over 5k in size I apply WebUtils.GZipEncode(): if (sbOutput.Length > GZIP_ENCODE_TRESHOLD) WebUtils.GZipEncodePage(); Response.ContentType = ControlResources.STR_JsonContentType; HttpContext.Current.Response.Write(sbOutput.ToString()); Ok, so you probably get the idea: Encoding GZip/Deflate content is pretty easy. Hold on there Hoss –Watch your Caching Or is it? There are a few caveats that you need to watch out for when dealing with GZip content. The fist issue is that you need to deal with the fact that some clients don’t support GZip or Deflate content. Most modern browsers support it, but if you have a programmatic Http client accessing your content GZip/Deflate support is by no means guaranteed. For example, WinInet Http clients don’t support GZip out of the box – it has to be explicitly implemented. Other low level HTTP clients on other platforms too don’t support GZip out of the box. The problem is that your application, your Web Server and Proxy Servers on the Internet might be caching your generated content. If you return content with GZip once and then again without, either caching is not applied or worse the wrong type of content is returned back to the client from a cache or proxy. The result is an unreadable response for *some clients* which is also very hard to debug and fix once in production. You already saw the issue of Proxy servers addressed in the GZipEncodePage() function: // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); This ensures that any Proxy servers also check for the Content-Encoding HTTP Header to cache their content – not just the URL. The same thing applies if you do OutputCaching in your own ASP.NET code. If you generate output for GZip on an OutputCached page the GZipped content will be cached (either by ASP.NET’s cache or in some cases by the IIS Kernel Cache). But what if the next client doesn’t support GZip? She’ll get served a cached GZip page that won’t decode and she’ll get a page full of garbage. Wholly undesirable. To fix this you need to add some custom OutputCache rules by way of the GetVaryByCustom() HttpApplication method in your global_ASAX file: public override string GetVaryByCustomString(HttpContext context, string custom) { // Override Caching for compression if (custom == "GZIP") { string acceptEncoding = HttpContext.Current.Response.Headers["Content-Encoding"]; if (string.IsNullOrEmpty(acceptEncoding)) return ""; else if (acceptEncoding.Contains("gzip")) return "GZIP"; else if (acceptEncoding.Contains("deflate")) return "DEFLATE"; return ""; } return base.GetVaryByCustomString(context, custom); } In a page that use Output caching you then specify: <%@ OutputCache Duration="180" VaryByParam="none" VaryByCustom="GZIP" %> To use that custom rule. It’s all Fun and Games until ASP.NET throws an Error Ok, so you’re up and running with GZip, you have your caching squared away and your pages that you are applying it to are jamming along. Then BOOM, something strange happens and you get a lovely garbled page that look like this: Lovely isn’t it? What’s happened here is that I have WebUtils.GZipEncode() applied to my page, but there’s an error in the page. The error falls back to the ASP.NET error handler and the error handler removes all existing output (good) and removes all the custom HTTP headers I’ve set manually (usually good, but very bad here). Since I applied the Response.Filter (via GZipEncode) the output is now GZip encoded, but ASP.NET has removed my Content-Encoding header, so the browser receives the GZip encoded content without a notification that it is encoded as GZip. The result is binary output. Here’s what Fiddler says about the raw HTTP header output when an error occurs when GZip encoding was applied: HTTP/1.1 500 Internal Server Error Cache-Control: private Content-Type: text/html; charset=utf-8 Date: Sat, 30 Apr 2011 22:21:08 GMT Content-Length: 2138 Connection: close ?`I?%&/m?{J?J??t??` … binary output striped here Notice: no Content-Encoding header and that’s why we’re seeing this garbage. ASP.NET has stripped the Content-Encoding header but left our filter intact. So how do we fix this? In my applications I typically have a global Application_Error handler set up and in this case I’ve been using that. One thing that you can do in the Application_Error handler is explicitly clear out the Response.Filter and set it to null at the top: protected void Application_Error(object sender, EventArgs e) { // Remove any special filtering especially GZip filtering Response.Filter = null; … } And voila I get my Yellow Screen of Death or my custom generated error output back via uncompressed content. BTW, the same is true for Page level errors handled in Page_Error or ASP.NET MVC Error handling methods in a controller. Another and possibly even better solution is to check whether a filter is attached just before the headers are sent to the client as pointed out by Adam Schroeder in the comments: protected void Application_PreSendRequestHeaders() { // ensure that if GZip/Deflate Encoding is applied that headers are set // also works when error occurs if filters are still active HttpResponse response = HttpContext.Current.Response; if (response.Filter is GZipStream && response.Headers["Content-encoding"] != "gzip") response.AppendHeader("Content-encoding", "gzip"); else if (response.Filter is DeflateStream && response.Headers["Content-encoding"] != "deflate") response.AppendHeader("Content-encoding", "deflate"); } This uses the Application_PreSendRequestHeaders() pipeline event to check for compression encoding in a filter and adjusts the content accordingly. This is actually a better solution since this is generic – it’ll work regardless of how the content is cleaned up. For example, an error Response.Redirect() or short error display might get changed and the filter not cleared and this code actually handles that. Sweet, thanks Adam. It’s unfortunate that ASP.NET doesn’t natively clear out Response.Filters when an error occurs just as it clears the Response and Headers. I can’t see where leaving a Filter in place in an error situation would make any sense, but hey - this is what it is and it’s easy enough to fix as long as you know where to look. Riiiight! IIS and GZip I should also mention that IIS 7 includes good support for compression natively. If you can defer encoding to let IIS perform it for you rather than doing it in your code by all means you should do it! Especially any static or semi-dynamic content that can be made static should be using IIS built-in compression. Dynamic caching is also supported but is a bit more tricky to judge in terms of performance and footprint. John Forsyth has a great article on the benefits and drawbacks of IIS 7 compression which gives some detailed performance comparisons and impact reviews. I’ll post another entry next with some more info on IIS compression since information on it seems to be a bit hard to come by. Related Content Built-in GZip/Deflate Compression in IIS 7.x HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET   IIS7  

    Read the article

  • ASP.NET MVC Postbacks and HtmlHelper Controls ignoring Model Changes

    - by Rick Strahl
    So here's a binding behavior in ASP.NET MVC that I didn't really get until today: HtmlHelpers controls (like .TextBoxFor() etc.) don't bind to model values on Postback, but rather get their value directly out of the POST buffer from ModelState. Effectively it looks like you can't change the display value of a control via model value updates on a Postback operation. To demonstrate here's an example. I have a small section in a document where I display an editable email address: This is what the form displays on a GET operation and as expected I get the email value displayed in both the textbox and plain value display below, which reflects the value in the mode. I added a plain text value to demonstrate the model value compared to what's rendered in the textbox. The relevant markup is the email address which needs to be manipulated via the model in the Controller code. Here's the Razor markup: <div class="fieldcontainer"> <label> Email: &nbsp; <small>(username and <a href="http://gravatar.com">Gravatar</a> image)</small> </label> <div> @Html.TextBoxFor( mod=> mod.User.Email, new {type="email",@class="inputfield"}) @Model.User.Email </div> </div>   So, I have this form and the user can change their email address. On postback the Post controller code then asks the business layer whether the change is allowed. If it's not I want to reset the email address back to the old value which exists in the database and was previously store. The obvious thing to do would be to modify the model. Here's the Controller logic block that deals with that:// did user change email? if (!string.IsNullOrEmpty(oldEmail) && user.Email != oldEmail) { if (userBus.DoesEmailExist(user.Email)) { userBus.ValidationErrors.Add("New email address exists already. Please…"); user.Email = oldEmail; } else // allow email change but require verification by forcing a login user.IsVerified = false; }… model.user = user; return View(model); The logic is straight forward - if the new email address is not valid because it already exists I don't want to display the new email address the user entered, but rather the old one. To do this I change the value on the model which effectively does this:model.user.Email = oldEmail; return View(model); So when I press the Save button after entering in my new email address ([email protected]) here's what comes back in the rendered view: Notice that the textbox value and the raw displayed model value are different. The TextBox displays the POST value, the raw value displays the actual model value which are different. This means that MVC renders the textbox value from the POST data rather than from the view data when an Http POST is active. Now I don't know about you but this is not the behavior I expected - initially. This behavior effectively means that I cannot modify the contents of the textbox from the Controller code if using HtmlHelpers for binding. Updating the model for display purposes in a POST has in effect - no effect. (Apr. 25, 2012 - edited the post heavily based on comments and more experimentation) What should the behavior be? After getting quite a few comments on this post I quickly realized that the behavior I described above is actually the behavior you'd want in 99% of the binding scenarios. You do want to get the POST values back into your input controls at all times, so that the data displayed on a form for the user matches what they typed. So if an error occurs, the error doesn't mysteriously disappear getting replaced either with a default value or some value that you changed on the model on your own. Makes sense. Still it is a little non-obvious because the way you create the UI elements with MVC, it certainly looks like your are binding to the model value:@Html.TextBoxFor( mod=> mod.User.Email, new {type="email",@class="inputfield",required="required" }) and so unless one understands a little bit about how the model binder works this is easy to trip up. At least it was for me. Even though I'm telling the control which model value to bind to, that model value is only used initially on GET operations. After that ModelState/POST values provide the display value. Workarounds The default behavior should be fine for 99% of binding scenarios. But if you do need fix up values based on your model rather than the default POST values, there are a number of ways that you can work around this. Initially when I ran into this, I couldn't figure out how to set the value using code and so the simplest solution to me was simply to not use the MVC Html Helper for the specific control and explicitly bind the model via HTML markup and @Razor expression: <input type="text" name="User.Email" id="User_Email" value="@Model.User.Email" /> And this produces the right result. This is easy enough to create, but feels a little out of place when using the @Html helpers for everything else. As you can see by the difference in the name and id values, you also are forced to remember the naming conventions that MVC imposes in order for ModelBinding to work properly which is a pain to remember and set manually (name is the same as the property with . syntax, id replaces dots with underlines). Use the ModelState Some of my original confusion came because I didn't understand how the model binder works. The model binder basically maintains ModelState on a postback, which holds a value and binding errors for each of the Post back value submitted on the page that can be mapped to the model. In other words there's one ModelState entry for each bound property of the model. Each ModelState entry contains a value property that holds AttemptedValue and RawValue properties. The AttemptedValue is essentially the POST value retrieved from the form. The RawValue is the value that the model holds. When MVC binds controls like @Html.TextBoxFor() or @Html.TextBox(), it always binds values on a GET operation. On a POST operation however, it'll always used the AttemptedValue to display the control. MVC binds using the ModelState on a POST operation, not the model's value. So, if you want the behavior that I was expecting originally you can actually get it by clearing the ModelState in the controller code:ModelState.Clear(); This clears out all the captured ModelState values, and effectively binds to the model. Note this will produce very similar results - in fact if there are no binding errors you see exactly the same behavior as if binding from ModelState, because the model has been updated from the ModelState already and binding to the updated values most likely produces the same values you would get with POST back values. The big difference though is that any values that couldn't bind - like say putting a string into a numeric field - will now not display back the value the user typed, but the default field value or whatever you changed the model value to. This is the behavior I was actually expecting previously. But - clearing out all values might be a bit heavy handed. You might want to fix up one or two values in a model but rarely would you want the entire model to update from the model. So, you can also clear out individual values on an as needed basis:if (userBus.DoesEmailExist(user.Email)) { userBus.ValidationErrors.Add("New email address exists already. Please…"); user.Email = oldEmail; ModelState.Remove("User.Email"); } This allows you to remove a single value from the ModelState and effectively allows you to replace that value for display from the model. Why? While researching this I came across a post from Microsoft's Brad Wilson who describes the default binding behavior best in a forum post: The reason we use the posted value for editors rather than the model value is that the model may not be able to contain the value that the user typed. Imagine in your "int" editor the user had typed "dog". You want to display an error message which says "dog is not valid", and leave "dog" in the editor field. However, your model is an int: there's no way it can store "dog". So we keep the old value. If you don't want the old values in the editor, clear out the Model State. That's where the old value is stored and pulled from the HTML helpers. There you have it. It's not the most intuitive behavior, but in hindsight this behavior does make some sense even if at first glance it looks like you should be able to update values from the model. The solution of clearing ModelState works and is a reasonable one but you have to know about some of the innards of ModelState and how it actually works to figure that out.© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Translating with Google Translate without API and C# Code

    - by Rick Strahl
    Some time back I created a data base driven ASP.NET Resource Provider along with some tools that make it easy to edit ASP.NET resources interactively in a Web application. One of the small helper features of the interactive resource admin tool is the ability to do simple translations using both Google Translate and Babelfish. Here's what this looks like in the resource administration form: When a resource is displayed, the user can click a Translate button and it will show the current resource text and then lets you set the source and target languages to translate. The Go button fires the translation for both Google and Babelfish and displays them - pressing use then changes the language of the resource to the target language and sets the resource value to the newly translated value. It's a nice and quick way to get a quick translation going. Ch… Ch… Changes Originally, both implementations basically did some screen scraping of the interactive Web sites and retrieved translated text out of result HTML. Screen scraping is always kind of an iffy proposition as content can be changed easily, but surprisingly that code worked for many years without fail. Recently however, Google at least changed their input pages to use AJAX callbacks and the page updates no longer worked the same way. End result: The Google translate code was broken. Now, Google does have an official API that you can access, but the API is being deprecated and you actually need to have an API key. Since I have public samples that people can download the API key is an issue if I want people to have the samples work out of the box - the only way I could even do this is by sharing my API key (not allowed).   However, after a bit of spelunking and playing around with the public site however I found that Google's interactive translate page actually makes callbacks using plain public access without an API key. By intercepting some of those AJAX calls and calling them directly from code I was able to get translation back up and working with minimal fuss, by parsing out the JSON these AJAX calls return. I don't think this particular Warning: This is hacky code, but after a fair bit of testing I found this to work very well with all sorts of languages and accented and escaped text etc. as long as you stick to small blocks of translated text. I thought I'd share it in case anybody else had been relying on a screen scraping mechanism like I did and needed a non-API based replacement. Here's the code: /// <summary> /// Translates a string into another language using Google's translate API JSON calls. /// <seealso>Class TranslationServices</seealso> /// </summary> /// <param name="Text">Text to translate. Should be a single word or sentence.</param> /// <param name="FromCulture"> /// Two letter culture (en of en-us, fr of fr-ca, de of de-ch) /// </param> /// <param name="ToCulture"> /// Two letter culture (as for FromCulture) /// </param> public string TranslateGoogle(string text, string fromCulture, string toCulture) { fromCulture = fromCulture.ToLower(); toCulture = toCulture.ToLower(); // normalize the culture in case something like en-us was passed // retrieve only en since Google doesn't support sub-locales string[] tokens = fromCulture.Split('-'); if (tokens.Length > 1) fromCulture = tokens[0]; // normalize ToCulture tokens = toCulture.Split('-'); if (tokens.Length > 1) toCulture = tokens[0]; string url = string.Format(@"http://translate.google.com/translate_a/t?client=j&text={0}&hl=en&sl={1}&tl={2}", HttpUtility.UrlEncode(text),fromCulture,toCulture); // Retrieve Translation with HTTP GET call string html = null; try { WebClient web = new WebClient(); // MUST add a known browser user agent or else response encoding doen't return UTF-8 (WTF Google?) web.Headers.Add(HttpRequestHeader.UserAgent, "Mozilla/5.0"); web.Headers.Add(HttpRequestHeader.AcceptCharset, "UTF-8"); // Make sure we have response encoding to UTF-8 web.Encoding = Encoding.UTF8; html = web.DownloadString(url); } catch (Exception ex) { this.ErrorMessage = Westwind.Globalization.Resources.Resources.ConnectionFailed + ": " + ex.GetBaseException().Message; return null; } // Extract out trans":"...[Extracted]...","from the JSON string string result = Regex.Match(html, "trans\":(\".*?\"),\"", RegexOptions.IgnoreCase).Groups[1].Value; if (string.IsNullOrEmpty(result)) { this.ErrorMessage = Westwind.Globalization.Resources.Resources.InvalidSearchResult; return null; } //return WebUtils.DecodeJsString(result); // Result is a JavaScript string so we need to deserialize it properly JavaScriptSerializer ser = new JavaScriptSerializer(); return ser.Deserialize(result, typeof(string)) as string; } To use the code is straightforward enough - simply provide a string to translate and a pair of two letter source and target languages: string result = service.TranslateGoogle("Life is great and one is spoiled when it goes on and on and on", "en", "de"); TestContext.WriteLine(result); How it works The code to translate is fairly straightforward. It basically uses the URL I snagged from the Google Translate Web Page slightly changed to return a JSON result (&client=j) instead of the funky nested PHP style JSON array that the default returns. The JSON result returned looks like this: {"sentences":[{"trans":"Das Leben ist großartig und man wird verwöhnt, wenn es weiter und weiter und weiter geht","orig":"Life is great and one is spoiled when it goes on and on and on","translit":"","src_translit":""}],"src":"en","server_time":24} I use WebClient to make an HTTP GET call to retrieve the JSON data and strip out part of the full JSON response that contains the actual translated text. Since this is a JSON response I need to deserialize the JSON string in case it's encoded (for upper/lower ASCII chars or quotes etc.). Couple of odd things to note in this code: First note that a valid user agent string must be passed (or at least one starting with a common browser identification - I use Mozilla/5.0). Without this Google doesn't encode the result with UTF-8, but instead uses a ISO encoding that .NET can't easily decode. Google seems to ignore the character set header and use the user agent instead which is - odd to say the least. The other is that the code returns a full JSON response. Rather than use the full response and decode it into a custom type that matches Google's result object, I just strip out the translated text. Yeah I know that's hacky but avoids an extra type and firing up the JavaScript deserializer. My internal version uses a small DecodeJsString() method to decode Javascript without the overhead of a full JSON parser. It's obviously not rocket science but as mentioned above what's nice about it is that it works without an Google API key. I can't vouch on how many translates you can do before there are cut offs but in my limited testing running a few stress tests on a Web server under load I didn't run into any problems. Limitations There are some restrictions with this: It only works on single words or single sentences - multiple sentences (delimited by .) are cut off at the ".". There is also a length limitation which appears to happen at around 220 characters or so. While that may not sound  like much for typical word or phrase translations this this is plenty of length. Use with a grain of salt - Google seems to be trying to limit their exposure to usage of the Translate APIs so this code might break in the future, but for now at least it works. FWIW, I also found that Google's translation is not as good as Babelfish, especially for contextual content like sentences. Google is faster, but Babelfish tends to give better translations. This is why in my translation tool I show both Google and Babelfish values retrieved. You can check out the code for this in the West Wind West Wind Web Toolkit's TranslationService.cs file which contains both the Google and Babelfish translation code pieces. Ironically the Babelfish code has been working forever using screen scraping and continues to work just fine today. I think it's a good idea to have multiple translation providers in case one is down or changes its format, hence the dual display in my translation form above. I hope this has been helpful to some of you - I've actually had many small uses for this code in a number of applications and it's sweet to have a simple routine that performs these operations for me easily. Resources Live Localization Sample Localization Resource Provider Administration form that includes options to translate text using Google and Babelfish interactively. TranslationService.cs The full source code in the West Wind West Wind Web Toolkit's Globalization library that contains the translation code. © Rick Strahl, West Wind Technologies, 2005-2011Posted in CSharp  HTTP   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Project Navigation and File Nesting in ASP.NET MVC Projects

    - by Rick Strahl
    More and more I’m finding myself getting lost in the files in some of my larger Web projects. There’s so much freaking content to deal with – HTML Views, several derived CSS pages, page level CSS, script libraries, application wide scripts and page specific script files etc. etc. Thankfully I use Resharper and the Ctrl-T Go to Anything which autocompletes you to any file, type, member rapidly. Awesome except when I forget – or when I’m not quite sure of the name of what I’m looking for. Project navigation is still important. Sometimes while working on a project I seem to have 30 or more files open and trying to locate another new file to open in the solution often ends up being a mental exercise – “where did I put that thing?” It’s those little hesitations that tend to get in the way of workflow frequently. To make things worse most NuGet packages for client side frameworks and scripts, dump stuff into folders that I generally don’t use. I’ve never been a fan of the ‘Content’ folder in MVC which is just an empty layer that doesn’t serve much of a purpose. It’s usually the first thing I nuke in every MVC project. To me the project root is where the actual content for a site goes – is there really a need to add another folder to force another path into every resource you use? It’s ugly and also inefficient as it adds additional bytes to every resource link you embed into a page. Alternatives I’ve been playing around with different folder layouts recently and found that moving my cheese around has actually made project navigation much easier. In this post I show a couple of things I’ve found useful and maybe you find some of these useful as well or at least get some ideas what can be changed to provide better project flow. The first thing I’ve been doing is add a root Code folder and putting all server code into that. I’m a big fan of treating the Web project root folder as my Web root folder so all content comes from the root without unneeded nesting like the Content folder. By moving all server code out of the root tree (except for Code) the root tree becomes a lot cleaner immediately as you remove Controllers, App_Start, Models etc. and move them underneath Code. Yes this adds another folder level for server code, but it leaves only code related things in one place that’s easier to jump back and forth in. Additionally I find myself doing a lot less with server side code these days, more with client side code so I want the server code separated from that. The root folder itself then serves as the root content folder. Specifically I have the Views folder below it, as well as the Css and Scripts folders which serve to hold only common libraries and global CSS and Scripts code. These days of building SPA style application, I also tend to have an App folder there where I keep my application specific JavaScript files, as well as HTML View templates for client SPA apps like Angular. Here’s an example of what this looks like in a relatively small project: The goal is to keep things that are related together, so I don’t end up jumping around so much in the solution to get to specific project items. The Code folder may irk some of you and hark back to the days of the App_Code folder in non Web-Application projects, but these days I find myself messing with a lot less server side code and much more with client side files – HTML, CSS and JavaScript. Generally I work on a single controller at a time – once that’s open it’s open that’s typically the only server code I work with regularily. Business logic lives in another project altogether, so other than the controller and maybe ViewModels there’s not a lot of code being accessed in the Code folder. So throwing that off the root and isolating seems like an easy win. Nesting Page specific content In a lot of my existing applications that are pure server side MVC application perhaps with some JavaScript associated with them , I tend to have page level javascript and css files. For these types of pages I actually prefer the local files stored in the same folder as the parent view. So typically I have a .css and .js files with the same name as the view in the same folder. This looks something like this: In order for this to work you have to also make a configuration change inside of the /Views/web.config file, as the Views folder is blocked with the BlockViewHandler that prohibits access to content from that folder. It’s easy to fix by changing the path from * to *.cshtml or *.vbhtml so that view retrieval is blocked:<system.webServer> <handlers> <remove name="BlockViewHandler"/> <add name="BlockViewHandler" path="*.cshtml" verb="*" preCondition="integratedMode" type="System.Web.HttpNotFoundHandler" /> </handlers> </system.webServer> With this in place, from inside of your Views you can then reference those same resources like this:<link href="~/Views/Admin/QuizPrognosisItems.css" rel="stylesheet" /> and<script src="~/Views/Admin/QuizPrognosisItems.js"></script> which works fine. JavaScript and CSS files in the Views folder deploy just like the .cshtml files do and can be referenced from this folder as well. Making this happen is not really as straightforward as it should be with just Visual Studio unfortunately, as there’s no easy way to get the file nesting from the VS IDE directly (you have to modify the .csproj file). However, Mads Kristensen has a nice Visual Studio Add-in that provides file nesting via a short cut menu option. Using this you can select each of the ‘child’ files and then nest them under a parent file. In the case above I select the .js and .css files and nest them underneath the .cshtml view. I was even toying with the idea of throwing the controller.cs files into the Views folder, but that’s maybe going a little too far :-) It would work however as Visual Studio doesn’t publish .cs files and the compiler doesn’t care where the files live. There are lots of options and if you think that would make life easier it’s another option to help group related things together. Are there any downside to this? Possibly – if you’re using automated minification/packaging tools like ASP.NET Bundling or Grunt/Gulp with Uglify, it becomes a little harder to group script and css files for minification as you may end up looking in multiple folders instead of a single folder. But – again that’s a one time configuration step that’s easily handled and much less intrusive then constantly having to search for files in your project. Client Side Folders The particular project shown above in the screen shots above is a traditional server side ASP.NET MVC application with most content rendered into server side Razor pages. There’s a fair amount of client side stuff happening on these pages as well – specifically several of these pages are self contained single page Angular applications that deal with 1 or maybe 2 separate views and the layout I’ve shown above really focuses on the server side aspect where there are Razor views with related script and css resources. For applications that are more client centric and have a lot more script and HTML template based content I tend to use the same layout for the server components, but the client side code can often be broken out differently. In SPA type applications I tend to follow the App folder approach where all the application pieces that make the SPA applications end up below the App folder. Here’s what that looks like for me – here this is an AngularJs project: In this case the App folder holds both the application specific js files, and the partial HTML views that get loaded into this single SPA page application. In this particular Angular SPA application that has controllers linked to particular partial views, I prefer to keep the script files that are associated with the views – Angular Js Controllers in this case – with the actual partials. Again I like the proximity of the view with the main code associated with the view, because 90% of the UI application code that gets written is handled between these two files. This approach works well, but only if controllers are fairly closely aligned with the partials. If you have many smaller sub-controllers or lots of directives where the alignment between views and code is more segmented this approach starts falling apart and you’ll probably be better off with separate folders in js folder. Following Angular conventions you’d have controllers/directives/services etc. folders. Please note that I’m not saying any of these ways are right or wrong  – this is just what has worked for me and why! Skipping Project Navigation altogether with Resharper I’ve talked a bit about project navigation in the project tree, which is a common way to navigate and which we all use at least some of the time, but if you use a tool like Resharper – which has Ctrl-T to jump to anything, you can quickly navigate with a shortcut key and autocomplete search. Here’s what Resharper’s jump to anything looks like: Resharper’s Goto Anything box lets you type and quick search over files, classes and members of the entire solution which is a very fast and powerful way to find what you’re looking for in your project, by passing the solution explorer altogether. As long as you remember to use (which I sometimes don’t) and you know what you’re looking for it’s by far the quickest way to find things in a project. It’s a shame that this sort of a simple search interface isn’t part of the native Visual Studio IDE. Work how you like to work Ultimately it all comes down to workflow and how you like to work, and what makes *you* more productive. Following pre-defined patterns is great for consistency, as long as they don’t get in the way you work. A lot of the default folder structures in Visual Studio for ASP.NET MVC were defined when things were done differently. These days we’re dealing with a lot more diverse project content than when ASP.NET MVC was originally introduced and project organization definitely is something that can get in the way if it doesn’t fit your workflow. So take a look and see what works well and what might benefit from organizing files differently. As so many things with ASP.NET, as things evolve and tend to get more complex I’ve found that I end up fighting some of the conventions. The good news is that you don’t have to follow the conventions and you have the freedom to do just about anything that works for you. Even though what I’ve shown here diverges from conventions, I don’t think anybody would stumble over these relatively minor changes and not immediately figure out where things live, even in larger projects. But nevertheless think long and hard before breaking those conventions – if there isn’t a good reason to break them or the changes don’t provide improved workflow then it’s not worth it. Break the rules, but only if there’s a quantifiable benefit. You may not agree with how I’ve chosen to divert from the standard project structures in this article, but maybe it gives you some ideas of how you can mix things up to make your existing project flow a little nicer and make it easier to navigate for your environment. © Rick Strahl, West Wind Technologies, 2005-2014Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating a JSONP Formatter for ASP.NET Web API

    - by Rick Strahl
    Out of the box ASP.NET WebAPI does not include a JSONP formatter, but it's actually very easy to create a custom formatter that implements this functionality. JSONP is one way to allow Browser based JavaScript client applications to bypass cross-site scripting limitations and serve data from the non-current Web server. AJAX in Web Applications uses the XmlHttp object which by default doesn't allow access to remote domains. There are number of ways around this limitation <script> tag loading and JSONP is one of the easiest and semi-official ways that you can do this. JSONP works by combining JSON data and wrapping it into a function call that is executed when the JSONP data is returned. If you use a tool like jQUery it's extremely easy to access JSONP content. Imagine that you have a URL like this: http://RemoteDomain/aspnetWebApi/albums which on an HTTP GET serves some data - in this case an array of record albums. This URL is always directly accessible from an AJAX request if the URL is on the same domain as the parent request. However, if that URL lives on a separate server it won't be easily accessible to an AJAX request. Now, if  the server can serve up JSONP this data can be accessed cross domain from a browser client. Using jQuery it's really easy to retrieve the same data with JSONP:function getAlbums() { $.getJSON("http://remotedomain/aspnetWebApi/albums?callback=?",null, function (albums) { alert(albums.length); }); } The resulting callback the same as if the call was to a local server when the data is returned. jQuery deserializes the data and feeds it into the method. Here the array is received and I simply echo back the number of items returned. From here your app is ready to use the data as needed. This all works fine - as long as the server can serve the data with JSONP. What does JSONP look like? JSONP is a pretty simple 'protocol'. All it does is wrap a JSON response with a JavaScript function call. The above result from the JSONP call looks like this:Query17103401925975181569_1333408916499( [{"Id":"34043957","AlbumName":"Dirty Deeds Done Dirt Cheap",…},{…}] ) The way JSONP works is that the client (jQuery in this case) sends of the request, receives the response and evals it. The eval basically executes the function and deserializes the JSON inside of the function. It's actually a little more complex for the framework that does this, but that's the gist of what happens. JSONP works by executing the code that gets returned from the JSONP call. JSONP and ASP.NET Web API As mentioned previously, JSONP support is not natively in the box with ASP.NET Web API. But it's pretty easy to create and plug-in a custom formatter that provides this functionality. The following code is based on Christian Weyers example but has been updated to the latest Web API CodePlex bits, which changes the implementation a bit due to the way dependent objects are exposed differently in the latest builds. Here's the code:  using System; using System.IO; using System.Net; using System.Net.Http.Formatting; using System.Net.Http.Headers; using System.Threading.Tasks; using System.Web; using System.Net.Http; namespace Westwind.Web.WebApi { /// <summary> /// Handles JsonP requests when requests are fired with /// text/javascript or application/json and contain /// a callback= (configurable) query string parameter /// /// Based on Christian Weyers implementation /// https://github.com/thinktecture/Thinktecture.Web.Http/blob/master/Thinktecture.Web.Http/Formatters/JsonpFormatter.cs /// </summary> public class JsonpFormatter : JsonMediaTypeFormatter { public JsonpFormatter() { SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/json")); SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/javascript")); //MediaTypeMappings.Add(new UriPathExtensionMapping("jsonp", "application/json")); JsonpParameterName = "callback"; } /// <summary> /// Name of the query string parameter to look for /// the jsonp function name /// </summary> public string JsonpParameterName {get; set; } /// <summary> /// Captured name of the Jsonp function that the JSON call /// is wrapped in. Set in GetPerRequestFormatter Instance /// </summary> private string JsonpCallbackFunction; public override bool CanWriteType(Type type) { return true; } /// <summary> /// Override this method to capture the Request object /// and look for the query string parameter and /// create a new instance of this formatter. /// /// This is the only place in a formatter where the /// Request object is available. /// </summary> /// <param name="type"></param> /// <param name="request"></param> /// <param name="mediaType"></param> /// <returns></returns> public override MediaTypeFormatter GetPerRequestFormatterInstance(Type type, HttpRequestMessage request, MediaTypeHeaderValue mediaType) { var formatter = new JsonpFormatter() { JsonpCallbackFunction = GetJsonCallbackFunction(request) }; return formatter; } /// <summary> /// Override to wrap existing JSON result with the /// JSONP function call /// </summary> /// <param name="type"></param> /// <param name="value"></param> /// <param name="stream"></param> /// <param name="contentHeaders"></param> /// <param name="transportContext"></param> /// <returns></returns> public override Task WriteToStreamAsync(Type type, object value, Stream stream, HttpContentHeaders contentHeaders, TransportContext transportContext) { if (!string.IsNullOrEmpty(JsonpCallbackFunction)) { return Task.Factory.StartNew(() => { var writer = new StreamWriter(stream); writer.Write( JsonpCallbackFunction + "("); writer.Flush(); base.WriteToStreamAsync(type, value, stream, contentHeaders, transportContext).Wait(); writer.Write(")"); writer.Flush(); }); } else { return base.WriteToStreamAsync(type, value, stream, contentHeaders, transportContext); } } /// <summary> /// Retrieves the Jsonp Callback function /// from the query string /// </summary> /// <returns></returns> private string GetJsonCallbackFunction(HttpRequestMessage request) { if (request.Method != HttpMethod.Get) return null; var query = HttpUtility.ParseQueryString(request.RequestUri.Query); var queryVal = query[this.JsonpParameterName]; if (string.IsNullOrEmpty(queryVal)) return null; return queryVal; } } } Note again that this code will not work with the Beta bits of Web API - it works only with post beta bits from CodePlex and hopefully this will continue to work until RTM :-) This code is a bit different from Christians original code as the API has changed. The biggest change is that the Read/Write functions no longer receive a global context object that gives access to the Request and Response objects as the older bits did. Instead you now have to override the GetPerRequestFormatterInstance() method, which receives the Request as a parameter. You can capture the Request there, or use the request to pick up the values you need and store them on the formatter. Note that I also have to create a new instance of the formatter since I'm storing request specific state on the instance (information whether the callback= querystring is present) so I return a new instance of this formatter. Other than that the code should be straight forward: The code basically writes out the function pre- and post-amble and the defers to the base stream to retrieve the JSON to wrap the function call into. The code uses the Async APIs to write this data out (this will take some getting used to seeing all over the place for me). Hooking up the JsonpFormatter Once you've created a formatter, it has to be added to the request processing sequence by adding it to the formatter collection. Web API is configured via the static GlobalConfiguration object.  protected void Application_Start(object sender, EventArgs e) { // Verb Routing RouteTable.Routes.MapHttpRoute( name: "AlbumsVerbs", routeTemplate: "albums/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumApi" } ); GlobalConfiguration .Configuration .Formatters .Insert(0, new Westwind.Web.WebApi.JsonpFormatter()); }   That's all it takes. Note that I added the formatter at the top of the list of formatters, rather than adding it to the end which is required. The JSONP formatter needs to fire before any other JSON formatter since it relies on the JSON formatter to encode the actual JSON data. If you reverse the order the JSONP output never shows up. So, in general when adding new formatters also try to be aware of the order of the formatters as they are added. Resources JsonpFormatter Code on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Routing to a Controller with no View in Angular

    - by Rick Strahl
    I've finally had some time to put Angular to use this week in a small project I'm working on for fun. Angular's routing is great and makes it real easy to map URL routes to controllers and model data into views. But what if you don't actually need a view, if you effectively need a headless controller that just runs code, but doesn't render a view?Preserve the ViewWhen Angular navigates a route and and presents a new view, it loads the controller and then renders the view from scratch. Views are not cached or stored, but displayed and then removed. So if you have routes configured like this:'use strict'; // Declare app level module which depends on filters, and services window.myApp = angular.module('myApp', ['myApp.filters', 'myApp.services', 'myApp.directives', 'myApp.controllers']). config(['$routeProvider', function($routeProvider) { $routeProvider.when('/map', { template: "partials/map.html ", controller: 'mapController', reloadOnSearch: false, animation: 'slide' }); … $routeProvider.otherwise({redirectTo: '/map'}); }]); Angular routes to the mapController and then re-renders the map.html template with the new data from the $scope filled in.But, but… I don't want a new View!Now in most cases this works just fine. If I'm rendering plain DOM content, or textboxes in a form interface that is all fine and dandy - it's perfectly fine to completely re-render the UI.But in some cases, the UI that's being managed has state and shouldn't be redrawn. In this case the main page in question has a Google Map on it. The map is  going to be manipulated throughout the lifetime of the application and the rest of the pages. In my application I have a toolbar on the bottom and the rest of the content is replaced/switched out by the Angular Views:The problem is that the map shouldn't be redrawn each time the Location view is activated. It should maintain its state, such as the current position selected (which can move), and shouldn't redraw due to the overhead of re-rendering the initial map.Originally I set up the map, exactly like all my other views - as a partial, that is rendered with a separate file, but that didn't work.The Workaround - Controller Only RoutesThe workaround for this goes decidedly against Angular's way of doing things:Setting up a Template-less RouteIn-lining the map view directly into the main pageHiding and showing the map view manuallyLet's see how this works.Controller Only RouteThe template-less route is basically a route that doesn't have any template to render. This is not directly supported by Angular, but thankfully easy to fake. The end goal here is that I want to simply have the Controller fire and then have the controller manage the display of the already active view by hiding and showing the map and any other view content, in effect bypassing Angular's view display management.In short - I want a controller action, but no view rendering.The controller-only or template-less route looks like this: $routeProvider.when('/map', { template: " ", // just fire controller controller: 'mapController', animation: 'slide' });Notice I'm using the template property rather than templateUrl (used in the first example above), which allows specifying a string template, and leaving it blank. The template property basically allows you to provide a templated string using Angular's HandleBar like binding syntax which can be useful at times. You can use plain strings or strings with template code in the template, or as I'm doing here a blank string to essentially fake 'just clear the view'. In-lined ViewSo if there's no view where does the HTML go? Because I don't want Angular to manage the view the map markup is in-lined directly into the page. So instead of rendering the map into the Angular view container, the content is simply set up as inline HTML to display as a sibling to the view container.<div id="MapContent" data-icon="LocationIcon" ng-controller="mapController" style="display:none"> <div class="headerbar"> <div class="right-header" style="float:right"> <a id="btnShowSaveLocationDialog" class="iconbutton btn btn-sm" href="#/saveLocation" style="margin-right: 2px;"> <i class="icon-ok icon-2x" style="color: lightgreen; "></i> Save Location </a> </div> <div class="left-header">GeoCrumbs</div> </div> <div class="clearfix"></div> <div id="Message"> <i id="MessageIcon"></i> <span id="MessageText"></span> </div> <div id="Map" class="content-area"> </div> </div> <div id="ViewPlaceholder" ng-view></div>Note that there's the #MapContent element and the #ViewPlaceHolder. The #MapContent is my static map view that is always 'live' and is initially hidden. It is initially hidden and doesn't get made visible until the MapController controller activates it which does the initial rendering of the map. After that the element is persisted with the map data already loaded and any future access only updates the map with new locations/pins etc.Note that default route is assigned to the mapController, which means that the mapController is fired right as the page loads, which is actually a good thing in this case, as the map is the cornerstone of this app that is manipulated by some of the other controllers/views.The Controller handles some UISince there's effectively no view activation with the template-less route, the controller unfortunately has to take over some UI interaction directly. Specifically it has to swap the hidden state between the map and any of the other views.Here's what the controller looks like:myApp.controller('mapController', ["$scope", "$routeParams", "locationData", function($scope, $routeParams, locationData) { $scope.locationData = locationData.location; $scope.locationHistory = locationData.locationHistory; if ($routeParams.mode == "currentLocation") { bc.getCurrentLocation(false); } bc.showMap(false,"#LocationIcon"); }]);bc.showMap is responsible for a couple of display tasks that hide/show the views/map and for activating/deactivating icons. The code looks like this:this.showMap = function (hide,selActiveIcon) { if (!hide) $("#MapContent").show(); else { $("#MapContent").hide(); } self.fitContent(); if (selActiveIcon) { $(".iconbutton").removeClass("active"); $(selActiveIcon).addClass("active"); } };Each of the other controllers in the app also call this function when they are activated to basically hide the map and make the View Content area visible. The map controller makes the map.This is UI code and calling this sort of thing from controllers is generally not recommended, but I couldn't figure out a way using directives to make this work any more easily than this. It'd be easy to hide and show the map and view container using a flag an ng-show, but it gets tricky because of scoping of the $scope. I would have to resort to storing this setting on the $rootscope which I try to avoid. The same issues exists with the icons.It sure would be nice if Angular had a way to explicitly specify that a View shouldn't be destroyed when another view is activated, so currently this workaround is required. Searching around, I saw a number of whacky hacks to get around this, but this solution I'm using here seems much easier than any of that I could dig up even if it doesn't quite fit the 'Angular way'.Angular nice, until it's notOverall I really like Angular and the way it works although it took me a bit of time to get my head around how all the pieces fit together. Once I got the idea how the app/routes, the controllers and views snap together, putting together Angular pages becomes fairly straightforward. You can get quite a bit done never going beyond those basics. For most common things Angular's default routing and view presentation works very well.But, when you do something a bit more complex, where there are multiple dependencies or as in this case where Angular doesn't appear to support a feature that's absolutely necessary, you're on your own. Finding information on more advanced topics is not trivial especially since versions are changing so rapidly and the low level behaviors are changing frequently so finding something that works is often an exercise in trial and error. Not that this is surprising. Angular is a complex piece of kit as are all the frameworks that try to hack JavaScript into submission to do something that it was really never designed to. After all everything about a framework like Angular is an elaborate hack. A lot of shit has to happen to make this all work together and at that Angular (and Ember, Durandel etc.) are pretty amazing pieces of JavaScript code. So no harm, no foul, but I just can't help feeling like working in toy sandbox at times :-)© Rick Strahl, West Wind Technologies, 2005-2013Posted in Angular  JavaScript   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Set-Cookie Headers getting stripped in ASP.NET HttpHandlers

    - by Rick Strahl
    Yikes, I ran into a real bummer of an edge case yesterday in one of my older low level handler implementations (for West Wind Web Connection in this case). Basically this handler is a connector for a backend Web framework that creates self contained HTTP output. An ASP.NET Handler captures the full output, and then shoves the result down the ASP.NET Response object pipeline writing out the content into the Response.OutputStream and seperately sending the HttpHeaders in the Response.Headers collection. The headers turned out to be the problem and specifically Http Cookies, which for some reason ended up getting stripped out in some scenarios. My handler works like this: Basically the HTTP response from the backend app would return a full set of HTTP headers plus the content. The ASP.NET handler would read the headers one at a time and then dump them out via Response.AppendHeader(). But I found that in some situations Set-Cookie headers sent along were simply stripped inside of the Http Handler. After a bunch of back and forth with some folks from Microsoft (thanks Damien and Levi!) I managed to pin this down to a very narrow edge scenario. It's easiest to demonstrate the problem with a simple example HttpHandler implementation. The following simulates the very much simplified output generation process that fails in my handler. Specifically I have a couple of headers including a Set-Cookie header and some output that gets written into the Response object.using System.Web; namespace wwThreads { public class Handler : IHttpHandler { /* NOTE: * * Run as a web.config set handler (see entry below) * * Best way is to look at the HTTP Headers in Fiddler * or Chrome/FireBug/IE tools and look for the * WWHTREADSID cookie in the outgoing Response headers * ( If the cookie is not there you see the problem! ) */ public void ProcessRequest(HttpContext context) { HttpRequest request = context.Request; HttpResponse response = context.Response; // If ClearHeaders is used Set-Cookie header gets removed! // if commented header is sent... response.ClearHeaders(); response.ClearContent(); // Demonstrate that other headers make it response.AppendHeader("RequestId", "asdasdasd"); // This cookie gets removed when ClearHeaders above is called // When ClearHEaders is omitted above the cookie renders response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); // *** This always works, even when explicit // Set-Cookie above fails and ClearHeaders is called //response.Cookies.Add(new HttpCookie("WWTHREADSID", "ThisIsTheValue")); response.Write(@"Output was created.<hr/> Check output with Fiddler or HTTP Proxy to see whether cookie was sent."); } public bool IsReusable { get { return false; } } } } In order to see the problem behavior this code has to be inside of an HttpHandler, and specifically in a handler defined in web.config with: <add name=".ck_handler" path="handler.ck" verb="*" type="wwThreads.Handler" preCondition="integratedMode" /> Note: Oddly enough this problem manifests only when configured through web.config, not in an ASHX handler, nor if you paste that same code into an ASPX page or MVC controller. What's the problem exactly? The code above simulates the more complex code in my live handler that picks up the HTTP response from the backend application and then peels out the headers and sends them one at a time via Response.AppendHeader. One of the headers in my app can be one or more Set-Cookie. I found that the Set-Cookie headers were not making it into the Response headers output. Here's the Chrome Http Inspector trace: Notice, no Set-Cookie header in the Response headers! Now, running the very same request after removing the call to Response.ClearHeaders() command, the cookie header shows up just fine: As you might expect it took a while to track this down. At first I thought my backend was not sending the headers but after closer checks I found that indeed the headers were set in the backend HTTP response, and they were indeed getting set via Response.AppendHeader() in the handler code. Yet, no cookie in the output. In the simulated example the problem is this line:response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); which in my live code is more dynamic ( ie. AppendHeader(token[0],token[1[]) )as it parses through the headers. Bizzaro Land: Response.ClearHeaders() causes Cookie to get stripped Now, here is where it really gets bizarre: The problem occurs only if: Response.ClearHeaders() was called before headers are added It only occurs in Http Handlers declared in web.config Clearly this is an edge of an edge case but of course - knowing my relationship with Mr. Murphy - I ended up running smack into this problem. So in the code above if you remove the call to ClearHeaders(), the cookie gets set!  Add it back in and the cookie is not there. If I run the above code in an ASHX handler it works. If I paste the same code (with a Response.End()) into an ASPX page, or MVC controller it all works. Only in the HttpHandler configured through Web.config does it fail! Cue the Twilight Zone Music. Workarounds As is often the case the fix for this once you know the problem is not too difficult. The difficulty lies in tracking inconsistencies like this down. Luckily there are a few simple workarounds for the Cookie issue. Don't use AppendHeader for Cookies The easiest and obvious solution to this problem is simply not use Response.AppendHeader() to set Cookies. Duh! Under normal circumstances in application level code there's rarely a reason to write out a cookie like this:response.AppendHeader("Set-Cookie", "WWTHREADSID=ThisIsThEValue; path=/"); but rather create the cookie using the Response.Cookies collection:response.Cookies.Add(new HttpCookie("WWTHREADSID", "ThisIsTheValue")); Unfortunately, in my case where I dynamically read headers from the original output and then dynamically  write header key value pairs back  programmatically into the Response.Headers collection, I actually don't look at each header specifically so in my case the cookie is just another header. My first thought was to simply trap for the Set-Cookie header and then parse out the cookie and create a Cookie object instead. But given that cookies can have a lot of different options this is not exactly trivial, plus I don't really want to fuck around with cookie values which can be notoriously brittle. Don't use Response.ClearHeaders() The real mystery in all this is why calling Response.ClearHeaders() prevents a cookie value later written with Response.AppendHeader() to fail. I fired up Reflector and took a quick look at System.Web and HttpResponse.ClearHeaders. There's all sorts of resetting going on but nothing that seems to indicate that headers should be removed later on in the request. The code in ClearHeaders() does access the HttpWorkerRequest, which is the low level interface directly into IIS, and so I suspect it's actually IIS that's stripping the headers and not ASP.NET, but it's hard to know. Somebody from Microsoft and the IIS team would have to comment on that. In my application it's probably safe to simply skip ClearHeaders() in my handler. The ClearHeaders/ClearContent was mainly for safety but after reviewing my code there really should never be a reason that headers would be set prior to this method firing. However, if for whatever reason headers do need to be cleared, it's easy enough to manually clear the headers out:private void RemoveHeaders(HttpResponse response) { List<string> headers = new List<string>(); foreach (string header in response.Headers) { headers.Add(header); } foreach (string header in headers) { response.Headers.Remove(header); } response.Cookies.Clear(); } Now I can replace the call the Response.ClearHeaders() and I don't get the funky side-effects from Response.ClearHeaders(). Summary I realize this is a total edge case as this occurs only in HttpHandlers that are manually configured. It looks like you'll never run into this in any of the higher level ASP.NET frameworks or even in ASHX handlers - only web.config defined handlers - which is really, really odd. After all those frameworks use the same underlying ASP.NET architecture. Hopefully somebody from Microsoft has an idea what crazy dependency was triggered here to make this fail. IAC, there are workarounds to this should you run into it, although I bet when you do run into it, it'll likely take a bit of time to find the problem or even this post in a search because it's not easily to correlate the problem to the solution. It's quite possible that more than cookies are affected by this behavior. Searching for a solution I read a few other accounts where headers like Referer were mysteriously disappearing, and it's possible that something similar is happening in those cases. Again, extreme edge case, but I'm writing this up here as documentation for myself and possibly some others that might have run into this. © Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   IIS7   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • The Red Gate and .NET Reflector Debacle

    - by Rick Strahl
    About a month ago Red Gate – the company who owns the NET Reflector tool most .NET devs use at one point or another – decided to change their business model for Reflector and take the product from free to a fully paid for license model. As a bit of history: .NET Reflector was originally created by Lutz Roeder as a free community tool to inspect .NET assemblies. Using Reflector you can examine the types in an assembly, drill into type signatures and quickly disassemble code to see how a particular method works.  In case you’ve been living under a rock and you’ve never looked at Reflector, here’s what it looks like drilled into an assembly from disk with some disassembled source code showing: Note that you get tons of information about each element in the tree, and almost all related types and members are clickable both in the list and source view so it’s extremely easy to navigate and follow the code flow even in this static assembly only view. For many year’s Lutz kept the the tool up to date and added more features gradually improving an already amazing tool and making it better. Then about two and a half years ago Red Gate bought the tool from Lutz. A lot of ruckus and noise ensued in the community back then about what would happen with the tool and… for the most part very little did. Other than the incessant update notices with prominent Red Gate promo on them life with Reflector went on. The product didn’t die and and it didn’t go commercial or to a charge model. When .NET 4.0 came out it still continued to work mostly because the .NET feature set doesn’t drastically change how types behave.  Then a month back Red Gate started making noise about a new Version Version 7 which would be commercial. No more free version - and a shit storm broke out in the community. Now normally I’m not one to be critical of companies trying to make money from a product, much less for a product that’s as incredibly useful as Reflector. There isn’t day in .NET development that goes by for me where I don’t fire up Reflector. Whether it’s for examining the innards of the .NET Framework, checking out third party code, or verifying some of my own code and resources. Even more so recently I’ve been doing a lot of Interop work with a non-.NET application that needs to access .NET components and Reflector has been immensely valuable to me (and my clients) if figuring out exact type signatures required to calling .NET components in assemblies. In short Reflector is an invaluable tool to me. Ok, so what’s the problem? Why all the fuss? Certainly the $39 Red Gate is trying to charge isn’t going to kill any developer. If there’s any tool in .NET that’s worth $39 it’s Reflector, right? Right, but that’s not the problem here. The problem is how Red Gate went about moving the product to commercial which borders on the downright bizarre. It’s almost as if somebody in management wrote a slogan: “How can we piss off the .NET community in the most painful way we can?” And that it seems Red Gate has a utterly succeeded. People are rabid, and for once I think that this outrage isn’t exactly misplaced. Take a look at the message thread that Red Gate dedicated from a link off the download page. Not only is Version 7 going to be a paid commercial tool, but the older versions of Reflector won’t be available any longer. Not only that but older versions that are already in use also will continually try to update themselves to the new paid version – which when installed will then expire unless registered properly. There have also been reports of Version 6 installs shutting themselves down and failing to work if the update is refused (I haven’t seen that myself so not sure if that’s true). In other words Red Gate is trying to make damn sure they’re getting your money if you attempt to use Reflector. There’s a lot of temptation there. Think about the millions of .NET developers out there and all of them possibly upgrading – that’s a nice chunk of change that Red Gate’s sitting on. Even with all the community backlash these guys are probably making some bank right now just because people need to get life to move on. Red Gate also put up a Feedback link on the download page – which not surprisingly is chock full with hate mail condemning the move. Oddly there’s not a single response to any of those messages by the Red Gate folks except when it concerns license questions for the full version. It puzzles me what that link serves for other yet than another complete example of failure to understand how to handle customer relations. There’s no doubt that that all of this has caused some serious outrage in the community. The sad part though is that this could have been handled so much less arrogantly and without pissing off the entire community and causing so much ill-will. People are pissed off and I have no doubt that this negative publicity will show up in the sales numbers for their other products. I certainly hope so. Stupidity ought to be painful! Why do Companies do boneheaded stuff like this? Red Gate’s original decision to buy Reflector was hotly debated but at that the time most of what would happen was mostly speculation. But I thought it was a smart move for any company that is in need of spreading its marketing message and corporate image as a vendor in the .NET space. Where else do you get to flash your corporate logo to hordes of .NET developers on a regular basis?  Exploiting that marketing with some goodwill of providing a free tool breeds positive feedback that hopefully has a good effect on the company’s visibility and the products it sells. Instead Red Gate seems to have taken exactly the opposite tack of corporate bullying to try to make a quick buck – and in the process ruined any community goodwill that might have come from providing a service community for free while still getting valuable marketing. What’s so puzzling about this boneheaded escapade is that the company doesn’t need to resort to underhanded tactics like what they are trying with Reflector 7. The tools the company makes are very good. I personally use SQL Compare, Sql Data Compare and ANTS Profiler on a regular basis and all of these tools are essential in my toolbox. They certainly work much better than the tools that are in the box with Visual Studio. Chances are that if Reflector 7 added useful features I would have been more than happy to shell out my $39 to upgrade when the time is right. It’s Expensive to give away stuff for Free At the same time, this episode shows some of the big problems that come with ‘free’ tools. A lot of organizations are realizing that giving stuff away for free is actually quite expensive and the pay back is often very intangible if any at all. Those that rely on donations or other voluntary compensation find that they amount contributed is absolutely miniscule as to not matter at all. Yet at the same time I bet most of those clamouring the loudest on that Red Gate Reflector feedback page that Reflector won’t be free anymore probably have NEVER made a donation to any open source project or free tool ever. The expectation of Free these days is just too great – which is a shame I think. There’s a lot to be said for paid software and having somebody to hold to responsible to because you gave them some money. There’s an incentive –> payback –> responsibility model that seems to be missing from free software (not all of it, but a lot of it). While there certainly are plenty of bad apples in paid software as well, money tends to be a good motivator for people to continue working and improving products. Reasons for giving away stuff are many but often it’s a naïve desire to share things when things are simple. At first it might be no problem to volunteer time and effort but as products mature the fun goes out of it, and as the reality of product maintenance kicks in developers want to get something back for the time and effort they’re putting in doing non-glamorous work. It’s then when products die or languish and this is painful for all to watch. For Red Gate however, I think there was always a pretty good payback from the Reflector acquisition in terms of marketing: Visibility and possible positioning of their products although they seemed to have mostly ignored that option. On the other hand they started this off pretty badly even 2 and a half years back when they aquired Reflector from Lutz with the same arrogant attitude that is evident in the latest episode. You really gotta wonder what folks are thinking in management – the sad part is from advance emails that were circulating, they were fully aware of the shit storm they were inciting with this and I suspect they are banking on the sheer numbers of .NET developers to still make them a tidy chunk of change from upgrades… Alternatives are coming For me personally the single license isn’t a problem, but I actually have a tool that I sell (an interop Web Service proxy generation tool) to customers and one of the things I recommend to use with has been Reflector to view assembly information and to find which Interop classes to instantiate from the non-.NET environment. It’s been nice to use Reflector for this with its small footprint and zero-configuration installation. But now with V7 becoming a paid tool that option is not going to be available anymore. Luckily it looks like the .NET community is jumping to it and trying to fill the void. Amidst the Red Gate outrage a new library called ILSpy has sprung up and providing at least some of the core functionality of Reflector with an open source library. It looks promising going forward and I suspect there will be a lot more support and interest to support this project now that Reflector has gone over to the ‘dark side’…© Rick Strahl, West Wind Technologies, 2005-2011

    Read the article

  • Caveats with the runAllManagedModulesForAllRequests in IIS 7/8

    - by Rick Strahl
    One of the nice enhancements in IIS 7 (and now 8) is the ability to be able to intercept non-managed - ie. non ASP.NET served - requests from within ASP.NET managed modules. This opened up a ton of new functionality that could be applied across non-managed content using .NET code. I thought I had a pretty good handle on how IIS 7's Integrated mode pipeline works, but when I put together some samples last tonight I realized that the way that managed and unmanaged requests fire into the pipeline is downright confusing especially when it comes to the runAllManagedModulesForAllRequests attribute. There are a number of settings that can affect whether a managed module receives non-ASP.NET content requests such as static files or requests from other frameworks like PHP or ASP classic, and this is topic of this blog post. Native and Managed Modules The integrated mode IIS pipeline for IIS 7 and later - as the name suggests - allows for integration of ASP.NET pipeline events in the IIS request pipeline. Natively IIS runs unmanaged code and there are a host of native mode modules that handle the core behavior of IIS. If you set up a new IIS site or application without managed code support only the native modules are supported and fired without any interaction between native and managed code. If you use the Integrated pipeline with managed code enabled however things get a little more confusing as there both native modules and .NET managed modules can fire against the same IIS request. If you open up the IIS Modules dialog you see both managed and unmanaged modules. Unmanaged modules point at physical files on disk, while unmanaged modules point at .NET types and files referenced from the GAC or the current project's BIN folder. Both native and managed modules can co-exist and execute side by side and on the same request. When running in IIS 7 the IIS pipeline actually instantiates a the ASP.NET  runtime (via the System.Web.PipelineRuntime class) which unlike the core HttpRuntime classes in ASP.NET receives notification callbacks when IIS integrated mode events fire. The IIS pipeline is smart enough to detect whether managed handlers are attached and if they're none these notifications don't fire, improving performance. The good news about all of this for .NET devs is that ASP.NET style modules can be used for just about every kind of IIS request. All you need to do is create a new Web Application and enable ASP.NET on it, and then attach managed handlers. Handlers can look at ASP.NET content (ie. ASPX pages, MVC, WebAPI etc. requests) as well as non-ASP.NET content including static content like HTML files, images, javascript and css resources etc. It's very cool that this capability has been surfaced. However, with that functionality comes a lot of responsibility. Because every request passes through the ASP.NET pipeline if managed modules (or handlers) are attached there are possible performance implications that come with it. Running through the ASP.NET pipeline does add some overhead. ASP.NET and Your Own Modules When you create a new ASP.NET project typically the Visual Studio templates create the modules section like this: <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <modules runAllManagedModulesForAllRequests="true" > </modules> </system.webServer> Specifically the interesting thing about this is the runAllManagedModulesForAllRequest="true" flag, which seems to indicate that it controls whether any registered modules always run, even when the value is set to false. Realistically though this flag does not control whether managed code is fired for all requests or not. Rather it is an override for the preCondition flag on a particular handler. With the flag set to the default true setting, you can assume that pretty much every IIS request you receive ends up firing through your ASP.NET module pipeline and every module you have configured is accessed even by non-managed requests like static files. In other words, your module will have to handle all requests. Now so far so obvious. What's not quite so obvious is what happens when you set the runAllManagedModulesForAllRequest="false". You probably would expect that immediately the non-ASP.NET requests no longer get funnelled through the ASP.NET Module pipeline. But that's not what actually happens. For example, if I create a module like this:<add name="SharewareModule" type="HowAspNetWorks.SharewareMessageModule" /> by default it will fire against ALL requests regardless of the runAllManagedModulesForAllRequests flag. Even if the value runAllManagedModulesForAllRequests="false", the module is fired. Not quite expected. So what is the runAllManagedModulesForAllRequests really good for? It's essentially an override for managedHandler preCondition. If I declare my handler in web.config like this:<add name="SharewareModule" type="HowAspNetWorks.SharewareMessageModule" preCondition="managedHandler" /> and the runAllManagedModulesForAllRequests="false" my module only fires against managed requests. If I switch the flag to true, now my module ends up handling all IIS requests that are passed through from IIS. The moral of the story here is that if you intend to only look at ASP.NET content, you should always set the preCondition="managedHandler" attribute to ensure that only managed requests are fired on this module. But even if you do this, realize that runAllManagedModulesForAllRequests="true" can override this setting. runAllManagedModulesForAllRequests and Http Application Events Another place the runAllManagedModulesForAllRequest attribute affects is the Global Http Application object (typically in global.asax) and the Application_XXXX events that you can hook up there. So while the events there are dynamically hooked up to the application class, they basically behave as if they were set with the preCodition="managedHandler" configuration switch. The end result is that if you have runAllManagedModulesForAllRequests="true" you'll see every Http request passed through the Application_XXXX events, and you only see ASP.NET requests with the flag set to "false". What's all that mean? Configuring an application to handle requests for both ASP.NET and other content requests can be tricky especially if you need to mix modules that might require both. Couple of things are important to remember. If your module doesn't need to look at every request, by all means set a preCondition="managedHandler" on it. This will at least allow it to respond to the runAllManagedModulesForAllRequests="false" flag and then only process ASP.NET requests. Look really carefully to see whether you actually need runAllManagedModulesForAllRequests="true" in your applications as set by the default new project templates in Visual Studio. Part of the reason, this is the default because it was required for the initial versions of IIS 7 and ASP.NET 2 in order to handle MVC extensionless URLs. However, if you are running IIS 7 or later and .NET 4.0 you can use the ExtensionlessUrlHandler instead to allow you MVC functionality without requiring runAllManagedModulesForAllRequests="true": <handlers> <remove name="ExtensionlessUrlHandler-Integrated-4.0" /> <add name="ExtensionlessUrlHandler-Integrated-4.0" path="*." verb="GET,HEAD,POST,DEBUG,PUT,DELETE,PATCH,OPTIONS" type="System.Web.Handlers.TransferRequestHandler" preCondition="integratedMode,runtimeVersionv4.0" /> </handlers> Oddly this is the default for Visual Studio 2012 MVC template apps, so I'm not sure why the default template still adds runAllManagedModulesForAllRequests="true" is - it should be enabled only if there's a specific need to access non ASP.NET requests. As a side note, it's interesting that when you access a static HTML resource, you can actually write into the Response object and get the output to show, which is trippy. I haven't looked closely to see how this works - whether ASP.NET just fires directly into the native output stream or whether the static requests are re-routed directly through the ASP.NET pipeline once a managed code module is detected. This doesn't work for all non ASP.NET resources - for example, I can't do the same with ASP classic requests, but it makes for an interesting demo when injecting HTML content into a static HTML page :-) Note that on the original Windows Server 2008 and Vista (IIS 7.0) you might need a HotFix in order for ExtensionLessUrlHandler to work properly for MVC projects. On my live server I needed it (about 6 months ago), but others have observed that the latest service updates have integrated this functionality and the hotfix is not required. On IIS 7.5 and later I've not needed any patches for things to just work. Plan for non-ASP.NET Requests It's important to remember that if you write a .NET Module to run on IIS 7, there's no way for you to prevent non-ASP.NET requests from hitting your module. So make sure you plan to support requests to extensionless URLs, to static resources like files. Luckily ASP.NET creates a full Request and full Response object for you for non ASP.NET content. So even for static files and even for ASP classic for example, you can look at Request.FilePath or Request.ContentType (in post handler pipeline events) to determine what content you are dealing with. As always with Module design make sure you check for the conditions in your code that make the module applicable and if a filter fails immediately exit - minimize the code that runs if your module doesn't need to process the request.© Rick Strahl, West Wind Technologies, 2005-2012Posted in IIS7   ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Unable to cast transparent proxy to type &lt;type&gt;

    - by Rick Strahl
    This is not the first time I've run into this wonderful error while creating new AppDomains in .NET and then trying to load types and access them across App Domains. In almost all cases the problem I've run into with this error the problem comes from the two AppDomains involved loading different copies of the same type. Unless the types match exactly and come exactly from the same assembly the typecast will fail. The most common scenario is that the types are loaded from different assemblies - as unlikely as that sounds. An Example of Failure To give some context, I'm working on some old code in Html Help Builder that creates a new AppDomain in order to parse assembly information for documentation purposes. I create a new AppDomain in order to load up an assembly process it and then immediately unload it along with the AppDomain. The AppDomain allows for unloading that otherwise wouldn't be possible as well as isolating my code from the assembly that's being loaded. The process to accomplish this is fairly established and I use it for lots of applications that use add-in like functionality - basically anywhere where code needs to be isolated and have the ability to be unloaded. My pattern for this is: Create a new AppDomain Load a Factory Class into the AppDomain Use the Factory Class to load additional types from the remote domain Here's the relevant code from my TypeParserFactory that creates a domain and then loads a specific type - TypeParser - that is accessed cross-AppDomain in the parent domain:public class TypeParserFactory : System.MarshalByRefObject,IDisposable { …/// <summary> /// TypeParser Factory method that loads the TypeParser /// object into a new AppDomain so it can be unloaded. /// Creates AppDomain and creates type. /// </summary> /// <returns></returns> public TypeParser CreateTypeParser() { if (!CreateAppDomain(null)) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! TypeParser parser = null; try { Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; parser = (TypeParser) this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); } catch (Exception ex) { this.ErrorMessage = ex.GetBaseException().Message; return null; } return parser; } private bool CreateAppDomain(string lcAppDomain) { if (lcAppDomain == null) lcAppDomain = "wwReflection" + Guid.NewGuid().ToString().GetHashCode().ToString("x"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; //setup.PrivateBinPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "bin"); this.LocalAppDomain = AppDomain.CreateDomain(lcAppDomain,null,setup); // Need a custom resolver so we can load assembly from non current path AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler(CurrentDomain_AssemblyResolve); return true; } …} Note that the classes must be either [Serializable] (by value) or inherit from MarshalByRefObject in order to be accessible remotely. Here I need to call methods on the remote object so all classes are MarshalByRefObject. The specific problem code is the loading up a new type which points at an assembly that visible both in the current domain and the remote domain and then instantiates a type from it. This is the code in question:Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; parser = (TypeParser) this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); The last line of code is what blows up with the Unable to cast transparent proxy to type <type> error. Without the cast the code actually returns a TransparentProxy instance, but the cast is what blows up. In other words I AM in fact getting a TypeParser instance back but it can't be cast to the TypeParser type that is loaded in the current AppDomain. Finding the Problem To see what's going on I tried using the .NET 4.0 dynamic type on the result and lo and behold it worked with dynamic - the value returned is actually a TypeParser instance: Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; object objparser = this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); // dynamic works dynamic dynParser = objparser; string info = dynParser.GetVersionInfo(); // method call works // casting fails parser = (TypeParser)objparser; So clearly a TypeParser type is coming back, but nevertheless it's not the right one. Hmmm… mysterious.Another couple of tries reveal the problem however:// works dynamic dynParser = objparser; string info = dynParser.GetVersionInfo(); // method call works // c:\wwapps\wwhelp\wwReflection20.dll (Current Execution Folder) string info3 = typeof(TypeParser).Assembly.CodeBase; // c:\program files\vfp9\wwReflection20.dll (my COM client EXE's folder) string info4 = dynParser.GetType().Assembly.CodeBase; // fails parser = (TypeParser)objparser; As you can see the second value is coming from a totally different assembly. Note that this is even though I EXPLICITLY SPECIFIED an assembly path to load the assembly from! Instead .NET decided to load the assembly from the original ApplicationBase folder. Ouch! How I actually tracked this down was a little more tedious: I added a method like this to both the factory and the instance types and then compared notes:public string GetVersionInfo() { return ".NET Version: " + Environment.Version.ToString() + "\r\n" + "wwReflection Assembly: " + typeof(TypeParserFactory).Assembly.CodeBase.Replace("file:///", "").Replace("/", "\\") + "\r\n" + "Assembly Cur Dir: " + Directory.GetCurrentDirectory() + "\r\n" + "ApplicationBase: " + AppDomain.CurrentDomain.SetupInformation.ApplicationBase + "\r\n" + "App Domain: " + AppDomain.CurrentDomain.FriendlyName + "\r\n"; } For the factory I got: .NET Version: 4.0.30319.239wwReflection Assembly: c:\wwapps\wwhelp\bin\wwreflection20.dllAssembly Cur Dir: c:\wwapps\wwhelpApplicationBase: C:\Programs\vfp9\App Domain: wwReflection534cfa1f For the instance type I got: .NET Version: 4.0.30319.239wwReflection Assembly: C:\\Programs\\vfp9\wwreflection20.dllAssembly Cur Dir: c:\\wwapps\\wwhelpApplicationBase: C:\\Programs\\vfp9\App Domain: wwDotNetBridge_56006605 which clearly shows the problem. You can see that both are loading from different appDomains but the each is loading the assembly from a different location. Probably a better solution yet (for ANY kind of assembly loading problem) is to use the .NET Fusion Log Viewer to trace assembly loads.The Fusion viewer will show a load trace for each assembly loaded and where it's looking to find it. Here's what the viewer looks like: The last trace above that I found for the second wwReflection20 load (the one that is wonky) looks like this:*** Assembly Binder Log Entry (1/13/2012 @ 3:06:49 AM) *** The operation was successful. Bind result: hr = 0x0. The operation completed successfully. Assembly manager loaded from: C:\Windows\Microsoft.NET\Framework\V4.0.30319\clr.dll Running under executable c:\programs\vfp9\vfp9.exe --- A detailed error log follows. === Pre-bind state information === LOG: User = Ras\ricks LOG: DisplayName = wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null (Fully-specified) LOG: Appbase = file:///C:/Programs/vfp9/ LOG: Initial PrivatePath = NULL LOG: Dynamic Base = NULL LOG: Cache Base = NULL LOG: AppName = vfp9.exe Calling assembly : (Unknown). === LOG: This bind starts in default load context. LOG: Using application configuration file: C:\Programs\vfp9\vfp9.exe.Config LOG: Using host configuration file: LOG: Using machine configuration file from C:\Windows\Microsoft.NET\Framework\V4.0.30319\config\machine.config. LOG: Policy not being applied to reference at this time (private, custom, partial, or location-based assembly bind). LOG: Attempting download of new URL file:///C:/Programs/vfp9/wwReflection20.DLL. LOG: Assembly download was successful. Attempting setup of file: C:\Programs\vfp9\wwReflection20.dll LOG: Entering run-from-source setup phase. LOG: Assembly Name is: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null LOG: Binding succeeds. Returns assembly from C:\Programs\vfp9\wwReflection20.dll. LOG: Assembly is loaded in default load context. WRN: The same assembly was loaded into multiple contexts of an application domain: WRN: Context: Default | Domain ID: 2 | Assembly Name: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null WRN: Context: LoadFrom | Domain ID: 2 | Assembly Name: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null WRN: This might lead to runtime failures. WRN: It is recommended to inspect your application on whether this is intentional or not. WRN: See whitepaper http://go.microsoft.com/fwlink/?LinkId=109270 for more information and common solutions to this issue. Notice that the fusion log clearly shows that the .NET loader makes no attempt to even load the assembly from the path I explicitly specified. Remember your Assembly Locations As mentioned earlier all failures I've seen like this ultimately resulted from different versions of the same type being available in the two AppDomains. At first sight that seems ridiculous - how could the types be different and why would you have multiple assemblies - but there are actually a number of scenarios where it's quite possible to have multiple copies of the same assembly floating around in multiple places. If you're hosting different environments (like hosting the Razor Engine, or ASP.NET Runtime for example) it's common to create a private BIN folder and it's important to make sure that there's no overlap of assemblies. In my case of Html Help Builder the problem started because I'm using COM interop to access the .NET assembly and the above code. COM Interop has very specific requirements on where assemblies can be found and because I was mucking around with the loader code today, I ended up moving assemblies around to a new location for explicit loading. The explicit load works in the main AppDomain, but failed in the remote domain as I showed. The solution here was simple enough: Delete the extraneous assembly which was left around by accident. Not a common problem, but one that when it bites is pretty nasty to figure out because it seems so unlikely that types wouldn't match. I know I've run into this a few times and writing this down hopefully will make me remember in the future rather than poking around again for an hour trying to debug the issue as I did today. Hopefully it'll save some of you some time as well in the future.© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • jQuery CSS Property Monitoring Plug-in updated

    - by Rick Strahl
    A few weeks back I had talked about the need to watch properties of an object and be able to take action when certain values changed. The need for this arose out of wanting to build generic components that could 'attach' themselves to other objects. One example is a drop shadow - if I add a shadow behavior to an object I want the shadow to be pinned to that object so when that object moves I also want the shadow to move with it, or when the panel is hidden the shadow should hide with it - automatically without having to explicitly hook up monitoring code to the panel. For example, in my shadow plug-in I can now do something like this (where el is the element that has the shadow attached and sh is the shadow): if (!exists) // if shadow was created el.watch("left,top,width,height,display", function() { if (el.is(":visible")) $(this).shadow(opt); // redraw else sh.hide(); }, 100, "_shadowMove"); The code now monitors several properties and if any of them change the provided function is called. So when the target object is moved or hidden or resized the watcher function is called and the shadow can be redrawn or hidden in the case of visibility going away. So if you run any of the following code: $("#box") .shadow() .draggable({ handle: ".blockheader" }); // drag around the box - shadow should follow // hide the box - shadow should disappear with box setTimeout(function() { $("#box").hide(); }, 4000); // show the box - shadow should come back too setTimeout(function() { $("#box").show(); }, 8000); This can be very handy functionality when you're dealing with objects or operations that you need to track generically and there are no native events for them. For example, with a generic shadow object that attaches itself to any another element there's no way that I know of to track whether the object has been moved or hidden either via some UI operation (like dragging) or via code. While some UI operations like jQuery.ui.draggable would allow events to fire when the mouse is moved nothing of the sort exists if you modify locations in code. Even tracking the object in drag mode this is hardly generic behavior - a generic shadow implementation can't know when dragging is hooked up. So the watcher provides an alternative that basically gives an Observer like pattern that notifies you when something you're interested in changes. In the watcher hookup code (in the shadow() plugin) above  a check is made if the object is visible and if it is the shadow is redrawn. Otherwise the shadow is hidden. The first parameter is a list of CSS properties to be monitored followed by the function that is called. The function called receives this as the element that's been changed and receives two parameters: The array of watched objects with their current values, plus an index to the object that caused the change function to fire. How does it work When I wrote it about this last time I started out with a simple timer that would poll for changes at a fixed interval with setInterval(). A few folks commented that there are is a DOM API - DOMAttrmodified in Mozilla and propertychange in IE that allow notification whenever any property changes which is much more efficient and smooth than the setInterval approach I used previously. On browser that support these events (FireFox and IE basically - WebKit has the DOMAttrModified event but it doesn't appear to work) the shadow effect is instant - no 'drag behind' of the shadow. Running on a browser that doesn't support still uses setInterval() and the shadow movement is slightly delayed which looks sloppy. There are a few additional changes to this code - it also supports monitoring multiple CSS properties now so a single object can monitor a host of CSS properties rather than one object per property which is easier to work with. For display purposes position, bounds and visibility will be common properties that are to be watched. Here's what the new version looks like: $.fn.watch = function (props, func, interval, id) { /// <summary> /// Allows you to monitor changes in a specific /// CSS property of an element by polling the value. /// when the value changes a function is called. /// The function called is called in the context /// of the selected element (ie. this) /// </summary> /// <param name="prop" type="String">CSS Properties to watch sep. by commas</param> /// <param name="func" type="Function"> /// Function called when the value has changed. /// </param> /// <param name="interval" type="Number"> /// Optional interval for browsers that don't support DOMAttrModified or propertychange events. /// Determines the interval used for setInterval calls. /// </param> /// <param name="id" type="String">A unique ID that identifies this watch instance on this element</param> /// <returns type="jQuery" /> if (!interval) interval = 200; if (!id) id = "_watcher"; return this.each(function () { var _t = this; var el$ = $(this); var fnc = function () { __watcher.call(_t, id) }; var itId = null; var data = { id: id, props: props.split(","), func: func, vals: [props.split(",").length], fnc: fnc, origProps: props, interval: interval }; $.each(data.props, function (i) { data.vals[i] = el$.css(data.props[i]); }); el$.data(id, data); hookChange(el$, id, data.fnc); }); function hookChange(el$, id, fnc) { el$.each(function () { var el = $(this); if (typeof (el.get(0).onpropertychange) == "object") el.bind("propertychange." + id, fnc); else if ($.browser.mozilla) el.bind("DOMAttrModified." + id, fnc); else itId = setInterval(fnc, interval); }); } function __watcher(id) { var el$ = $(this); var w = el$.data(id); if (!w) return; var _t = this; if (!w.func) return; // must unbind or else unwanted recursion may occur el$.unwatch(id); var changed = false; var i = 0; for (i; i < w.props.length; i++) { var newVal = el$.css(w.props[i]); if (w.vals[i] != newVal) { w.vals[i] = newVal; changed = true; break; } } if (changed) w.func.call(_t, w, i); // rebind event hookChange(el$, id, w.fnc); } } $.fn.unwatch = function (id) { this.each(function () { var el = $(this); var fnc = el.data(id).fnc; try { if (typeof (this.onpropertychange) == "object") el.unbind("propertychange." + id, fnc); else if ($.browser.mozilla) el.unbind("DOMAttrModified." + id, fnc); else clearInterval(id); } // ignore if element was already unbound catch (e) { } }); return this; } There are basically two jQuery functions - watch and unwatch. jQuery.fn.watch(props,func,interval,id) Starts watching an element for changes in the properties specified. props The CSS properties that are to be watched for changes. If any of the specified properties changes the function specified in the second parameter is fired. func (watchData,index) The function fired in response to a changed property. Receives this as the element changed and object that represents the watched properties and their respective values. The first parameter is passed in this structure:    { id: itId, props: [], func: func, vals: [] }; A second parameter is the index of the changed property so data.props[i] or data.vals[i] gets the property value that has changed. interval The interval for setInterval() for those browsers that don't support property watching in the DOM. In milliseconds. id An optional id that identifies this watcher. Required only if multiple watchers might be hooked up to the same element. The default is _watcher if not specified. jQuery.fn.unwatch(id) Unhooks watching of the element by disconnecting the event handlers. id Optional watcher id that was specified in the call to watch. This value can be omitted to use the default value of _watcher. You can also grab the latest version of the  code for this plug-in as well as the shadow in the full library at: http://www.west-wind.com:8080/svn/jquery/trunk/jQueryControls/Resources/ww.jquery.js watcher has no other dependencies although it lives in this larger library. The shadow plug-in depends on watcher.© Rick Strahl, West Wind Technologies, 2005-2011

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >