Search Results

Search found 1354 results on 55 pages for 'duration'.

Page 51/55 | < Previous Page | 47 48 49 50 51 52 53 54 55  | Next Page >

  • Launching mysql server: same permissions for root and for user

    - by toinbis
    Hi folks, have been directed here from stackoverflow here, am reposting the question and adding my.cnf at the end of a post. so far in my 10+ years experience with linux, all the permission problems I've ever encountered, have been successfully solved with chmod -R 777 /path/where/the/problem/has/occured (every lie has a grain of truth in it :) This time the trick doesn't work, so I'm turning to you for help. I'm compiling mysql server from scratch with zc.buildout (www . buildout . org). I do launch it by executing /home/toinbis/.../parts/mysql/bin/mysqld_safe, this works. The thing is that i'll be launching this from within supervisor (supervisord . org) script, and when used on the deployment server, it'll need it to be launched with root permissions(so that nginx server, launched with the same script, would have access to 80 port). The problem is that sudo /home/toinbis/.../parts/mysql/bin/mysqld_safe, fails, generating the error, posted bellow, in mysql error log (apache and nginx works as expected). http://lists.mysql.com/mysql/216045 suggests, that "there are two errors: A missing table and a file system that mysqld doesn't have access to". Mysqldatadir and all the mysql server binary files has 777 permissions, talbe mysql.plugin does exist and has 777 permissions (why Can't open the mysql.plugin table?), "sudo touch mysql_datadir/tmp/file" does create file (why Can't create/write to file /home/toinbis/.../runtime/mysql_datadir/tmp/ib4e9Huz?). chgrp -R mysql mysql_datadir and adding "root, toinbis, mysql" users to mysql group ( cat /etc/group | grep mysql outputs mysql:x:124:root,toinbis,mysql) has no effect - when i launch it as a casual user, it starts, when as a root - it fails. Does mysql server, even started as root, tries to operate as other, let's say, 'mysql' user? but even in that case, adding mysql user to mysql group and making all the mysql_datadirs files belong to mysql group should make things work smoothly. I do know that it might be a better idea to simply to launch one the nginx as root and mysql - as just a user, but this error irritated me enough so to devote enough energy so not to only "make things work", but to also make things work exactly as i wanted it initially, so to have a proof of concept that it's possible. and this is the generated error: 091213 20:02:55 mysqld_safe Starting mysqld daemon with databases from /home/toinbis/.../runtime/mysql_datadir /home/toinbis/.../parts/mysql/libexec/mysqld: Table 'plugin' is read only 091213 20:02:55 [ERROR] Can't open the mysql.plugin table. Please run mysql_upgrade to create it. /home/toinbis/.../parts/mysql/libexec/mysqld: Can't create/write to file '/home/toinbis/.../runtime/mysql_datadir/tmp/ib4e9Huz' (Errcode: 13) 091213 20:02:55 InnoDB: Error: unable to create temporary file; errno: 13 091213 20:02:55 [ERROR] Plugin 'InnoDB' init function returned error. 091213 20:02:55 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE failed. 091213 20:02:55 [ERROR] Can't start server : Bind on unix socket: Permission denied 091213 20:02:55 [ERROR] Do you already have another mysqld server running on socket: /home/toinbis/.../runtime/var/pids/mysql.sock ? 091213 20:02:55 [ERROR] Aborting 091213 20:02:55 [Note] /home/toinbis/.../parts/mysql/libexec/mysqld: Shutdown complete 091213 20:02:55 mysqld_safe mysqld from pid file /home/toinbis/.../runtime/var/pids/mysql.pid ended My my.cnf (the basedir and datadir(including tempdir) have chmod -R 777 permissions) : [client] socket = /home/toinbis/.../runtime/var/pids/mysql.sock port = 8002 [mysqld_safe] socket = /home/toinbis/.../runtime/var/pids/mysql.sock nice = 0 [mysqld] # # * Basic Settings # socket = /home/toinbis/.../runtime/var/pids/mysql.sock port = 8002 pid-file = /home/toinbis/.../runtime/var/pids/mysql.pid basedir = /home/toinbis/.../parts/mysql datadir = /home/toinbis/.../runtime/mysql_datadir tmpdir = /home/toinbis/.../runtime/mysql_datadir/tmp skip-external-locking bind-address = 127.0.0.1 log-error =/home/toinbis/.../runtime/logs/mysql_errorlog # # * Fine Tuning # key_buffer = 16M max_allowed_packet = 32M thread_stack = 128K thread_cache_size = 8 myisam-recover = BACKUP #max_connections = 100 #table_cache = 64 #thread_concurrency = 10 # # * Query Cache Configuration # query_cache_limit = 1M query_cache_size = 16M # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. #log = /home/toinbis/.../runtime/logs/mysql_logs/mysql.log # # Error logging goes to syslog. This is a Debian improvement :) # # Here you can see queries with especially long duration #log_slow_queries = /home/toinbis/.../runtime/logs/mysql_logs/mysql-slow.log #long_query_time = 2 #log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. #server-id = 1 #log_bin = /home/toinbis/.../runtime/mysql_datadir/mysql-bin.log #binlog_format = ROW #read_only = 0 #expire_logs_days = 10 #max_binlog_size = 100M #sync_binlog = 1 #binlog_do_db = include_database_name #binlog_ignore_db = include_database_name # # * InnoDB # innodb_data_file_path = ibdata1:10M:autoextend innodb_buffer_pool_size=64M innodb_log_file_size=16M innodb_log_buffer_size=8M innodb_flush_log_at_trx_commit=1 innodb_file_per_table innodb_locks_unsafe_for_binlog=1 [mysqldump] quick quote-names max_allowed_packet = 32M [mysql] #no-auto-rehash # faster start of mysql but no tab completion [isamchk] key_buffer = 16M Any ideas much appreciated! regards, to P.S. sorry for messy hyperlinks, it's my first post and anti-spam feature of SF doesn't allow to post them properly :)

    Read the article

  • FFMPEG Segfault Solutions

    - by Brentley_11
    I'm trying to convert a bunch of movies into h.264 mp4's using FFMPEG. These movies are sourced from various portable camcorders such as the Flip Mino HD and the Kodak ZI8. One issue I'm having with video from the ZI8 is it seems to be causing FFMPEG to segfault. Here is my command: ffmpeg -i 'XmasSailor720p60fps.MOV' -threads 2 -acodec libfaac -ab 96kb -vcodec libx264 -vpre hq -b 500kb -s 484x272 XmasSailor.mp4 Here is the output: FFmpeg version SVN-r20668, Copyright (c) 2000-2009 Fabrice Bellard, et al. built on Dec 2 2009 18:37:34 with gcc 4.2.4 (Ubuntu 4.2.4-1ubuntu4) configuration: --enable-libfaac --enable-libfaad --enable-libmp3lame --enable-libx264 --enable-gpl --enable-nonfree --enable-postproc --enable-pthreads --enable-shared libavutil 50. 5. 1 / 50. 5. 1 libavcodec 52.42. 0 / 52.42. 0 libavformat 52.39. 2 / 52.39. 2 libavdevice 52. 2. 0 / 52. 2. 0 libswscale 0. 7. 2 / 0. 7. 2 libpostproc 51. 2. 0 / 51. 2. 0 Seems stream 0 codec frame rate differs from container frame rate: 59.94 (60000/1001) -> 29.97 (30000/1001) Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'XmasSailor720p60fps.MOV': Duration: 00:00:05.37, start: 0.000000, bitrate: 12021 kb/s Stream #0.0(eng): Video: h264, yuv420p, 1280x720 [PAR 1:1 DAR 16:9], 11994 kb/s, 29.97 tbr, 90k tbn, 59.94 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 128 kb/s Metadata major_brand : qt minor_version : 0 compatible_brands: qt comment : KODAK Zi8 Pocket Video Camera comment-eng : KODAK Zi8 Pocket Video Camera [libx264 @ 0x99e1020]using SAR=1/1 [libx264 @ 0x99e1020]using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.1 Cache64 [libx264 @ 0x99e1020]profile High, level 2.1 Output #0, mp4, to 'XmasSailor.mp4': Stream #0.0(eng): Video: libx264, yuv420p, 484x272 [PAR 1:1 DAR 121:68], q=10-51, 500 kb/s, 30k tbn, 29.97 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 96 kb/s Metadata comment : Encoded with the Statusfirm Video Transcoder Stream mapping: Stream #0.0 -> #0.0 Stream #0.1 -> #0.1 Press [q] to stop encoding [h264 @ 0x99de950]B picture before any references, skipping [h264 @ 0x99de950]decode_slice_header error [h264 @ 0x99de950]no frame! Error while decoding stream #0.0 [h264 @ 0x99de950]B picture before any references, skipping [h264 @ 0x99de950]decode_slice_header error [h264 @ 0x99de950]no frame! Error while decoding stream #0.0 frame= 20 fps= 0 q=13797729.0 size= 0kB time=0.66 bitrate= 0.6kbits/s frame= 39 fps= 37 q=13797729.0 size= 0kB time=1.30 bitrate= 0.3kbits/s frame= 48 fps= 30 q=33.0 size= 11kB time=0.10 bitrate= 903.0kbits/s frame= 58 fps= 27 q=31.0 size= 22kB time=0.43 bitrate= 421.0kbits/s frame= 67 fps= 25 q=29.0 size= 41kB time=0.73 bitrate= 462.6kbits/s frame= 75 fps= 23 q=29.0 size= 59kB time=1.00 bitrate= 486.7kbits/s frame= 83 fps= 22 q=29.0 size= 81kB time=1.27 bitrate= 521.9kbits/s frame= 90 fps= 21 q=29.0 size= 97kB time=1.50 bitrate= 530.1kbits/s frame= 98 fps= 20 q=29.0 size= 114kB time=1.77 bitrate= 526.9kbits/s frame= 106 fps= 20 q=29.0 size= 134kB time=2.04 bitrate= 537.7kbits/s frame= 114 fps= 19 q=29.0 size= 150kB time=2.30 bitrate= 533.7kbits/s frame= 122 fps= 19 q=29.0 size= 172kB time=2.57 bitrate= 547.8kbits/s frame= 130 fps= 19 q=29.0 size= 193kB time=2.84 bitrate= 557.5kbits/s frame= 136 fps= 18 q=29.0 size= 211kB time=3.04 bitrate= 570.0kbits/s frame= 144 fps= 18 q=29.0 size= 242kB time=3.30 bitrate= 599.5kbits/s frame= 152 fps= 17 q=30.0 size= 261kB time=3.57 bitrate= 598.6kbits/s frame= 157 fps= 15 q=-1.0 Lsize= 368kB time=5.21 bitrate= 579.3kbits/s video:302kB audio:61kB global headers:0kB muxing overhead 1.416371% [libx264 @ 0x99e1020]frame I:1 Avg QP:27.22 size: 8720 [libx264 @ 0x99e1020]frame P:48 Avg QP:25.15 size: 3759 [libx264 @ 0x99e1020]frame B:108 Avg QP:30.10 size: 1105 [libx264 @ 0x99e1020]consecutive B-frames: 0.6% 11.5% 28.8% 59.0% [libx264 @ 0x99e1020]mb I I16..4: 28.5% 47.6% 23.9% [libx264 @ 0x99e1020]mb P I16..4: 0.8% 1.3% 0.5% P16..4: 50.6% 17.7% 13.1% 0.0% 0.0% skip:15.9% [libx264 @ 0x99e1020]mb B I16..4: 0.2% 0.3% 0.1% B16..8: 44.0% 1.2% 2.6% direct: 5.1% skip:46.5% L0:45.5% L1:51.0% BI: 3.5% [libx264 @ 0x99e1020]final ratefactor: 23.51 [libx264 @ 0x99e1020]8x8 transform intra:49.9% inter:67.9% [libx264 @ 0x99e1020]direct mvs spatial:98.1% temporal:1.9% [libx264 @ 0x99e1020]coded y,uvDC,uvAC intra: 54.7% 76.1% 41.4% inter: 17.1% 24.4% 7.8% [libx264 @ 0x99e1020]i16 v,h,dc,p: 18% 52% 5% 25% [libx264 @ 0x99e1020]i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 12% 22% 9% 7% 10% 10% 9% 8% 13% [libx264 @ 0x99e1020]i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 13% 18% 8% 8% 10% 13% 10% 9% 12% [libx264 @ 0x99e1020]Weighted P-Frames: Y:10.4% [libx264 @ 0x99e1020]ref P L0: 60.2% 15.3% 11.0% 7.6% 5.2% 0.7% [libx264 @ 0x99e1020]ref B L0: 72.6% 15.6% 11.8% [libx264 @ 0x99e1020]kb/s:471.17 Segmentation fault I'm wondering if anyone else has ran into similar issues. I wasn't able to find anything helpful via Google. Another question I have is if anyone knows of a company that offers paid support for FFMPEG. Thank you for your time.

    Read the article

  • FFMPEG Segfault Solutions

    - by Brentley_11
    I'm trying to convert a bunch of movies into h.264 mp4's using FFMPEG. These movies are sourced from various portable camcorders such as the Flip Mino HD and the Kodak ZI8. One issue I'm having with video from the ZI8 is it seems to be causing FFMPEG to segfault. Here is my command: ffmpeg -i 'XmasSailor720p60fps.MOV' -threads 2 -acodec libfaac -ab 96kb -vcodec libx264 -vpre hq -b 500kb -s 484x272 XmasSailor.mp4 Here is the output: FFmpeg version SVN-r20668, Copyright (c) 2000-2009 Fabrice Bellard, et al. built on Dec 2 2009 18:37:34 with gcc 4.2.4 (Ubuntu 4.2.4-1ubuntu4) configuration: --enable-libfaac --enable-libfaad --enable-libmp3lame --enable-libx264 --enable-gpl --enable-nonfree --enable-postproc --enable-pthreads --enable-shared libavutil 50. 5. 1 / 50. 5. 1 libavcodec 52.42. 0 / 52.42. 0 libavformat 52.39. 2 / 52.39. 2 libavdevice 52. 2. 0 / 52. 2. 0 libswscale 0. 7. 2 / 0. 7. 2 libpostproc 51. 2. 0 / 51. 2. 0 Seems stream 0 codec frame rate differs from container frame rate: 59.94 (60000/1001) -> 29.97 (30000/1001) Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'XmasSailor720p60fps.MOV': Duration: 00:00:05.37, start: 0.000000, bitrate: 12021 kb/s Stream #0.0(eng): Video: h264, yuv420p, 1280x720 [PAR 1:1 DAR 16:9], 11994 kb/s, 29.97 tbr, 90k tbn, 59.94 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 128 kb/s Metadata major_brand : qt minor_version : 0 compatible_brands: qt comment : KODAK Zi8 Pocket Video Camera comment-eng : KODAK Zi8 Pocket Video Camera [libx264 @ 0x99e1020]using SAR=1/1 [libx264 @ 0x99e1020]using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.1 Cache64 [libx264 @ 0x99e1020]profile High, level 2.1 Output #0, mp4, to 'XmasSailor.mp4': Stream #0.0(eng): Video: libx264, yuv420p, 484x272 [PAR 1:1 DAR 121:68], q=10-51, 500 kb/s, 30k tbn, 29.97 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 96 kb/s Metadata comment : Encoded with the Statusfirm Video Transcoder Stream mapping: Stream #0.0 -> #0.0 Stream #0.1 -> #0.1 Press [q] to stop encoding [h264 @ 0x99de950]B picture before any references, skipping [h264 @ 0x99de950]decode_slice_header error [h264 @ 0x99de950]no frame! Error while decoding stream #0.0 [h264 @ 0x99de950]B picture before any references, skipping [h264 @ 0x99de950]decode_slice_header error [h264 @ 0x99de950]no frame! Error while decoding stream #0.0 frame= 20 fps= 0 q=13797729.0 size= 0kB time=0.66 bitrate= 0.6kbits/s frame= 39 fps= 37 q=13797729.0 size= 0kB time=1.30 bitrate= 0.3kbits/s frame= 48 fps= 30 q=33.0 size= 11kB time=0.10 bitrate= 903.0kbits/s frame= 58 fps= 27 q=31.0 size= 22kB time=0.43 bitrate= 421.0kbits/s frame= 67 fps= 25 q=29.0 size= 41kB time=0.73 bitrate= 462.6kbits/s frame= 75 fps= 23 q=29.0 size= 59kB time=1.00 bitrate= 486.7kbits/s frame= 83 fps= 22 q=29.0 size= 81kB time=1.27 bitrate= 521.9kbits/s frame= 90 fps= 21 q=29.0 size= 97kB time=1.50 bitrate= 530.1kbits/s frame= 98 fps= 20 q=29.0 size= 114kB time=1.77 bitrate= 526.9kbits/s frame= 106 fps= 20 q=29.0 size= 134kB time=2.04 bitrate= 537.7kbits/s frame= 114 fps= 19 q=29.0 size= 150kB time=2.30 bitrate= 533.7kbits/s frame= 122 fps= 19 q=29.0 size= 172kB time=2.57 bitrate= 547.8kbits/s frame= 130 fps= 19 q=29.0 size= 193kB time=2.84 bitrate= 557.5kbits/s frame= 136 fps= 18 q=29.0 size= 211kB time=3.04 bitrate= 570.0kbits/s frame= 144 fps= 18 q=29.0 size= 242kB time=3.30 bitrate= 599.5kbits/s frame= 152 fps= 17 q=30.0 size= 261kB time=3.57 bitrate= 598.6kbits/s frame= 157 fps= 15 q=-1.0 Lsize= 368kB time=5.21 bitrate= 579.3kbits/s video:302kB audio:61kB global headers:0kB muxing overhead 1.416371% [libx264 @ 0x99e1020]frame I:1 Avg QP:27.22 size: 8720 [libx264 @ 0x99e1020]frame P:48 Avg QP:25.15 size: 3759 [libx264 @ 0x99e1020]frame B:108 Avg QP:30.10 size: 1105 [libx264 @ 0x99e1020]consecutive B-frames: 0.6% 11.5% 28.8% 59.0% [libx264 @ 0x99e1020]mb I I16..4: 28.5% 47.6% 23.9% [libx264 @ 0x99e1020]mb P I16..4: 0.8% 1.3% 0.5% P16..4: 50.6% 17.7% 13.1% 0.0% 0.0% skip:15.9% [libx264 @ 0x99e1020]mb B I16..4: 0.2% 0.3% 0.1% B16..8: 44.0% 1.2% 2.6% direct: 5.1% skip:46.5% L0:45.5% L1:51.0% BI: 3.5% [libx264 @ 0x99e1020]final ratefactor: 23.51 [libx264 @ 0x99e1020]8x8 transform intra:49.9% inter:67.9% [libx264 @ 0x99e1020]direct mvs spatial:98.1% temporal:1.9% [libx264 @ 0x99e1020]coded y,uvDC,uvAC intra: 54.7% 76.1% 41.4% inter: 17.1% 24.4% 7.8% [libx264 @ 0x99e1020]i16 v,h,dc,p: 18% 52% 5% 25% [libx264 @ 0x99e1020]i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 12% 22% 9% 7% 10% 10% 9% 8% 13% [libx264 @ 0x99e1020]i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 13% 18% 8% 8% 10% 13% 10% 9% 12% [libx264 @ 0x99e1020]Weighted P-Frames: Y:10.4% [libx264 @ 0x99e1020]ref P L0: 60.2% 15.3% 11.0% 7.6% 5.2% 0.7% [libx264 @ 0x99e1020]ref B L0: 72.6% 15.6% 11.8% [libx264 @ 0x99e1020]kb/s:471.17 Segmentation fault I'm wondering if anyone else has ran into similar issues. I wasn't able to find anything helpful via Google. Another question I have is if anyone knows of a company that offers paid support for FFMPEG. Thank you for your time.

    Read the article

  • FFmpeg creates emtpy (black) frames

    - by resamsel
    I have a set of images from a timelapse shot (172 JPG files) that I want to convert into a movie. I tried several parameters with FFmpeg, but all I get is a video with black frames (though it has the expected length). ffmpeg -f image2 -vcodec mjpeg -y -i img_%03d.jpg timelapse2.mpg The command above creates this video: http://sdm-net.org/data/timelapse2.mpg What I'm expecting is something like this (created with Time Lapse Assembler.app): https://vimeo.com/39038362 - This is my fallback option, but I'd really like to create timelapse movies from a script. I'm on OSX Lion (10.7.3) with FFmpeg version (0.10) installed via Homebrew. I also tried to find a proper version of mencoder for OSX, but this doesn't seem to be an easy task. Also, ImageMagick's convert doesn't seem to work nicely, it creates really bad output and it seems there's not much I can do about it... Edit: With libx264 and an mp4 container: ffmpeg -f image2 -y -i img_%03d.jpg -vcodec libx264 timelapse4.mp4 Output: ffmpeg version 0.10 Copyright (c) 2000-2012 the FFmpeg developers built on Mar 26 2012 13:47:02 with clang 3.0 (tags/Apple/clang-211.12) configuration: --prefix=/usr/local/Cellar/ffmpeg/0.10 --enable-shared --enable-gpl --enable-version3 --enable-nonfree --enable-hardcoded-tables --enable-libfreetype --cc=/usr/bin/clang --enable-libx264 --enable-libfaac --enable-libmp3lame --enable-librtmp --enable-libtheora --enable-libvorbis --enable-libvpx --enable-libxvid --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libass --disable-ffplay libavutil 51. 34.101 / 51. 34.101 libavcodec 53. 60.100 / 53. 60.100 libavformat 53. 31.100 / 53. 31.100 libavdevice 53. 4.100 / 53. 4.100 libavfilter 2. 60.100 / 2. 60.100 libswscale 2. 1.100 / 2. 1.100 libswresample 0. 6.100 / 0. 6.100 libpostproc 52. 0.100 / 52. 0.100 Input #0, image2, from 'img_%03d.jpg': Duration: 00:00:06.88, start: 0.000000, bitrate: N/A Stream #0:0: Video: mjpeg, yuvj420p, 3888x2592 [SAR 72:72 DAR 3:2], 25 fps, 25 tbr, 25 tbn, 25 tbc [buffer @ 0x7f8ec9415f20] w:3888 h:2592 pixfmt:yuvj420p tb:1/1000000 sar:72/72 sws_param: [libx264 @ 0x7f8ec981d800] using SAR=1/1 [libx264 @ 0x7f8ec981d800] frame MB size (243x162) > level limit (36864) [libx264 @ 0x7f8ec981d800] MB rate (984150) > level limit (983040) [libx264 @ 0x7f8ec981d800] using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.2 AVX [libx264 @ 0x7f8ec981d800] profile High, level 5.1 [libx264 @ 0x7f8ec981d800] 264 - core 120 - H.264/MPEG-4 AVC codec - Copyleft 2003-2011 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=12 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, mp4, to 'timelapse4.mp4': Metadata: encoder : Lavf53.31.100 Stream #0:0: Video: h264 (![0][0][0] / 0x0021), yuvj420p, 3888x2592 [SAR 72:72 DAR 3:2], q=-1--1, 25 tbn, 25 tbc Stream mapping: Stream #0:0 -> #0:0 (mjpeg -> libx264) Press [q] to stop, [?] for help frame= 172 fps= 18 q=-1.0 Lsize= 259kB time=00:00:06.80 bitrate= 312.3kbits/s video:256kB audio:0kB global headers:0kB muxing overhead 1.089647% [libx264 @ 0x7f8ec981d800] frame I:1 Avg QP: 9.60 size:212820 [libx264 @ 0x7f8ec981d800] frame P:43 Avg QP:30.50 size: 291 [libx264 @ 0x7f8ec981d800] frame B:128 Avg QP:31.00 size: 285 [libx264 @ 0x7f8ec981d800] consecutive B-frames: 0.6% 0.0% 1.7% 97.7% [libx264 @ 0x7f8ec981d800] mb I I16..4: 22.5% 77.2% 0.3% [libx264 @ 0x7f8ec981d800] mb P I16..4: 0.0% 0.0% 0.0% P16..4: 0.0% 0.0% 0.0% 0.0% 0.0% skip:100.0% [libx264 @ 0x7f8ec981d800] mb B I16..4: 0.0% 0.0% 0.0% B16..8: 0.0% 0.0% 0.0% direct: 0.0% skip:100.0% L0: 1.2% L1:98.8% BI: 0.0% [libx264 @ 0x7f8ec981d800] 8x8 transform intra:77.2% inter:100.0% [libx264 @ 0x7f8ec981d800] coded y,uvDC,uvAC intra: 41.2% 23.4% 0.6% inter: 0.0% 0.0% 0.0% [libx264 @ 0x7f8ec981d800] i16 v,h,dc,p: 40% 25% 35% 1% [libx264 @ 0x7f8ec981d800] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 36% 32% 30% 1% 0% 0% 0% 0% 0% [libx264 @ 0x7f8ec981d800] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 51% 40% 6% 1% 1% 0% 1% 0% 1% [libx264 @ 0x7f8ec981d800] i8c dc,h,v,p: 60% 21% 19% 0% [libx264 @ 0x7f8ec981d800] Weighted P-Frames: Y:0.0% UV:0.0% [libx264 @ 0x7f8ec981d800] ref P L0: 92.3% 0.0% 0.0% 7.7% [libx264 @ 0x7f8ec981d800] ref B L0: 50.0% 0.0% 50.0% [libx264 @ 0x7f8ec981d800] ref B L1: 99.4% 0.6% [libx264 @ 0x7f8ec981d800] kb/s:304.49 Output timelapse4.mp4 (beacause of spam protection I can only post two links with my reputation): http sdm-net.org/data/timelapse4.mp4

    Read the article

  • Bluetooth RFCOMM / SDP connection to a RS232 adapter in android

    - by ThePosey
    Hello All, I am trying to use the Bluetooth Chat sample API app that google provides to connect to a bluetooth RS232 adapter hooked up to another device. Here is the app for reference: http://developer.android.com/resources/samples/BluetoothChat/index.html And here is the spec sheet for the RS232 connector just for reference: http://serialio.com/download/Docs/BlueSnap-guide-4.77_Commands.pdf Well the problem is that when I go to connect to the device with: mmSocket.connect(); (BluetoothSocket::connect()) I always get an IOException error thrown by the connect() method. When I do a toString on the exception I get "Service discovery failed". My question is mostly what are the cases that would cause an IOException to get thrown in the connect method? I know those are in the source somewhere but I don't know exactly how the java layer that you write apps in and the C/C++ layer that contains the actual stacks interface. I know that it uses the bluez bluetooth stack which is written in C/C++ but not sure how that ties into the java layer which is what I would think is throwing the exception. Any help on pointing me to where I can try to dissect this issue would be incredible. Also just to note I am able to pair with the RS232 adapter just fine but I am never able to actually connect. Here is the logcat output for more reference: I/ActivityManager( 1018): Displayed activity com.example.android.BluetoothChat/.DeviceListActivity: 326 ms (total 326 ms) E/BluetoothService.cpp( 1018): stopDiscoveryNative: D-Bus error in StopDiscovery: org.bluez.Error.Failed (Invalid discovery session) D/BluetoothChat( 1729): onActivityResult -1 D/BluetoothChatService( 1729): connect to: 00:06:66:03:0C:51 D/BluetoothChatService( 1729): setState() STATE_LISTEN - STATE_CONNECTING E/BluetoothChat( 1729): + ON RESUME + I/BluetoothChat( 1729): MESSAGE_STATE_CHANGE: STATE_CONNECTING I/BluetoothChatService( 1729): BEGIN mConnectThread E/BluetoothService.cpp( 1018): stopDiscoveryNative: D-Bus error in StopDiscovery: org.bluez.Error.Failed (Invalid discovery session) E/BluetoothEventLoop.cpp( 1018): event_filter: Received signal org.bluez.Device:PropertyChanged from /org/bluez/1498/hci0/dev_00_06_66_03_0C_51 I/BluetoothChatService( 1729): CONNECTION FAIL TOSTRING: java.io.IOException: Service discovery failed D/BluetoothChatService( 1729): setState() STATE_CONNECTING - STATE_LISTEN D/BluetoothChatService( 1729): start D/BluetoothChatService( 1729): setState() STATE_LISTEN - STATE_LISTEN I/BluetoothChat( 1729): MESSAGE_STATE_CHANGE: STATE_LISTEN V/BluetoothEventRedirector( 1080): Received android.bleutooth.device.action.UUID I/NotificationService( 1018): enqueueToast pkg=com.example.android.BluetoothChat callback=android.app.ITransientNotification$Stub$Proxy@446327c8 duration=0 I/BluetoothChat( 1729): MESSAGE_STATE_CHANGE: STATE_LISTEN E/BluetoothEventLoop.cpp( 1018): event_filter: Received signal org.bluez.Device:PropertyChanged from /org/bluez/1498/hci0/dev_00_06_66_03_0C_51 V/BluetoothEventRedirector( 1080): Received android.bleutooth.device.action.UUID The device I'm trying to connect to is the 00:06:66:03:0C:51 which I can scan for and apparently pair with just fine. The below is merged from a similar question which was successfully resolved by the selected answer here: How can one connect to an rfcomm device other than another phone in Android? The Android API provides examples of using listenUsingRfcommWithServiceRecord() to set up a socket and createRfcommSocketToServiceRecord() to connect to that socket. I'm trying to connect to an embedded device with a BlueSMiRF Gold chip. My working Python code (using the PyBluez library), which I'd like to port to Android, is as follows: sock = bluetooth.BluetoothSocket(proto=bluetooth.RFCOMM) sock.connect((device_addr, 1)) return sock.makefile() ...so the service to connect to is simply defined as channel 1, without any SDP lookup. As the only documented mechanism I see in the Android API does SDP lookup of a UUID, I'm slightly at a loss. Using "sdptool browse" from my Linux host comes up empty, so I surmise that the chip in question simply lacks SDP support.

    Read the article

  • Animating the offset of the scrollView in a UICollectionView/UITableView causes prematurely disappearing cells

    - by radutzan
    We have a UICollectionView with a custom layout very similar to UITableView (it scrolls vertically). The UICollectionView displays only 3 cells simultaneously, with one of them being the currently active cell: [ 1 ] [*2*] [ 3 ] (The active cell here is #2.) The cells are roughly 280 points high, so only the active cell is fully visible on the screen. The user doesn't directly scroll the view to navigate, instead, she swipes the active cell horizontally to advance to the next cell. We then do some fancy animations and scroll the UICollectionView so the next cell is in the "active" position, thus making it the active one, moving the old one away and bringing up the next cell in the queue: [ 2 ] [*3*] [ 4 ] The problem here is setting the UICollectionView's offset. We currently set it in a UIView animation block (self.collectionView.contentOffset = targetOffset;) along with three other animating properties, which mostly works great, but causes the first cell (the previously active one, in the latter case, #2) to vanish as soon as the animation starts running, even before the delay interval completes. This is definitely not ideal. I've thought of some solutions, but can't figure out the best one: Absurdly enlarge the UICollectionView's frame to fit five cells instead of three, thus forcing it to keep the cells in memory even if they are offscreen. I've tried this and it works, but it sounds like an awfully dirty hack. Take a snapshot of the rendered content of the vanishing cell, put it in a UIImageView, add the UIImageView as a subview of the scrollView just before the cell goes away in the exact same position of the old cell, removing it once the animation ends. Sounds less sucky than the previous option (memory-wise, at least), but still kinda hacky. I also don't know the best way to accomplish this, please point me in the right direction. Switch to UIScrollView's setContentOffset:animated:. We actually used to have this, and it fixed the disappearing cell issue, but running this in parallel with the other UIView animations apparently competes for the attention of the main thread, thus creating a terribly choppy animation on single-core devices (iPhone 3GS/4). It also doesn't allow us to change the duration or easing of the animation, so it feels out of sync with the rest. Still an option if we can find a way to make it work in harmony with the UIView block animations. Switch to UICollectionView's scrollToItemAtIndexPath:atScrollPosition:animated:. Haven't tried this, but it has a big downside: it only takes 3 possible constants (that apply to this case, at least) for the target scroll position: UICollectionViewScrollPositionTop, UICollectionViewScrollPositionCenteredVertically and UICollectionViewScrollPositionBottom. The active cell could vary its height, but it always has to be 35 points from the top of the window, and these options don't provide enough control to accomplish the design. It could also potentially be just as problematic as 3.1. Still an option because there might be a way to go around the scroll position thing that I don't know of, and it might not have the same issue with the main thread, which seems unlikely. Any help will be greatly appreciated. Please ask if you need clarification. Thanks a lot!

    Read the article

  • ASP.NET GZip Encoding Caveats

    - by Rick Strahl
    GZip encoding in ASP.NET is pretty easy to accomplish using the built-in GZipStream and DeflateStream classes and applying them to the Response.Filter property.  While applying GZip and Deflate behavior is pretty easy there are a few caveats that you have watch out for as I found out today for myself with an application that was throwing up some garbage data. But before looking at caveats let’s review GZip implementation for ASP.NET. ASP.NET GZip/Deflate Basics Response filters basically are applied to the Response.OutputStream and transform it as data is written to it through the ASP.NET Response object. So a Response.Write eventually gets written into the output stream which if a filter is also written through the filter stream’s interface. To perform the actual GZip (and Deflate) encoding typically used by Web pages .NET includes the GZipStream and DeflateStream stream classes which can be readily assigned to the Repsonse.OutputStream. With these two stream classes in place it’s almost trivially easy to create a couple of reusable methods that allow you to compress your HTTP output. In my standard WebUtils utility class (from the West Wind West Wind Web Toolkit) created two static utility methods – IsGZipSupported and GZipEncodePage – that check whether the client supports GZip encoding and then actually encodes the current output (note that although the method includes ‘Page’ in its name this code will work with any ASP.NET output). /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("deflate")) { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } else { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } } } As you can see the actual assignment of the Filter is as simple as: Response.Filter = new DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); which applies the filter to the OutputStream. You also need to ensure that your response reflects the new GZip or Deflate encoding and ensure that any pages that are cached in Proxy servers can differentiate between pages that were encoded with the various different encodings (or no encoding). To use this utility function now is trivially easy: In any ASP.NET code that wants to compress its Response output you simply use: protected void Page_Load(object sender, EventArgs e) { WebUtils.GZipEncodePage(); Entry = WebLogFactory.GetEntry(); var entries = Entry.GetLastEntries(App.Configuration.ShowEntryCount, "pk,Title,SafeTitle,Body,Entered,Feedback,Location,ShowTopAd", "TEntries"); if (entries == null) throw new ApplicationException("Couldn't load WebLog Entries: " + Entry.ErrorMessage); this.repEntries.DataSource = entries; this.repEntries.DataBind(); } Here I use an ASP.NET page, but the above WebUtils.GZipEncode() method call will work in any ASP.NET application type including HTTP Handlers. The only requirement is that the filter needs to be applied before any other output is sent to the OutputStream. For example, in my CallbackHandler service implementation by default output over a certain size is GZip encoded. The output that is generated is JSON or XML and if the output is over 5k in size I apply WebUtils.GZipEncode(): if (sbOutput.Length > GZIP_ENCODE_TRESHOLD) WebUtils.GZipEncodePage(); Response.ContentType = ControlResources.STR_JsonContentType; HttpContext.Current.Response.Write(sbOutput.ToString()); Ok, so you probably get the idea: Encoding GZip/Deflate content is pretty easy. Hold on there Hoss –Watch your Caching Or is it? There are a few caveats that you need to watch out for when dealing with GZip content. The fist issue is that you need to deal with the fact that some clients don’t support GZip or Deflate content. Most modern browsers support it, but if you have a programmatic Http client accessing your content GZip/Deflate support is by no means guaranteed. For example, WinInet Http clients don’t support GZip out of the box – it has to be explicitly implemented. Other low level HTTP clients on other platforms too don’t support GZip out of the box. The problem is that your application, your Web Server and Proxy Servers on the Internet might be caching your generated content. If you return content with GZip once and then again without, either caching is not applied or worse the wrong type of content is returned back to the client from a cache or proxy. The result is an unreadable response for *some clients* which is also very hard to debug and fix once in production. You already saw the issue of Proxy servers addressed in the GZipEncodePage() function: // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); This ensures that any Proxy servers also check for the Content-Encoding HTTP Header to cache their content – not just the URL. The same thing applies if you do OutputCaching in your own ASP.NET code. If you generate output for GZip on an OutputCached page the GZipped content will be cached (either by ASP.NET’s cache or in some cases by the IIS Kernel Cache). But what if the next client doesn’t support GZip? She’ll get served a cached GZip page that won’t decode and she’ll get a page full of garbage. Wholly undesirable. To fix this you need to add some custom OutputCache rules by way of the GetVaryByCustom() HttpApplication method in your global_ASAX file: public override string GetVaryByCustomString(HttpContext context, string custom) { // Override Caching for compression if (custom == "GZIP") { string acceptEncoding = HttpContext.Current.Response.Headers["Content-Encoding"]; if (string.IsNullOrEmpty(acceptEncoding)) return ""; else if (acceptEncoding.Contains("gzip")) return "GZIP"; else if (acceptEncoding.Contains("deflate")) return "DEFLATE"; return ""; } return base.GetVaryByCustomString(context, custom); } In a page that use Output caching you then specify: <%@ OutputCache Duration="180" VaryByParam="none" VaryByCustom="GZIP" %> To use that custom rule. It’s all Fun and Games until ASP.NET throws an Error Ok, so you’re up and running with GZip, you have your caching squared away and your pages that you are applying it to are jamming along. Then BOOM, something strange happens and you get a lovely garbled page that look like this: Lovely isn’t it? What’s happened here is that I have WebUtils.GZipEncode() applied to my page, but there’s an error in the page. The error falls back to the ASP.NET error handler and the error handler removes all existing output (good) and removes all the custom HTTP headers I’ve set manually (usually good, but very bad here). Since I applied the Response.Filter (via GZipEncode) the output is now GZip encoded, but ASP.NET has removed my Content-Encoding header, so the browser receives the GZip encoded content without a notification that it is encoded as GZip. The result is binary output. Here’s what Fiddler says about the raw HTTP header output when an error occurs when GZip encoding was applied: HTTP/1.1 500 Internal Server Error Cache-Control: private Content-Type: text/html; charset=utf-8 Date: Sat, 30 Apr 2011 22:21:08 GMT Content-Length: 2138 Connection: close ?`I?%&/m?{J?J??t??` … binary output striped here Notice: no Content-Encoding header and that’s why we’re seeing this garbage. ASP.NET has stripped the Content-Encoding header but left our filter intact. So how do we fix this? In my applications I typically have a global Application_Error handler set up and in this case I’ve been using that. One thing that you can do in the Application_Error handler is explicitly clear out the Response.Filter and set it to null at the top: protected void Application_Error(object sender, EventArgs e) { // Remove any special filtering especially GZip filtering Response.Filter = null; … } And voila I get my Yellow Screen of Death or my custom generated error output back via uncompressed content. BTW, the same is true for Page level errors handled in Page_Error or ASP.NET MVC Error handling methods in a controller. Another and possibly even better solution is to check whether a filter is attached just before the headers are sent to the client as pointed out by Adam Schroeder in the comments: protected void Application_PreSendRequestHeaders() { // ensure that if GZip/Deflate Encoding is applied that headers are set // also works when error occurs if filters are still active HttpResponse response = HttpContext.Current.Response; if (response.Filter is GZipStream && response.Headers["Content-encoding"] != "gzip") response.AppendHeader("Content-encoding", "gzip"); else if (response.Filter is DeflateStream && response.Headers["Content-encoding"] != "deflate") response.AppendHeader("Content-encoding", "deflate"); } This uses the Application_PreSendRequestHeaders() pipeline event to check for compression encoding in a filter and adjusts the content accordingly. This is actually a better solution since this is generic – it’ll work regardless of how the content is cleaned up. For example, an error Response.Redirect() or short error display might get changed and the filter not cleared and this code actually handles that. Sweet, thanks Adam. It’s unfortunate that ASP.NET doesn’t natively clear out Response.Filters when an error occurs just as it clears the Response and Headers. I can’t see where leaving a Filter in place in an error situation would make any sense, but hey - this is what it is and it’s easy enough to fix as long as you know where to look. Riiiight! IIS and GZip I should also mention that IIS 7 includes good support for compression natively. If you can defer encoding to let IIS perform it for you rather than doing it in your code by all means you should do it! Especially any static or semi-dynamic content that can be made static should be using IIS built-in compression. Dynamic caching is also supported but is a bit more tricky to judge in terms of performance and footprint. John Forsyth has a great article on the benefits and drawbacks of IIS 7 compression which gives some detailed performance comparisons and impact reviews. I’ll post another entry next with some more info on IIS compression since information on it seems to be a bit hard to come by. Related Content Built-in GZip/Deflate Compression in IIS 7.x HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET   IIS7  

    Read the article

  • How about a new platform for your next API&hellip; a CMS?

    - by Elton Stoneman
    Originally posted on: http://geekswithblogs.net/EltonStoneman/archive/2014/05/22/how-about-a-new-platform-for-your-next-apihellip-a.aspxSay what? I’m seeing a type of API emerge which serves static or long-lived resources, which are mostly read-only and have a controlled process to update the data that gets served. Think of something like an app configuration API, where you want a central location for changeable settings. You could use this server side to store database connection strings and keep all your instances in sync, or it could be used client side to push changes out to all users (and potentially driving A/B or MVT testing). That’s a good candidate for a RESTful API which makes proper use of HTTP expiration and validation caching to minimise traffic, but really you want a front end UI where you can edit the current config that the API returns and publish your changes. Sound like a Content Mangement System would be a good fit? I’ve been looking at that and it’s a great fit for this scenario. You get a lot of what you need out of the box, the amount of custom code you need to write is minimal, and you get a whole lot of extra stuff from using CMS which is very useful, but probably not something you’d build if you had to put together a quick UI over your API content (like a publish workflow, fine-grained security and an audit trail). You typically use a CMS for HTML resources, but it’s simple to expose JSON instead – or to do content negotiation to support both, so you can open a resource in a browser and see a nice visual representation, or request it with: Accept=application/json and get the same content rendered as JSON for the app to use. Enter Umbraco Umbraco is an open source .NET CMS that’s been around for a while. It has very good adoption, a lively community and a good release cycle. It’s easy to use, has all the functionality you need for a CMS-driven API, and it’s scalable (although you won’t necessarily put much scale on the CMS layer). In the rest of this post, I’ll build out a simple app config API using Umbraco. We’ll define the structure of the configuration resource by creating a new Document Type and setting custom properties; then we’ll build a very simple Razor template to return configuration documents as JSON; then create a resource and see how it looks. And we’ll look at how you could build this into a wider solution. If you want to try this for yourself, it’s ultra easy – there’s an Umbraco image in the Azure Website gallery, so all you need to to is create a new Website, select Umbraco from the image and complete the installation. It will create a SQL Azure website to store all the content, as well as a Website instance for editing and accessing content. They’re standard Azure resources, so you can scale them as you need. The default install creates a starter site for some HTML content, which you can use to learn your way around (or just delete). 1. Create Configuration Document Type In Umbraco you manage content by creating and modifying documents, and every document has a known type, defining what properties it holds. We’ll create a new Document Type to describe some basic config settings. In the Settings section from the left navigation (spanner icon), expand Document Types and Master, hit the ellipsis and select to create a new Document Type: This will base your new type off the Master type, which gives you some existing properties that we’ll use – like the Page Title which will be the resource URL. In the Generic Properties tab for the new Document Type, you set the properties you’ll be able to edit and return for the resource: Here I’ve added a text string where I’ll set a default cache lifespan, an image which I can use for a banner display, and a date which could show the user when the next release is due. This is the sort of thing that sits nicely in an app config API. It’s likely to change during the life of the product, but not very often, so it’s good to have a centralised place where you can make and publish changes easily and safely. It also enables A/B and MVT testing, as you can change the response each client gets based on your set logic, and their apps will behave differently without needing a release. 2. Define the response template Now we’ve defined the structure of the resource (as a document), in Umbraco we can define a C# Razor template to say how that resource gets rendered to the client. If you only want to provide JSON, it’s easy to render the content of the document by building each property in the response (Umbraco uses dynamic objects so you can specify document properties as object properties), or you can support content negotiation with very little effort. Here’s a template to render the document as HTML or JSON depending on the Accept header, using JSON.NET for the API rendering: @inherits Umbraco.Web.Mvc.UmbracoTemplatePage @using Newtonsoft.Json @{ Layout = null; } @if(UmbracoContext.HttpContext.Request.Headers["accept"] != null &amp;&amp; UmbracoContext.HttpContext.Request.Headers["accept"] == "application/json") { Response.ContentType = "application/json"; @Html.Raw(JsonConvert.SerializeObject(new { cacheLifespan = CurrentPage.cacheLifespan, bannerImageUrl = CurrentPage.bannerImage, nextReleaseDate = CurrentPage.nextReleaseDate })) } else { <h1>App configuration</h1> <p>Cache lifespan: <b>@CurrentPage.cacheLifespan</b></p> <p>Banner Image: </p> <img src="@CurrentPage.bannerImage"> <p>Next Release Date: <b>@CurrentPage.nextReleaseDate</b></p> } That’s a rough-and ready example of what you can do. You could make it completely generic and just render all the document’s properties as JSON, but having a specific template for each resource gives you control over what gets sent out. And the templates are evaluated at run-time, so if you need to change the output – or extend it, say to add caching response headers – you just edit the template and save, and the next client request gets rendered from the new template. No code to build and ship. 3. Create the content With your document type created, in  the Content pane you can create a new instance of that document, where Umbraco gives you a nice UI to input values for the properties we set up on the Document Type: Here I’ve set the cache lifespan to an xs:duration value, uploaded an image for the banner and specified a release date. Each property gets the appropriate input control – text box, file upload and date picker. At the top of the page is the name of the resource – myapp in this example. That specifies the URL for the resource, so if I had a DNS entry pointing to my Umbraco instance, I could access the config with a URL like http://static.x.y.z.com/config/myapp. The setup is all done now, so when we publish this resource it’ll be available to access.  4. Access the resource Now if you open  that URL in the browser, you’ll see the HTML version rendered: - complete with the  image and formatted date. Umbraco lets you save changes and preview them before publishing, so the HTML view could be a good way of showing editors their changes in a usable view, before they confirm them. If you browse the same URL from a REST client, specifying the Accept=application/json request header, you get this response:   That’s the exact same resource, with a managed UI to publish it, being accessed as HTML or JSON with a tiny amount of effort. 5. The wider landscape If you have fairy stable content to expose as an API, I think  this approach is really worth considering. Umbraco scales very nicely, but in a typical solution you probably wouldn’t need it to. When you have additional requirements, like logging API access requests - but doing it out-of-band so clients aren’t impacted, you can put a very thin API layer on top of Umbraco, and cache the CMS responses in your API layer:   Here the API does a passthrough to CMS, so the CMS still controls the content, but it caches the response. If the response is cached for 1 minute, then Umbraco only needs to handle 1 request per minute (multiplied by the number of API instances), so if you need to support 1000s of request per second, you’re scaling a thin, simple API layer rather than having to scale the more complex CMS infrastructure (including the database). This diagram also shows an approach to logging, by asynchronously publishing a message to a queue (Redis in this case), which can be picked up later and persisted by a different process. Does it work? Beautifully. Using Azure, I spiked the solution above (including the Redis logging framework which I’ll blog about later) in half a day. That included setting up different roles in Umbraco to demonstrate a managed workflow for publishing changes, and a couple of document types representing different resources. Is it maintainable? We have three moving parts, which are all managed resources in Azure –  an Azure Website for Umbraco which may need a couple of instances for HA (or may not, depending on how long the content can be cached), a message queue (Redis is in preview in Azure, but you can easily use Service Bus Queues if performance is less of a concern), and the Web Role for the API. Two of the components are off-the-shelf, from open source projects, and the only custom code is the API which is very simple. Does it scale? Pretty nicely. With a single Umbraco instance running as an Azure Website, and with 4x instances for my API layer (Standard sized Web Roles), I got just under 4,000 requests per second served reliably, with a Worker Role in the background saving the access logs. So we had a nice UI to publish app config changes, with a friendly Web preview and a publishing workflow, capable of supporting 14 million requests in an hour, with less than a day’s effort. Worth considering if you’re publishing long-lived resources through your API.

    Read the article

  • E-Business Suite Technology Sessions at OAUG Collaborate 12

    - by Max Arderius
    Members of our E-Business Suite Applications Technology Group will be at the OAUG Collaborate 12 conference at the Mandalay Bay Convention Center in Las Vegas, Nevada on April 22 to 26, 2012.  Please drop by any of our sessions to hear the latest news and meet up with us. Speaker Sessions Session 9675Planning Your Oracle E-Business Suite Upgrade from Release 11i to 12.1 and BeyondAnne Carlson, Senior Director, Applications Technology Group, OracleSunday, April 22, 2:00 pm - 3:00 pmLocation: Jasmine B Attend this session to hear the latest Oracle E-Business Suite Release 12.1 upgrade planning tips gleaned from customers who have already performed the upgrade. Youll get specific, cross-product advice on how to decide your project's scope, understand the factors that affect your project's duration, develop a robust testing strategy, leverage Oracle Support resources, and more. In a nutshell, this session tells you things you need to know before embarking upon your Release 12.1 upgrade project. Session 9401Minimizing Oracle E-Business Suite Maintenance DowntimesElke Phelps, Principal Product Manager, Applications Technology Group, OracleKevin Hudson, Sr. Director, Applications Technology Group, OracleSunday, April 22, 2:10 pm - 3:10 pmLocation: South Seas EThis session starts with an architecture review of Oracle E-Business Suite fundamentals and then moves to a practical view of the different tools and approaches for downtimes. Topics include patching shortcuts, merging patches, distributing worker processes across multiple servers, running ADPatch in no-interactive mode, staged APPL_TOPs, shared file systems, deferring system-wide database tasks, avoiding resource bottlenecks etc... This session also describes the online patching capabilities coming in Release 12.2. Session 9368Oracle E-Business Suite Technology: Latest Features and RoadmapLisa Parekh, Vice President, Applications Technology Group, Oracle Sunday, April 22, 4:30 pm - 5:30 pmLocation: South Seas EThis session provides an overview of Oracle E-Business Suite technology strategy, the capabilities and associated business benefits of recent releases, as well as a review of the product roadmap. As a cornerstone session for Oracle E-Business Suite technology, come hear about the latest usability enhancements, systems administration and configuration management tools, security-related updates, and tools and options for extending, customizing, and integrating the Oracle E-Business Suite with other applications. Session 10709Oracle E-Business Suite Applications Strategy and General Manager UpdateCliff Godwin, Sr. VP, Application Development, OracleMonday, April 23, 2:30 pm - 3:30 pmLocation: Mandalay Bay DIn this session, hear from Oracle E-Business Suite General Manager Cliff Godwin as he delivers an update on the Oracle E-Business Suite product line. The session covers the value delivered by the current release of Oracle E-Business Suite applications, the momentum, and how Oracle E-Business Suite applications integrate into Oracle’s overall applications strategy. You will come away with an understanding of the value Oracle E-Business Suite applications deliver now and in the future. Session 9398How to Reduce TCO Using Oracle Application Management Suite for Oracle E-Business SuiteAngelo Rosado, Principal Product Manager, Applications Technology Group, OracleKenneth Baxter, Principal Product Strategy Manager, Management Pack Fusion Middleware Management, OracleTuesday, April 24, 8:00 am - 9:00 amLocation: Breakers GThis session covers the methods and tools you can use to gain insights into your end users, troubleshoot performance problems, define service-level objectives, and proactively monitor your end-to-end Oracle E-Business Suite environment to meet your availability and performance targets. Come hear how you can manage, diagnose, and monitor the Oracle E-Business Suite environment from a single console by using Oracle Enterprise Manager together with the Oracle Application Management Suite for Oracle E-Business Suite. Session 9370 Coexistence of Oracle E-Business Suite and Oracle Fusion Applications: Platform Perspective Nadia Bendjedou, Senior Director, Product Strategy, Oracle Tuesday, April 24, 2:00 pm - 3:00 pm Location: South Seas E Join us at this session if you are wondering which tools to integrate your data, your processes and your User Interface. Or what tools to customize and extend your screens and reports (OAF, Forms, ADF, Oracle Reports, BI etc....), what tools to secure, protect and manage your Oracle E-Business Suite etc... Or simply if you are looking for a technical roadmap for your Oracle E-Business Suite infrastructure to CO-EXIST with the rest of your enterprise applications including Oracle Fusion Applications. Session 9375 Oracle E-Business Suite Directions: Deployment and System AdministrationMax Arderius, Manager, Applications Development Group, OracleTuesday, April 24, 4:30 pm - 5:30 pmLocation: Breakers GWhat's coming in the next major version of Oracle E-Business Suite 12? This session covers the latest technology stack, including the use of Oracle WebLogic Server and Oracle Database 11g Release 2. Topics include an architectural overview, installation and upgrade options, new configuration options, and new tools for hot-cloning and automated "lights out" cloning. Learn about how online patching will reduce your database patching downtimes to the time it takes to bounce your database server.Session 9369Oracle E-Business Suite Technology Certification Primer and RoadmapSteven Chan, Sr. Director, Applications Technology Group, Oracle Wednesday, April 25, 8:15 am - 9:15 amLocation: South Seas FThis Oracle Development session summarizes the latest certifications and roadmap for the Oracle E-Business Suite technology stack, including database releases/options, Java, Oracle Forms, Oracle Containers for J2EE, desktop OS, browsers, JRE releases, Office/OpenOffice, development and Web authoring tools, user authentication and management, BI, security options, clouds, Oracle VM etc.... It also covers the most-commonly-asked questions about technology stack component support dates and upgrade implications. Session 9407The Latest Oracle E-Business Suite Release User Interface and Usability EnhancementsGustavo Jimenez, Sr. Manager, Applications Technology Group, Oracle Wednesday, April 25, 1:00 pm - 2:00 pmLocation: South Seas GIn this session, developers will get a detailed look at new features designed to enhance usability, offer more capabilities for personalization and extensions, and support the development and use of dashboards and Web services. Topics include rich new UI capabilities such as new home page features, Navigator and Favorites pull-down menus, Oracle ADF task flows etc.... In addition, we will cover the personalization/extensibility enhancements, business layer extensions, Oracle ADF integration and much more. Session 9374Best Practices for Oracle E-Business Suite Performance Tuning and Upgrade OptimizationIsam Alyousfi, Senior Director, Applications Performance, OracleUdayan Parvate, Director, Release Engineering, Quality and Release Management, Oracle Thursday, April 26, 8:30 am - 9:30 amLocation: South Seas FThis presentation will offer tips and techniques on tuning all the layers of the Oracle E-Business Suite stack including the various tiers of the Oracle E-Business Suite environment. You will learn about tuning Oracle Forms, Concurrent Manager, Apache, and Oracle Discoverer. Track down memory leaks and other issues on the Java and Java Virtual Machine layers. The session also covers Oracle E-Business Suite product-level tuning, including Oracle Workflow, Oracle Order Management, Oracle Payroll, and other modules.Session 9412 Oracle E-Business Suite 12.1 Desktop Integration: Beyond Oracle Applications Desktop IntegratorGustavo Jimenez, Sr. Manager, Applications Technology Group, OracleThursday, April 26, 8:30 am - 9:30 amLocation: Breakers GThis session describes the new expanded functionality in Oracle Web Applications Desktop Integrator, Oracle Report Manager, and dedicated integrators. You have more options for desktop integration now, not fewer. Topics include an overview of prepackaged solutions for integrating Oracle E-Business Suite with desktop applications such as Microsoft Excel, Word, and Projects. The session also discusses how you can use the Desktop Integration Framework feature to create your own integrators quickly and easily.Session 9533 Upgrading your Customizations to Oracle E-Business Suite Release 12.1Sara Woodhull, Principal Product Manager, Applications Technology Group, Oracle Thursday, April 26, 11:00 am - 12:00 pmLocation: South Seas FHave you personalized Forms or OA Framework screens? Have you used mod_plsql or Applications Express to tailor your Release 11i functionality? Have you extended or customized your Release 11i environment using other tools? This session will help you understand customization scenarios, use cases, tools, and technologies for ensuring that your Oracle E-Business Suite Release 12.1 environment fits your users' needs closely and that any future customizations will be easy to upgrade. Special Interest Groups (SIG) Session 10535OAUG Database SIG- Part IMichael Brown, Colibri Limited Company Sunday, April 22, 3:20 pm - 4:20 pmLocation: South Seas FThis is the annual meeting of the Database SIG at Collaborate. The call for candidates for the chair will be closed at the meeting. Plans include a speaker from Oracle and a presentation on applications performance. The details of the meeting will be posted on http://www.dbsig.com. Guest Presentation: Oracle E-Business Suite Database PerformanceIsam Alyousfi, Senior Director, Applications Performance, Oracle Session 10720OAUG EBS Applications Technology SIG- Part ISrini Chaval, Cummins Monday, April 23, 2:30 pm - 3:30 pmLocation: South Seas F Guest Presentation:Oracle E-Business Suite Technology Certification RoadmapSteven Chan, Sr. Director, Applications Technology Group, Oracle Session 10510OAUG EBS Applications Technology SIG- Part IISrini Chaval, CumminsMonday, April 23, 3:45 pm - 4:45 pmLocation: South Seas F Guest Presentation:Oracle E-Business Suite 12.2 Online Patching Kevin Hudson, Sr. Director, Applications Technology Group, Oracle Session 10522 OAUG Upgrade SIG- Part IISandra Vucinic, VLAD Group, Inc. Wednesday, April 25, 3:00 pm - 4:00 pmLocation: South Seas FUpgrade SIG will host a business meeting followed by panel (Q&A) related to EBS Upgrade topics and Oracle presentation. Guest Presentation:Upgrading E-Business Suite Amrita Mehrok, Director, Financials Product Strategy, Oracle Nadia Bendjedou, Senior Director, Product Strategy, Oracle Session 10722OAUG Upgrade SIG- Part IISandra Vucinic, VLAD Group, Inc. Wednesday, April 25, 4:15 pm - 5:15 pmLocation: South Seas FUpgrade SIG will host a business meeting followed by panel (Q&A) related to EBS Upgrade topics and Oracle presentation. Guest Presentation:Tuning the Oracle E-Business Suite Upgrade Isam Alyousfi, Senior Director, Applications Performance, Oracle Panels Session 9360Oracle E-Business Suite Cloning PanelSandra Vucinic, VLAD Group, Inc. Guest Speaker: Max Arderius, Manager, Applications Technology Group, OracleWednesday, April 25, 9:30 am - 10:30 amLocation: South Seas FThis panel will discuss differences between available release 11i, R12 and R12.1 cloning methods. Advantages and disadvantages of each cloning method will be discussed in depth. This panel of experienced database administrators will lead a discussion focusing on the questions such as “which cloning method is best to use in your particular environment”. Attendees will gain practical knowledge, tips and tricks to assist with cloning of Oracle E-Business Suite release 11i, R12 and R12.1 environments. Session 10022Oracle Applications Tuning PanelMark Farnham, Rightsizing, Inc.Guest Speaker: Isam Alyousfi, Senior Director, Applications Performance, OracleThursday, April 26, 09:45 am - 10:45 amLocation: South Seas FThis applications performance panel session, sponsored by the OAUG Database SIG, provides a Q&A forum focused on helping you address your Oracle Applications (Oracle E-Business Suite and Oracle's PeopleSoft Enterprise and Siebel applications) performance- and scalability-related issues. The panel comprises several well-known Oracle Applications performance experts. Topic areas include Oracle Database; the network; and the applications tier, including patching and upgrade performance. For complete listing of all speaker sessions and other activities, please visit the OAUG Collaborate Web Site.

    Read the article

  • Option Trading: Getting the most out of the event session options

    - by extended_events
    You can control different aspects of how an event session behaves by setting the event session options as part of the CREATE EVENT SESSION DDL. The default settings for the event session options are designed to handle most of the common event collection situations so I generally recommend that you just use the defaults. Like everything in the real world though, there are going to be a handful of “special cases” that require something different. This post focuses on identifying the special cases and the correct use of the options to accommodate those cases. There is a reason it’s called Default The default session options specify a total event buffer size of 4 MB with a 30 second latency. Translating this into human terms; this means that our default behavior is that the system will start processing events from the event buffer when we reach about 1.3 MB of events or after 30 seconds, which ever comes first. Aside: What’s up with the 1.3 MB, I thought you said the buffer was 4 MB?The Extended Events engine takes the total buffer size specified by MAX_MEMORY (4MB by default) and divides it into 3 equally sized buffers. This is done so that a session can be publishing events to one buffer while other buffers are being processed. There are always at least three buffers; how to get more than three is covered later. Using this configuration, the Extended Events engine can “keep up” with most event sessions on standard workloads. Why is this? The fact is that most events are small, really small; on the order of a couple hundred bytes. Even when you start considering events that carry dynamically sized data (eg. binary, text, etc.) or adding actions that collect additional data, the total size of the event is still likely to be pretty small. This means that each buffer can likely hold thousands of events before it has to be processed. When the event buffers are finally processed there is an economy of scale achieved since most targets support bulk processing of the events so they are processed at the buffer level rather than the individual event level. When all this is working together it’s more likely that a full buffer will be processed and put back into the ready queue before the remaining buffers (remember, there are at least three) are full. I know what you’re going to say: “My server is exceptional! My workload is so massive it defies categorization!” OK, maybe you weren’t going to say that exactly, but you were probably thinking it. The point is that there are situations that won’t be covered by the Default, but that’s a good place to start and this post assumes you’ve started there so that you have something to look at in order to determine if you do have a special case that needs different settings. So let’s get to the special cases… What event just fired?! How about now?! Now?! If you believe the commercial adage from Heinz Ketchup (Heinz Slow Good Ketchup ad on You Tube), some things are worth the wait. This is not a belief held by most DBAs, particularly DBAs who are looking for an answer to a troubleshooting question fast. If you’re one of these anxious DBAs, or maybe just a Program Manager doing a demo, then 30 seconds might be longer than you’re comfortable waiting. If you find yourself in this situation then consider changing the MAX_DISPATCH_LATENCY option for your event session. This option will force the event buffers to be processed based on your time schedule. This option only makes sense for the asynchronous targets since those are the ones where we allow events to build up in the event buffer – if you’re using one of the synchronous targets this option isn’t relevant. Avoid forgotten events by increasing your memory Have you ever had one of those days where you keep forgetting things? That can happen in Extended Events too; we call it dropped events. In order to optimizes for server performance and help ensure that the Extended Events doesn’t block the server if to drop events that can’t be published to a buffer because the buffer is full. You can determine if events are being dropped from a session by querying the dm_xe_sessions DMV and looking at the dropped_event_count field. Aside: Should you care if you’re dropping events?Maybe not – think about why you’re collecting data in the first place and whether you’re really going to miss a few dropped events. For example, if you’re collecting query duration stats over thousands of executions of a query it won’t make a huge difference to miss a couple executions. Use your best judgment. If you find that your session is dropping events it means that the event buffer is not large enough to handle the volume of events that are being published. There are two ways to address this problem. First, you could collect fewer events – examine you session to see if you are over collecting. Do you need all the actions you’ve specified? Could you apply a predicate to be more specific about when you fire the event? Assuming the session is defined correctly, the next option is to change the MAX_MEMORY option to a larger number. Picking the right event buffer size might take some trial and error, but a good place to start is with the number of dropped events compared to the number you’ve collected. Aside: There are three different behaviors for dropping events that you specify using the EVENT_RETENTION_MODE option. The default is to allow single event loss and you should stick with this setting since it is the best choice for keeping the impact on server performance low.You’ll be tempted to use the setting to not lose any events (NO_EVENT_LOSS) – resist this urge since it can result in blocking on the server. If you’re worried that you’re losing events you should be increasing your event buffer memory as described in this section. Some events are too big to fail A less common reason for dropping an event is when an event is so large that it can’t fit into the event buffer. Even though most events are going to be small, you might find a condition that occasionally generates a very large event. You can determine if your session is dropping large events by looking at the dm_xe_sessions DMV once again, this time check the largest_event_dropped_size. If this value is larger than the size of your event buffer [remember, the size of your event buffer, by default, is max_memory / 3] then you need a large event buffer. To specify a large event buffer you set the MAX_EVENT_SIZE option to a value large enough to fit the largest event dropped based on data from the DMV. When you set this option the Extended Events engine will create two buffers of this size to accommodate these large events. As an added bonus (no extra charge) the large event buffer will also be used to store normal events in the cases where the normal event buffers are all full and waiting to be processed. (Note: This is just a side-effect, not the intended use. If you’re dropping many normal events then you should increase your normal event buffer size.) Partitioning: moving your events to a sub-division Earlier I alluded to the fact that you can configure your event session to use more than the standard three event buffers – this is called partitioning and is controlled by the MEMORY_PARTITION_MODE option. The result of setting this option is fairly easy to explain, but knowing when to use it is a bit more art than science. First the science… You can configure partitioning in three ways: None, Per NUMA Node & Per CPU. This specifies the location where sets of event buffers are created with fairly obvious implication. There are rules we follow for sub-dividing the total memory (specified by MAX_MEMORY) between all the event buffers that are specific to the mode used: None: 3 buffers (fixed)Node: 3 * number_of_nodesCPU: 2.5 * number_of_cpus Here are some examples of what this means for different Node/CPU counts: Configuration None Node CPU 2 CPUs, 1 Node 3 buffers 3 buffers 5 buffers 6 CPUs, 2 Node 3 buffers 6 buffers 15 buffers 40 CPUs, 5 Nodes 3 buffers 15 buffers 100 buffers   Aside: Buffer size on multi-processor computersAs the number of Nodes or CPUs increases, the size of the event buffer gets smaller because the total memory is sub-divided into more pieces. The defaults will hold up to this for a while since each buffer set is holding events only from the Node or CPU that it is associated with, but at some point the buffers will get too small and you’ll either see events being dropped or you’ll get an error when you create your session because you’re below the minimum buffer size. Increase the MAX_MEMORY setting to an appropriate number for the configuration. The most likely reason to start partitioning is going to be related to performance. If you notice that running an event session is impacting the performance of your server beyond a reasonably expected level [Yes, there is a reasonably expected level of work required to collect events.] then partitioning might be an answer. Before you partition you might want to check a few other things: Is your event retention set to NO_EVENT_LOSS and causing blocking? (I told you not to do this.) Consider changing your event loss mode or increasing memory. Are you over collecting and causing more work than necessary? Consider adding predicates to events or removing unnecessary events and actions from your session. Are you writing the file target to the same slow disk that you use for TempDB and your other high activity databases? <kidding> <not really> It’s always worth considering the end to end picture – if you’re writing events to a file you can be impacted by I/O, network; all the usual stuff. Assuming you’ve ruled out the obvious (and not so obvious) issues, there are performance conditions that will be addressed by partitioning. For example, it’s possible to have a successful event session (eg. no dropped events) but still see a performance impact because you have many CPUs all attempting to write to the same free buffer and having to wait in line to finish their work. This is a case where partitioning would relieve the contention between the different CPUs and likely reduce the performance impact cause by the event session. There is no DMV you can check to find these conditions – sorry – that’s where the art comes in. This is  largely a matter of experimentation. On the bright side you probably won’t need to to worry about this level of detail all that often. The performance impact of Extended Events is significantly lower than what you may be used to with SQL Trace. You will likely only care about the impact if you are trying to set up a long running event session that will be part of your everyday workload – sessions used for short term troubleshooting will likely fall into the “reasonably expected impact” category. Hey buddy – I think you forgot something OK, there are two options I didn’t cover: STARTUP_STATE & TRACK_CAUSALITY. If you want your event sessions to start automatically when the server starts, set the STARTUP_STATE option to ON. (Now there is only one option I didn’t cover.) I’m going to leave causality for another post since it’s not really related to session behavior, it’s more about event analysis. - Mike Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Marrying Core Animation with OpenGL ES

    - by Ole Begemann
    Edit: I suppose instead of the long explanation below I might also ask: Sending -setNeedsDisplay to an instance of CAEAGLLayer does not cause the layer to redraw (i.e., -drawInContext: is not called). Instead, I get this console message: <GLLayer: 0x4d500b0>: calling -display has no effect. Is there a way around this issue? Can I invoke -drawInContext: when -setNeedsDisplay is called? Long explanation below: I have an OpenGL scene that I would like to animate using Core Animation animations. Following the standard approach to animate custom properties in a CALayer, I created a subclass of CAEAGLLayer and defined a property sceneCenterPoint in it whose value should be animated. My layer also holds a reference to the OpenGL renderer: #import <UIKit/UIKit.h> #import <QuartzCore/QuartzCore.h> #import "ES2Renderer.h" @interface GLLayer : CAEAGLLayer { ES2Renderer *renderer; } @property (nonatomic, retain) ES2Renderer *renderer; @property (nonatomic, assign) CGPoint sceneCenterPoint; I then declare the property @dynamic to let CA create the accessors, override +needsDisplayForKey: and implement -drawInContext: to pass the current value of the sceneCenterPoint property to the renderer and ask it to render the scene: #import "GLLayer.h" @implementation GLLayer @synthesize renderer; @dynamic sceneCenterPoint; + (BOOL) needsDisplayForKey:(NSString *)key { if ([key isEqualToString:@"sceneCenterPoint"]) { return YES; } else { return [super needsDisplayForKey:key]; } } - (void) drawInContext:(CGContextRef)ctx { self.renderer.centerPoint = self.sceneCenterPoint; [self.renderer render]; } ... (If you have access to the WWDC 2009 session videos, you can review this technique in session 303 ("Animated Drawing")). Now, when I create an explicit animation for the layer on the keyPath @"sceneCenterPoint", Core Animation should calculate the interpolated values for the custom properties and call -drawInContext: for each step of the animation: - (IBAction)animateButtonTapped:(id)sender { CABasicAnimation *animation = [CABasicAnimation animationWithKeyPath:@"sceneCenterPoint"]; animation.duration = 1.0; animation.fromValue = [NSValue valueWithCGPoint:CGPointZero]; animation.toValue = [NSValue valueWithCGPoint:CGPointMake(1.0f, 1.0f)]; [self.glView.layer addAnimation:animation forKey:nil]; } At least that is what would happen for a normal CALayer subclass. When I subclass CAEAGLLayer, I get this output on the console for each step of the animation: 2010-12-21 13:59:22.180 CoreAnimationOpenGL[7496:207] <GLLayer: 0x4e0be20>: calling -display has no effect. 2010-12-21 13:59:22.198 CoreAnimationOpenGL[7496:207] <GLLayer: 0x4e0be20>: calling -display has no effect. 2010-12-21 13:59:22.216 CoreAnimationOpenGL[7496:207] <GLLayer: 0x4e0be20>: calling -display has no effect. 2010-12-21 13:59:22.233 CoreAnimationOpenGL[7496:207] <GLLayer: 0x4e0be20>: calling -display has no effect. ... So it seems that, possibly for performance reasons, for OpenGL layers, -drawInContext: is not getting called because these layers do not use the standard -display method to draw themselves. Can anybody confirm that? Is there a way around it? Or can I not use the technique I laid out above? This would mean I would have to implement the animations manually in the OpenGL renderer (which is possible but not as elegant IMO).

    Read the article

  • Migrating from SQL Trace to Extended Events

    - by extended_events
    In SQL Server codenamed “Denali” we are moving our diagnostic tracing capabilities forward by building a system on top of Extended Events. With every new system you face the specter of migration which is always a bit of a hassle. I’m obviously motivated to see everyone move their diagnostic tracing systems over to the new extended events based system, so I wanted to make sure we lowered the bar for the migration process to help ease your trials. In my initial post on Denali CTP 1 I described a couple tables that we created that will help map the existing SQL Trace Event Classes to the equivalent Extended Events events. In this post I’ll describe the tables in a bit more details, explain the relationship between the SQL Trace objects (Event Class & Column) and Extended Event objects (Events & Actions) and at the end provide some sample code for a managed stored procedure that will take an existing SQL Trace session (eg. a trace that you can see in sys.Traces) and converts it into event session DDL. Can you relate? In some ways, SQL Trace and Extended Events is kind of like the Standard and Metric measuring systems in the United States. If you spend too much time trying to figure out how to convert between the two it will probably make your head hurt. It’s often better to just use the new system without trying to translate between the two. That said, people like to relate new things to the things they’re comfortable with, so, with some trepidation, I will now explain how these two systems are related to each other. First, some terms… SQL Trace is made up of Event Classes and Columns. The Event Class occurs as the result of some activity in the database engine, for example, SQL:Batch Completed fires when a batch has completed executing on the server. Each Event Class can have any number of Columns associated with it and those Columns contain the data that is interesting about the Event Class, such as the duration or database name. In Extended Events we have objects named Events, EventData field and Actions. The Event (some people call this an xEvent but I’ll stick with Event) is equivalent to the Event Class in SQL Trace since it is the thing that occurs as the result of some activity taking place in the server. An  EventData field (from now on I’ll just refer to these as fields) is a piece of information that is highly correlated with the event and is always included as part of the schema of an Event. An Action is something that can be associated with any Event and it will cause some additional “action” to occur when ever the parent Event occurs. Actions can do a number of different things for example, there are Actions that collect additional data and, take memory dumps. When mapping SQL Trace onto Extended Events, Columns are covered by a combination of both fields and Actions. Knowing exactly where a Column is covered by a field and where it is covered by an Action is a bit of an art, so we created the mapping tables to make you an Artist without the years of practice. Let me draw you a map. Event Mapping The table dbo.trace_xe_event_map exists in the master database with the following structure: Column_name Type trace_event_id smallint package_name nvarchar xe_event_name nvarchar By joining this table sys.trace_events using trace_event_id and to the sys.dm_xe_objects using xe_event_name you can get a fair amount of information about how Event Classes are related to Events. The most basic query this lends itself to is to match an Event Class with the corresponding Event. SELECT     t.trace_event_id,     t.name [event_class],     e.package_name,     e.xe_event_name FROM sys.trace_events t INNER JOIN dbo.trace_xe_event_map e     ON t.trace_event_id = e.trace_event_id There are a couple things you’ll notice as you peruse the output of this query: For the most part, the names of Events are fairly close to the original Event Class; eg. SP:CacheMiss == sp_cache_miss, and so on. We’ve mostly stuck to a one to one mapping between Event Classes and Events, but there are a few cases where we have combined when it made sense. For example, Data File Auto Grow, Log File Auto Grow, Data File Auto Shrink & Log File Auto Shrink are now all covered by a single event named database_file_size_change. This just seemed like a “smarter” implementation for this type of event, you can get all the same information from this single event (grow/shrink, Data/Log, Auto/Manual growth) without having multiple different events. You can use Predicates if you want to limit the output to just one of the original Event Class measures. There are some Event Classes that did not make the cut and were not migrated. These fall into two categories; there were a few Event Classes that had been deprecated, or that just did not make sense, so we didn’t migrate them. (You won’t find an Event related to mounting a tape – sorry.) The second class is bigger; with rare exception, we did not migrate any of the Event Classes that were related to Security Auditing using SQL Trace. We introduced the SQL Audit feature in SQL Server 2008 and that will be the compliance and auditing feature going forward. Doing this is a very deliberate decision to support separation of duties for DBAs. There are separate permissions required for SQL Audit and Extended Events tracing so you can assign these tasks to different people if you choose. (If you’re wondering, the permission for Extended Events is ALTER ANY EVENT SESSION, which is covered by CONTROL SERVER.) Action Mapping The table dbo.trace_xe_action_map exists in the master database with the following structure: Column_name Type trace_column_id smallint package_name nvarchar xe_action_name nvarchar You can find more details by joining this to sys.trace_columns on the trace_column_id field. SELECT     c.trace_column_id,     c.name [column_name],     a.package_name,     a.xe_action_name FROM sys.trace_columns c INNER JOIN    dbo.trace_xe_action_map a     ON c.trace_column_id = a.trace_column_id If you examine this list, you’ll notice that there are relatively few Actions that map to SQL Trace Columns given the number of Columns that exist. This is not because we forgot to migrate all the Columns, but because much of the data for individual Event Classes is included as part of the EventData fields of the equivalent Events so there is no need to specify them as Actions. Putting it all together If you’ve spent a bunch of time figuring out the inner workings of SQL Trace, and who hasn’t, then you probably know that the typically set of Columns you find associated with any given Event Class in SQL Profiler is not fix, but is determine by the contents of the table sys.trace_event_bindings. We’ve used this table along with the mapping tables to produce a list of Event + Action combinations that duplicate the SQL Profiler Event Class definitions using the following query, which you can also find in the Books Online topic How To: View the Extended Events Equivalents to SQL Trace Event Classes. USE MASTER; GO SELECT DISTINCT    tb.trace_event_id,    te.name AS 'Event Class',    em.package_name AS 'Package',    em.xe_event_name AS 'XEvent Name',    tb.trace_column_id,    tc.name AS 'SQL Trace Column',    am.xe_action_name as 'Extended Events action' FROM (sys.trace_events te LEFT OUTER JOIN dbo.trace_xe_event_map em    ON te.trace_event_id = em.trace_event_id) LEFT OUTER JOIN sys.trace_event_bindings tb    ON em.trace_event_id = tb.trace_event_id LEFT OUTER JOIN sys.trace_columns tc    ON tb.trace_column_id = tc.trace_column_id LEFT OUTER JOIN dbo.trace_xe_action_map am    ON tc.trace_column_id = am.trace_column_id ORDER BY te.name, tc.name As you might imagine, it’s also possible to map an existing trace definition to the equivalent event session by judicious use of fn_trace_geteventinfo joined with the two mapping tables. This query extracts the list of Events and Actions equivalent to the trace with ID = 1, which is most likely the Default Trace. You can find this query, along with a set of other queries and steps required to migrate your existing traces over to Extended Events in the Books Online topic How to: Convert an Existing SQL Trace Script to an Extended Events Session. USE MASTER; GO DECLARE @trace_id int SET @trace_id = 1 SELECT DISTINCT el.eventid, em.package_name, em.xe_event_name AS 'event'    , el.columnid, ec.xe_action_name AS 'action' FROM (sys.fn_trace_geteventinfo(@trace_id) AS el    LEFT OUTER JOIN dbo.trace_xe_event_map AS em       ON el.eventid = em.trace_event_id) LEFT OUTER JOIN dbo.trace_xe_action_map AS ec    ON el.columnid = ec.trace_column_id WHERE em.xe_event_name IS NOT NULL AND ec.xe_action_name IS NOT NULL You’ll notice in the output that the list doesn’t include any of the security audit Event Classes, as I wrote earlier, those were not migrated. But wait…there’s more! If this were an infomercial there’d by some obnoxious guy next to me blogging “Well Mike…that’s pretty neat, but I’m sure you can do more. Can’t you make it even easier to migrate from SQL Trace?”  Needless to say, I’d blog back, in an overly excited way, “You bet I can' obnoxious blogger side-kick!” What I’ve got for you here is a Extended Events Team Blog only special – this tool will not be sold in any store; it’s a special offer for those of you reading the blog. I’ve wrapped all the logic of pulling the configuration information out of an existing trace and and building the Extended Events DDL statement into a handy, dandy CLR stored procedure. Once you load the assembly and register the procedure you just supply the trace id (from sys.traces) and provide a name for the event session. Run the procedure and out pops the DDL required to create an equivalent session. Any aspects of the trace that could not be duplicated are included in comments within the DDL output. This procedure does not actually create the event session – you need to copy the DDL out of the message tab and put it into a new query window to do that. It also requires an existing trace (but it doesn’t have to be running) to evaluate; there is no functionality to parse t-sql scripts. I’m not going to spend a bunch of time explaining the code here – the code is pretty well commented and hopefully easy to follow. If not, you can always post comments or hit the feedback button to send us some mail. Sample code: TraceToExtendedEventDDL   Installing the procedure Just in case you’re not familiar with installing CLR procedures…once you’ve compile the assembly you can load it using a script like this: -- Context to master USE master GO -- Create the assembly from a shared location. CREATE ASSEMBLY TraceToXESessionConverter FROM 'C:\Temp\TraceToXEventSessionConverter.dll' WITH PERMISSION_SET = SAFE GO -- Create a stored procedure from the assembly. CREATE PROCEDURE CreateEventSessionFromTrace @trace_id int, @session_name nvarchar(max) AS EXTERNAL NAME TraceToXESessionConverter.StoredProcedures.ConvertTraceToExtendedEvent GO Enjoy! -Mike

    Read the article

  • Option Trading: Getting the most out of the event session options

    - by extended_events
    You can control different aspects of how an event session behaves by setting the event session options as part of the CREATE EVENT SESSION DDL. The default settings for the event session options are designed to handle most of the common event collection situations so I generally recommend that you just use the defaults. Like everything in the real world though, there are going to be a handful of “special cases” that require something different. This post focuses on identifying the special cases and the correct use of the options to accommodate those cases. There is a reason it’s called Default The default session options specify a total event buffer size of 4 MB with a 30 second latency. Translating this into human terms; this means that our default behavior is that the system will start processing events from the event buffer when we reach about 1.3 MB of events or after 30 seconds, which ever comes first. Aside: What’s up with the 1.3 MB, I thought you said the buffer was 4 MB?The Extended Events engine takes the total buffer size specified by MAX_MEMORY (4MB by default) and divides it into 3 equally sized buffers. This is done so that a session can be publishing events to one buffer while other buffers are being processed. There are always at least three buffers; how to get more than three is covered later. Using this configuration, the Extended Events engine can “keep up” with most event sessions on standard workloads. Why is this? The fact is that most events are small, really small; on the order of a couple hundred bytes. Even when you start considering events that carry dynamically sized data (eg. binary, text, etc.) or adding actions that collect additional data, the total size of the event is still likely to be pretty small. This means that each buffer can likely hold thousands of events before it has to be processed. When the event buffers are finally processed there is an economy of scale achieved since most targets support bulk processing of the events so they are processed at the buffer level rather than the individual event level. When all this is working together it’s more likely that a full buffer will be processed and put back into the ready queue before the remaining buffers (remember, there are at least three) are full. I know what you’re going to say: “My server is exceptional! My workload is so massive it defies categorization!” OK, maybe you weren’t going to say that exactly, but you were probably thinking it. The point is that there are situations that won’t be covered by the Default, but that’s a good place to start and this post assumes you’ve started there so that you have something to look at in order to determine if you do have a special case that needs different settings. So let’s get to the special cases… What event just fired?! How about now?! Now?! If you believe the commercial adage from Heinz Ketchup (Heinz Slow Good Ketchup ad on You Tube), some things are worth the wait. This is not a belief held by most DBAs, particularly DBAs who are looking for an answer to a troubleshooting question fast. If you’re one of these anxious DBAs, or maybe just a Program Manager doing a demo, then 30 seconds might be longer than you’re comfortable waiting. If you find yourself in this situation then consider changing the MAX_DISPATCH_LATENCY option for your event session. This option will force the event buffers to be processed based on your time schedule. This option only makes sense for the asynchronous targets since those are the ones where we allow events to build up in the event buffer – if you’re using one of the synchronous targets this option isn’t relevant. Avoid forgotten events by increasing your memory Have you ever had one of those days where you keep forgetting things? That can happen in Extended Events too; we call it dropped events. In order to optimizes for server performance and help ensure that the Extended Events doesn’t block the server if to drop events that can’t be published to a buffer because the buffer is full. You can determine if events are being dropped from a session by querying the dm_xe_sessions DMV and looking at the dropped_event_count field. Aside: Should you care if you’re dropping events?Maybe not – think about why you’re collecting data in the first place and whether you’re really going to miss a few dropped events. For example, if you’re collecting query duration stats over thousands of executions of a query it won’t make a huge difference to miss a couple executions. Use your best judgment. If you find that your session is dropping events it means that the event buffer is not large enough to handle the volume of events that are being published. There are two ways to address this problem. First, you could collect fewer events – examine you session to see if you are over collecting. Do you need all the actions you’ve specified? Could you apply a predicate to be more specific about when you fire the event? Assuming the session is defined correctly, the next option is to change the MAX_MEMORY option to a larger number. Picking the right event buffer size might take some trial and error, but a good place to start is with the number of dropped events compared to the number you’ve collected. Aside: There are three different behaviors for dropping events that you specify using the EVENT_RETENTION_MODE option. The default is to allow single event loss and you should stick with this setting since it is the best choice for keeping the impact on server performance low.You’ll be tempted to use the setting to not lose any events (NO_EVENT_LOSS) – resist this urge since it can result in blocking on the server. If you’re worried that you’re losing events you should be increasing your event buffer memory as described in this section. Some events are too big to fail A less common reason for dropping an event is when an event is so large that it can’t fit into the event buffer. Even though most events are going to be small, you might find a condition that occasionally generates a very large event. You can determine if your session is dropping large events by looking at the dm_xe_sessions DMV once again, this time check the largest_event_dropped_size. If this value is larger than the size of your event buffer [remember, the size of your event buffer, by default, is max_memory / 3] then you need a large event buffer. To specify a large event buffer you set the MAX_EVENT_SIZE option to a value large enough to fit the largest event dropped based on data from the DMV. When you set this option the Extended Events engine will create two buffers of this size to accommodate these large events. As an added bonus (no extra charge) the large event buffer will also be used to store normal events in the cases where the normal event buffers are all full and waiting to be processed. (Note: This is just a side-effect, not the intended use. If you’re dropping many normal events then you should increase your normal event buffer size.) Partitioning: moving your events to a sub-division Earlier I alluded to the fact that you can configure your event session to use more than the standard three event buffers – this is called partitioning and is controlled by the MEMORY_PARTITION_MODE option. The result of setting this option is fairly easy to explain, but knowing when to use it is a bit more art than science. First the science… You can configure partitioning in three ways: None, Per NUMA Node & Per CPU. This specifies the location where sets of event buffers are created with fairly obvious implication. There are rules we follow for sub-dividing the total memory (specified by MAX_MEMORY) between all the event buffers that are specific to the mode used: None: 3 buffers (fixed)Node: 3 * number_of_nodesCPU: 2.5 * number_of_cpus Here are some examples of what this means for different Node/CPU counts: Configuration None Node CPU 2 CPUs, 1 Node 3 buffers 3 buffers 5 buffers 6 CPUs, 2 Node 3 buffers 6 buffers 15 buffers 40 CPUs, 5 Nodes 3 buffers 15 buffers 100 buffers   Aside: Buffer size on multi-processor computersAs the number of Nodes or CPUs increases, the size of the event buffer gets smaller because the total memory is sub-divided into more pieces. The defaults will hold up to this for a while since each buffer set is holding events only from the Node or CPU that it is associated with, but at some point the buffers will get too small and you’ll either see events being dropped or you’ll get an error when you create your session because you’re below the minimum buffer size. Increase the MAX_MEMORY setting to an appropriate number for the configuration. The most likely reason to start partitioning is going to be related to performance. If you notice that running an event session is impacting the performance of your server beyond a reasonably expected level [Yes, there is a reasonably expected level of work required to collect events.] then partitioning might be an answer. Before you partition you might want to check a few other things: Is your event retention set to NO_EVENT_LOSS and causing blocking? (I told you not to do this.) Consider changing your event loss mode or increasing memory. Are you over collecting and causing more work than necessary? Consider adding predicates to events or removing unnecessary events and actions from your session. Are you writing the file target to the same slow disk that you use for TempDB and your other high activity databases? <kidding> <not really> It’s always worth considering the end to end picture – if you’re writing events to a file you can be impacted by I/O, network; all the usual stuff. Assuming you’ve ruled out the obvious (and not so obvious) issues, there are performance conditions that will be addressed by partitioning. For example, it’s possible to have a successful event session (eg. no dropped events) but still see a performance impact because you have many CPUs all attempting to write to the same free buffer and having to wait in line to finish their work. This is a case where partitioning would relieve the contention between the different CPUs and likely reduce the performance impact cause by the event session. There is no DMV you can check to find these conditions – sorry – that’s where the art comes in. This is  largely a matter of experimentation. On the bright side you probably won’t need to to worry about this level of detail all that often. The performance impact of Extended Events is significantly lower than what you may be used to with SQL Trace. You will likely only care about the impact if you are trying to set up a long running event session that will be part of your everyday workload – sessions used for short term troubleshooting will likely fall into the “reasonably expected impact” category. Hey buddy – I think you forgot something OK, there are two options I didn’t cover: STARTUP_STATE & TRACK_CAUSALITY. If you want your event sessions to start automatically when the server starts, set the STARTUP_STATE option to ON. (Now there is only one option I didn’t cover.) I’m going to leave causality for another post since it’s not really related to session behavior, it’s more about event analysis. - Mike Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • exporting bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    I'm having a hard time trying to understand how exactly Blender's concept of bone transforms maps to the usual math of skinning (which I'm implementing in an OpenGL-based engine of sorts). Or I'm missing out something in the math.. It's gonna be long, but here's as much background as I can think of. First, a few notes and assumptions: I'm using column-major order and multiply from right to left. So for instance, vertex v transformed by matrix A and then further transformed by matrix B would be: v' = BAv. This also means whenever I export a matrix from blender through python, I export it (in text format) in 4 lines, each representing a column. This is so I can then I can read them back into my engine like this: if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[0], &skeleton.joints[currentJointIndex].inverseBindTransform.m[1], &skeleton.joints[currentJointIndex].inverseBindTransform.m[2], &skeleton.joints[currentJointIndex].inverseBindTransform.m[3])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[4], &skeleton.joints[currentJointIndex].inverseBindTransform.m[5], &skeleton.joints[currentJointIndex].inverseBindTransform.m[6], &skeleton.joints[currentJointIndex].inverseBindTransform.m[7])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[8], &skeleton.joints[currentJointIndex].inverseBindTransform.m[9], &skeleton.joints[currentJointIndex].inverseBindTransform.m[10], &skeleton.joints[currentJointIndex].inverseBindTransform.m[11])) { if (fscanf(fileHandle, "%f %f %f %f", &skeleton.joints[currentJointIndex].inverseBindTransform.m[12], &skeleton.joints[currentJointIndex].inverseBindTransform.m[13], &skeleton.joints[currentJointIndex].inverseBindTransform.m[14], &skeleton.joints[currentJointIndex].inverseBindTransform.m[15])) { I'm simplifying the code I show because otherwise it would make things unnecessarily harder (in the context of my question) to explain / follow. Please refrain from making remarks related to optimizations. This is not final code. Having said that, if I understand correctly, the basic idea of skinning/animation is: I have a a mesh made up of vertices I have the mesh model-world transform W I have my joints, which are really just transforms from each joint's space to its parent's space. I'll call these transforms Bj meaning matrix which takes from joint j's bind pose to joint j-1's bind pose. For each of these, I actually import their inverse to the engine, Bj^-1. I have keyframes each containing a set of current poses Cj for each joint J. These are initially imported to my engine in TQS format but after (S)LERPING them I compose them into Cj matrices which are equivalent to the Bjs (not the Bj^-1 ones) only that for the current spacial configurations of each joint at that frame. Given the above, the "skeletal animation algorithm is" On each frame: check how much time has elpased and compute the resulting current time in the animation, from 0 meaning frame 0 to 1, meaning the end of the animation. (Oh and I'm looping forever so the time is mod(total duration)) for each joint: 1 -calculate its world inverse bind pose, that is Bj_w^-1 = Bj^-1 Bj-1^-1 ... B0^-1 2 -use the current animation time to LERP the componets of the TQS and come up with an interpolated current pose matrix Cj which should transform from the joints current configuration space to world space. Similar to what I did to get the world version of the inverse bind poses, I come up with the joint's world current pose, Cj_w = C0 C1 ... Cj 3 -now that I have world versions of Bj and Cj, I store this joint's world- skinning matrix K_wj = Cj_w Bj_w^-1. The above is roughly implemented like so: - (void)update:(NSTimeInterval)elapsedTime { static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.jointPoses[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.jointPoses[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4Multiply(currentTransform, GLKMatrix4MakeTranslation(LERPTranslation.x, LERPTranslation.y, LERPTranslation.z)); currentTransform = GLKMatrix4Multiply(currentTransform, GLKMatrix4MakeScale(LERPScaling.x, LERPScaling.y, LERPScaling.z)); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = aSkeleton.joints[i].inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(aSkeleton.joints[i].inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } } At this point, I should have my skinning palette. So on each frame in my vertex shader, I do: uniform mat4 modelMatrix; uniform mat4 projectionMatrix; uniform mat3 normalMatrix; uniform mat4 skinningPalette[6]; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { vec3 eyeNormal = normalize(normalMatrix * normal); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } gl_Position = projectionMatrix * modelMatrix * skinnedVertexPosition; } The result: The mesh parts that are supposed to animate do animate and follow the expected motion, however, the rotations are messed up in terms of orientations. That is, the mesh is not translated somewhere else or scaled in any way, but the orientations of rotations seem to be off. So a few observations: In the above shader notice I actually did not multiply the vertices by the mesh modelMatrix (the one which would take them to model or world or global space, whichever you prefer, since there is no parent to the mesh itself other than "the world") until after skinning. This is contrary to what I implied in the theory: if my skinning matrix takes vertices from model to joint and back to model space, I'd think the vertices should already be premultiplied by the mesh transform. But if I do so, I just get a black screen. As far as exporting the joints from Blender, my python script exports for each armature bone in bind pose, it's matrix in this way: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: poseJoint = skeleton.pose.bones[joint.name] jointTransform = poseJoint.matrix.inverted() file.write('Joint ' + joint.name + ' Transform {\n') for col in jointTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') And for current / keyframe poses (assuming I'm in the right keyframe): def exportAnimations(filepath): # Only one skeleton per scene objList = [object for object in bpy.context.scene.objects if object.type == 'ARMATURE'] if len(objList) == 0: return elif len(objList) > 1: return #raise exception? dialog box? skeleton = objList[0] jointNames = [bone.name for bone in skeleton.data.bones] for action in bpy.data.actions: # One animation clip per action in Blender, named as the action animationClipFilePath = filepath[0 : filepath.rindex('/') + 1] + action.name + ".aClip" file = open(animationClipFilePath, 'w') file.write('target skeleton: ' + skeleton.name + '\n') file.write('joints count: {:d}'.format(len(jointNames)) + '\n') skeleton.animation_data.action = action keyframeNum = max([len(fcurve.keyframe_points) for fcurve in action.fcurves]) keyframes = [] for fcurve in action.fcurves: for keyframe in fcurve.keyframe_points: keyframes.append(keyframe.co[0]) keyframes = set(keyframes) keyframes = [kf for kf in keyframes] keyframes.sort() file.write('keyframes count: {:d}'.format(len(keyframes)) + '\n') for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) joint = skeleton.pose.bones[i] jointCurrentPoseTransform = joint.matrix translationV = jointCurrentPoseTransform.to_translation() rotationQ = jointCurrentPoseTransform.to_3x3().to_quaternion() scaleV = jointCurrentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') file.close() Which I believe follow the theory explained at the beginning of my question. But then I checked out Blender's directX .x exporter for reference.. and what threw me off was that in the .x script they are exporting bind poses like so (transcribed using the same variable names I used so you can compare): if joint.parent: jointTransform = poseJoint.parent.matrix.inverted() else: jointTransform = Matrix() jointTransform *= poseJoint.matrix and exporting current keyframe poses like this: if joint.parent: jointCurrentPoseTransform = joint.parent.matrix.inverted() else: jointCurrentPoseTransform = Matrix() jointCurrentPoseTransform *= joint.matrix why are they using the parent's transform instead of the joint in question's? isn't the join transform assumed to exist in the context of a parent transform since after all it transforms from this joint's space to its parent's? Why are they concatenating in the same order for both bind poses and keyframe poses? If these two are then supposed to be concatenated with each other to cancel out the change of basis? Anyway, any ideas are appreciated.

    Read the article

  • Inside the Concurrent Collections: ConcurrentBag

    - by Simon Cooper
    Unlike the other concurrent collections, ConcurrentBag does not really have a non-concurrent analogy. As stated in the MSDN documentation, ConcurrentBag is optimised for the situation where the same thread is both producing and consuming items from the collection. We'll see how this is the case as we take a closer look. Again, I recommend you have ConcurrentBag open in a decompiler for reference. Thread Statics ConcurrentBag makes heavy use of thread statics - static variables marked with ThreadStaticAttribute. This is a special attribute that instructs the CLR to scope any values assigned to or read from the variable to the executing thread, not globally within the AppDomain. This means that if two different threads assign two different values to the same thread static variable, one value will not overwrite the other, and each thread will see the value they assigned to the variable, separately to any other thread. This is a very useful function that allows for ConcurrentBag's concurrency properties. You can think of a thread static variable: [ThreadStatic] private static int m_Value; as doing the same as: private static Dictionary<Thread, int> m_Values; where the executing thread's identity is used to automatically set and retrieve the corresponding value in the dictionary. In .NET 4, this usage of ThreadStaticAttribute is encapsulated in the ThreadLocal class. Lists of lists ConcurrentBag, at its core, operates as a linked list of linked lists: Each outer list node is an instance of ThreadLocalList, and each inner list node is an instance of Node. Each outer ThreadLocalList is owned by a particular thread, accessible through the thread local m_locals variable: private ThreadLocal<ThreadLocalList<T>> m_locals It is important to note that, although the m_locals variable is thread-local, that only applies to accesses through that variable. The objects referenced by the thread (each instance of the ThreadLocalList object) are normal heap objects that are not specific to any thread. Thinking back to the Dictionary analogy above, if each value stored in the dictionary could be accessed by other means, then any thread could access the value belonging to other threads using that mechanism. Only reads and writes to the variable defined as thread-local are re-routed by the CLR according to the executing thread's identity. So, although m_locals is defined as thread-local, the m_headList, m_nextList and m_tailList variables aren't. This means that any thread can access all the thread local lists in the collection by doing a linear search through the outer linked list defined by these variables. Adding items So, onto the collection operations. First, adding items. This one's pretty simple. If the current thread doesn't already own an instance of ThreadLocalList, then one is created (or, if there are lists owned by threads that have stopped, it takes control of one of those). Then the item is added to the head of that thread's list. That's it. Don't worry, it'll get more complicated when we account for the other operations on the list! Taking & Peeking items This is where it gets tricky. If the current thread's list has items in it, then it peeks or removes the head item (not the tail item) from the local list and returns that. However, if the local list is empty, it has to go and steal another item from another list, belonging to a different thread. It iterates through all the thread local lists in the collection using the m_headList and m_nextList variables until it finds one that has items in it, and it steals one item from that list. Up to this point, the two threads had been operating completely independently. To steal an item from another thread's list, the stealing thread has to do it in such a way as to not step on the owning thread's toes. Recall how adding and removing items both operate on the head of the thread's linked list? That gives us an easy way out - a thread trying to steal items from another thread can pop in round the back of another thread's list using the m_tail variable, and steal an item from the back without the owning thread knowing anything about it. The owning thread can carry on completely independently, unaware that one of its items has been nicked. However, this only works when there are at least 3 items in the list, as that guarantees there will be at least one node between the owning thread performing operations on the list head and the thread stealing items from the tail - there's no chance of the two threads operating on the same node at the same time and causing a race condition. If there's less than three items in the list, then there does need to be some synchronization between the two threads. In this case, the lock on the ThreadLocalList object is used to mediate access to a thread's list when there's the possibility of contention. Thread synchronization In ConcurrentBag, this is done using several mechanisms: Operations performed by the owner thread only take out the lock when there are less than three items in the collection. With three or greater items, there won't be any conflict with a stealing thread operating on the tail of the list. If a lock isn't taken out, the owning thread sets the list's m_currentOp variable to a non-zero value for the duration of the operation. This indicates to all other threads that there is a non-locked operation currently occuring on that list. The stealing thread always takes out the lock, to prevent two threads trying to steal from the same list at the same time. After taking out the lock, the stealing thread spinwaits until m_currentOp has been set to zero before actually performing the steal. This ensures there won't be a conflict with the owning thread when the number of items in the list is on the 2-3 item borderline. If any add or remove operations are started in the meantime, and the list is below 3 items, those operations try to take out the list's lock and are blocked until the stealing thread has finished. This allows a thread to steal an item from another thread's list without corrupting it. What about synchronization in the collection as a whole? Collection synchronization Any thread that operates on the collection's global structure (accessing anything outside the thread local lists) has to take out the collection's global lock - m_globalListsLock. This single lock is sufficient when adding a new thread local list, as the items inside each thread's list are unaffected. However, what about operations (such as Count or ToArray) that need to access every item in the collection? In order to ensure a consistent view, all operations on the collection are stopped while the count or ToArray is performed. This is done by freezing the bag at the start, performing the global operation, and unfreezing at the end: The global lock is taken out, to prevent structural alterations to the collection. m_needSync is set to true. This notifies all the threads that they need to take out their list's lock irregardless of what operation they're doing. All the list locks are taken out in order. This blocks all locking operations on the lists. The freezing thread waits for all current lockless operations to finish by spinwaiting on each m_currentOp field. The global operation can then be performed while the bag is frozen, but no other operations can take place at the same time, as all other threads are blocked on a list's lock. Then, once the global operation has finished, the locks are released, m_needSync is unset, and normal concurrent operation resumes. Concurrent principles That's the essence of how ConcurrentBag operates. Each thread operates independently on its own local list, except when they have to steal items from another list. When stealing, only the stealing thread is forced to take out the lock; the owning thread only has to when there is the possibility of contention. And a global lock controls accesses to the structure of the collection outside the thread lists. Operations affecting the entire collection take out all locks in the collection to freeze the contents at a single point in time. So, what principles can we extract here? Threads operate independently Thread-static variables and ThreadLocal makes this easy. Threads operate entirely concurrently on their own structures; only when they need to grab data from another thread is there any thread contention. Minimised lock-taking Even when two threads need to operate on the same data structures (one thread stealing from another), they do so in such a way such that the probability of actually blocking on a lock is minimised; the owning thread always operates on the head of the list, and the stealing thread always operates on the tail. Management of lockless operations Any operations that don't take out a lock still have a 'hook' to force them to lock when necessary. This allows all operations on the collection to be stopped temporarily while a global snapshot is taken. Hopefully, such operations will be short-lived and infrequent. That's all the concurrent collections covered. I hope you've found it as informative and interesting as I have. Next, I'll be taking a closer look at ThreadLocal, which I came across while analyzing ConcurrentBag. As you'll see, the operation of this class deserves a much closer look.

    Read the article

  • How do I use MediaRecorder to record video without causing a segmentation fault?

    - by rabidsnail
    I'm trying to use android.media.MediaRecorder to record video, and no matter what I do the android runtime segmentation faults when I call prepare(). Here's an example: public void onCreate(Bundle savedInstanceState) { Log.i("video test", "making recorder"); MediaRecorder recorder = new MediaRecorder(); contentResolver = getContentResolver(); try { super.onCreate(savedInstanceState); Log.i("video test", "--------------START----------------"); SurfaceView target_view = new SurfaceView(this); Log.i("video test", "making surface"); Surface target = target_view.getHolder().getSurface(); Log.i("video test", target.toString()); Log.i("video test", "new recorder"); recorder = new MediaRecorder(); Log.i("video test", "set display"); recorder.setPreviewDisplay(target); Log.i("video test", "pushing surface"); setContentView(target_view); Log.i("video test", "set audio source"); recorder.setAudioSource(MediaRecorder.AudioSource.MIC); Log.i("video test", "set video source"); recorder.setVideoSource(MediaRecorder.VideoSource.DEFAULT); Log.i("video test", "set output format"); recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP); Log.i("video test", "set audio encoder"); recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB); Log.i("video test", "set video encoder"); recorder.setVideoEncoder(MediaRecorder.VideoEncoder.MPEG_4_SP); Log.i("video test", "set max duration"); recorder.setMaxDuration(3600); Log.i("video test", "set on info listener"); recorder.setOnInfoListener(new listener()); Log.i("video test", "set video size"); recorder.setVideoSize(320, 240); Log.i("video test", "set video frame rate"); recorder.setVideoFrameRate(15); Log.i("video test", "set output file"); recorder.setOutputFile(get_path(this, "foo.3gp")); Log.i("video test", "prepare"); recorder.prepare(); Log.i("video test", "start"); recorder.start(); Log.i("video test", "sleep"); Thread.sleep(3600); Log.i("video test", "stop"); recorder.stop(); Log.i("video test", "release"); recorder.release(); Log.i("video test", "-----------------SUCCESS------------------"); finish(); } catch (Exception e) { Log.i("video test", e.toString()); recorder.reset(); recorder.release(); Log.i("video tets", "-------------------FAIL-------------------"); finish(); } } public static String get_path (Context context, String fname) { String path = context.getFileStreamPath("foo").getParentFile().getAbsolutePath(); String res = path+"/"+fname; Log.i("video test", "path: "+res); return res; } class listener implements MediaRecorder.OnInfoListener { public void onInfo(MediaRecorder recorder, int what, int extra) { Log.i("video test", "Video Info: "+what+", "+extra); } }

    Read the article

  • Professional Scrum Developer (.NET) Training in London

    - by Martin Hinshelwood
    On the 26th - 30th July in Microsoft’s offices in London Adam Cogan from SSW will be presenting the first Professional Scrum Developer course in the UK. I will be teaching this course along side Adam and it is a fantastic experience. You are split into teams and go head-to-head to deliver units of potentially shippable work in four two hour sprints. The Professional Scrum Developer course is the only course endorsed by both Microsoft and Ken Schwaber and they have worked together very effectively in brining this course to fruition. This course is the brain child of Richard Hundhausen, a Microsoft Regional Director, and both Adam and I attending the Trainer Prep in Sydney when he was there earlier this year. He is a fantastic trainer and no matter where you do this course you can be safe in the knowledge that he has trained and vetted all of the teachers. A tools version of Ken if you will Find a course and register Download this syllabus Download the Scrum Guide What is the Professional Scrum Developer course all about? Professional Scrum Developer course is a unique and intensive five-day experience for software developers. The course guides teams on how to turn product requirements into potentially shippable increments of software using the Scrum framework, Visual Studio 2010, and modern software engineering practices. Attendees will work in self-organizing, self-managing teams using a common instance of Team Foundation Server 2010. Who should attend this course? This course is suitable for any member of a software development team – architect, programmer, database developer, tester, etc. Entire teams are encouraged to attend and experience the course together, but individuals are welcome too. Attendees will self-organize to form cross-functional Scrum teams. These teams require an aggregate of skills specific to the selected case study. Please see the last page of this document for specific details. Product Owners, ScrumMasters, and other stakeholders are welcome too, but keep in mind that everyone who attends will be expected to commit to work and pull their weight on a Scrum team. What should you know by the end of the course? Scrum will be experienced through a combination of lecture, demonstration, discussion, and hands-on exercises. Attendees will learn how to do Scrum correctly while being coached and critiqued by the instructor, in the following topic areas: Form effective teams Explore and understand legacy “Brownfield” architecture Define quality attributes, acceptance criteria, and “done” Create automated builds How to handle software hotfixes Verify that bugs are identified and eliminated Plan releases and sprints Estimate product backlog items Create and manage a sprint backlog Hold an effective sprint review Improve your process by using retrospectives Use emergent architecture to avoid technical debt Use Test Driven Development as a design tool Setup and leverage continuous integration Use Test Impact Analysis to decrease testing times Manage SQL Server development in an Agile way Use .NET and T-SQL refactoring effectively Build, deploy, and test SQL Server databases Create and manage test plans and cases Create, run, record, and play back manual tests Setup a branching strategy and branch code Write more maintainable code Identify and eliminate people and process dysfunctions Inspect and improve your team’s software development process What does the week look like? This course is a mix of lecture, demonstration, group discussion, simulation, and hands-on software development. The bulk of the course will be spent working as a team on a case study application delivering increments of new functionality in mini-sprints. Here is the week at a glance: Monday morning and most of the day Friday will be spent with the computers powered off, so you can focus on sharpening your game of Scrum and avoiding the common pitfalls when implementing it. The Sprints Timeboxing is a critical concept in Scrum as well as in this course. We expect each team and student to understand and obey all of the timeboxes. The timebox duration will always be clearly displayed during each activity. Expect the instructor to enforce it. Each of the ½ day sprints will roughly follow this schedule: Component Description Minutes Instruction Presentation and demonstration of new and relevant tools & practices 60 Sprint planning meeting Product owner presents backlog; each team commits to delivering functionality 10 Sprint planning meeting Each team determines how to build the functionality 10 The Sprint The team self-organizes and self-manages to complete their tasks 120 Sprint Review meeting Each team will present their increment of functionality to the other teams = 30 Sprint Retrospective A group retrospective meeting will be held to inspect and adapt 10 Each team is expected to self-organize and manage their own work during the sprint. Pairing is highly encouraged. The instructor/product owner will be available if there are questions or impediments, but will be hands-off by default. You should be prepared to communicate and work with your team members in order to achieve your sprint goal. If you have development-related questions or get stuck, your partner or team should be your first level of support. Module 1: INTRODUCTION This module provides a chance for the attendees to get to know the instructors as well as each other. The Professional Scrum Developer program, as well as the day by day agenda, will be explained. Finally, the Scrum team will be selected and assembled so that the forming, storming, norming, and performing can begin. Trainer and student introductions Professional Scrum Developer program Agenda Logistics Team formation Retrospective Module 2: SCRUMDAMENTALS This module provides a level-setting understanding of the Scrum framework including the roles, timeboxes, and artifacts. The team will then experience Scrum firsthand by simulating a multi-day sprint of product development, including planning, review, and retrospective meetings. Scrum overview Scrum roles Scrum timeboxes (ceremonies) Scrum artifacts Simulation Retrospective It’s required that you read Ken Schwaber’s Scrum Guide in preparation for this module and course. MODULE 3: IMPLEMENTING SCRUM IN VISUAL STUDIO 2010 This module demonstrates how to implement Scrum in Visual Studio 2010 using a Scrum process template*. The team will learn the mapping between the Scrum concepts and how they are implemented in the tool. After connecting to the shared Team Foundation Server, the team members will then return to the simulation – this time using Visual Studio to manage their product development. Mapping Scrum to Visual Studio 2010 User Story work items Task work items Bug work items Demonstration Simulation Retrospective Module 4: THE CASE STUDY In this module the team is introduced to their problem domain for the week. A kickoff meeting by the Product Owner (the instructor) will set the stage for the why and what that will take during the upcoming sprints. The team will then define the quality attributes of the project and their definition of “done.” The legacy application code will be downloaded, built, and explored, so that any bugs can be discovered and reported. Introduction to the case study Download the source code, build, and explore the application Define the quality attributes for the project Define “done” How to file effective bugs in Visual Studio 2010 Retrospective Module 5: HOTFIX This module drops the team directly into a Brownfield (legacy) experience by forcing them to analyze the existing application’s architecture and code in order to locate and fix the Product Owner’s high-priority bug(s). The team will learn best practices around finding, testing, fixing, validating, and closing a bug. How to use Architecture Explorer to visualize and explore Create a unit test to validate the existence of a bug Find and fix the bug Validate and close the bug Retrospective Module 6: PLANNING This short module introduces the team to release and sprint planning within Visual Studio 2010. The team will define and capture their goals as well as other important planning information. Release vs. Sprint planning Release planning and the Product Backlog Product Backlog prioritization Acceptance criteria and tests Sprint planning and the Sprint Backlog Creating and linking Sprint tasks Retrospective At this point the team will have the knowledge of Scrum, Visual Studio 2010, and the case study application to begin developing increments of potentially shippable functionality that meet their definition of done. Module 7: EMERGENT ARCHITECTURE This module introduces the architectural practices and tools a team can use to develop a valid design on which to develop new functionality. The teams will learn how Scrum supports good architecture and design practices. After the discussion, the teams will be presented with the product owner’s prioritized backlog so that they may select and commit to the functionality they can deliver in this sprint. Architecture and Scrum Emergent architecture Principles, patterns, and practices Visual Studio 2010 modeling tools UML and layer diagrams SPRINT 1 Retrospective Module 8: TEST DRIVEN DEVELOPMENT This module introduces Test Driven Development as a design tool and how to implement it using Visual Studio 2010. To maximize productivity and quality, a Scrum team should setup Continuous Integration to regularly build every team member’s code changes and run regression tests. Refactoring will also be defined and demonstrated in combination with Visual Studio’s Test Impact Analysis to efficiently re-run just those tests which were impacted by refactoring. Continuous integration Team Foundation Build Test Driven Development (TDD) Refactoring Test Impact Analysis SPRINT 2 Retrospective Module 9: AGILE DATABASE DEVELOPMENT This module lets the SQL Server database developers in on a little secret – they can be agile too. By using the database projects in Visual Studio 2010, the database developers can join the rest of the team. The students will see how to apply Agile database techniques within Visual Studio to support the SQL Server 2005/2008/2008R2 development lifecycle. Agile database development Visual Studio database projects Importing schema and scripts Building and deploying Generating data Unit testing SPRINT 3 Retrospective Module 10: SHIP IT Teams need to know that just because they like the functionality doesn’t mean the Product Owner will. This module revisits acceptance criteria as it pertains to acceptance testing. By refining acceptance criteria into manual test steps, team members can execute the tests, recording the results and reporting bugs in a number of ways. Manual tests will be defined and executed using the Microsoft Test Manager tool. As the Sprint completes and an increment of functionality is delivered, the team will also learn why and when they should create a branch of the codeline. Acceptance criteria Testing in Visual Studio 2010 Microsoft Test Manager Writing and running manual tests Branching SPRINT 4 Retrospective Module 11: OVERCOMING DYSFUNCTION This module introduces the many types of people, process, and tool dysfunctions that teams face in the real world. Many dysfunctions and scenarios will be identified, along with ideas and discussion for how a team might mitigate them. This module will enable you and your team to move toward independence and improve your game of Scrum when you depart class. Scrum-butts and flaccid Scrum Best practices working as a team Team challenges ScrumMaster challenges Product Owner challenges Stakeholder challenges Course Retrospective What will be expected of you and you team? This is a unique course in that it’s technically-focused, team-based, and employs timeboxes. It demands that the members of the teams self-organize and self-manage their own work to collaboratively develop increments of software. All attendees must commit to: Pay attention to all lectures and demonstrations Participate in team and group discussions Work collaboratively with other team members Obey the timebox for each activity Commit to work and do your best to deliver All teams should have these skills: Understanding of Scrum Familiarity with Visual Studio 201 C#, .NET 4.0 & ASP.NET 4.0 experience*  SQL Server 2008 development experience Software testing experience * Check with the instructor ahead of time for the exact technologies Self-organising teams Another unique attribute of this course is that it’s a technical training class being delivered to teams of developers, not pairs, and not individuals. Ideally, your actual software development team will attend the training to ensure that all necessary skills are covered. However, if you wish to attend an open enrolment course alone or with just a couple of colleagues, realize that you may be placed on a team with other attendees. The instructor will do his or her best to ensure that each team is cross-functional to tackle the case study, but there are no guarantees. You may be required to try a new role, learn a new skill, or pair with somebody unfamiliar to you. This is just good Scrum! Who should NOT take this course? Because of the nature of this course, as explained above, certain types of people should probably not attend this course: Students requiring command and control style instruction – there are no prescriptive/step-by-step (think traditional Microsoft Learning) labs in this course Students who are unwilling to work within a timebox Students who are unwilling to work collaboratively on a team Students who don’t have any skill in any of the software development disciplines Students who are unable to commit fully to their team – not only will this diminish the student’s learning experience, but it will also impact their team’s learning experience Find a course and register Download this syllabus Download the Scrum Guide Technorati Tags: Scrum,SSW,Pro Scrum Dev

    Read the article

  • Missing audio and problems playing FLV video converted from 720p .mov file with FFMPEG

    - by undefined
    I have some .mov video files recorded from a JVC GC-FM1 HD video camera in 720p mode. I have FFMPEG running on a Linux box that I upload files to and have them encoded into FLV format. The video appears to be encoding ok but there is no audio in the resulting FLV file and when I play it back in Flash Player in a browser or on Adobe Media Player, the video pauses at the start. It appears that Adobe Media Player waits for the progress bar to reach the end of the video before starting the playback - i.e. the video will load, the picture pauses, the progress bar seeks to the end as if the video was playing then when it reaches the end the video picture starts. There is no audio on the video. I am noticing this in the video player I have built with Flash 8 using an FLVPlayback component and attached seekBar. The seek bar will start moving as if the video is playing but the picture remains paused. Here are some outputs from my FFMPEG log and the command I am using to encode the video - my FFMPEG command called from PHP - $cmd = 'ffmpeg -i ' . $sourcelocation.$filename.".".$fileext . ' -ab 96k -b 700k -ar 44100 -s ' . $target['width'] . 'x' . $target['height'] . ' -ac 1 -acodec libfaac ' . $destlocation.$filename.$ext_trans .' 2>&1'; and here is the output from my error log - FFmpeg version UNKNOWN, Copyright (c) 2000-2010 Fabrice Bellard, et al. built on Jan 22 2010 11:31:03 with gcc 4.1.2 20070925 (Red Hat 4.1.2-33) configuration: --prefix=/usr --enable-static --enable-shared --enable-gpl --enable-nonfree --enable-postproc --enable-avfilter --enable-avfilter-lavf --enable-libfaac --enable-libfaad --enable-libfaadbin --enable-libgsm --enable-libmp3lame --enable-libvorbis --enable-libx264 libavutil 50. 7. 0 / 50. 7. 0 libavcodec 52.48. 0 / 52.48. 0 libavformat 52.47. 0 / 52.47. 0 libavdevice 52. 2. 0 / 52. 2. 0 libavfilter 1.17. 0 / 1.17. 0 libswscale 0. 9. 0 / 0. 9. 0 libpostproc 51. 2. 0 / 51. 2. 0 Seems stream 0 codec frame rate differs from container frame rate: 119.88 (120000/1001) -> 59.94 (60000/1001) Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'uploads/video/60974_v1.mov': Metadata: major_brand : qt minor_version : 0 compatible_brands: qt comment : JVC GC-FM1 comment-eng : JVC GC-FM1 Duration: 00:00:30.41, start: 0.000000, bitrate: 4158 kb/s Stream #0.0(eng): Video: h264, yuv420p, 640x480 [PAR 1:1 DAR 4:3], 4017 kb/s, 59.94 fps, 59.94 tbr, 90k tbn, 119.88 tbc Stream #0.1(eng): Audio: aac, 48000 Hz, stereo, s16, 128 kb/s Output #0, rawvideo, to 'uploads/video/60974_v1.jpg': Stream #0.0(eng): Video: mjpeg, yuvj420p, 320x240 [PAR 1:1 DAR 4:3], q=2-31, 200 kb/s, 90k tbn, 59.94 tbc Stream mapping: Stream #0.0 -> #0.0 Press [q] to stop encoding [h264 @ 0x8e67930]B picture before any references, skipping [h264 @ 0x8e67930]decode_slice_header error [h264 @ 0x8e67930]no frame! Error while decoding stream #0.0 [h264 @ 0x8e67930]B picture before any references, skipping [h264 @ 0x8e67930]decode_slice_header error [h264 @ 0x8e67930]no frame! Error while decoding stream #0.0 frame= 1 fps= 0 q=3.8 Lsize= 15kB time=0.02 bitrate=7271.4kbits/s dup=482 drop=0 video:15kB audio:0kB global headers:0kB muxing overhead 0.000000% Which are the important errors here - B picture before any references, skipping? decode_slice_header error? no frame? or Seems stream 0 codec frame rate differs from container frame rate: 119.88 (120000/1001) - 59.94 (60000/1001) Any advice welcome, thanks

    Read the article

  • Lots of mysql Sleep processes

    - by user259284
    Hello, I am still having trouble with my mysql server. It seems that since i optimize it, the tables were growing and now sometimes is very slow again. I have no idea of how to optimize more. mySQL server has 48GB of RAM and mysqld is using about 8, most of the tables are innoDB. Site has about 2000 users online. I also run explain on every query and every one of them is indexed. mySQL processes: http://www.pik.ba/mysqlStanje.php my.cnf: # The MySQL database server configuration file. # # You can copy this to one of: # - "/etc/mysql/my.cnf" to set global options, # - "~/.my.cnf" to set user-specific options. # # One can use all long options that the program supports. # Run program with --help to get a list of available options and with # --print-defaults to see which it would actually understand and use. # # For explanations see # http://dev.mysql.com/doc/mysql/en/server-system-variables.html # This will be passed to all mysql clients # It has been reported that passwords should be enclosed with ticks/quotes # escpecially if they contain "#" chars... # Remember to edit /etc/mysql/debian.cnf when changing the socket location. [client] port = 3306 socket = /var/run/mysqld/mysqld.sock # Here is entries for some specific programs # The following values assume you have at least 32M ram # This was formally known as [safe_mysqld]. Both versions are currently parsed. [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] # # * Basic Settings # user = mysql pid-file = /var/run/mysqld/mysqld.pid socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp language = /usr/share/mysql/english skip-external-locking # # Instead of skip-networking the default is now to listen only on # localhost which is more compatible and is not less secure. bind-address = 10.100.27.30 # # * Fine Tuning # key_buffer = 64M key_buffer_size = 512M max_allowed_packet = 16M thread_stack = 128K thread_cache_size = 8 # This replaces the startup script and checks MyISAM tables if needed # the first time they are touched myisam-recover = BACKUP max_connections = 1000 table_cache = 1000 join_buffer_size = 2M tmp_table_size = 2G max_heap_table_size = 2G innodb_buffer_pool_size = 3G innodb_additional_mem_pool_size = 128M innodb_log_file_size = 100M log-slow-queries = /var/log/mysql/slow.log sort_buffer_size = 5M net_buffer_length = 5M read_buffer_size = 2M read_rnd_buffer_size = 12M thread_concurrency = 10 ft_min_word_len = 3 #thread_concurrency = 10 # # * Query Cache Configuration # query_cache_limit = 1M query_cache_size = 512M # # * Logging and Replication # # Both location gets rotated by the cronjob. # Be aware that this log type is a performance killer. #log = /var/log/mysql/mysql.log # # Error logging goes to syslog. This is a Debian improvement :) # # Here you can see queries with especially long duration #log_slow_queries = /var/log/mysql/mysql-slow.log #long_query_time = 2 #log-queries-not-using-indexes # # The following can be used as easy to replay backup logs or for replication. # note: if you are setting up a replication slave, see README.Debian about # other settings you may need to change. #server-id = 1 #log_bin = /var/log/mysql/mysql-bin.log expire_logs_days = 10 max_binlog_size = 100M #binlog_do_db = include_database_name #binlog_ignore_db = include_database_name # # * BerkeleyDB # # Using BerkeleyDB is now discouraged as its support will cease in 5.1.12. skip-bdb # # * InnoDB # # InnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/. # Read the manual for more InnoDB related options. There are many! # You might want to disable InnoDB to shrink the mysqld process by circa 100MB. #skip-innodb # # * Security Features # # Read the manual, too, if you want chroot! # chroot = /var/lib/mysql/ # # For generating SSL certificates I recommend the OpenSSL GUI "tinyca". # # ssl-ca=/etc/mysql/cacert.pem # ssl-cert=/etc/mysql/server-cert.pem # ssl-key=/etc/mysql/server-key.pem [mysqldump] quick quote-names max_allowed_packet = 16M [mysql] #no-auto-rehash # faster start of mysql but no tab completition [isamchk] key_buffer = 16M # # * NDB Cluster # # See /usr/share/doc/mysql-server-*/README.Debian for more information. # # The following configuration is read by the NDB Data Nodes (ndbd processes) # not from the NDB Management Nodes (ndb_mgmd processes). # # [MYSQL_CLUSTER] # ndb-connectstring=127.0.0.1 # # * IMPORTANT: Additional settings that can override those from this file! # The files must end with '.cnf', otherwise they'll be ignored. # !includedir /etc/mysql/conf.d/

    Read the article

  • Denali Paging–Key seek lookups

    - by Dave Ballantyne
    In my previous post “Denali Paging – is it win.win ?” I demonstrated the use of using the Paging functionality within Denali.  On reflection,  I think i may of been a little unfair and should of continued always planned to continue my investigations to the next step. In Pauls article, he uses a combination of ctes to first scan the ordered keys which is then filtered using TOP and rownumber and then uses those keys to seek the data.  So what happens if we replace the scanning portion of the code with the denali paging functionality. Heres the original procedure,  we are going to replace the functionality of the Keys and SelectedKeys ctes : CREATE  PROCEDURE dbo.FetchPageKeySeek         @PageSize   BIGINT,         @PageNumber BIGINT AS BEGIN         -- Key-Seek algorithm         WITH    Keys         AS      (                 -- Step 1 : Number the rows from the non-clustered index                 -- Maximum number of rows = @PageNumber * @PageSize                 SELECT  TOP (@PageNumber * @PageSize)                         rn = ROW_NUMBER() OVER (ORDER BY P1.post_id ASC),                         P1.post_id                 FROM    dbo.Post P1                 ORDER   BY                         P1.post_id ASC                 ),                 SelectedKeys         AS      (                 -- Step 2 : Get the primary keys for the rows on the page we want                 -- Maximum number of rows from this stage = @PageSize                 SELECT  TOP (@PageSize)                         SK.rn,                         SK.post_id                 FROM    Keys SK                 WHERE   SK.rn > ((@PageNumber - 1) * @PageSize)                 ORDER   BY                         SK.post_id ASC                 )         SELECT  -- Step 3 : Retrieve the off-index data                 -- We will only have @PageSize rows by this stage                 SK.rn,                 P2.post_id,                 P2.thread_id,                 P2.member_id,                 P2.create_dt,                 P2.title,                 P2.body         FROM    SelectedKeys SK         JOIN    dbo.Post P2                 ON  P2.post_id = SK.post_id         ORDER   BY                 SK.post_id ASC; END; and here is the replacement procedure using paging: CREATE  PROCEDURE dbo.FetchOffsetPageKeySeek         @PageSize   BIGINT,         @PageNumber BIGINT AS BEGIN         -- Key-Seek algorithm         WITH    SelectedKeys         AS      (                 SELECT  post_id                 FROM    dbo.Post P1                 ORDER   BY post_id ASC                 OFFSET  @PageSize * (@PageNumber-1) ROWS                 FETCH NEXT @PageSize ROWS ONLY                 )         SELECT  P2.post_id,                 P2.thread_id,                 P2.member_id,                 P2.create_dt,                 P2.title,                 P2.body         FROM    SelectedKeys SK         JOIN    dbo.Post P2                 ON  P2.post_id = SK.post_id         ORDER   BY                 SK.post_id ASC; END; Notice how all i have done is replace the functionality with the Keys and SelectedKeys CTEs with the paging functionality. So , what is the comparative performance now ?. Exactly the same amount of IO and memory usage , but its now pretty obvious that in terms of CPU and overall duration we are onto a winner.    

    Read the article

  • codes to convert from avi to asf

    - by George2
    Hello everyone, No matter what library/SDK to use, I want to convert from avi to asf very quickly (I could even sacrifice some quality of video and audio). I am working on Windows platform (Vista and 2008 Server), better .Net SDK/code, C++ code is also fine. :-) I learned from the below link, that there could be a very quick way to convert from avi to asf to support streaming better, as mentioned "could convert the video from AVI to ASF format using a simple copy (i.e. the content is the same, but container changes).". My question is after some hours of study and trial various SDK/tools, as a newbie, I do not know how to begin with so I am asking for reference sample code to do this task. :-) (as this is a different issue, we decide to start a new topic. :-) ) http://stackoverflow.com/questions/743220/streaming-avi-file-issue thanks in advance, George EDIT 1: I have tried to get the binary of ffmpeg from, http://ffmpeg.arrozcru.org/autobuilds/ffmpeg-latest-mingw32-static.tar.bz2 then run the following command, C:\software\ffmpeg-latest-mingw32-static\bin>ffmpeg.exe -i test.avi -acodec copy -vcodec copy test.asf FFmpeg version SVN-r18506, Copyright (c) 2000-2009 Fabrice Bellard, et al. configuration: --enable-memalign-hack --prefix=/mingw --cross-prefix=i686-ming w32- --cc=ccache-i686-mingw32-gcc --target-os=mingw32 --arch=i686 --cpu=i686 --e nable-avisynth --enable-gpl --enable-zlib --enable-bzlib --enable-libgsm --enabl e-libfaac --enable-pthreads --enable-libvorbis --enable-libmp3lame --enable-libo penjpeg --enable-libtheora --enable-libspeex --enable-libxvid --enable-libfaad - -enable-libschroedinger --enable-libx264 libavutil 50. 3. 0 / 50. 3. 0 libavcodec 52.25. 0 / 52.25. 0 libavformat 52.32. 0 / 52.32. 0 libavdevice 52. 2. 0 / 52. 2. 0 libswscale 0. 7. 1 / 0. 7. 1 built on Apr 14 2009 04:04:47, gcc: 4.2.4 Input #0, avi, from 'test.avi': Duration: 00:00:44.86, start: 0.000000, bitrate: 5291 kb/s Stream #0.0: Video: msvideo1, rgb555le, 1280x1024, 5 tbr, 5 tbn, 5 tbc Stream #0.1: Audio: pcm_s16le, 22050 Hz, mono, s16, 352 kb/s Output #0, asf, to 'test.asf': Stream #0.0: Video: CRAM / 0x4D415243, rgb555le, 1280x1024, q=2-31, 1k tbn, 5 tbc Stream #0.1: Audio: pcm_s16le, 22050 Hz, mono, s16, 352 kb/s Stream mapping: Stream #0.0 -> #0.0 Stream #0.1 -> #0.1 Press [q] to stop encoding frame= 224 fps=222 q=-1.0 Lsize= 29426kB time=44.80 bitrate=5380.7kbits/s video:26910kB audio:1932kB global headers:0kB muxing overhead 2.023317% C:\software\ffmpeg-latest-mingw32-static\bin> http://www.microsoft.com/windows/windowsmedia/player/webhelp/default.aspx?&mpver=11.0.6001.7000&id=C00D11B1&contextid=230&originalid=C00D36E6 then have the following error when using Windows Media Player to play it, does anyone have any ideas? http://www.microsoft.com/windows/windowsmedia/player/webhelp/default.aspx?&mpver=11.0.6001.7000&id=C00D11B1&contextid=230&originalid=C00D36E6

    Read the article

  • How to animate an non-closed path with CAShapeLayer?

    - by mystify
    On GitHub you can find an example for CAShapeLayer which animates an path. It animates a pentagon turning into a star. First: This works only in the iPhone simulator. OS 3.0 on the device shows serious bugs with this code. But I can't find anything wrong in there. However, I tried to animate an path which is not closed. To put it simply: A few straight lines. Is there anything special I must do to get this work properly on the device? - (void)loadView { UIView *appView = [[UIView alloc] initWithFrame:[[UIScreen mainScreen] bounds]]; appView.backgroundColor = [UIColor blackColor]; self.view = appView; [appView release]; rootLayer = [CALayer layer]; rootLayer.frame = self.view.bounds; [self.view.layer addSublayer:rootLayer]; //Pentagon Path pentagonPath = CGPathCreateMutable(); CGPathMoveToPoint(pentagonPath, nil, 10.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 100.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 110.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 120.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 130.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 310.0f, 270.0f); //CGPathCloseSubpath(pentagonPath); //Star Path starPath = CGPathCreateMutable(); CGPathMoveToPoint(starPath, nil, 10.0f, 270.0f); CGPathAddLineToPoint(starPath, nil, 100.0f, 270.0f); CGPathAddLineToPoint(starPath, nil, 210.0f, 270.0f); CGPathAddLineToPoint(starPath, nil, 220.0f, 260.0f); CGPathAddLineToPoint(starPath, nil, 230.0f, 270.0f); CGPathAddLineToPoint(starPath, nil, 310.0f, 270.0f); //CGPathCloseSubpath(starPath); //Create Shape shapeLayer = [CAShapeLayer layer]; //shapeLayer.path = pentagonPath; UIColor *col = [UIColor colorWithWhite:0.9 alpha:1.0]; //shapeLayer.fillColor = col.CGColor; shapeLayer.strokeColor = col.CGColor; shapeLayer.lineWidth = 3.0f; // shapeLayer.contents = [UIImage imageNamed:@"test.png"]; shapeLayer.fillRule = kCAFillRuleEvenOdd; [rootLayer addSublayer:shapeLayer]; [self performSelector:@selector(startAnimation) withObject:nil afterDelay:1.0]; } -(void)startAnimation { CABasicAnimation *animation = [CABasicAnimation animationWithKeyPath:@"path"]; animation.duration = 2.0; animation.timingFunction = [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionEaseInEaseOut]; animation.repeatCount = 1e100f; animation.autoreverses = YES; animation.fromValue = (id)pentagonPath; animation.toValue = (id)starPath; [shapeLayer addAnimation:animation forKey:@"animatePath"]; } Note this lines, where I just make straight lines with a small peak which is animated: //Pentagon Path pentagonPath = CGPathCreateMutable(); CGPathMoveToPoint(pentagonPath, nil, 10.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 100.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 110.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 120.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 130.0f, 270.0f); CGPathAddLineToPoint(pentagonPath, nil, 310.0f, 270.0f); //CGPathCloseSubpath(pentagonPath); //Star Path starPath = CGPathCreateMutable(); CGPathMoveToPoint(starPath, nil, 10.0f, 270.0f); CGPathAddLineToPoint(starPath, nil, 100.0f, 270.0f); CGPathAddLineToPoint(starPath, nil, 210.0f, 270.0f); CGPathAddLineToPoint(starPath, nil, 220.0f, 260.0f); CGPathAddLineToPoint(starPath, nil, 230.0f, 270.0f); CGPathAddLineToPoint(starPath, nil, 310.0f, 270.0f); I don't want a closed and filled path, but only simple lines with some color and thickness. The nasty thing on the device is, that the first point seems to move towards the right side of the screen for no reason. On the simulator though, it works perfectly fine. Maybe something is wrong with this setup?

    Read the article

  • SqlBulkCopy is slow, doesn't utilize full network speed

    - by Alex
    Hi, for that past couple of weeks I have been creating generic script that is able to copy databases. The goal is to be able to specify any database on some server and copy it to some other location, and it should only copy the specified content. The exact content to be copied over is specified in a configuration file. This script is going to be used on some 10 different databases and run weekly. And in the end we are copying only about 3%-20% of databases which are as large as 500GB. I have been using the SMO assemblies to achieve this. This is my first time working with SMO and it took a while to create generic way to copy the schema objects, filegroups ...etc. (Actually helped find some bad stored procs). Overall I have a working script which is lacking on performance (and at times times out) and was hoping you guys would be able to help. When executing the WriteToServer command to copy large amount of data ( 6GB) it reaches my timeout period of 1hr. Here is the core code for copying table data. The script is written in PowerShell. $query = ("SELECT * FROM $selectedTable " + $global:selectiveTables.Get_Item($selectedTable)).Trim() Write-LogOutput "Copying $selectedTable : '$query'" $cmd = New-Object Data.SqlClient.SqlCommand -argumentList $query, $source $cmd.CommandTimeout = 120; $bulkData = ([Data.SqlClient.SqlBulkCopy]$destination) $bulkData.DestinationTableName = $selectedTable; $bulkData.BulkCopyTimeout = $global:tableCopyDataTimeout # = 3600 $reader = $cmd.ExecuteReader(); $bulkData.WriteToServer($reader); # Takes forever here on large tables The source and target databases are located on different servers so I kept track of the network speed as well. The network utilization never went over 1% which was quite surprising to me. But when I just transfer some large files between the servers, the network utilization spikes up to 10%. I have tried setting the $bulkData.BatchSize to 5000 but nothing really changed. Increasing the BulkCopyTimeout to an even greater amount would only solve the timeout. I really would like to know why the network is not being used fully. Anyone else had this problem? Any suggestions on networking or bulk copy will be appreciated. And please let me know if you need more information. Thanks. UPDATE I have tweaked several options that increase the performance of SqlBulkCopy, such as setting the transaction logging to simple and providing a table lock to SqlBulkCopy instead of the default row lock. Also some tables are better optimized for certain batch sizes. Overall, the duration of the copy was decreased by some 15%. And what we will do is execute the copy of each database simultaneously on different servers. But I am still having a timeout issue when copying one of the databases. When copying one of the larger databases, there is a table for which I consistently get the following exception: System.Data.SqlClient.SqlException: Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding. It is thrown about 16 after it starts copying the table which is no where near my BulkCopyTimeout. Even though I get the exception that table is fully copied in the end. Also, if I truncate that table and restart my process for that table only, the tables is copied over without any issues. But going through the process of copying that entire database fails always for that one table. I have tried executing the entire process and reseting the connection before copying that faulty table, but it still errored out. My SqlBulkCopy and Reader are closed after each table. Any suggestions as to what else could be causing the script to fail at the point each time?

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • Trace flags - TF 1117

    - by Damian
    I had a session about trace flags this year on the SQL Day 2014 conference that was held in Wroclaw at the end of April. The session topic is important to most of DBA's and the reason I did it was that I sometimes forget about various trace flags :). So I decided to prepare a presentation but I think it is a good idea to write posts about trace flags, too. Let's start then - today I will describe the TF 1117. I assume that we all know how to setup a TF using starting parameters or registry or in the session or on the query level. I will always write if a trace flag is local or global to make sure we know how to use it. Why do we need this trace flag? Let’s create a test database first. This is quite ordinary database as it has two data files (4 MB each) and a log file that has 1MB. The data files are able to expand by 1 MB and the log file grows by 10%: USE [master] GO CREATE DATABASE [TF1117]  ON  PRIMARY ( NAME = N'TF1117',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117.mdf' ,      SIZE = 4096KB ,      MAXSIZE = UNLIMITED,      FILEGROWTH = 1024KB ), ( NAME = N'TF1117_1',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117_1.ndf' ,      SIZE = 4096KB ,      MAXSIZE = UNLIMITED,      FILEGROWTH = 1024KB )  LOG ON ( NAME = N'TF1117_log',      FILENAME = N'C:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\TF1117_log.ldf' ,      SIZE = 1024KB ,      MAXSIZE = 2048GB ,      FILEGROWTH = 10% ) GO Without the TF 1117 turned on the data files don’t grow all up at once. When a first file is full the SQL Server expands it but the other file is not expanded until is full. Why is that so important? The SQL Server proportional fill algorithm will direct new extent allocations to the file with the most available space so new extents will be written to the file that was just expanded. When the TF 1117 is enabled it will cause all files to auto grow by their specified increment. That means all files will have the same percent of free space so we still have the benefit of evenly distributed IO. The TF 1117 is global flag so it affects all databases on the instance. Of course if a filegroup contains only one file the TF does not have any effect on it. Now let’s do a simple test. First let’s create a table in which every row will fit to a single page: The table definition is pretty simple as it has two integer columns and one character column of fixed size 8000 bytes: create table TF1117Tab (      col1 int,      col2 int,      col3 char (8000) ) go Now I load some data to the table to make sure that one of the data file must grow: declare @i int select @i = 1 while (@i < 800) begin       insert into TF1117Tab  values (@i, @i+1000, 'hello')        select @i= @i + 1 end I can check the actual file size in the sys.database_files DMV: SELECT name, (size*8)/1024 'Size in MB' FROM sys.database_files  GO   As you can see only the first data file was  expanded and the other has still the initial size:   name                  Size in MB --------------------- ----------- TF1117                5 TF1117_log            1 TF1117_1              4 There is also other methods of looking at the events of file autogrows. One possibility is to create an Extended Events session and the other is to look into the default trace file:     DECLARE @path NVARCHAR(260); SELECT    @path = REVERSE(SUBSTRING(REVERSE([path]),          CHARINDEX('\', REVERSE([path])), 260)) + N'log.trc' FROM    sys.traces WHERE   is_default = 1; SELECT    DatabaseName,                 [FileName],                 SPID,                 Duration,                 StartTime,                 EndTime,                 FileType =                         CASE EventClass                                     WHEN 92 THEN 'Data'                                    WHEN 93 THEN 'Log'             END FROM sys.fn_trace_gettable(@path, DEFAULT) WHERE   EventClass IN (92,93) AND StartTime >'2014-07-12' AND DatabaseName = N'TF1117' ORDER BY   StartTime DESC;   After running the query I can see the file was expanded and how long did the process take which might be useful from the performance perspective.    Now it’s time to turn on the flag 1117. DBCC TRACEON(1117)   I dropped the database and recreated it once again. Then I ran the queries and observed the results. After loading the records I see that both files were evenly expanded: name                  Size in MB --------------------- ----------- TF1117                5 TF1117_log            1 TF1117_1              5 I found also information in the default trace. The query returned three rows. The last one is connected to my first experiment when the TF was turned off.  The two rows shows that first file was expanded by 1MB and right after that operation the second file was expanded, too. This is what is this TF all about J  

    Read the article

< Previous Page | 47 48 49 50 51 52 53 54 55  | Next Page >