Search Results

Search found 1154 results on 47 pages for 'rsa sha1'.

Page 5/47 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Upload Certificate and Key to RUEI in order to decrypt SSL traffic

    - by stefan.thieme(at)oracle.com
    So you want to monitor encrypted traffic with your RUEI collector ?Actually this is an easy thing if you follow the lines below...I will start out with creating a pair of snakeoil (so called self-signed) certificate and key with the make-ssl-cert tool which comes pre-packaged with apache only for the purpose of this example.$ sudo make-ssl-cert generate-default-snakeoil$ sudo ls -l /etc/ssl/certs/ssl-cert-snakeoil.pem /etc/ssl/private/ssl-cert-snakeoil.key-rw-r--r-- 1 root root     615 2010-06-07 10:03 /etc/ssl/certs/ssl-cert-snakeoil.pem-rw-r----- 1 root ssl-cert 891 2010-06-07 10:03 /etc/ssl/private/ssl-cert-snakeoil.keyRUEI Configuration of Security SSL Keys You will most likely get these two files from your Certificate Authority (CA) and/or your system administrators should be able to extract this from your WebServer or LoadBalancer handling SSL encryption for your infrastructure.Now let's look at the content of these two files, the certificate (apache assumes this is in PEM format) is called a public key and the private key is used by the apache server to encrypt traffic for a client using the certificate to initiate the SSL connection with the server.In case you already know that these two match, you simply have to paste them in one text file and upload this text file to your RUEI instance.$ sudo cat /etc/ssl/certs/ssl-cert-snakeoil.pem /etc/ssl/private/ssl-cert-snakeoil.key > /tmp/ruei.cert_and_key$ sudo cat /tmp/ruei.cert_and_key -----BEGIN CERTIFICATE----- MIIBmTCCAQICCQD7O3XXwVilWzANBgkqhkiG9w0BAQUFADARMQ8wDQYDVQQDEwZ1 YnVudHUwHhcNMTAwNjA3MDgwMzUzWhcNMjAwNjA0MDgwMzUzWjARMQ8wDQYDVQQD EwZ1YnVudHUwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBALbs+JnI+p+K7Iqa SQZdnYBxOpdRH0/9jt1QKvmH68v81h9+f1Z2rVR7Zrd/l+ruE3H9VvuzxMlKuMH7 qBX/gmjDZTlj9WJM+zc0tSk+e2udy9he20lGzTxv0vaykJkuKcvSWNk4WE9NuAdg IHZvjKgoTSVmvM1ApMCg69nyOy97AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAk2rv VEkxR1qPSpJiudDuGUHtWKBKWiWbmSwI3REZT+0vG+YDG5a55NdxgRk3zhQntqF7 gNYjKxblBByBpY7W0ci00kf7kFgvXWMeU96NSQJdnid/YxzQYn0dGL2rSh1dwdPN NPQlNSfnEQ1yxFevR7aRdCqTbTXU3mxi8YaSscE= -----END CERTIFICATE----- -----BEGIN RSA PRIVATE KEY----- MIICXgIBAAKBgQC27PiZyPqfiuyKmkkGXZ2AcTqXUR9P/Y7dUCr5h+vL/NYffn9W dq1Ue2a3f5fq7hNx/Vb7s8TJSrjB+6gV/4Jow2U5Y/ViTPs3NLUpPntrncvYXttJ Rs08b9L2spCZLinL0ljZOFhPTbgHYCB2b4yoKE0lZrzNQKTAoOvZ8jsvewIDAQAB AoGBAJ7LCWeeUwnKNFqBYmD3RTFpmX4furnal3lBDX0945BZtJr0WZ/6N679zIYA aiVTdGfgjvDC9lHy3n3uctRd0Jqdh2QoSSxNBhq5elIApNIIYzu7w/XI/VhGcDlA b6uadURQEC2q+M8YYjw3mwR2omhCWlHIViOHe/9T8jfP/8pxAkEA7k39WRcQildH DFKcj7gurqlkElHysacMTFWf0ZDTEUS6bdkmNXwK6mH63BlmGLrYAP5AMgKgeDf8 D+WRfv8YKQJBAMSCQ7UGDN3ysyfIIrdc1RBEAk4BOrKHKtD5Ux0z5lcQkaCYrK8J DuSldreN2yOhS99/S4CRWmGkTj04wRSnjwMCQQCaR5mW3QzTU4/m1XEQxsBKSdZE 2hMSmsCmhuSyK13Kl0FPLr/C7qyuc4KSjksABa8kbXaoKfUz/6LLs+ePXZ2JAkAv +mIPk5+WnQgS4XFgdYDrzL8HTpOHPSs+BHG/goltnnT/0ebvgXWqa5+1pyPm6h29 PrYveM2pY1Va6z1xDowDAkEAttfzAwAHz+FUhWQCmOBpvBuW/KhYWKZTMpvxFMSY YD5PH6NNyLfBx0J4nGPN5n/f6il0s9pzt3ko++/eUtWSnQ== -----END RSA PRIVATE KEY----- Simply click on the add new key and browse for the cert_and_key file on your desktop which you concatenated earlier using any text editor. You may need to add a passphrase in order to decrypt the RSA key in some cases (it should tell you BEGIN ENCRYPTED PRIVATE KEY in the header line). I will show you the success screen after uploading the certificate to RUEI. You may want to restart your collector once you have uploaded all the certificate/key pairs you want to use in order to make sure they get picked up asap.You should be able to see the number of SSL Connections rising in the Collector statistics screen below. The figures for decrypt errors should slowly go down and the usage figures for your encryption algortihm on the subsequent SSL Encryption screen should go up. You should be 100% sure everything works fine by now, otherwise see below to distinguish the remaining 1% from your 99% certainty.Verify Certificate and Key are matchingYou can compare the modulus of private key and public certificate and they should match in order for the key to fit the lock. You only want to make sure they both fit each other.We are actually interested only in the following details of the two files, which can be determined by using the -subject, -dates and -modulus command line switches instead of the complete -text output of the x509 certificate/rsa key contents.$ sudo openssl x509 -noout -subject -in /etc/ssl/certs/ssl-cert-snakeoil.pemsubject= /CN=ubuntu$ sudo openssl x509 -noout -dates -in /etc/ssl/certs/ssl-cert-snakeoil.pemnotBefore=Jun  7 08:03:53 2010 GMTnotAfter=Jun  4 08:03:53 2020 GMT$ sudo openssl x509 -noout -modulus -in /etc/ssl/certs/ssl-cert-snakeoil.pem Modulus=B6ECF899C8FA9F8AEC8A9A49065D9D80713A97511F4FFD8EDD502AF987EBCBFCD61F7E7F5676AD547B66B77F97EAEE1371FD56FBB3C4C94AB8C1FBA815FF8268C3653963F5624CFB3734B5293E7B6B9DCBD85EDB4946CD3C6FD2F6B290992E29CBD258D938584F4DB8076020766F8CA8284D2566BCCD40A4C0A0EBD9F23B2F7B $ sudo openssl rsa -noout -modulus -in /etc/ssl/private/ssl-cert-snakeoil.keyModulus=B6ECF899C8FA9F8AEC8A9A49065D9D80713A97511F4FFD8EDD502AF987EBCBFCD61F7E7F5676AD547B66B77F97EAEE1371FD56FBB3C4C94AB8C1FBA815FF8268C3653963F5624CFB3734B5293E7B6B9DCBD85EDB4946CD3C6FD2F6B290992E29CBD258D938584F4DB8076020766F8CA8284D2566BCCD40A4C0A0EBD9F23B2F7BAs you can see the modulus matches exactly and we have the proof that the certificate has been created using the private key. OpenSSL Certificate and Key DetailsAs I already told you, you do not need all the greedy details, but in case you want to know it in depth what is actually in those hex-blocks can be made visible with the following commands which show you the actual content in a human readable format.Note: You may not want to post all the details of your private key =^) I told you I have been using a self-signed certificate only for showing you these details.$ sudo openssl rsa -noout -text -in /etc/ssl/private/ssl-cert-snakeoil.keyPrivate-Key: (1024 bit)modulus:    00:b6:ec:f8:99:c8:fa:9f:8a:ec:8a:9a:49:06:5d:    9d:80:71:3a:97:51:1f:4f:fd:8e:dd:50:2a:f9:87:    eb:cb:fc:d6:1f:7e:7f:56:76:ad:54:7b:66:b7:7f:    97:ea:ee:13:71:fd:56:fb:b3:c4:c9:4a:b8:c1:fb:    a8:15:ff:82:68:c3:65:39:63:f5:62:4c:fb:37:34:    b5:29:3e:7b:6b:9d:cb:d8:5e:db:49:46:cd:3c:6f:    d2:f6:b2:90:99:2e:29:cb:d2:58:d9:38:58:4f:4d:    b8:07:60:20:76:6f:8c:a8:28:4d:25:66:bc:cd:40:    a4:c0:a0:eb:d9:f2:3b:2f:7bpublicExponent: 65537 (0x10001)privateExponent:    00:9e:cb:09:67:9e:53:09:ca:34:5a:81:62:60:f7:    45:31:69:99:7e:1f:ba:b9:da:97:79:41:0d:7d:3d:    e3:90:59:b4:9a:f4:59:9f:fa:37:ae:fd:cc:86:00:    6a:25:53:74:67:e0:8e:f0:c2:f6:51:f2:de:7d:ee:    72:d4:5d:d0:9a:9d:87:64:28:49:2c:4d:06:1a:b9:    7a:52:00:a4:d2:08:63:3b:bb:c3:f5:c8:fd:58:46:    70:39:40:6f:ab:9a:75:44:50:10:2d:aa:f8:cf:18:    62:3c:37:9b:04:76:a2:68:42:5a:51:c8:56:23:87:    7b:ff:53:f2:37:cf:ff:ca:71prime1:    00:ee:4d:fd:59:17:10:8a:57:47:0c:52:9c:8f:b8:    2e:ae:a9:64:12:51:f2:b1:a7:0c:4c:55:9f:d1:90:    d3:11:44:ba:6d:d9:26:35:7c:0a:ea:61:fa:dc:19:    66:18:ba:d8:00:fe:40:32:02:a0:78:37:fc:0f:e5:    91:7e:ff:18:29prime2:    00:c4:82:43:b5:06:0c:dd:f2:b3:27:c8:22:b7:5c:    d5:10:44:02:4e:01:3a:b2:87:2a:d0:f9:53:1d:33:    e6:57:10:91:a0:98:ac:af:09:0e:e4:a5:76:b7:8d:    db:23:a1:4b:df:7f:4b:80:91:5a:61:a4:4e:3d:38:    c1:14:a7:8f:03exponent1:    00:9a:47:99:96:dd:0c:d3:53:8f:e6:d5:71:10:c6:    c0:4a:49:d6:44:da:13:12:9a:c0:a6:86:e4:b2:2b:    5d:ca:97:41:4f:2e:bf:c2:ee:ac:ae:73:82:92:8e:    4b:00:05:af:24:6d:76:a8:29:f5:33:ff:a2:cb:b3:    e7:8f:5d:9d:89exponent2:    2f:fa:62:0f:93:9f:96:9d:08:12:e1:71:60:75:80:    eb:cc:bf:07:4e:93:87:3d:2b:3e:04:71:bf:82:89:    6d:9e:74:ff:d1:e6:ef:81:75:aa:6b:9f:b5:a7:23:    e6:ea:1d:bd:3e:b6:2f:78:cd:a9:63:55:5a:eb:3d:    71:0e:8c:03coefficient:    00:b6:d7:f3:03:00:07:cf:e1:54:85:64:02:98:e0:    69:bc:1b:96:fc:a8:58:58:a6:53:32:9b:f1:14:c4:    98:60:3e:4f:1f:a3:4d:c8:b7:c1:c7:42:78:9c:63:    cd:e6:7f:df:ea:29:74:b3:da:73:b7:79:28:fb:ef:    de:52:d5:92:9d$ sudo openssl x509 -noout -text -in /etc/ssl/certs/ssl-cert-snakeoil.pemCertificate:    Data:        Version: 1 (0x0)        Serial Number:            fb:3b:75:d7:c1:58:a5:5b        Signature Algorithm: sha1WithRSAEncryption        Issuer: CN=ubuntu        Validity            Not Before: Jun  7 08:03:53 2010 GMT            Not After : Jun  4 08:03:53 2020 GMT        Subject: CN=ubuntu        Subject Public Key Info:            Public Key Algorithm: rsaEncryption            RSA Public Key: (1024 bit)                Modulus (1024 bit):                    00:b6:ec:f8:99:c8:fa:9f:8a:ec:8a:9a:49:06:5d:                    9d:80:71:3a:97:51:1f:4f:fd:8e:dd:50:2a:f9:87:                    eb:cb:fc:d6:1f:7e:7f:56:76:ad:54:7b:66:b7:7f:                    97:ea:ee:13:71:fd:56:fb:b3:c4:c9:4a:b8:c1:fb:                    a8:15:ff:82:68:c3:65:39:63:f5:62:4c:fb:37:34:                    b5:29:3e:7b:6b:9d:cb:d8:5e:db:49:46:cd:3c:6f:                    d2:f6:b2:90:99:2e:29:cb:d2:58:d9:38:58:4f:4d:                    b8:07:60:20:76:6f:8c:a8:28:4d:25:66:bc:cd:40:                    a4:c0:a0:eb:d9:f2:3b:2f:7b                Exponent: 65537 (0x10001)    Signature Algorithm: sha1WithRSAEncryption        93:6a:ef:54:49:31:47:5a:8f:4a:92:62:b9:d0:ee:19:41:ed:        58:a0:4a:5a:25:9b:99:2c:08:dd:11:19:4f:ed:2f:1b:e6:03:        1b:96:b9:e4:d7:71:81:19:37:ce:14:27:b6:a1:7b:80:d6:23:        2b:16:e5:04:1c:81:a5:8e:d6:d1:c8:b4:d2:47:fb:90:58:2f:        5d:63:1e:53:de:8d:49:02:5d:9e:27:7f:63:1c:d0:62:7d:1d:        18:bd:ab:4a:1d:5d:c1:d3:cd:34:f4:25:35:27:e7:11:0d:72:        c4:57:af:47:b6:91:74:2a:93:6d:35:d4:de:6c:62:f1:86:92:        b1:c1The above output can also be seen if you direct your browser client to your website and check the certificate sent by the server to your browser. You will be able to lookup all the details including the validity dates, subject common name and the public key modulus.Capture an SSL connection using WiresharkAnd as you would have expected, looking at the low-level tcp data that has been exchanged between the client and server with a tcp-diagnostics tool (i.e. wireshark/tcpdump) you can also see the modulus in there.These were the settings I used to capture all traffic on the local loopback interface, matching the filter expression: tcp and ip and host 127.0.0.1 and port 443. This tells Wireshark to leave out any other information, I may not have been interested in showing you.

    Read the article

  • Why RSA encryption can return different results with C# and Java?

    - by ActioN
    I using: c#: RSACryptoServiceProvider JAVA: KeyFactory.getInstance("RSA")+Cipher I sending public key (exponent + modulus) as byte array from java to c#. It's ok, there is the same bytes. But when i try to encrypt some data with one key in Java and c# - there is different results. Java Key Generation: KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA"); keyGen.initialize( Config.CRYPTO_KEY_NUM_BITS ); m_KeyPair = keyGen.genKeyPair(); m_PublicKey = KeyFactory.getInstance("RSA").generatePublic( newX509EncodedKeySpec(m_KeyPair.getPublic().getEncoded())); byte[] exponent = m_PublicKey.getPublicExponent().toByteArray(); byte[] modulus = m_PublicKey.getModulus().toByteArray(); // then sending... C# Key Recieve: // Recieved... m_ExternKey = new RSAParameters(); m_ExternKey.Exponent = exponent; m_ExternKey.Modulus = modulus; m_RsaExtern = new RSACryptoServiceProvider(); m_RsaExtern.ImportParameters(m_ExternKey); byte[] test = m_RsaExtern.Encrypt(bytesToEncrypt, true); and problem is that encrypted bytes is different. Thank you.

    Read the article

  • BN_hex2bn magicaly segfaults in openSSL

    - by xunil154
    Greetings, this is my first post on stackoverflow, and i'm sorry if its a bit long. I'm trying to build a handshake protocol for my own project and am having issues with the server converting the clients RSA's public key to a Bignum. It works in my clent code, but the server segfaults when attempting to convert the hex value of the clients public RSA to a bignum. I have already checked that there is no garbidge before or after the RSA data, and have looked online, but i'm stuck. header segment: typedef struct KEYS { RSA *serv; char* serv_pub; int pub_size; RSA *clnt; } KEYS; KEYS keys; Initializing function: // Generates and validates the servers key /* code for generating server RSA left out, it's working */ //Set client exponent keys.clnt = 0; keys.clnt = RSA_new(); BN_dec2bn(&keys.clnt->e, RSA_E_S); // RSA_E_S contains the public exponent Problem code (in Network::server_handshake): // *Recieved an encrypted message from the network and decrypt into 'buffer' (1024 byte long)* cout << "Assigning clients RSA" << endl; // I have verified that 'buffer' contains the proper key if (BN_hex2bn(&keys.clnt->n, buffer) < 0) { Error("ERROR reading server RSA"); } cout << "clients RSA has been assigned" << endl; The program segfaults at BN_hex2bn(&keys.clnt->n, buffer) with the error (valgrind output) Invalid read of size 8 at 0x50DBF9F: BN_hex2bn (in /usr/lib/libcrypto.so.0.9.8) by 0x40F23E: Network::server_handshake() (Network.cpp:177) by 0x40EF42: Network::startNet() (Network.cpp:126) by 0x403C38: main (server.cpp:51) Address 0x20 is not stack'd, malloc'd or (recently) free'd Process terminating with default action of signal 11 (SIGSEGV) Access not within mapped region at address 0x20 at 0x50DBF9F: BN_hex2bn (in /usr/lib/libcrypto.so.0.9.8) And I don't know why it is, Im using the exact same code in the client program, and it works just fine. Any input is greatly appriciated!

    Read the article

  • BN_hex2bn magically segfaults in openSSL

    - by xunil154
    Greetings, this is my first post on stackoverflow, and i'm sorry if its a bit long. I'm trying to build a handshake protocol for my own project and am having issues with the server converting the clients RSA's public key to a Bignum. It works in my clent code, but the server segfaults when attempting to convert the hex value of the clients public RSA to a bignum. I have already checked that there is no garbidge before or after the RSA data, and have looked online, but i'm stuck. header segment: typedef struct KEYS { RSA *serv; char* serv_pub; int pub_size; RSA *clnt; } KEYS; KEYS keys; Initializing function: // Generates and validates the servers key /* code for generating server RSA left out, it's working */ //Set client exponent keys.clnt = 0; keys.clnt = RSA_new(); BN_dec2bn(&keys.clnt->e, RSA_E_S); // RSA_E_S contains the public exponent Problem code (in Network::server_handshake): // *Recieved an encrypted message from the network and decrypt into 'buffer' (1024 byte long)* cout << "Assigning clients RSA" << endl; // I have verified that 'buffer' contains the proper key if (BN_hex2bn(&keys.clnt->n, buffer) < 0) { Error("ERROR reading server RSA"); } cout << "clients RSA has been assigned" << endl; The program segfaults at BN_hex2bn(&keys.clnt->n, buffer) with the error (valgrind output) Invalid read of size 8 at 0x50DBF9F: BN_hex2bn (in /usr/lib/libcrypto.so.0.9.8) by 0x40F23E: Network::server_handshake() (Network.cpp:177) by 0x40EF42: Network::startNet() (Network.cpp:126) by 0x403C38: main (server.cpp:51) Address 0x20 is not stack'd, malloc'd or (recently) free'd Process terminating with default action of signal 11 (SIGSEGV) Access not within mapped region at address 0x20 at 0x50DBF9F: BN_hex2bn (in /usr/lib/libcrypto.so.0.9.8) And I don't know why it is, Im using the exact same code in the client program, and it works just fine. Any input is greatly appriciated!

    Read the article

  • Python - Why ever use SHA1 when SHA512 is more secure?

    - by orokusaki
    I don't mean for this to be a debate, but I'm trying to understand the technical rationale behind why so many apps use SHA1, when SHA512 is more secure. Perhaps it's simply for backwards compatibility. Besides the obvious larger size (128 chars vs 40), or slight speed differences, is there any other reason why folks use the former? Also, SHA-1 I believe was first cracked by a VCR's processor years ago. Has anyone cracked 512 yet (perhaps with a leaf blower), or is it still safe to use without salting?

    Read the article

  • Create a CSR in C# using an explicit RSA key-pair

    - by rlandster
    Using the OpenSSL libraries one can create a CSR (certificate signing request) by doing this: openssl genrsa -out rsa.key 1024 openssl req -new -key rsa.key -out output.csr -config config.txt where config.txt contains the distinguished name to use in the certificate. I would like to do something similar under Windows using C#. However, the method createPKCS10 does not require you to supply an RSA key. Is there a way to get C# to generate an explicit RSA private key and then use that private key to create the CSR?

    Read the article

  • SSH onto Ubuntu box using RSA keys

    - by jex
    I recently installed OpenSSH on one of my Ubuntu machines and I've been running into problems getting it to use RSA keys. I've generated the RSA key on the client (ssh-keygen), and appended the public key generated to both the /home/jex/.ssh/authorized_keys and /etc/ssh/authorized_keys files on the server. However, when I try to login (ssh -o PreferredAuthorizations=publickey jex@host -v [which forces the use of public key for login]) I get the following output: debug1: Host 'pentheon.local' is known and matches the RSA host key. debug1: Found key in /home/jex/.ssh/known_hosts:2 debug1: ssh_rsa_verify: signature correct debug1: SSH2_MSG_NEWKEYS sent debug1: expecting SSH2_MSG_NEWKEYS debug1: SSH2_MSG_NEWKEYS received debug1: SSH2_MSG_SERVICE_REQUEST sent debug1: SSH2_MSG_SERVICE_ACCEPT received Banner message debug1: Authentications that can continue: publickey,keyboard-interactive debug1: Next authentication method: publickey debug1: Offering public key: /home/jex/.ssh/id_rsa debug1: Authentications that can continue: publickey,keyboard-interactive debug1: Trying private key: /home/jex/.ssh/identity debug1: Trying private key: /home/jex/.ssh/id_dsa debug1: No more authentication methods to try. Permission denied (publickey,keyboard-interactive). I'm not entirely sure where I've gone wrong. I am willing to post my /etc/ssh/sshd_config if needed.

    Read the article

  • is this a correct way to generate rsa keys?

    - by calccrypto
    is this code going to give me correct values for RSA keys (assuming that the other functions are correct)? im having trouble getting my program to decrypt properly, as in certain blocks are not decrypting properly this is in python: import random def keygen(bits): p = q = 3 while p == q: p = random.randint(2**(bits/2-2),2**(bits/2)) q = random.randint(2**(bits/2-2),2**(bits/2)) p += not(p&1) # changes the values from q += not(q&1) # even to odd while MillerRabin(p) == False: # checks for primality p -= 2 while MillerRabin(q) == False: q -= 2 n = p * q tot = (p-1) * (q-1) e = tot while gcd(tot,e) != 1: e = random.randint(3,tot-1) d = getd(tot,e) # gets the multiplicative inverse while d<0: # i can probably replace this with mod d = d + tot return e,d,n one set of keys generated: e = 3daf16a37799d3b2c951c9baab30ad2d d = 16873c0dd2825b2e8e6c2c68da3a5e25 n = dc2a732d64b83816a99448a2c2077ced

    Read the article

  • Is it possible to get RSA private key knowing public key and set of "original data=>encrypted data"

    - by Riz
    Hi, I work on apllication which allows plugins to access different set of functionality, every plugin provides "initialization string" which sets level of access to different features. Developers send me this strings, and I encrypt them using my 1024 bit RSA private key and send encoded data back. When started, my application decodes encoded data(encoded initialisation string) using built-in public key and if "decoded data != initialization string" it fails to start. So, is it possible to use a database of "initialization string" = "encoded initialization string"(extracted from other plugins) to crack my private key, or make it possible to bruteforce it in reasonable time?

    Read the article

  • MD5 and SHA1 checksum uses for downloading

    - by Zac
    I notice that when downloading a lot of open source tools (Eclipse, etc.) there are links for MD5 and SHA1 checksums, and didn't know what these were or what their purpose was. I know these are hashing algorithms, and I do understand hashing, so my only guess is that these are used for hashing some component of the download targets, and to compare them with "official" hash strings stored server-side. Perhaps that way it can be determined whether or not the targets have been modified from their correct version (for security and other purposes). Am I close or completely wrong, and if wrong, what are they?!?! Thanks!

    Read the article

  • SASL (Postfix) authentication with MySQL and SHA1 pre-encrypted passwords

    - by webo
    I have a Rails app with the Devise authentication gem running user registration and login. I want to use the db table that Devise populates when a user registers as the table that Postfix uses to authenticate users. The table has all the fields that Postfix may want for SASL authentication except that Devise encrypts the password using SHA1 before placing it in the database. How could I go about getting Postfix/SASL to decrypt those passwords so that the user can be authenticated properly? Devise salts the password so I'm not sure if that helps. Any suggestions? I'd likely want to do something similar with Dovecot or Courier, I'm not attached to one quite yet.

    Read the article

  • iPhone: convert string using HMAC-SHA1

    - by Rupesh
    hi all, i want to generate HMAC-SHA1 of NSString type variable. I see the post but this method give me error in CCHmac(kCCHmacAlgSHA256, cKey, strlen(cKey), cData, strlen(cData), cHMAC); and NSString *hash = [HMAC base64Encoding]; line. Please suggest how can I generate the HMAC-SHA1 of any string.

    Read the article

  • Cache SHA1 digest result?

    - by johnathan
    I'm storing several versions of a file based on a digest of the original filename and its version, like this: $filename = sha1($original . ':' . $version); Would it be worth it to cache the digest ($filename) in memcache as a key/value pair (the key being the original + version and value the sha1 hash), or is generating the digest quick enough (for a high traffic php web app)? Thanks, Johnathan

    Read the article

  • sha1(password) encryption

    - by Jason
    Alright, so I tried to make my users info super secure by adding '" . sha1($_POST['password']) . "' when inserting their password when they register. THAT WORKS great, looking at the database, I have no clue what their password is. Now the problem is logging in. I'm running some tests and when I try to log in, the password 12345 doesn't match the encrypted password using "$password=sha1($_POST['mypassword']);" Any idea's why?

    Read the article

  • uninitialized constant OpenSSL::Digest::SHA1 in rails 3 and ubuntu

    - by Anand Agrawal
    Hi All, I am trying to integrate restful_authentication plugings into my rails 3 application. I integrated this in windows, but while trying to integrate it to ubuntu I am facing an error "uninitialized constant OpenSSL::Digest::SHA1" I googled for the solution but still unsuccessful. I am unable to load the file, "require Digest/SHA1" Now, i tried to run console screen. and tried to check the Digest file by putting print statement, this gives false, while in the irb it returns true. If anyone has come across such problem

    Read the article

  • apache2 mysql authentication module and SHA1 encryption

    - by Luca Rossi
    I found myself in a setup on where I need to enable some authentication method using mysql. I already have an user scheme. That user scheme is working like a charm with MD5 password and CRYPT, but when I turn to SHA1sum it says: [Fri Oct 26 00:03:20 2012] [error] Unsupported encryption type: Sha1sum No useful debug informations on log files. This is my setup and some info: debian6 apache and ssl installed packages: root@sistemichiocciola:/etc/apache2/mods-available# dpkg --list | grep apache ii apache2 2.2.16-6+squeeze8 Apache HTTP Server metapackage ii apache2-mpm-prefork 2.2.16-6+squeeze8 Apache HTTP Server - traditional non-threaded model ii apache2-utils 2.2.16-6+squeeze8 utility programs for webservers ii apache2.2-bin 2.2.16-6+squeeze8 Apache HTTP Server common binary files ii apache2.2-common 2.2.16-6+squeeze8 Apache HTTP Server common files ii libapache2-mod-auth-mysql 4.3.9-13+b1 Apache 2 module for MySQL authentication ii libapache2-mod-php5 5.3.3-7+squeeze14 server-side, HTML-embedded scripting language (Apache 2 module) root@sistemichiocciola:/etc/apache2/sites-enabled# dpkg --list | grep ssl ii libssl-dev 0.9.8o-4squeeze13 SSL development libraries, header files and documentation ii libssl0.9.8 0.9.8o-4squeeze13 SSL shared libraries ii openssl 0.9.8o-4squeeze13 Secure Socket Layer (SSL) binary and related cryptographic tools ii openssl-blacklist 0.5-2 list of blacklisted OpenSSL RSA keys ii ssl-cert 1.0.28 simple debconf wrapper for OpenSSL my vhost setup: AuthMySQL On Auth_MySQL_Host localhost Auth_MySQL_User XXX Auth_MySQL_Password YYY Auth_MySQL_DB users AuthName "Sistemi Chiocciola Sezione Informatica" AuthType Basic # require valid-user require group informatica Auth_MySQL_Encryption_Types Crypt Sha1sum AuthBasicAuthoritative Off AuthUserFile /dev/null Auth_MySQL_Password_Table users Auth_MYSQL_username_field email Auth_MYSQL_password_field password AuthMySQL_Empty_Passwords Off AuthMySQL_Group_Table http_groups Auth_MySQL_Group_Field user_group Have I missed a package/configuration or something?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >