Search Results

Search found 8776 results on 352 pages for 'boolean logic'.

Page 51/352 | < Previous Page | 47 48 49 50 51 52 53 54 55 56 57 58  | Next Page >

  • CakePHP delete() function is not working

    - by Logic Artist
    Hello, Im just cracking open cakePHP (v1.3.2). I set it up on my local wamp server, seems to work fine except the delete() function doesn't work. I'm following their blog tutorial exactly, its as simple as it can be so I don't understand why its not working. Heres the function in my PostsController class: function delete($id = NULL) { $this->Post->delete($id); $this->Session->setFlash('The post with id: '.$id.' has been deleted.'); $this->redirect(array('action'=>'index')); } The "Delete" link's url looks like http://localhost/posts/delete/id:1 (where the id number matches the particular post, obviously). It redirects and sets the flash message, however there is no number where $id should be in the message, and the post isn't deleted. It seems the proper id is passed through the url, but I don't think it is getting into the function. I dont get it. Any ideas???

    Read the article

  • How do I mock/fake/replace/stub a base class at unit-test time in C#?

    - by MatthewMartin
    UPDATE: I've changed the wording of the question. Previously it was a yes/no question about if a base class could be changed at runtime. I may be working on mission impossible here, but I seem to be getting close. I want to extend a ASP.NET control, and I want my code to be unit testable. Also, I'd like to be able to fake behaviors of a real Label (namely things like ID generation, etc), which a real Label can't do in an nUnit host. Here a working example that makes assertions on something that depends on a real base class and something that doesn't-- in a more realistic unit test, the test would depend on both --i.e. an ID existing and some custom behavior. Anyhow the code says it better than I can: public class LabelWrapper : Label //Runtime //public class LabelWrapper : FakeLabel //Unit Test time { private readonly LabelLogic logic= new LabelLogic(); public override string Text { get { return logic.ProcessGetText(base.Text); } set { base.Text=logic.ProcessSetText(value); } } } //Ugh, now I have to test FakeLabelWrapper public class FakeLabelWrapper : FakeLabel //Unit Test time { private readonly LabelLogic logic= new LabelLogic(); public override string Text { get { return logic.ProcessGetText(base.Text); } set { base.Text=logic.ProcessSetText(value); } } } [TestFixture] public class UnitTest { [Test] public void Test() { //Wish this was LabelWrapper label = new LabelWrapper(new FakeBase()) LabelWrapper label = new LabelWrapper(); //FakeLabelWrapper label = new FakeLabelWrapper(); label.Text = "ToUpper"; Assert.AreEqual("TOUPPER",label.Text); StringWriter stringWriter = new StringWriter(); HtmlTextWriter writer = new HtmlTextWriter(stringWriter); label.RenderControl(writer); Assert.AreEqual(1,label.ID); Assert.AreEqual("<span>TOUPPER</span>", stringWriter.ToString()); } } public class FakeLabel { virtual public string Text { get; set; } public void RenderControl(TextWriter writer) { writer.Write("<span>" + Text + "</span>"); } } //System Under Test internal class LabelLogic { internal string ProcessGetText(string value) { return value.ToUpper(); } internal string ProcessSetText(string value) { return value.ToUpper(); } }

    Read the article

  • How to start doing TDD in a django project?

    - by Satoru.Logic
    Hi, all. I have read a lot of essays talking about benifits TDD can bring to a project, but I have never practiced TDD in my own project before. Now I'm starting an experimental project with Django, and I think maybe I can have a try of TDD. But what I find now is that I don't even know how to answer the question "what should I put in my test cases?". Please tell me how should I plan TDD in a project, in this case, a web project based on Django. Thanks.

    Read the article

  • Why does Ordered[A] use a compare method instead of reusing compareTo?

    - by soc
    trait Ordered[A] extends java.lang.Comparable[A] { def compare(that: A): Int def < (that: A): Boolean = (this compare that) < 0 def > (that: A): Boolean = (this compare that) > 0 def <= (that: A): Boolean = (this compare that) <= 0 def >= (that: A): Boolean = (this compare that) >= 0 def compareTo(that: A): Int = compare(that) } Isn't it a bit useless to have both compare and compareTo? What is the huge benefit I'm missing here? If they had just used compareTo I could just had replaced Comparable with Ordered in my code and be done.

    Read the article

  • Javascript form validation only works in firefox

    - by Logic Artist
    Hello, I am relatively new to Javascript so I'm hoping this is a simple mistake. I building a generic form validation function that is called on the form's onSubmit. The function loops through all the form's child elements, looks for certain classes, and analyzes the contents of the appropriate fields. If it finds something missing or erroneous, it displays the appropriate error message div and returns false, thus preventing the form from being submitted to the php page. It works well in firefox 3.6.3, but in every other browser I've tested (Safari 4.0.4, Chrome 4.1, IE8) it seems to ignore the onSubmit and jump straight to the php processing page. HTML CODE: <form name='myForm' id='myForm' action='process_form.php' method='post' onSubmit="return validateRequired('myForm')"> <fieldset class="required radioset"> <label for='selection1'> <input type='radio' name='selection' id='selection1' value='1'/> Option 1 </label> <label for='selection2'> <input type='radio' name='selection' id='selection2' value='2'/> Option 2 </label> <label for='selection3'> <input type='radio' name='selection' id='selection3' value='3'/> Option 3 </label> <label for='selection4'> <input type='radio' name='selection' id='selection4' value='4'/> Option 4 </label> <div class='errorBox' style='visibility:hidden'> Please make a selection </div> </fieldset> <fieldset class="required checkset"> <label> Choice 1 <input type='checkbox' name='choices' id='choice1' value='1'/> </label> <label> Choice 2 <input type='checkbox' name='choices' id='choice2' value='2'/> </label> <label> Choice 3 <input type='checkbox' name='choices' id='choice3' value='3'/> </label> <label> Choice 4 <input type='checkbox' name='choices' id='choice4' value='4'/> </label> <div class='errorBox' style='visibility:hidden'> Please choose at least one </div> </fieldset> <fieldset class="required textfield" > <label for='textinput1'> Required Text: <input type='text' name='textinput1' id='textinput1' size='40'/> </label> <div class='errorBox' style='visibility:hidden'> Please enter some text </div> </fieldset> <fieldset class="required email textfield"> <label for='email'> Required Email: <input type='text' name='email' id='email' size='40'/> </label> <div class='errorBox' style='visibility:hidden'> The email address you have entered is invalid </div> </fieldset> <div> <input type='submit' value='submit'> <input type='reset' value='reset'> </div> </form> JAVASCRIPT CODE: function validateRequired(id){ var form = document.getElementById(id); var errors = 0; var returnVal = true; for(i = 0; i < form.elements.length; i++){ var elem = form.elements[i]; if(hasClass(elem,"required")){ /*RADIO BUTTON or CHECK BOX SET*/ if(hasClass(elem,"radioset") || hasClass(elem,"checkset")){ var inputs = elem.getElementsByTagName("input"); var check = false; for(j = 0; j < inputs.length; j++){ if(inputs[j].checked){ check = true; } } if(check == false){ errors += 1; showError(elem); } else { hideError(elem); } } /*TEXT FIELD*/ else if(hasClass(elem,"textfield")){ var input = elem.getElementsByTagName("input"); if(input[0].value == ""){ errors += 1; showError(elem); } else { hideError(elem); /*EMAIL ADDRESS*/ if(hasClass(elem,"email")){ if(isValidEmail(input[0].value) == false){ errors += 1; showError(elem); } else { hideError(elem); } } } } } } if(errors > 0){ returnVal = false; } else { returnVal = true; } return returnVal;} I know this is a lot of code to look at, but any help would be appreciated. Since it works fine in one browser, Im not sure how to start debugging. Thanks Andrew

    Read the article

  • Skipp default parameters in Delphi

    - by Vijay Bobba
    Hi Is there any way to skip the default params, say suppose my method declaration is like this: procedure Myfunc1(var isAttr1: Boolean = FALSE; isAttr2: Boolean = FALSE; isAttr3: Boolean = FALSE); I can't call the function like this: Self.Myfunc1( , , Attr3); because I don't want unnecessary var declarations, at the same time I want the last param return value (it is a var type) Thank for help in advance

    Read the article

  • how to select distinct rows for a column

    - by Satoru.Logic
    Hi, all. I have a table x that's like the one bellow: id | name | observed_value | 1 | a | 100 | 2 | b | 200 | 3 | b | 300 | 4 | a | 150 | 5 | c | 300 | I want to make a query so that in the result set I have exactly one record for one name: (1, a, 100) (2, b, 200) (5, c, 300) If there are multiple records corresponding to a name, say 'a' in the table above, I just pick up one of them. In my current implementation, I make a query like this: select x.* from x , (select distinct name, min(observed_value) as minimum_val from x group by name) x1 where x.name = x1.name and x.observed_value = x1.observed_value; But I think there may be some better way around, please tell me if you know, thanks in advance.

    Read the article

  • Where is Prolog used for traffic control systems?

    - by Masi
    The user Laurent had an interesting reply to the question [Why hasn’t logic programming caught on?]: If you look at the influence logic-programming has had in the field of -- air traffic control -- I don't think it can be said logic-programming has not caught on. A question arises: Where is prolog used for traffic control systems on the roads? Why is it used instead of languages, such as C or Python, in such environments?

    Read the article

  • Grails searchable plugin with hasMany

    - by user2624442
    I am using grails searchable plugin to search my domain classes. However, I cannot yet search by my hasMany (skills and interests) fields even though they are of the simple type String. This is my domain class: class EmpactUser { static searchable = [except: ['dateCreated','password','enabled','accountExpired','accountLocked','passwordExpired']] String username String password boolean enabled = true boolean accountExpired boolean accountLocked boolean passwordExpired String email String firstName String lastName String address String phoneNumber String description byte[] avatar byte[] resume Date dateCreated static hasMany = [ skills : String, interests : String, // each user has the ability to list many skills and interests so that they can be matched with a project. ] static constraints = { username blank: false, unique: true password blank: false email email: true, blank: false firstName blank: false lastName blank: false description nullable: true address nullable: true avatar nullable: true, maxSize: 1024 * 1024 * 10 resume nullable: true, maxSize: 1024 * 1024 * 10 phoneNumber nullable: true, matches: "/[(][+]d{3}[)]d+/", maxSize: 30 } } This is the code I am using to search: def empactUserList = EmpactUser.search( searchQuery, [reload: false, result: "every", defaultOperator: "or"]) Am I missing something? Thanks, Alan.

    Read the article

  • would there be such case of jumping, if yes how?

    - by Pooria
    I have an issue in the mind and that is since the jump instruction changes EIP register by adding signed offsets to it(if I'm not making a mistake here), on IA-32 architecture how would going upward in memory from location 0x7FFFFFFF(biggest positive number in signed logic) to 0x80000000(least negative number in signed logic) be possible? or maybe there shouldn't be such jump due to the nature of signed logic?

    Read the article

  • When do you need to use a view controller?

    - by BeachRunnerJoe
    I'm diving into iPhone development and one of the core concepts im trying to get my head around is view controllers. If you look at the GLPaint example on the apple dev site, you'll see a project that has... An app delegate class A uiwindow subclass And a uiview subclass And the uiview subclass implements all the core graphics painting logic and handles the touch events. My questions are, why is there no view controller implemented to handle that view logic? Could you use a view controller to implement that logic or does it have to be implemented in the uiview subclass? And last, when should you use a view controller to implement the view logic code? Thanks so much in advance for your help!

    Read the article

  • How to define a ternary operator in Scala which preserves leading tokens?

    - by Alex R
    I'm writing a code generator which produces Scala output. I need to emulate a ternary operator in such a way that the tokens leading up to '?' remain intact. e.g. convert the expression c ? p : q to c something. The simple if(c) p else q fails my criteria, as it requires putting if( before c. My first attempt (still using c/p/q as above) is c match { case(true) = p; case _ = q } another option I found was: class ternary(val g: Boolean = Any) { def |: (b:Boolean) = g(b) } implicit def autoTernary (g: Boolean = Any): ternary = new ternary(g) which allows me to write: c |: { b: Boolean = if(b) p else q } I like the overall look of the second option, but is there a way to make it less verbose? Thanks

    Read the article

  • How to assure applying order of function decorators in Python?

    - by Satoru.Logic
    Some decorators should only be used in the outermost layer. A decorator that augments the original function and add a configure parameter is one example. from functools import wraps def special_case(f): @wraps(f) def _(a, b, config_x=False): if config_x: print "Special case here" return return f(a, b) How can I avoid decorators like this getting decorated by another decorator? EDIT It is really disgusting to let everyone trying to apply a new decorator worry about the application order. So, is it possible to avoid this kind of situation? Is it possible to add a config option without introducing a new parameter?

    Read the article

  • Point inside Oriented Bounding Box?

    - by Milo
    I have an OBB2D class based on SAT. This is my point in OBB method: public boolean pointInside(float x, float y) { float newy = (float) (Math.sin(angle) * (y - center.y) + Math.cos(angle) * (x - center.x)); float newx = (float) (Math.cos(angle) * (x - center.x) - Math.sin(angle) * (y - center.y)); return (newy > center.y - (getHeight() / 2)) && (newy < center.y + (getHeight() / 2)) && (newx > center.x - (getWidth() / 2)) && (newx < center.x + (getWidth() / 2)); } public boolean pointInside(Vector2D v) { return pointInside(v.x,v.y); } Here is the rest of the class; the parts that pertain: public class OBB2D { private Vector2D projVec = new Vector2D(); private static Vector2D projAVec = new Vector2D(); private static Vector2D projBVec = new Vector2D(); private static Vector2D tempNormal = new Vector2D(); private Vector2D deltaVec = new Vector2D(); private ArrayList<Vector2D> collisionPoints = new ArrayList<Vector2D>(); // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(float centerx, float centery, float w, float h, float angle) { for(int i = 0; i < corner.length; ++i) { corner[i] = new Vector2D(); } for(int i = 0; i < axis.length; ++i) { axis[i] = new Vector2D(); } set(centerx,centery,w,h,angle); } public OBB2D(float left, float top, float width, float height) { for(int i = 0; i < corner.length; ++i) { corner[i] = new Vector2D(); } for(int i = 0; i < axis.length; ++i) { axis[i] = new Vector2D(); } set(left + (width / 2), top + (height / 2),width,height,0.0f); } public void set(float centerx,float centery,float w, float h,float angle) { float vxx = (float)Math.cos(angle); float vxy = (float)Math.sin(angle); float vyx = (float)-Math.sin(angle); float vyy = (float)Math.cos(angle); vxx *= w / 2; vxy *= (w / 2); vyx *= (h / 2); vyy *= (h / 2); corner[0].x = centerx - vxx - vyx; corner[0].y = centery - vxy - vyy; corner[1].x = centerx + vxx - vyx; corner[1].y = centery + vxy - vyy; corner[2].x = centerx + vxx + vyx; corner[2].y = centery + vxy + vyy; corner[3].x = centerx - vxx + vyx; corner[3].y = centery - vxy + vyy; this.center.x = centerx; this.center.y = centery; this.angle = angle; computeAxes(); extents.x = w / 2; extents.y = h / 2; computeBoundingRect(); } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0].x = corner[1].x - corner[0].x; axis[0].y = corner[1].y - corner[0].y; axis[1].x = corner[3].x - corner[0].x; axis[1].y = corner[3].y - corner[0].y; // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { float l = axis[a].length(); float ll = l * l; axis[a].x = axis[a].x / ll; axis[a].y = axis[a].y / ll; origin[a] = corner[0].dot(axis[a]); } } public void computeBoundingRect() { boundingRect.left = JMath.min(JMath.min(corner[0].x, corner[3].x), JMath.min(corner[1].x, corner[2].x)); boundingRect.top = JMath.min(JMath.min(corner[0].y, corner[1].y),JMath.min(corner[2].y, corner[3].y)); boundingRect.right = JMath.max(JMath.max(corner[1].x, corner[2].x), JMath.max(corner[0].x, corner[3].x)); boundingRect.bottom = JMath.max(JMath.max(corner[2].y, corner[3].y),JMath.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(rect.centerX(),rect.centerY(),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } public void moveTo(float centerx, float centery) { float cx,cy; cx = center.x; cy = center.y; deltaVec.x = centerx - cx; deltaVec.y = centery - cy; for (int c = 0; c < 4; ++c) { corner[c].x += deltaVec.x; corner[c].y += deltaVec.y; } boundingRect.left += deltaVec.x; boundingRect.top += deltaVec.y; boundingRect.right += deltaVec.x; boundingRect.bottom += deltaVec.y; this.center.x = centerx; this.center.y = centery; computeAxes(); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center.x,center.y,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center.x,center.y,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } public static float distance(float ax, float ay,float bx, float by) { if (ax < bx) return bx - ay; else return ax - by; } public Vector2D project(float ax, float ay) { projVec.x = Float.MAX_VALUE; projVec.y = Float.MIN_VALUE; for (int i = 0; i < corner.length; ++i) { float dot = Vector2D.dot(corner[i].x,corner[i].y,ax,ay); projVec.x = JMath.min(dot, projVec.x); projVec.y = JMath.max(dot, projVec.y); } return projVec; } public Vector2D getCorner(int c) { return corner[c]; } public int getNumCorners() { return corner.length; } public boolean pointInside(float x, float y) { float newy = (float) (Math.sin(angle) * (y - center.y) + Math.cos(angle) * (x - center.x)); float newx = (float) (Math.cos(angle) * (x - center.x) - Math.sin(angle) * (y - center.y)); return (newy > center.y - (getHeight() / 2)) && (newy < center.y + (getHeight() / 2)) && (newx > center.x - (getWidth() / 2)) && (newx < center.x + (getWidth() / 2)); } public boolean pointInside(Vector2D v) { return pointInside(v.x,v.y); } public ArrayList<Vector2D> getCollsionPoints(OBB2D b) { collisionPoints.clear(); for(int i = 0; i < corner.length; ++i) { if(b.pointInside(corner[i])) { collisionPoints.add(corner[i]); } } for(int i = 0; i < b.corner.length; ++i) { if(pointInside(b.corner[i])) { collisionPoints.add(b.corner[i]); } } return collisionPoints; } }; What could be wrong? When I getCollisionPoints for 2 OBBs I know are penetrating, it returns no points. Thanks

    Read the article

  • Setup MSSQL replication with peer to peer topology: problem setting up Conflict Detection

    - by Roel
    Hi, I'm setting up a SQL Replication strategy, using MSSQL2008 with peer-to-peer publications (2 servers, each one subscribes to the other). I followed this HOWTO from MSDN, and the setup seems to be working fine: add a record to one table on server A, query on server B shows the new record. So far, so good. So far I only have one table 'Templates': Id PK (calculated field) NodeId int default 1/2 (Server A = 1, Server B = 2) LocalId int autoid Name nvarchar(100) Now, I would like to enable 'Conflict detection', which should be enabled by default. But every time I try to save the 'Conflict Detection' feature in the Publication Properties I get the following error: Cannot save Peer conflict detection properties. An exception occurred while executing a Transact-SQL statement or batch.(Microsoft.SqlServer.ConnectionInfo) Program Location: at Microsoft.SqlServer.Management.Common.ServerConnection.ExecuteNonQuery(String sqlCommand, ExecutionTypes executionType) at Microsoft.SqlServer.Management.Common.ServerConnection.ExecuteNonQuery(String sqlCommand) at Microsoft.SqlServer.Replication.ReplicationObject.ExecCommand(String commandIn) at Microsoft.SqlServer.Replication.TransPublication.SetPeerConflictDetection(Boolean enablePeerConflictDetection, Int32 peerOriginatorID) at Microsoft.SqlServer.Management.UI.PubPropSubscriptionOptions.SaveP2PConflictDetection() at Microsoft.SqlServer.Management.UI.PubPropSubscriptionOptions.SaveProperties(ExecutionMode& executionResult) Column name 'Id' does not exist in the target table or view. Changed database context to 'TestDB'. (.Net SqlClient Data Provider) For help, click: http://go.microsoft.com/fwlink?ProdName=Microsoft+SQL+Server&ProdVer=10.00.2531&EvtSrc=MSSQLServer&EvtID=1911&LinkId=20476 Server Name: SERVER_A Error Number: 1911 Severity: 16 State: 1 Line Number: 2 Program Location: at System.Data.SqlClient.SqlConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, Boolean breakConnection) at System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning(TdsParserStateObject stateObj) at System.Data.SqlClient.TdsParser.Run(RunBehavior runBehavior, SqlCommand cmdHandler, SqlDataReader dataStream, BulkCopySimpleResultSet bulkCopyHandler, TdsParserStateObject stateObj) at System.Data.SqlClient.SqlCommand.RunExecuteNonQueryTds(String methodName, Boolean async) at System.Data.SqlClient.SqlCommand.InternalExecuteNonQuery(DbAsyncResult result, String methodName, Boolean sendToPipe) at System.Data.SqlClient.SqlCommand.ExecuteNonQuery() at Microsoft.SqlServer.Management.Common.ServerConnection.ExecuteNonQuery(String sqlCommand, ExecutionTypes executionType) Now, I googled the hell out of this error, and nothing shows up. I also can't seem to find out what the exact target table of the error "Column name 'Id' does not exist..." is. Has anyone every done this successfully? Am I missing something? Having this setup without conflict detection feels pretty useless... EDIT OK, so after some more research and setting up with different databases etc, I found out that the calculated 'Id' column of the Templates table is the culprit. I don't know why, but the replication doesn't seem to allow calculated columns (which are also primary key). It works now too, without the 'Id' column, and using the NodeId and LocalId as a combined PK. So now the question is, why isn't it allowed to have a calculated column as PK for replication with conflict detection?

    Read the article

  • How to reliably map vSphere disks <-> Linux devices

    - by brianmcgee
    Task at hand After a virtual disk has been added to a Linux VM on vSphere 5, we need to identify the disks in order to automate the LVM storage provision. The virtual disks may reside on different datastores (e.g. sas or flash) and although they may be of the same size, their speed may vary. So I need a method to map the vSphere disks to Linux devices. Ideas Through the vSphere API, I am able to get the device info: Data Object Type: VirtualDiskFlatVer2BackingInfo Parent Managed Object ID: vm-230 Property Path: config.hardware.device[2000].backing Properties Name Type Value ChangeId string Unset contentId string "d58ec8c12486ea55c6f6d913642e1801" datastore ManagedObjectReference:Datastore datastore-216 (W5-CFAS012-Hybrid-CL20-004) deltaDiskFormat string "redoLogFormat" deltaGrainSize int Unset digestEnabled boolean false diskMode string "persistent" dynamicProperty DynamicProperty[] Unset dynamicType string Unset eagerlyScrub boolean Unset fileName string "[W5-CFAS012-Hybrid-CL20-004] l****9-000001.vmdk" parent VirtualDiskFlatVer2BackingInfo parent split boolean false thinProvisioned boolean false uuid string "6000C295-ab45-704e-9497-b25d2ba8dc00" writeThrough boolean false And on Linux I may read the uuid strings: [root@lx***** ~]# lsscsi -t [1:0:0:0] cd/dvd ata: /dev/sr0 [2:0:0:0] disk sas:0x5000c295ab45704e /dev/sda [3:0:0:0] disk sas:0x5000c2932dfa693f /dev/sdb [3:0:1:0] disk sas:0x5000c29dcd64314a /dev/sdc As you can see, the uuid string of disk /dev/sda looks somehow familiar to the string that is visible in the VMware API. Only the first hex digit is different (5 vs. 6) and it is only present to the third hyphen. So this looks promising... Alternative idea Select disks by controller. But is it reliable that the ascending SCSI Id also matches the next vSphere virtual disk? What happens if I add another DVD-ROM drive / USB Thumb drive? This will probably introduce new SCSI devices in between. Thats the cause why I think I will discard this idea. Questions Does someone know an easier method to map vSphere disks and Linux devices? Can someone explain the differences in the uuid strings? (I think this has something to do with SAS adressing initiator and target... WWN like...) May I reliably map devices by using those uuid strings? How about SCSI virtual disks? There is no uuid visible then... This task seems to be so obvious. Why doesn't Vmware think about this and simply add a way to query the disk mapping via Vmware Tools?

    Read the article

  • asp.net Can I force every page to inherit from a base page? Also should some of this logic be in my master page?

    - by Bex
    Hi! I have a web app that has a base page. Each page needs to inherit from this base page as it contains properties they all need as well as dealing with the login rights. My base page has some properties, eg: IsRole1, IsRole2, currentUserID, Role1Allowed, Role2Allowed. On the init of each page I set the properties "Role1Allowed" and "Role2Allowed" Private Sub Page_Init(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Init Role1Allowed = True Role2Allowed= False End Sub The basepage then decides if the user needs redirecting. 'Sample code so not exactly what is going to be, bug gives the idea Protected Overridable Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) If Role1Allowed And Not Role1 Then 'Redirect somewhere End If End Sub The page then must override this pageload if they need anything else in it, but making sure they call the base pageload first. Protected Overrides Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load MyBase.Page_Load(sender, e) If Not IsPostBack Then BindGrid() End If End Sub The other properties (IsRole1, IsRole, currentUserID) are also accessible by the page so it can be decided if certain things need doing based on the user. (I hope this makes sense) Ok so I have 2 questions Should this functionality be in the base page or should it somehow be in the master, and if so how would I get access to all the properties if it was? As there are multiple people working on this project and creating pages some are forgetting to inherit from this basepage, or call the base pageload when overriding it. Is there any way to force them to do this? Thanks for any help. bex

    Read the article

  • Stuck at the STARTUP [closed]

    - by Tarik Setia
    I started with "Getting started with asp mvc4 tutorial". I just created the project and when I pressed F5 I got this: Server Error in '/' Application. -------------------------------------------------------------------------------- Could not load type 'System.Web.WebPages.DisplayModes' from assembly 'System.Web.WebPages, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35'. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.TypeLoadException: Could not load type 'System.Web.WebPages.DisplayModes' from assembly 'System.Web.WebPages, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35'. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [TypeLoadException: Could not load type 'System.Web.WebPages.DisplayModes' from assembly 'System.Web.WebPages, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35'.] System.Web.Mvc.VirtualPathProviderViewEngine.GetPath(ControllerContext controllerContext, String[] locations, String[] areaLocations, String locationsPropertyName, String name, String controllerName, String cacheKeyPrefix, Boolean useCache, String[]& searchedLocations) +0 System.Web.Mvc.VirtualPathProviderViewEngine.FindView(ControllerContext controllerContext, String viewName, String masterName, Boolean useCache) +315 System.Web.Mvc.c__DisplayClassc.b__a(IViewEngine e) +68 System.Web.Mvc.ViewEngineCollection.Find(Func`2 lookup, Boolean trackSearchedPaths) +182 System.Web.Mvc.ViewEngineCollection.Find(Func`2 cacheLocator, Func`2 locator) +67 System.Web.Mvc.ViewEngineCollection.FindView(ControllerContext controllerContext, String viewName, String masterName) +329 System.Web.Mvc.ViewResult.FindView(ControllerContext context) +135 System.Web.Mvc.ViewResultBase.ExecuteResult(ControllerContext context) +230 System.Web.Mvc.ControllerActionInvoker.InvokeActionResult(ControllerContext controllerContext, ActionResult actionResult) +39 System.Web.Mvc.c__DisplayClass1c.b__19() +74 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func`1 continuation) +388 System.Web.Mvc.c__DisplayClass1e.b__1b() +72 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultWithFilters(ControllerContext controllerContext, IList`1 filters, ActionResult actionResult) +303 System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) +844 System.Web.Mvc.Controller.ExecuteCore() +130 System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) +229 System.Web.Mvc.ControllerBase.System.Web.Mvc.IController.Execute(RequestContext requestContext) +39 System.Web.Mvc.c__DisplayClassb.b__5() +71 System.Web.Mvc.Async.c__DisplayClass1.b__0() +44 System.Web.Mvc.Async.c__DisplayClass8`1.b__7(IAsyncResult _) +42 System.Web.Mvc.Async.WrappedAsyncResult`1.End() +152 System.Web.Mvc.Async.AsyncResultWrapper.End(IAsyncResult asyncResult, Object tag) +59 System.Web.Mvc.Async.AsyncResultWrapper.End(IAsyncResult asyncResult, Object tag) +40 System.Web.Mvc.c__DisplayClasse.b__d() +75 System.Web.Mvc.SecurityUtil.b__0(Action f) +31 System.Web.Mvc.SecurityUtil.ProcessInApplicationTrust(Action action) +61 System.Web.Mvc.MvcHandler.EndProcessRequest(IAsyncResult asyncResult) +118 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.EndProcessRequest(IAsyncResult result) +38 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +10303829 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +178 -------------------------------------------------------------------------------- Version Information: Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.17020

    Read the article

  • Code excavations, wishful invocations, perimeters and domain specific unit test frameworks

    - by RoyOsherove
    One of the talks I did at QCON London was about a subject that I’ve come across fairly recently , when I was building SilverUnit – a “pure” unit test framework for silverlight objects that depend on the silverlight runtime to run. It is the concept of “cogs in the machine” – when your piece of code needs to run inside a host framework or runtime that you have little or no control over for testability related matters. Examples of such cogs and machines can be: your custom control running inside silverlight runtime in the browser your plug-in running inside an IDE your activity running inside a windows workflow your code running inside a java EE bean your code inheriting from a COM+ (enterprise services) component etc.. Not all of these are necessarily testability problems. The main testability problem usually comes when your code actually inherits form something inside the system. For example. one of the biggest problems with testing objects like silverlight controls is the way they depend on the silverlight runtime – they don’t implement some silverlight interface, they don’t just call external static methods against the framework runtime that surrounds them – they actually inherit parts of the framework: they all inherit (in this case) from the silverlight DependencyObject Wrapping it up? An inheritance dependency is uniquely challenging to bring under test, because “classic” methods such as wrapping the object under test with a framework wrapper will not work, and the only way to do manually is to create parallel testable objects that get delegated with all the possible actions from the dependencies.    In silverlight’s case, that would mean creating your own custom logic class that would be called directly from controls that inherit from silverlight, and would be tested independently of these controls. The pro side is that you get the benefit of understanding the “contract” and the “roles” your system plays against your logic, but unfortunately, more often than not, it can be very tedious to create, and may sometimes feel unnecessary or like code duplication. About perimeters A perimeter is that invisible line that your draw around your pieces of logic during a test, that separate the code under test from any dependencies that it uses. Most of the time, a test perimeter around an object will be the list of seams (dependencies that can be replaced such as interfaces, virtual methods etc.) that are actually replaced for that test or for all the tests. Role based perimeters In the case of creating a wrapper around an object – one really creates a “role based” perimeter around the logic that is being tested – that wrapper takes on roles that are required by the code under test, and also communicates with the host system to implement those roles and provide any inputs to the logic under test. in the image below – we have the code we want to test represented as a star. No perimeter is drawn yet (we haven’t wrapped it up in anything yet). in the image below is what happens when you wrap your logic with a role based wrapper – you get a role based perimeter anywhere your code interacts with the system: There’s another way to bring that code under test – using isolation frameworks like typemock, rhino mocks and MOQ (but if your code inherits from the system, Typemock might be the only way to isolate the code from the system interaction.   Ad-Hoc Isolation perimeters the image below shows what I call ad-hoc perimeter that might be vastly different between different tests: This perimeter’s surface is much smaller, because for that specific test, that is all the “change” that is required to the host system behavior.   The third way of isolating the code from the host system is the main “meat” of this post: Subterranean perimeters Subterranean perimeters are Deep rooted perimeters  - “always on” seams that that can lie very deep in the heart of the host system where they are fully invisible even to the test itself, not just to the code under test. Because they lie deep inside a system you can’t control, the only way I’ve found to control them is with runtime (not compile time) interception of method calls on the system. One way to get such abilities is by using Aspect oriented frameworks – for example, in SilverUnit, I’ve used the CThru AOP framework based on Typemock hooks and CLR profilers to intercept such system level method calls and effectively turn them into seams that lie deep down at the heart of the silverlight runtime. the image below depicts an example of what such a perimeter could look like: As you can see, the actual seams can be very far away form the actual code under test, and as you’ll discover, that’s actually a very good thing. Here is only a partial list of examples of such deep rooted seams : disabling the constructor of a base class five levels below the code under test (this.base.base.base.base) faking static methods of a type that’s being called several levels down the stack: method x() calls y() calls z() calls SomeType.StaticMethod()  Replacing an async mechanism with a synchronous one (replacing all timers with your own timer behavior that always Ticks immediately upon calls to “start()” on the same caller thread for example) Replacing event mechanisms with your own event mechanism (to allow “firing” system events) Changing the way the system saves information with your own saving behavior (in silverunit, I replaced all Dependency Property set and get with calls to an in memory value store instead of using the one built into silverlight which threw exceptions without a browser) several questions could jump in: How do you know what to fake? (how do you discover the perimeter?) How do you fake it? Wouldn’t this be problematic  - to fake something you don’t own? it might change in the future How do you discover the perimeter to fake? To discover a perimeter all you have to do is start with a wishful invocation. a wishful invocation is the act of trying to invoke a method (or even just create an instance ) of an object using “regular” test code. You invoke the thing that you’d like to do in a real unit test, to see what happens: Can I even create an instance of this object without getting an exception? Can I invoke this method on that instance without getting an exception? Can I verify that some call into the system happened? You make the invocation, get an exception (because there is a dependency) and look at the stack trace. choose a location in the stack trace and disable it. Then try the invocation again. if you don’t get an exception the perimeter is good for that invocation, so you can move to trying out other methods on that object. in a future post I will show the process using CThru, and how you end up with something close to a domain specific test framework after you’re done creating the perimeter you need.

    Read the article

  • Subterranean IL: Filter exception handlers

    - by Simon Cooper
    Filter handlers are the second type of exception handler that aren't accessible from C#. Unlike the other handler types, which have defined conditions for when the handlers execute, filter lets you use custom logic to determine whether the handler should be run. However, similar to a catch block, the filter block does not get run if control flow exits the block without throwing an exception. Introducing filter blocks An example of a filter block in IL is the following: .try { // try block } filter { // filter block endfilter }{ // filter handler } or, in v1 syntax, TryStart: // try block TryEnd: FilterStart: // filter block HandlerStart: // filter handler HandlerEnd: .try TryStart to TryEnd filter FilterStart handler HandlerStart to HandlerEnd In the v1 syntax there is no end label specified for the filter block. This is because the filter block must come immediately before the filter handler; the end of the filter block is the start of the filter handler. The filter block indicates to the CLR whether the filter handler should be executed using a boolean value on the stack when the endfilter instruction is run; true/non-zero if it is to be executed, false/zero if it isn't. At the start of the filter block, and the corresponding filter handler, a reference to the exception thrown is pushed onto the stack as a raw object (you have to manually cast to System.Exception). The allowed IL inside a filter block is tightly controlled; you aren't allowed branches outside the block, rethrow instructions, and other exception handling clauses. You can, however, use call and callvirt instructions to call other methods. Filter block logic To demonstrate filter block logic, in this example I'm filtering on whether there's a particular key in the Data dictionary of the thrown exception: .try { // try block } filter { // Filter starts with exception object on stack // C# code: ((Exception)e).Data.Contains("MyExceptionDataKey") // only execute handler if Contains returns true castclass [mscorlib]System.Exception callvirt instance class [mscorlib]System.Collections.IDictionary [mscorlib]System.Exception::get_Data() ldstr "MyExceptionDataKey" callvirt instance bool [mscorlib]System.Collections.IDictionary::Contains(object) endfilter }{ // filter handler // Also starts off with exception object on stack callvirt instance string [mscorlib]System.Object::ToString() call void [mscorlib]System.Console::WriteLine(string) } Conclusion Filter exception handlers are another exception handler type that isn't accessible from C#, however, just like fault handlers, the behaviour can be replicated using a normal catch block: try { // try block } catch (Exception e) { if (!FilterLogic(e)) throw; // handler logic } So, it's not that great a loss, but it's still annoying that this functionality isn't directly accessible. Well, every feature starts off with minus 100 points, so it's understandable why something like this didn't make it into the C# compiler ahead of a different feature.

    Read the article

  • What I like about WIF&rsquo;s Claims-based Authorization

    - by Your DisplayName here!
    In “traditional” .NET with its IPrincipal interface and IsInRole method, developers were encouraged to write code like this: public void AddCustomer(Customer customer) {     if (Thread.CurrentPrincipal.IsInRole("Sales"))     {         // add customer     } } In code reviews I’ve seen tons of code like this. What I don’t like about this is, that two concerns in your application get tightly coupled: business and security logic. But what happens when the security requirements change – and they will (e.g. members of the sales role and some other people from different roles need to create customers)? Well – since your security logic is sprinkled across your project you need to change the security checks in all relevant places (and make sure you don’t forget one) and you need to re-test, re-stage and re-deploy the complete app. This is clearly not what we want. WIF’s claims-based authorization encourages developers to separate business code and authorization policy evaluation. This is a good thing. So the same security check with WIF’s out-of-the box APIs would look like this: public void AddCustomer(Customer customer) {     try     {         ClaimsPrincipalPermission.CheckAccess("Customer", "Add");           // add customer     }     catch (SecurityException ex)     {         // access denied     } } You notice the fundamental difference? The security check only describes what the code is doing (represented by a resource/action pair) – and does not state who is allowed to invoke the code. As I mentioned earlier – the who is most probably changing over time – the what most probably not. The call to ClaimsPrincipalPermission hands off to another class called the ClaimsAuthorizationManager. This class handles the evaluation of your security policy and is ideally in a separate assembly to allow updating the security logic independently from the application logic (and vice versa). The claims authorization manager features a method called CheckAccess that retrieves three values (wrapped inside an AuthorizationContext instance) – action (“add”), resource (“customer”) and the principal (including its claims) in question. CheckAccess then evaluates those three values and returns true/false. I really like the separation of concerns part here. Unfortunately there is not much support from Microsoft beyond that point. And without further tooling and abstractions the CheckAccess method quickly becomes *very* complex. But still I think that is the way to go. In the next post I will tell you what I don’t like about it (and how to fix it).

    Read the article

  • CCNet TFS Migration - Dealing with left over folders

    - by Michael Stephenson
    Im currently in the process of migrating our many BizTalk projects from MKS source control to TFS.  While we will be using TFS for work item tracking and source control etc we will be continuing to use Cruise Control for continuous integration although im updating this to CCNet 1.5 at the same time. Ill post a few things as much as a reminder to myself about some of the problems we come across. Problem After the first build of our code the next time a build is triggered an error is encountered by the TFS source control block refreshing the source code. System.IO.IOException: The directory is not empty.    at System.IO.Directory.DeleteHelper(String fullPath, String userPath, Boolean recursive)    at System.IO.Directory.Delete(String fullPath, String userPath, Boolean recursive)    at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.deleteDirectory(String path)    at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.GetSource(IIntegrationResult result)    at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Build(IIntegrationResult result)    at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Integrate(IntegrationRequest request) System.IO.IOException: The directory is not empty. at System.IO.Directory.DeleteHelper(String fullPath, String userPath, Boolean recursive) at System.IO.Directory.Delete(String fullPath, String userPath, Boolean recursive) at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.deleteDirectory(String path) at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.GetSource(IIntegrationResult result) at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Build(IIntegrationResult result) at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Integrate(IntegrationRequest request) Project: Bupa.BPI.Documents Date of build: 2011-01-28 14:54:21 Running time: 00:00:05 Integration Request: Build (ForceBuild) triggered from VMOPBZDEV11 Solution The problem seems to be with a folder called TestLocations which is created by the build process and used along with the file adapter as a way to get messages into BizTalk.  For some reason the source control block when it does a full refresh of the code does not get rid of this folder and then complains thats a problem and fails the build. Interestingly there are other folders created by the build which are deleted fine.  My assumption is that this if something to do with the file adapter polling the directory.  However note that we have not had this problem with other source control blocks in the past. To workaround this I have added a prebuild task to the ccnet.config file to delete this folder before the source control block is executed.  See below for example < prebuild> exec>executable>cmd.exe</executable>buildArgs>/c "if exist "C:\<MyCode>\TestLocations" rd /s /q "C:\<MyCode>\TestLocations""</buildArgs>exec> prebuild> < < < </ </

    Read the article

  • Subterranean IL: Exception handler semantics

    - by Simon Cooper
    In my blog posts on fault and filter exception handlers, I said that the same behaviour could be replicated using normal catch blocks. Well, that isn't entirely true... Changing the handler semantics Consider the following: .try { .try { .try { newobj instance void [mscorlib]System.Exception::.ctor() // IL for: // e.Data.Add("DictKey", true) throw } fault { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } } filter { ldstr "2a: Filter logic" call void [mscorlib]System.Console::WriteLine(string) // IL for: // (bool)((Exception)e).Data["DictKey"] endfilter }{ ldstr "2b: Filter handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } } catch object { ldstr "3: Catch handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } Return: // rest of method If the filter handler is engaged (true is inserted into the exception dictionary) then the filter handler gets engaged, and the following gets printed to the console: 2a: Filter logic 1: Fault handler 2b: Filter handler and if the filter handler isn't engaged, then the following is printed: 2a:Filter logic 1: Fault handler 3: Catch handler Filter handler execution The filter handler is executed first. Hmm, ok. Well, what happens if we replaced the fault block with the C# equivalent (with the exception dictionary value set to false)? .try { // throw exception } catch object { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) rethrow } we get this: 1: Fault handler 2a: Filter logic 3: Catch handler The fault handler is executed first, instead of the filter block. Eh? This change in behaviour is due to the way the CLR searches for exception handlers. When an exception is thrown, the CLR stops execution of the thread, and searches up the stack for an exception handler that can handle the exception and stop it propagating further - catch or filter handlers. It checks the type clause of catch clauses, and executes the code in filter blocks to see if the filter can handle the exception. When the CLR finds a valid handler, it saves the handler's location, then goes back to where the exception was thrown and executes fault and finally blocks between there and the handler location, discarding stack frames in the process, until it reaches the handler. So? By replacing a fault with a catch, we have changed the semantics of when the filter code is executed; by using a rethrow instruction, we've split up the exception handler search into two - one search to find the first catch, then a second when the rethrow instruction is encountered. This is only really obvious when mixing C# exception handlers with fault or filter handlers, so this doesn't affect code written only in C#. However it could cause some subtle and hard-to-debug effects with object initialization and ordering when using and calling code written in a language that can compile fault and filter handlers.

    Read the article

  • Pluggable Rules for Entity Framework Code First

    - by Ricardo Peres
    Suppose you want a system that lets you plug custom validation rules on your Entity Framework context. The rules would control whether an entity can be saved, updated or deleted, and would be implemented in plain .NET. Yes, I know I already talked about plugable validation in Entity Framework Code First, but this is a different approach. An example API is in order, first, a ruleset, which will hold the collection of rules: 1: public interface IRuleset : IDisposable 2: { 3: void AddRule<T>(IRule<T> rule); 4: IEnumerable<IRule<T>> GetRules<T>(); 5: } Next, a rule: 1: public interface IRule<T> 2: { 3: Boolean CanSave(T entity, DbContext ctx); 4: Boolean CanUpdate(T entity, DbContext ctx); 5: Boolean CanDelete(T entity, DbContext ctx); 6: String Name 7: { 8: get; 9: } 10: } Let’s analyze what we have, starting with the ruleset: Only has methods for adding a rule, specific to an entity type, and to list all rules of this entity type; By implementing IDisposable, we allow it to be cancelled, by disposing of it when we no longer want its rules to be applied. A rule, on the other hand: Has discrete methods for checking if a given entity can be saved, updated or deleted, which receive as parameters the entity itself and a pointer to the DbContext to which the ruleset was applied; Has a name property for helping us identifying what failed. A ruleset really doesn’t need a public implementation, all we need is its interface. The private (internal) implementation might look like this: 1: sealed class Ruleset : IRuleset 2: { 3: private readonly IDictionary<Type, HashSet<Object>> rules = new Dictionary<Type, HashSet<Object>>(); 4: private ObjectContext octx = null; 5:  6: internal Ruleset(ObjectContext octx) 7: { 8: this.octx = octx; 9: } 10:  11: public void AddRule<T>(IRule<T> rule) 12: { 13: if (this.rules.ContainsKey(typeof(T)) == false) 14: { 15: this.rules[typeof(T)] = new HashSet<Object>(); 16: } 17:  18: this.rules[typeof(T)].Add(rule); 19: } 20:  21: public IEnumerable<IRule<T>> GetRules<T>() 22: { 23: if (this.rules.ContainsKey(typeof(T)) == true) 24: { 25: foreach (IRule<T> rule in this.rules[typeof(T)]) 26: { 27: yield return (rule); 28: } 29: } 30: } 31:  32: public void Dispose() 33: { 34: this.octx.SavingChanges -= RulesExtensions.OnSaving; 35: RulesExtensions.rulesets.Remove(this.octx); 36: this.octx = null; 37:  38: this.rules.Clear(); 39: } 40: } Basically, this implementation: Stores the ObjectContext of the DbContext to which it was created for, this is so that later we can remove the association; Has a collection - a set, actually, which does not allow duplication - of rules indexed by the real Type of an entity (because of proxying, an entity may be of a type that inherits from the class that we declared); Has generic methods for adding and enumerating rules of a given type; Has a Dispose method for cancelling the enforcement of the rules. A (really dumb) rule applied to Product might look like this: 1: class ProductRule : IRule<Product> 2: { 3: #region IRule<Product> Members 4:  5: public String Name 6: { 7: get 8: { 9: return ("Rule 1"); 10: } 11: } 12:  13: public Boolean CanSave(Product entity, DbContext ctx) 14: { 15: return (entity.Price > 10000); 16: } 17:  18: public Boolean CanUpdate(Product entity, DbContext ctx) 19: { 20: return (true); 21: } 22:  23: public Boolean CanDelete(Product entity, DbContext ctx) 24: { 25: return (true); 26: } 27:  28: #endregion 29: } The DbContext is there because we may need to check something else in the database before deciding whether to allow an operation or not. And here’s how to apply this mechanism to any DbContext, without requiring the usage of a subclass, by means of an extension method: 1: public static class RulesExtensions 2: { 3: private static readonly MethodInfo getRulesMethod = typeof(IRuleset).GetMethod("GetRules"); 4: internal static readonly IDictionary<ObjectContext, Tuple<IRuleset, DbContext>> rulesets = new Dictionary<ObjectContext, Tuple<IRuleset, DbContext>>(); 5:  6: private static Type GetRealType(Object entity) 7: { 8: return (entity.GetType().Assembly.IsDynamic == true ? entity.GetType().BaseType : entity.GetType()); 9: } 10:  11: internal static void OnSaving(Object sender, EventArgs e) 12: { 13: ObjectContext octx = sender as ObjectContext; 14: IRuleset ruleset = rulesets[octx].Item1; 15: DbContext ctx = rulesets[octx].Item2; 16:  17: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Added)) 18: { 19: Object entity = entry.Entity; 20: Type realType = GetRealType(entity); 21:  22: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 23: { 24: if (rule.CanSave(entity, ctx) == false) 25: { 26: throw (new Exception(String.Format("Cannot save entity {0} due to rule {1}", entity, rule.Name))); 27: } 28: } 29: } 30:  31: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Deleted)) 32: { 33: Object entity = entry.Entity; 34: Type realType = GetRealType(entity); 35:  36: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 37: { 38: if (rule.CanDelete(entity, ctx) == false) 39: { 40: throw (new Exception(String.Format("Cannot delete entity {0} due to rule {1}", entity, rule.Name))); 41: } 42: } 43: } 44:  45: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Modified)) 46: { 47: Object entity = entry.Entity; 48: Type realType = GetRealType(entity); 49:  50: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 51: { 52: if (rule.CanUpdate(entity, ctx) == false) 53: { 54: throw (new Exception(String.Format("Cannot update entity {0} due to rule {1}", entity, rule.Name))); 55: } 56: } 57: } 58: } 59:  60: public static IRuleset CreateRuleset(this DbContext context) 61: { 62: Tuple<IRuleset, DbContext> ruleset = null; 63: ObjectContext octx = (context as IObjectContextAdapter).ObjectContext; 64:  65: if (rulesets.TryGetValue(octx, out ruleset) == false) 66: { 67: ruleset = rulesets[octx] = new Tuple<IRuleset, DbContext>(new Ruleset(octx), context); 68: 69: octx.SavingChanges += OnSaving; 70: } 71:  72: return (ruleset.Item1); 73: } 74: } It relies on the SavingChanges event of the ObjectContext to intercept the saving operations before they are actually issued. Yes, it uses a bit of dynamic magic! Very handy, by the way! So, let’s put it all together: 1: using (MyContext ctx = new MyContext()) 2: { 3: IRuleset rules = ctx.CreateRuleset(); 4: rules.AddRule(new ProductRule()); 5:  6: ctx.Products.Add(new Product() { Name = "xyz", Price = 50000 }); 7:  8: ctx.SaveChanges(); //an exception is fired here 9:  10: //when we no longer need to apply the rules 11: rules.Dispose(); 12: } Feel free to use it and extend it any way you like, and do give me your feedback! As a final note, this can be easily changed to support plain old Entity Framework (not Code First, that is), if that is what you are using.

    Read the article

  • SQL University: What and why of database refactoring

    - by Mladen Prajdic
    This is a post for a great idea called SQL University started by Jorge Segarra also famously known as SqlChicken on Twitter. It’s a collection of blog posts on different database related topics contributed by several smart people all over the world. So this week is mine and we’ll be talking about database testing and refactoring. In 3 posts we’ll cover: SQLU part 1 - What and why of database testing SQLU part 2 - What and why of database refactoring SQLU part 3 - Tools of the trade This is a second part of the series and in it we’ll take a look at what database refactoring is and why do it. Why refactor a database To know why refactor we first have to know what refactoring actually is. Code refactoring is a process where we change module internals in a way that does not change that module’s input/output behavior. For successful refactoring there is one crucial thing we absolutely must have: Tests. Automated unit tests are the only guarantee we have that we haven’t broken the input/output behavior before refactoring. If you haven’t go back ad read my post on the matter. Then start writing them. Next thing you need is a code module. Those are views, UDFs and stored procedures. By having direct table access we can kiss fast and sweet refactoring good bye. One more point to have a database abstraction layer. And no, ORM’s don’t fall into that category. But also know that refactoring is NOT adding new functionality to your code. Many have fallen into this trap. Don’t be one of them and resist the lure of the dark side. And it’s a strong lure. We developers in general love to add new stuff to our code, but hate fixing our own mistakes or changing existing code for no apparent reason. To be a good refactorer one needs discipline and focus. Now we know that refactoring is all about changing inner workings of existing code. This can be due to performance optimizations, changing internal code workflows or some other reason. This is a typical black box scenario to the outside world. If we upgrade the car engine it still has to drive on the road (preferably faster) and not fly (no matter how cool that would be). Also be aware that white box tests will break when we refactor. What to refactor in a database Refactoring databases doesn’t happen that often but when it does it can include a lot of stuff. Let us look at a few common cases. Adding or removing database schema objects Adding, removing or changing table columns in any way, adding constraints, keys, etc… All of these can be counted as internal changes not visible to the data consumer. But each of these carries a potential input/output behavior change. Dropping a column can result in views not working anymore or stored procedure logic crashing. Adding a unique constraint shows duplicated data that shouldn’t exist. Foreign keys break a truncate table command executed from an application that runs once a month. All these scenarios are very real and can happen. With the proper database abstraction layer fully covered with black box tests we can make sure something like that does not happen (hopefully at all). Changing physical structures Physical structures include heaps, indexes and partitions. We can pretty much add or remove those without changing the data returned by the database. But the performance can be affected. So here we use our performance tests. We do have them, right? Just by adding a single index we can achieve orders of magnitude performance improvement. Won’t that make users happy? But what if that index causes our write operations to crawl to a stop. again we have to test this. There are a lot of things to think about and have tests for. Without tests we can’t do successful refactoring! Fixing bad code We all have some bad code in our systems. We usually refer to that code as code smell as they violate good coding practices. Examples of such code smells are SQL injection, use of SELECT *, scalar UDFs or cursors, etc… Each of those is huge code smell and can result in major code changes. Take SELECT * from example. If we remove a column from a table the client using that SELECT * statement won’t have a clue about that until it runs. Then it will gracefully crash and burn. Not to mention the widely unknown SELECT * view refresh problem that Tomas LaRock (@SQLRockstar on Twitter) and Colin Stasiuk (@BenchmarkIT on Twitter) talk about in detail. Go read about it, it’s informative. Refactoring this includes replacing the * with column names and most likely change to application using the database. Breaking apart huge stored procedures Have you ever seen seen a stored procedure that was 2000 lines long? I have. It’s not pretty. It hurts the eyes and sucks the will to live the next 10 minutes. They are a maintenance nightmare and turn into things no one dares to touch. I’m willing to bet that 100% of time they don’t have a single test on them. Large stored procedures (and functions) are a clear sign that they contain business logic. General opinion on good database coding practices says that business logic has no business in the database. That’s the applications part. Refactoring such behemoths requires writing lots of edge case tests for the stored procedure input/output behavior and then start to refactor it. First we split the logic inside into smaller parts like new stored procedures and UDFs. Those then get called from the master stored procedure. Once we’ve successfully modularized the database code it’s best to transfer that logic into the applications consuming it. This only leaves the stored procedure with common data manipulation logic. Of course this isn’t always possible so having a plethora of performance and behavior unit tests is absolutely necessary to confirm we’ve actually improved the codebase in some way.   Refactoring is not a popular chore amongst developers or managers. The former don’t like fixing old code, the latter can’t see the financial benefit. Remember how we talked about being lousy at estimating future costs in the previous post? But there comes a time when it must be done. Hopefully I’ve given you some ideas how to get started. In the last post of the series we’ll take a look at the tools to use and an example of testing and refactoring.

    Read the article

< Previous Page | 47 48 49 50 51 52 53 54 55 56 57 58  | Next Page >