Search Results

Search found 52863 results on 2115 pages for 'net 4 0 rc1'.

Page 510/2115 | < Previous Page | 506 507 508 509 510 511 512 513 514 515 516 517  | Next Page >

  • The Evolution Of C#

    - by Paulo Morgado
    The first release of C# (C# 1.0) was all about building a new language for managed code that appealed, mostly, to C++ and Java programmers. The second release (C# 2.0) was mostly about adding what wasn’t time to built into the 1.0 release. The main feature for this release was Generics. The third release (C# 3.0) was all about reducing the impedance mismatch between general purpose programming languages and databases. To achieve this goal, several functional programming features were added to the language and LINQ was born. Going forward, new trends are showing up in the industry and modern programming languages need to be more: Declarative With imperative languages, although having the eye on the what, programs need to focus on the how. This leads to over specification of the solution to the problem in hand, making next to impossible to the execution engine to be smart about the execution of the program and optimize it to run it more efficiently (given the hardware available, for example). Declarative languages, on the other hand, focus only on the what and leave the how to the execution engine. LINQ made C# more declarative by using higher level constructs like orderby and group by that give the execution engine a much better chance of optimizing the execution (by parallelizing it, for example). Concurrent Concurrency is hard and needs to be thought about and it’s very hard to shoehorn it into a programming language. Parallel.For (from the parallel extensions) looks like a parallel for because enough expressiveness has been built into C# 3.0 to allow this without having to commit to specific language syntax. Dynamic There was been lots of debate on which ones are the better programming languages: static or dynamic. The fact is that both have good qualities and users of both types of languages want to have it all. All these trends require a paradigm switch. C# is, in many ways, already a multi-paradigm language. It’s still very object oriented (class oriented as some might say) but it can be argued that C# 3.0 has become a functional programming language because it has all the cornerstones of what a functional programming language needs. Moving forward, will have even more. Besides the influence of these trends, there was a decision of co-evolution of the C# and Visual Basic programming languages. Since its inception, there was been some effort to position C# and Visual Basic against each other and to try to explain what should be done with each language or what kind of programmers use one or the other. Each language should be chosen based on the past experience and familiarity of the developer/team/project/company and not by particular features. In the past, every time a feature was added to one language, the users of the other wanted that feature too. Going forward, when a feature is added to one language, the other will work hard to add the same feature. This doesn’t mean that XML literals will be added to C# (because almost the same can be achieved with LINQ To XML), but Visual Basic will have auto-implemented properties. Most of these features require or are built on top of features of the .NET Framework and, the focus for C# 4.0 was on dynamic programming. Not just dynamic types but being able to talk with anything that isn’t a .NET class. Also introduced in C# 4.0 is co-variance and contra-variance for generic interfaces and delegates. Stay tuned for more on the new C# 4.0 features.

    Read the article

  • MVC 2 jQuery Client-side Validation

    - by nmarun
    Well, I watched Phil Haack’s show What's New in Microsoft ASP.NET MVC 2 and was impressed about the client-side validation (starts at 17:45) that MVC 2 offers. I tried creating the same, but Phil does not show what .js files need to be included and also I was not able to find the source code for the application that he used. In order to find out the required JavaScript file references, I added all of the files in my application to the page and ran it. Of course it worked, but this is definitely not an optimum solution. By removing one at a time and testing the app, I’ve short-listed the following ones: 1: <script src="../../Scripts/jquery-1.4.1.min.js" type="text/javascript"></script 2: <script src="../../Scripts/MicrosoftAjax.js" type="text/javascript"></script> 3: <script src="../../Scripts/MicrosoftMvcValidation.js" type="text/javascript"></script> Now, a little about the feature itself. Say, I’m working with a Book application so my model will look something like: 1: public class Book 2: { 3: [HiddenInput(DisplayValue = false)] 4: public int BookId { get; set; } 5:  6: [DisplayName("Book Title")] 7: [Required(ErrorMessage = "Book title is required")] 8: [StringLength(20, ErrorMessage = "Must be under 20 characters")] 9: public string Title { get; set; } 10:  11: [Required(ErrorMessage = "Author is required")] 12: [StringLength(40, ErrorMessage = "Must be under 40 characters")] 13: public string Author { get; set; } 14:  15: public decimal Price { get; set; } 16: 17: [DisplayName("ISBN")] 18: [StringLength(13, ErrorMessage = "Must be 13 characters")] 19: public string Isbn { get; set; } 20: } This ensures that the data passed will be validated upon post. But what would happen if you add the line (along with the above mentioned .js files): 1: <% Html.EnableClientValidation(); %> Now, this acts as ‘on-the-fly’ or ‘real-time’ validation. Now, when the user types 20 characters for the Title, the error shows up right on the 21st character. Beautiful… and you do not have to create the JavaScript function(s) for this. They’re auto-magically created for you. (Doing a ‘View Source’ on the browser page shows you the JavaScript logic that goes on behind the scenes). I bumped into another post that shows how .net 4 allows us to create custom validation attributes: Dynamic Range validation in MVC 2. This will help us attach virtually any business logic to the model itself. Please see the source code I’ve worked with.

    Read the article

  • Windows Workflow Foundation (WF) and things I were more intuitive

    - by pjohnson
    I've started using Windows Workflow Foundation, and so far ran into a few things that aren't incredibly obvious. Microsoft did a good job of providing a ton of samples, which is handy because you need them to get anywhere with WF. The docs are thin, so I've been bouncing between samples and downloadable labs to figure out how to implement various activities in a workflow. Code separation or not? You can create a workflow and activity in Visual Studio with or without code separation, i.e. just a .cs "Component" style object with a Designer.cs file, or a .xoml XML markup file with code behind (beside?) it. Absence any obvious advantage to one or the other, I used code separation for workflows and any complex custom activities, and without code separation for custom activities that just inherit from the Activity class and thus don't have anything special in the designer. So far, so good. Service - In the WF world, this is simply a class that talks to the workflow about things outside the workflow, not to be confused with how the term "service" is used in every other context I've seen in the Windows and .NET world, i.e. an executable that waits for events or requests from a client and services them (Windows service, web service, WCF service, etc.). ListenActivity - Such a great concept, yet so unintuitive. It seems you need at least two branches (EventDrivenActivity instances), one for your positive condition and one for a timeout. The positive condition has a HandleExternalEventActivity, and the timeout has a DelayActivity followed by however you want to handle the delay, e.g. a ThrowActivity. The timeout is simple enough; wiring up the HandleExternalEventActivity is where things get fun. You need to create a service (see above), and an interface for that service (this seems more complex than should be necessary--why not have activities just wire to a service directly?). And you need to create a custom EventArgs class that inherits from ExternalDataEventArgs--you can't create an ExternalDataEventArgs event handler directly, even if you don't need to add any more information to the event args, despite ExternalDataEventArgs not being marked as an abstract class, nor a compiler error nor warning nor any other indication that you're doing something wrong, until you run it and find that it always times out and get to check every place mentioned here to see why. Your interface and service need an event that consumes your custom EventArgs class, and a method to fire that event. You need to call that method from somewhere. Then you get to hope that you did everything just right, or that you can step through code in the debugger before your Delay timeout expires. Yes, it's as much fun as it sounds. TransactionScopeActivity - I had the bright idea of putting one in as a placeholder, then filling in the database updates later. That caused this error: The workflow hosting environment does not have a persistence service as required by an operation on the workflow instance "[GUID]". ...which is about as helpful as "Object reference not set to an instance of an object" and even more fun to debug. Google led me to this Microsoft Forums hit, and from there I figured out it didn't like that the activity had no children. Again, a Validator on TransactionScopeActivity would have pointed this out to me at design time, rather than handing me a nearly useless error at runtime. Easily enough, I disabled the activity and that fixed it. I still see huge potential in my work where WF could make things easier and more flexible, but there are some seriously rough edges at the moment. Maybe I'm just spoiled by how much easier and more intuitive development elsewhere in the .NET Framework is.

    Read the article

  • Session and Pop Up Window

    - by imran_ku07
     Introduction :        Session is the secure state management. It allows the user to store their information in one page and access in another page. Also it is so much powerful that store any type of object. Every user's session is identified by their cookie, which client presents to server. But unfortunately when you open a new pop up window, this cookie is not post to server with request, due to which server is unable to identify the session data for current user.         In this Article i will show you how to handle this situation,  Description :         During working in a application, i was getting an Exception saying that Session is null, when a pop window opens. After seeing the problem more closely i found that ASP.NET_SessionId cookie for parent page is not post in cookie header of child (popup) window.         Therefore for making session present in both parent and child (popup) window, you have to present same cookie. For cookie sharing i passed parent SessionID in query string,   window.open('http://abc.com/s.aspx?SASID=" & Session.SessionID &','V');           and in Application_PostMapRequestHandler application Event, check if the current request has no ASP.NET_SessionId cookie and SASID query string is not null then add this cookie to Request before Session is acquired, so that Session data remain same for both parent and popup window.    Private Sub Application_PostMapRequestHandler(ByVal sender As Object, ByVal e As EventArgs)           If (Request.Cookies("ASP.NET_SessionId") Is Nothing) AndAlso (Request.QueryString("SASID") IsNot Nothing) Then               Request.Cookies.Add(New HttpCookie("ASP.NET_SessionId", Request.QueryString("SASID")))           End If       End Sub           Now access Session in your parent and child window without any problem. How this works :          ASP.NET (both Web Form or MVC) uses a cookie (ASP.NET_SessionId) to identify the user who is requesting. Cookies are may be persistent (saved permanently in user cookies ) or non-persistent (saved temporary in browser memory). ASP.NET_SessionId cookie saved as non-persistent. This means that if the user closes the browser, the cookie is immediately removed. This is a sensible step that ensures security. That's why ASP.NET unable to identify that the request is coming from the same user. Therefore every browser instance get it's own ASP.NET_SessionId. To resolve this you need to present the same parent ASP.NET_SessionId cookie to the server when open a popup window.           You can confirm this situation by using some tools like Firebug, Fiddler,  Summary :          Hopefully you will enjoy after reading this article, by seeing that how to workaround the problem of sharing Session between different browser instances by sharing their Session identifier Cookie.

    Read the article

  • Fun with Python

    - by dotneteer
    I am taking a class on Coursera recently. My formal education is in physics. Although I have been working as a developer for over 18 years and have learnt a lot of programming on the job, I still would like to gain some systematic knowledge in computer science. Coursera courses taught by Standard professors provided me a wonderful chance. The three languages recommended for assignments are Java, C and Python. I am fluent in Java and have done some projects using C++/MFC/ATL in the past, but I would like to try something different this time. I first started with pure C. Soon I discover that I have to write a lot of code outside the question that I try to solve because the very limited C standard library. For example, to read a list of values from a file, I have to read characters by characters until I hit a delimiter. If I need a list that can grow, I have to create a data structure myself, something that I have taking for granted in .Net or Java. Out of frustration, I switched to Python. I was pleasantly surprised to find that Python is very easy to learn. The tutorial on the official Python site has the exactly the right pace for me, someone with experience in another programming. After a couple of hours on the tutorial and a few more minutes of toying with IDEL, I was in business. I like the “battery supplied” philosophy that gives everything that I need out of box. For someone from C# or Java background, curly braces are replaced by colon(:) and tab spaces. Although I tend to miss colon from time to time, I found that the idea of tab space is actually very nice once I get use to them. I also like to feature of multiple assignment and multiple return parameters. When I need to return a by-product, I just add it to the list of returns. When would use Python? I would use Python if I need to computer anything quick. The language is very easy to use. Python has a good collection of libraries (packages). The REPL of the interpreter allows me test ideas quickly before committing them into script. Lots of computer science work have been ported from Lisp to Python. Some universities are even teaching SICP in Python. When wouldn’t I use Python? I mostly would not use it in a managed environment, such as Ironpython or Jython. Both .Net and Java already have a rich library so one has to make a choice which library to use. If we use the managed runtime library, the code will tie to the particular runtime and thus not portable. If we use the Python library, then we will face the relatively long start-up time. For this reason, I would not recommend to use Ironpython for WP7 development. The only situation that I see merit with managed Python is in a server application where I can preload Python so that the start-up time is not a concern. Using Python as a managed glue language is an over-kill most of the time. A managed Scheme could be a better glue language as it is small enough to start-up very fast.

    Read the article

  • What's happening in Red Gate's .NET Developer Tools division?

    .NET 4.0, Silverlight 4, F# decompilation in .NET Reflector, our crazy shipping schedule, and some prize draw winners. Yes, with a list of topics that broad, it can only be another update on what's happening in Red Gate's .NET Developer Tools division....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • A review of the latest version of Crypto Obfuscator for .NET and its features.

    Crypto Obfuscator For .Net is a powerful and easy-to-use product for code protection, deployment and optimization of your your .Net software. A review of the latest version of Crypto Obfuscator for .NET and its features.  read moreBy Peter BrombergDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Fun with RadCaptcha for ASP.NET AJAX and OCR software

    A friend of mine was evaluating OCR software and finally decided to go with FineReader. I was curious what would happen if we put the RadCaptcha control in. Will the advanced OCR manage to decode it or not? At first he showed me a test run with the RadCaptcha demo description, to get an idea of the basic output:    Naturally, the captured description text was no problem - only a few characters were misread but then corrected with the spellcheck. Next, the real test was performed:    These were only a couple of the results, but there is no need to post the rest of the tests - none of the RadCaptcha images were recognized by the OCR software. Here are the CaptchaImage settings used in the tests: Background Noise Level: Low /default value Line Noise Level: Low /default value Font Warp Factor: Low /Medium is default value...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • HttpWebRequest and Ignoring SSL Certificate Errors

    - by Rick Strahl
    Man I can't believe this. I'm still mucking around with OFX servers and it drives me absolutely crazy how some these servers are just so unbelievably misconfigured. I've recently hit three different 3 major brokerages which fail HTTP validation with bad or corrupt certificates at least according to the .NET WebRequest class. What's somewhat odd here though is that WinInet seems to find no issue with these servers - it's only .NET's Http client that's ultra finicky. So the question then becomes how do you tell HttpWebRequest to ignore certificate errors? In WinInet there used to be a host of flags to do this, but it's not quite so easy with WebRequest. Basically you need to configure the CertificatePolicy on the ServicePointManager by creating a custom policy. Not exactly trivial. Here's the code to hook it up: public bool CreateWebRequestObject(string Url) {    try     {        this.WebRequest =  (HttpWebRequest) System.Net.WebRequest.Create(Url);         if (this.IgnoreCertificateErrors)            ServicePointManager.CertificatePolicy = delegate { return true; };}One thing to watch out for is that this an application global setting. There's one global ServicePointManager and once you set this value any subsequent requests will inherit this policy as well, which may or may not be what you want. So it's probably a good idea to set the policy when the app starts and leave it be - otherwise you may run into odd behavior in some situations especially in multi-thread situations.Another way to deal with this is in you application .config file. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} <configuration>   <system.net>     <settings>       <servicePointManager           checkCertificateName="false"           checkCertificateRevocationList="false"                />     </settings>   </system.net> </configuration> This seems to work most of the time, although I've seen some situations where it doesn't, but where the code implementation works which is frustrating. The .config settings aren't as inclusive as the programmatic code that can ignore any and all cert errors - shrug. Anyway, the code approach got me past the stopper issue. It still amazes me that theses OFX servers even require this. After all this is financial data we're talking about here. The last thing I want to do is disable extra checks on the certificates. Well I guess I shouldn't be surprised - these are the same companies that apparently don't believe in XML enough to generate valid XML (or even valid SGML for that matter)...© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp  HTTP  

    Read the article

  • Package and Publish Web Sites with TFS 2010 Build Server

    - by jdanforth
    To package and publish web sites with TFS 2010 Build Server, you can use MSDeploy and some of the new MSBuild arguments. For example: /p:DeployOnBuild=True /p:DeployTarget=MsDeployPublish /p:MSDeployPublishMethod=InProc /p:CreatePackageOnPublish=True /p:DeployIisAppPath="Default Web Site/WebApplication1" /p:MsDeployServiceUrl=localhost Does all the work for you! Unfortunately these arguments are not very well documented, yet. Please feel free comment with pointers to good docs. You can enter these arguments when editing the Build Definition, under the Process tab and the Advanced section: If you’re working with these things, I’m sure you’ve not missed the PDC 2009 presentation by Vishal Joshi about MS Deploy. A few links on the topic: http://stackoverflow.com/questions/2636153/where-is-the-documentation-for-msbuild-arguments-to-run-msdeploy http://blogs.msdn.com/aspnetue/archive/2010/03/05/automated-deployment-in-asp-net-4-frequently-asked-questions.aspx http://www.hanselman.com/blog/WebDeploymentMadeAwesomeIfYoureUsingXCopyYoureDoingItWrong.aspx

    Read the article

  • Of WPF and Winforms, which is the better skills to have in the job market?

    - by CraigJ
    I have a large VB6 desktop app which I would like to upgrade to .NET in order to take advantage of the newer .NET API. I am at a loose end as to whether to adopt WPF or Winforms when creating the new .NET solution. I realise that WPF seems to be in some ways the successor of Winforms. The only thing stopping me taking on WPF for this project is my concern that when the project has been completed the job marketplace will still be calling for Winforms skills and not necessarily WPF. Is this a valid concern? Note: I am aware there are existing questions on "WPF vs Winforms" generally, but this question relates to my specific concern about the job market.

    Read the article

  • AddThis - contains too many device filters error

    - by Yousef_Jadallah
    When using AddThis service with asp.net, some exceptions will throw like these: The string 'fb:like:layout' contains too many device filters. There can be only one. The string 'g:plusone:size' contains too many device filters. There can be only one. You can solve this by using "In line server code".   Step 1: Implement the following code in your code file:   Protected Function GetFacebookAttribute() As String Return String .Format( "{0}=" "{1}" ""...(read more)

    Read the article

  • Request Limit Length Limits for IIS&rsquo;s requestFiltering Module

    - by Rick Strahl
    Today I updated my CodePaste.net site to MVC 3 and pushed an update to the site. The update of MVC went pretty smooth as well as most of the update process to the live site. Short of missing a web.config change in the /views folder that caused blank pages on the server, the process was relatively painless. However, one issue that kicked my ass for about an hour – and not foe the first time – was a problem with my OpenId authentication using DotNetOpenAuth. I tested the site operation fairly extensively locally and everything worked no problem, but on the server the OpenId returns resulted in a 404 response from IIS for a nice friendly OpenId return URL like this: http://codepaste.net/Account/OpenIdLogon?dnoa.userSuppliedIdentifier=http%3A%2F%2Frstrahl.myopenid.com%2F&dnoa.return_to_sig_handle=%7B634239223364590000%7D%7BjbHzkg%3D%3D%7D&dnoa.return_to_sig=7%2BcGhp7UUkcV2B8W29ibIDnZuoGoqzyS%2F%2FbF%2FhhYscgWzjg%2BB%2Fj10ZpNdBkUCu86dkTL6f4OK2zY5qHhCnJ2Dw%3D%3D&openid.assoc_handle=%7BHMAC-SHA256%7D%7B4cca49b2%7D%7BMVGByQ%3D%3D%7D&openid.claimed_id=http%3A%2F%2Frstrahl.myopenid.com%2F&openid.identity=http%3A%2F%2Frstrahl.myopenid.com%2F&openid.mode=id_res&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.ns.sreg=http%3A%2F%2Fopenid.net%2Fextensions%2Fsreg%2F1.1&openid.op_endpoint=http%3A%2F%2Fwww.myopenid.com%2Fserver&openid.response_nonce=2010-10-29T04%3A12%3A53Zn5F4r5&openid.return_to=http%3A%2F%2Fcodepaste.net%2FAccount%2FOpenIdLogon%3Fdnoa.userSuppliedIdentifier%3Dhttp%253A%252F%252Frstrahl.myopenid.com%252F%26dnoa.return_to_sig_handle%3D%257B634239223364590000%257D%257BjbHzkg%253D%253D%257D%26dnoa.return_to_sig%3D7%252BcGhp7UUkcV2B8W29ibIDnZuoGoqzyS%252F%252FbF%252FhhYscgWzjg%252BB%252Fj10ZpNdBkUCu86dkTL6f4OK2zY5qHhCnJ2Dw%253D%253D&openid.sig=h1GCSBTDAn1on98sLA6cti%2Bj1M6RffNerdVEI80mnYE%3D&openid.signed=assoc_handle%2Cclaimed_id%2Cidentity%2Cmode%2Cns%2Cns.sreg%2Cop_endpoint%2Cresponse_nonce%2Creturn_to%2Csigned%2Csreg.email%2Csreg.fullname&openid.sreg.email=rstrahl%40host.com&openid.sreg.fullname=Rick+Strahl A 404 of course isn’t terribly helpful – normally a 404 is a resource not found error, but the resource is definitely there. So how the heck do you figure out what’s wrong? If you’re just interested in the solution, here’s the short version: IIS by default allows only for a 1024 byte query string, which is obviously exceeded by the above. The setting is controlled by the RequestFiltering module in IIS 6 and later which can be configured in ApplicationHost.config (in \%windir\system32\inetsvr\config). To set the value configure the requestLimits key like so: <configuration> <security> <requestFiltering> <requestLimits maxQueryString="2048"> </requestLimits> </requestFiltering> </security> </configuration> This fixed me right up and made the requests work. How do you find out about problems like this? Ah yes the troubles of an administrator? Read on and I’ll take you through a quick review of how I tracked this down. Finding the Problem The issue with the error returned is that IIS returns a 404 Resource not found error and doesn’t provide much information about it. If you’re lucky enough to be able to run your site from the localhost IIS is actually very helpful and gives you the right information immediately in a nicely detailed error page. The bottom of the page actually describes exactly what needs to be fixed. One problem with this easy way to find an error: You HAVE TO run localhost. On my server which has about 10 domains running localhost doesn’t point at the particular site I had problems with so I didn’t get the luxury of this nice error page. Using Failed Request Tracing to retrieve Error Info The first place I go with IIS errors is to turn on Failed Request Tracing in IIS to get more error information. If you have access to the server to make a configuration change you can enable Failed Request Tracing like this: Find the Failed Request Tracing Rules in the IIS Service Manager.   Select the option and then Edit Site Tracing to enable tracing. Then add a rule for * (all content) and specify status codes from 100-999 to capture all errors. if you know exactly what error you’re looking for it might help to specify it exactly to keep the number of errors down. Then run your request and let it fail. IIS will throw error log files into a folder like this C:\inetpub\logs\FailedReqLogFiles\W3SVC5 where the last 5 is the instance ID of the site. These files are XML but they include an XSL stylesheet that provides some decent formatting. In this case it pointed me straight at the offending module:   Ok, it’s the RequestFilteringModule. Request Filtering is built into IIS 6-7 and configured in ApplicationHost.config. This module defines a few basic rules about what paths and extensions are allowed in requests and among other things how long a query string is allowed to be. Most of these settings are pretty sensible but the query string value can easily become a problem especially if you’re dealing with OpenId since these return URLs are quite extensive. Debugging failed requests is never fun, but IIS 6 and forward at least provides us the tools that can help us point in the right direction. The error message the FRT report isn’t as nice as the IIS error message but it at least points at the offending module which gave me the clue I needed to look at request restrictions in ApplicationHost.config. This would still be a stretch if you’re not intimately familiar, but I think with some Google searches it would be easy to track this down with a few tries… Hope this was useful to some of you. Useful to me to put this out as a reminder – I’ve run into this issue before myself and totally forgot. Next time I got it, right?© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  Security  

    Read the article

  • Tracking My Internet Provider Speeds

    - by Scott Weinstein
    Of late, our broadband internet has been feeling sluggish. A call to the company took way more hold-time than I wanted to spend, and it only fixed the problem for a short while. Thus a perfect opportunity to play with some new tech to solve a problem, in this case, documenting a systemic issue from a service provider. The goal – a log a internet speeds, taken say every 15 min. Recording ping time, upload speed, download speed, and local LAN usage.   The solution A WCF service to measure speeds Internet speed was measured via speedtest.net LAN usage was measured by querying my router for packets received and sent A SQL express instance to persist the data A PowerShell script to invoke the WCF service – launched by Windows’ Task Scheduler An OData WCF Data Service to allow me to read the data MS PowerPivot to show a nice viz (scratch that, the beta expired) LinqPad to get the data, export it to excel Tableau Public to show the viz     Powered by Tableau

    Read the article

  • Microsoft Developer Training Kits

    - by Ricardo Peres
    Here's a personal list of some of Microsoft's available and updated developer training kits: PHP on Windows Training Kit: http://www.microsoft.com/downloads/details.aspx?displaylang=en&familyid=c8498c9b-a85a-4afa-90c0-593d0e4850cb Identity Developer Training Kit: http://www.microsoft.com/downloads/details.aspx?familyid=C3E315FA-94E2-4028-99CB-904369F177C0&displaylang=en Office 2010 Developer Training Kit: http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=f1599288-a99f-410f-a219-f4375dbe310c SharePoint 2010 Developer Training Kit: http://www.microsoft.com/downloads/details.aspx?FamilyID=bfd1603b-7550-4b8e-be85-4215a5069b90 Silverlight 4 Training: http://www.microsoft.com/downloads/details.aspx?FamilyID=24cea29e-042e-41c9-aa16-684a0ca5f5db SQL Server 2008 R2 Training Kit (includes SQL Server 2008): http://www.microsoft.com/downloads/details.aspx?FamilyID=fffaad6a-0153-4d41-b289-a3ed1d637c0d Visual Studio 2010 and .NET Framework 4 Training Kit: http://www.microsoft.com/downloads/details.aspx?FamilyID=752cb725-969b-4732-a383-ed5740f02e93 Windows Server 2008 R2 Developer Training Kit: http://www.microsoft.com/downloads/details.aspx?FamilyID=c48b3eb4-ad4b-461c-9d5a-25f45d949b92&displaylang=en Windows 7 Training Kit For Developers: http://www.microsoft.com/downloads/details.aspx?familyid=1C333F06-FADB-4D93-9C80-402621C600E7&displaylang=en Windows Phone 7 Training Kit for Developers: http://www.microsoft.com/downloads/details.aspx?familyid=CA23285F-BAB8-47FA-B364-11553E076A9A&displaylang=en Windows Mobile 6.5 Developer Tool Kit: http://www.microsoft.com/downloads/details.aspx?familyid=20686A1D-97A8-4F80-BC6A-AE010E085A6E&displaylang=en

    Read the article

  • An abundance of LINQ queries and expressions using both the query and method syntax.

    - by nikolaosk
    In this post I will be writing LINQ queries against an array of strings, an array of integers.Moreover I will be using LINQ to query an SQL Server database. I can use LINQ against arrays since the array of strings/integers implement the IENumerable interface. I thought it would be a good idea to use both the method syntax and the query syntax. There are other places on the net where you can find examples of LINQ queries but I decided to create a big post using as many LINQ examples as possible. We...(read more)

    Read the article

  • Detecting Idle Time with Global Mouse and Keyboard Hooks in WPF

    - by jdanforth
    Years and years ago I wrote this blog post about detecting if the user was idle or active at the keyboard (and mouse) using a global hook. Well that code was for .NET 2.0 and Windows Forms and for some reason I wanted to try the same in WPF and noticed that a few things around the keyboard and mouse hooks didn’t work as expected in the WPF environment. So I had to change a few things and here’s the code for it, working in .NET 4. I took the liberty and refactored a few things while at it and here’s the code now. I’m sure I will need it in the far future as well. using System; using System.Diagnostics; using System.Runtime.InteropServices; namespace Irm.Tim.Snapper.Util { public class ClientIdleHandler : IDisposable { public bool IsActive { get; set; } int _hHookKbd; int _hHookMouse; public delegate int HookProc(int nCode, IntPtr wParam, IntPtr lParam); public event HookProc MouseHookProcedure; public event HookProc KbdHookProcedure; //Use this function to install thread-specific hook. [DllImport("user32.dll", CharSet = CharSet.Auto, CallingConvention = CallingConvention.StdCall)] public static extern int SetWindowsHookEx(int idHook, HookProc lpfn, IntPtr hInstance, int threadId); //Call this function to uninstall the hook. [DllImport("user32.dll", CharSet = CharSet.Auto, CallingConvention = CallingConvention.StdCall)] public static extern bool UnhookWindowsHookEx(int idHook); //Use this function to pass the hook information to next hook procedure in chain. [DllImport("user32.dll", CharSet = CharSet.Auto, CallingConvention = CallingConvention.StdCall)] public static extern int CallNextHookEx(int idHook, int nCode, IntPtr wParam, IntPtr lParam); //Use this hook to get the module handle, needed for WPF environment [DllImport("kernel32.dll", CharSet = CharSet.Auto)] public static extern IntPtr GetModuleHandle(string lpModuleName); public enum HookType : int { GlobalKeyboard = 13, GlobalMouse = 14 } public int MouseHookProc(int nCode, IntPtr wParam, IntPtr lParam) { //user is active, at least with the mouse IsActive = true; Debug.Print("Mouse active"); //just return the next hook return CallNextHookEx(_hHookMouse, nCode, wParam, lParam); } public int KbdHookProc(int nCode, IntPtr wParam, IntPtr lParam) { //user is active, at least with the keyboard IsActive = true; Debug.Print("Keyboard active"); //just return the next hook return CallNextHookEx(_hHookKbd, nCode, wParam, lParam); } public void Start() { using (var currentProcess = Process.GetCurrentProcess()) using (var mainModule = currentProcess.MainModule) { if (_hHookMouse == 0) { // Create an instance of HookProc. MouseHookProcedure = new HookProc(MouseHookProc); // Create an instance of HookProc. KbdHookProcedure = new HookProc(KbdHookProc); //register a global hook _hHookMouse = SetWindowsHookEx((int)HookType.GlobalMouse, MouseHookProcedure, GetModuleHandle(mainModule.ModuleName), 0); if (_hHookMouse == 0) { Close(); throw new ApplicationException("SetWindowsHookEx() failed for the mouse"); } } if (_hHookKbd == 0) { //register a global hook _hHookKbd = SetWindowsHookEx((int)HookType.GlobalKeyboard, KbdHookProcedure, GetModuleHandle(mainModule.ModuleName), 0); if (_hHookKbd == 0) { Close(); throw new ApplicationException("SetWindowsHookEx() failed for the keyboard"); } } } } public void Close() { if (_hHookMouse != 0) { bool ret = UnhookWindowsHookEx(_hHookMouse); if (ret == false) { throw new ApplicationException("UnhookWindowsHookEx() failed for the mouse"); } _hHookMouse = 0; } if (_hHookKbd != 0) { bool ret = UnhookWindowsHookEx(_hHookKbd); if (ret == false) { throw new ApplicationException("UnhookWindowsHookEx() failed for the keyboard"); } _hHookKbd = 0; } } #region IDisposable Members public void Dispose() { if (_hHookMouse != 0 || _hHookKbd != 0) Close(); } #endregion } } The way you use it is quite simple, for example in a WPF application with a simple Window and a TextBlock: <Window x:Class="WpfApplication2.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="MainWindow" Height="350" Width="525"> <Grid> <TextBlock Name="IdleTextBox"/> </Grid> </Window> And in the code behind we wire up the ClientIdleHandler and a DispatcherTimer that ticks every second: public partial class MainWindow : Window { private DispatcherTimer _dispatcherTimer; private ClientIdleHandler _clientIdleHandler; public MainWindow() { InitializeComponent(); } private void Window_Loaded(object sender, RoutedEventArgs e) { //start client idle hook _clientIdleHandler = new ClientIdleHandler(); _clientIdleHandler.Start(); //start timer _dispatcherTimer = new DispatcherTimer(); _dispatcherTimer.Tick += TimerTick; _dispatcherTimer.Interval = new TimeSpan(0, 0, 0, 1); _dispatcherTimer.Start(); } private void TimerTick(object sender, EventArgs e) { if (_clientIdleHandler.IsActive) { IdleTextBox.Text = "Active"; //reset IsActive flag _clientIdleHandler.IsActive = false; } else IdleTextBox.Text = "Idle"; } } Remember to reset the ClientIdleHandle IsActive flag after a check.

    Read the article

  • Using Lazy<T> and abstract wrapper class to lazy-load complex system parameters

    - by DigiMortal
    .NET Framework 4.0 introduced new class called Lazy<T> and I wrote blog post about it: .Net Framework 4.0: Using System.Lazy<T>. One thing is annoying for me – we have to keep lazy loaded value and its value loader as separate things. In this posting I will introduce you my Lazy<T> wrapper for complex to get system parameters that uses template method to keep lazy value loader in parameter class. Problem with original implementation Here’s the sample code that shows you how Lazy<T> is usually used. This is just sample code, don’t focus on the fact that this is dummy console application. class Program {     static void Main(string[] args)     {         var temperature = new Lazy<int>(LoadMinimalTemperature);           Console.WriteLine("Minimal room temperature: " + temperature.Value);         Console.ReadLine();     }       protected static int LoadMinimalTemperature()     {         var returnValue = 0;           // Do complex stuff here           return true;     } } The problem is that our class with many lazy loaded properties will grow messy if it has all value loading code inside it. This code may be complex for more than one parameter and in this case it is better to use separate class for this parameter. Defining base class for parameters As a first step I will define base class for all lazy-loaded parameters. This class is wrapper around Lazy<T> and it also offers one template method that parameter classes have to override to provide loaded data. public abstract class LazyParameter<T> {     private Lazy<T> _lazyParam;       public LazyParameter()     {         _lazyParam = new Lazy<T>(Load);     }       protected abstract T Load();       public T Value     {         get { return _lazyParam.Value; }     } } It is also possible to extend Lazy<T> but I don’t prefer to do it as Lazy<T> has six constructors we have to take care of. Also I don’t like to expose Lazy<T> public interface to users of my parameter classes. Creating parameter class Now it’s time to create our first parameter class. Notice how few stuff we have in this class besides overridden Load() method. public class MinimalRoomTemperature : LazyParameter<int> {     protected override int Load()     {         var returnValue = 0;           // Do complex stuff here           return returnValue;     } } Using parameter class is simple. Here’s my test code. class Program {     static void Main(string[] args)     {         var parameter = new MinimalRoomTemperature();         Console.WriteLine("Minimal room temperature: " + parameter.Value);         Console.ReadLine();     } } Conclusion Lazy<T> is useful class that you usually don’t want to use outside from API-s. I like this class but I don’t like when people are using this class directly in application code. In this posting I showed you how to use Lazy<T> with wrapper class to get complex parameter loading code out from classes that use this parameter. We ended up with generic base class for parameters that you can also use as base for other similar classes (you have to find better name to base class in this case).

    Read the article

  • Sending Big Files with WCF

    - by Sean Feldman
    I had to look into a project that submits large files to WCF service. Implementation is based on data chunking. This is a good approach when your client and server are not both based on WCF, bud different technologies. The problem with something like this is that chunking (either you wish it or not) complicates the overall solution. Alternative would be streaming. In WCF to WCF scenario, this is a piece of cake. When client is Java, it becomes a bit more challenging (has anyone implemented Java client streaming data to WCF service?). What I really liked about .NET implementation with WCF, is that sending header info along with stream was dead simple, and from the developer point of view looked like it’s all a part of the DTO passed into the service. [ServiceContract] public interface IFileUpload { [OperationContract] void UploadFile(SendFileMessage message); } Where SendFileMessage is [MessageContract] public class SendFileMessage { [MessageBodyMember(Order = 1)] public Stream FileData; [MessageHeader(MustUnderstand = true)] public FileTransferInfo FileTransferInfo; }

    Read the article

  • TechDays 2010: What’s New On C# 4.0

    - by Paulo Morgado
    I would like to thank those that attended my session at TechDays 2010 and I hope that I was able to pass the message of what’s new on C#. For those that didn’t attend (or did and want to review it), the presentation can be downloaded from here. Code samples can be downlaoded from here. Here’s a list of resources mentioned on the session: The evolution of C# The Evolution Of C# Covariance and contravariance  C# 4.0: Covariance And Contravariance In Generics Covariance And Contravariance In Generics Made Easy Covarince and Contravariance in Generics Exact rules for variance validity Events get a little overhaul in C# 4, Afterward: Effective Events Named and optional arguments  Named And Optional Arguments Alternative To Optional Arguments Named and Optional Arguments (C# Programming Guide) Dynamic programming  Dynamic Programming C# Proposal: Compile Time Static Checking Of Dynamic Objects Using Type dynamic (C# Programming Guide) Dynamic Language Runtime Overview COM Interop Improvements COM Interop Improvements Type Equivalence and Embedded Interop Types Conclusion Visual C# Developer Center Visual C# 2010 Samples C# Language Specification 4.0 .NET Reflector LINQPad

    Read the article

  • Problem with apt-get update: failed to fetch error

    - by user171447
    I run an Ubuntu Server 12.04.3 LTS. Today, I wanted to update it, but I did not managed it (yes...), however upgrading worked well. I don't want you to solve my problem but it would be greatful if you could give me some hints. I googled hours, I fould a lot of this kind of errors, but not exactly this. Here is the output of apt-get update: Hit http://filepile.fastit.net precise Release.gpg Hit http://filepile.fastit.net precise Release Hit http://filepile.fastit.net precise/main amd64 Packages Hit http://filepile.fastit.net precise/restricted amd64 Packages Hit http://filepile.fastit.net precise/universe amd64 Packages Hit http://filepile.fastit.net precise/multiverse amd64 Packages Hit http://filepile.fastit.net precise/main i386 Packages Hit http://filepile.fastit.net precise/restricted i386 Packages Hit http://filepile.fastit.net precise/universe i386 Packages Hit http://filepile.fastit.net precise/multiverse i386 Packages Ign http://filepile.fastit.net precise/main TranslationIndex Ign http://filepile.fastit.net precise/multiverse TranslationIndex Ign http://filepile.fastit.net precise/restricted TranslationIndex Ign http://filepile.fastit.net precise/universe TranslationIndex Ign http://filepile.fastit.net precise/main Translation-en_GB Ign http://filepile.fastit.net precise/main Translation-en Ign http://filepile.fastit.net precise/main Translation-en_GB.UTF-8 Hit http://archive.canonical.com precise Release.gpg Ign http://filepile.fastit.net precise/multiverse Translation-en_GB Ign http://filepile.fastit.net precise/multiverse Translation-en Ign http://filepile.fastit.net precise/multiverse Translation-en_GB.UTF-8 Ign http://filepile.fastit.net precise/restricted Translation-en_GB Ign http://filepile.fastit.net precise/restricted Translation-en Ign http://filepile.fastit.net precise/restricted Translation-en_GB.UTF-8 Ign http://filepile.fastit.net precise/universe Translation-en_GB Ign http://filepile.fastit.net precise/universe Translation-en Ign http://filepile.fastit.net precise/universe Translation-en_GB.UTF-8 Hit http://archive.ubuntu.com precise Release.gpg Hit http://archive.canonical.com precise Release Hit http://archive.ubuntu.com precise Release Hit http://archive.ubuntu.com precise/main Sources Hit http://archive.ubuntu.com precise/restricted Sources Hit http://archive.ubuntu.com precise/main i386 Packages Hit http://archive.ubuntu.com precise/restricted i386 Packages Hit http://archive.ubuntu.com precise/multiverse i386 Packages Hit http://archive.ubuntu.com precise/main TranslationIndex Hit http://archive.ubuntu.com precise/multiverse TranslationIndex Hit http://archive.ubuntu.com precise/restricted TranslationIndex Hit http://archive.ubuntu.com precise/main Translation-en_GB Hit http://archive.ubuntu.com precise/main Translation-en Hit http://archive.ubuntu.com precise/multiverse Translation-en_GB Hit http://archive.ubuntu.com precise/multiverse Translation-en Hit http://archive.ubuntu.com precise/restricted Translation-en_GB Hit http://archive.ubuntu.com precise/restricted Translation-en Hit http://fr.archive.ubuntu.com precise-security Release.gpg Hit http://fr.archive.ubuntu.com precise-updates Release.gpg Hit http://fr.archive.ubuntu.com precise-security Release Hit http://fr.archive.ubuntu.com precise-updates Release Hit http://fr.archive.ubuntu.com precise-security/main amd64 Packages Hit http://fr.archive.ubuntu.com precise-security/restricted amd64 Packages Hit http://fr.archive.ubuntu.com precise-security/universe amd64 Packages Hit http://fr.archive.ubuntu.com precise-security/multiverse amd64 Packages :W: Failed to fetch http://archive.canonical.com/dists/precise/Release Unable to find expected entry 'main/binary-amd64/Packages' in Release file (Wrong sources.list entry or malformed file) E: Some index files failed to download. They have been ignored, or old ones used instead. Hit http://fr.archive.ubuntu.com precise-security/main i386 Packages Hit http://fr.archive.ubuntu.com precise-security/restricted i386 Packages Hit http://fr.archive.ubuntu.com precise-security/universe i386 Packages Hit http://fr.archive.ubuntu.com precise-security/multiverse i386 Packages Hit http://fr.archive.ubuntu.com precise-security/main TranslationIndex Hit http://fr.archive.ubuntu.com precise-security/multiverse TranslationIndex Hit http://fr.archive.ubuntu.com precise-security/restricted TranslationIndex Hit http://fr.archive.ubuntu.com precise-security/universe TranslationIndex Hit http://fr.archive.ubuntu.com precise-updates/main amd64 Packages Hit http://fr.archive.ubuntu.com precise-updates/restricted amd64 Packages Hit http://fr.archive.ubuntu.com precise-updates/universe amd64 Packages Hit http://fr.archive.ubuntu.com precise-updates/multiverse amd64 Packages Hit http://fr.archive.ubuntu.com precise-updates/main i386 Packages Hit http://fr.archive.ubuntu.com precise-updates/restricted i386 Packages Hit http://fr.archive.ubuntu.com precise-updates/universe i386 Packages Hit http://fr.archive.ubuntu.com precise-updates/multiverse i386 Packages Hit http://fr.archive.ubuntu.com precise-updates/main TranslationIndex Hit http://fr.archive.ubuntu.com precise-updates/multiverse TranslationIndex Hit http://fr.archive.ubuntu.com precise-updates/restricted TranslationIndex Hit http://fr.archive.ubuntu.com precise-updates/universe TranslationIndex Hit http://fr.archive.ubuntu.com precise-security/main Translation-en Hit http://fr.archive.ubuntu.com precise-security/multiverse Translation-en Hit http://fr.archive.ubuntu.com precise-security/restricted Translation-en Hit http://fr.archive.ubuntu.com precise-security/universe Translation-en Hit http://fr.archive.ubuntu.com precise-updates/main Translation-en_GB Hit http://fr.archive.ubuntu.com precise-updates/main Translation-en Hit http://fr.archive.ubuntu.com precise-updates/multiverse Translation-en_GB Hit http://fr.archive.ubuntu.com precise-updates/multiverse Translation-en Hit http://fr.archive.ubuntu.com precise-updates/restricted Translation-en_GB Hit http://fr.archive.ubuntu.com precise-updates/restricted Translation-en Hit http://fr.archive.ubuntu.com precise-updates/universe Translation-en_GB Hit http://fr.archive.ubuntu.com precise-updates/universe Translation-en And here is my /etc/apt/sources.list: ###### Ubuntu Main Repos deb http://filepile.fastit.net/ubuntu/ precise main restricted universe multiverse # deb http://de.archive.ubuntu.com/ubuntu/ precise main restricted universe multiverse deb http://archive.canonical.com/ precise main restricted universe multiverse ###### Ubuntu Update Repos deb http://fr.archive.ubuntu.com/ubuntu/ precise-security main restricted universe multiverse deb http://fr.archive.ubuntu.com/ubuntu/ precise-updates main restricted universe multiverse deb http://archive.ubuntu.com/ubuntu/ precise main restricted multiverse deb-src http://archive.ubuntu.com/ubuntu precise main restricted multiverse Thanks for your help!

    Read the article

  • Advanced donut caching: using dynamically loaded controls

    - by DigiMortal
    Yesterday I solved one caching problem with local community portal. I enabled output cache on SharePoint Server 2007 to make site faster. Although caching works fine I needed to do some additional work because there are some controls that show different content to different users. In this example I will show you how to use “donut caching” with user controls – powerful way to drive some content around cache. About donut caching Donut caching means that although you are caching your content you have some holes in it so you can still affect the output that goes to user. By example you can cache front page on your site and still show welcome message that contains correct user name. To get better idea about donut caching I suggest you to read ScottGu posting Tip/Trick: Implement "Donut Caching" with the ASP.NET 2.0 Output Cache Substitution Feature. Basically donut caching uses ASP.NET substitution control. In output this control is replaced by string you return from static method bound to substitution control. Again, take a look at ScottGu blog posting I referred above. Problem If you look at Scott’s example it is pretty plain and easy by its output. All it does is it writes out current user name as string. Here are examples of my login area for anonymous and authenticated users:    It is clear that outputting mark-up for these views as string is pretty lame to implement in code at string level. Every little change in design will end up with new version of controls library because some parts of design “live” there. Solution: using user controls I worked out easy solution to my problem. I used cache substitution and user controls together. I have three user controls: LogInControl – this is the proxy control that checks which “real” control to load. AnonymousLogInControl – template and logic for anonymous users login area. AuthenticatedLogInControl – template and logic for authenticated users login area. This is the control we render for each user separately because it contains user name and user profile fill percent. Anonymous control is not very interesting because it is only about keeping mark-up in separate file. Interesting parts are LogInControl and AuthenticatedLogInControl. Creating proxy control The first thing was to create control that has substitution area where “real” control is loaded. This proxy control should also be available to decide which control to load. The definition of control is very primitive. <%@ Control EnableViewState="false" Inherits="MyPortal.Profiles.LogInControl" %> <asp:Substitution runat="server" MethodName="ShowLogInBox" /> But code is a little bit tricky. Based on current user instance we decide which login control to load. Then we create page instance and load our control through it. When control is loaded we will call DataBind() method. In this method we evaluate all fields in loaded control (it was best choice as Load and other events will not be fired). Take a look at the code. public static string ShowLogInBox(HttpContext context) {     var user = SPContext.Current.Web.CurrentUser;     string controlName;       if (user != null)         controlName = "AuthenticatedLogInControl.ascx";     else         controlName = "AnonymousLogInControl.ascx";       var path = "~/_controltemplates/" + controlName;     var output = new StringBuilder(10000);       using(var page = new Page())     using(var ctl = page.LoadControl(path))     using(var writer = new StringWriter(output))     using(var htmlWriter = new HtmlTextWriter(writer))     {         ctl.DataBind();         ctl.RenderControl(htmlWriter);     }     return output.ToString(); } When control is bound to data we ask to render it its contents to StringBuilder. Now we have the output of control as string and we can return it from our method. Of course, notice how correct I am with resources disposing. :) The method that returns contents for substitution control is static method that has no connection with control instance because hen page is read from cache there are no instances of controls available. Conclusion As you saw it was not very hard to use donut caching with user controls. Instead of writing mark-up of controls to static method that is bound to substitution control we can still use our user controls.

    Read the article

< Previous Page | 506 507 508 509 510 511 512 513 514 515 516 517  | Next Page >