Search Results

Search found 67271 results on 2691 pages for 'application management suite for e business suite'.

Page 511/2691 | < Previous Page | 507 508 509 510 511 512 513 514 515 516 517 518  | Next Page >

  • WSS 3.0/MOSS 2007 Active Directory Forms Based Authentication PeoplePicker no users found

    - by John Haigh
    WSS 3.0/MOSS 2007 Active Directory Forms Based Authentication PeoplePicker no users found After finding these steps online from http://dattard.blogspot.com/2008/11/active-directory-forms-based.html in order to setup Active Directory Forms Based Authentication I was all set to complete this task, except for one problem. These steps are missing one very important vital step in order for FBA to work with Active Directory. A supplement to step 3 before granting access in step 5 through the people picker. You need to specify the Active Directory Provider Name to the people picker, otherwise you will not be able specify users through the Policy for Web Application. <PeoplePickerWildcards>       <clear />          <add key="ADMembershipProvider" value="%" />     </PeoplePickerWildcards> Recently we needed to use Forms Based Authentication with Active Directory from an Extranet. This is how we got it to work. 1. Extend the Web Application Instead of tweaking the internal web app, Extend the web application you want to expose to the Extranet, giving it the required host headers etc. 2. Configure SharePoint Central Admin to use FBA for the "new" Web Applications Login to SharePoint Central Admin Go to Application Management / Application Security / Authentication Providers and Change the Web Application to the one which needs to be configured for Forms Based Authentication Click zone / default, change authentication type to forms and enter ActiveDirectoryMemebershipProvider under membership provider name ( for example , "ADMembershipProvider") and save this change 3. Update the web.config of SharePoint Central admin site under configuration node <connectionStrings> <add name="ADConnectionString" connectionString="LDAP://DynamicsAX.local/CN=Users,DC=DynamicsAX,DC=local /> </connectionStrings> under system.web node <membership defaultProvider="ADMembershipProvider"> <providers> <add name="ADMembershipProvider" type="System.Web.Security.ActiveDirectoryMembershipProvider,System.Web,Version=2.0.0.0,Culture=neutral,PublicKeyToken=b03f5f7f11d50a3a" connectionStringName="ADConnectionString" connectionUsername="xxx" connectionPassword="yyy" enableSearchMethods="true" attributeMapUsername="sAMAccountName"/> </providers> </membership> 4.Update the web.config of SharePoint Web application Repeat step 3 for the web.config of the SharePoint webapplication to be configured for Forms Based Authentication Change the authentication in web.config to <authentication mode="Forms"> <forms loginUrl="/_layouts/login.aspx"></forms> </authentication> 5. Grant Access on the extended Web Application Your extranet web application is now configured to use FBA. However, until users, who will be accessing the site via FBA, are given permissions for the site, it will be inaccessible to them. To get started, open your browser and navigate to your farm’s Central Administration site. Click on Application Management and then click on Policy for Web Application. Make sure that you are working on the extranet web application. Do the following steps: Click on Add Users. In the Zones drop down, select the appropriate Extranet zone. IMPORTANT: If you select the incorrect zone, you may not be able to resolve user names. Hence, the zone you select must match the zone of the web application that is configured to use FBA. Click the Next button. In the Users edit box, type the name of the FBA user whom you wish to have full control for the site. Click the Resolve link next to the Users edit box. If the web application's FBA information has been configured correctly, the name will resolve and become underlined. Check the Full Control checkbox. Click the Finish button.

    Read the article

  • Project-Based ERP - The Evolution of Project Managemen

    Fred Studer speaks with Ray Wang, Principal Analyst at Forrester Research and Ted Kempf, Senior Director for Oracle's Project Management Solutions about trends in the project management market, where enterprise project management is heading in the next 2 - 3 years and highlights from Ray's new line of research on project management solutions.

    Read the article

  • Choosing the Right JDeveloper Release for Your EBS Environment

    - by Sara Woodhull
    Oracle E-Business Suite developers use a special build of Oracle JDeveloper. This build contains the correct Oracle Application Framework (OA Framework or OAF) libraries corresponding to a specific version of Oracle E-Business Suite (specifically, to an ATG patch level). For customers and developers who are building OA Framework components and extensions to Oracle E-Business Suite, one of the first questions is "How do I find the right version of JDeveloper?"Oracle makes these OA Framework/JDeveloper builds available in separate patches when a new ATG patch level is released.   A handy My Oracle Support Document shows the ATG patch levels and the corresponding patch containing the correct version of JDeveloper with the right versions of OA Framework libraries:How to find the correct version of JDeveloper to use with eBusiness Suite 11i or Release 12.x (Doc ID 416708.1)

    Read the article

  • ¿Quieres conocer el impacto del rollout de Oracle Transportation Management en Unilever Europa?

    - by user703855
    Unilever anuncia un nuevo proyecto logístico que le permitirá alcanzar en 2014 una reducción aproximada de 200 millones de km anuales en la distancia recorrida por sus camiones. Estos datos toman como referencia los niveles de tráfico de 2010 en Europa.   Jan Zijderveld, Presidente de Unilever Europa, afirma: “Este proyecto es un gran paso en nuestro plan de Sostenibilidad. La reducción del número de km que necesitan realizar nuestros camiones implicará una reducción muy significativa del impacto medioambiental de nuestra cadena de suministro. Pero los beneficios de negocio obtenidos a través de dicha iniciativa son igualmente importantes. Demuestran, una vez más, el caso de negocio implícito en la obtención de dicha sostenibilidad. No sólo reduciremos nuestras emisiones de carbono, sino que los ahorros obtenidos a largo plazo de dicha reducción nos ayudaran a ser más eficientes y efectivos en términos de coste. “ Puedes leer la nota de prensa completa de Unilever aquí

    Read the article

  • What is a name for a job where you do system analysis, project management and data diagramming?

    - by David Archer
    In the last 4 months I've been able to manage a team and step away from the coding for a bit. I've been planning the system in full (both System Analysis and project managing, alongside action and data diagramming) writing the technical documentation, the code's architecture, keeping track of the other guys doing the actual coding, QA, bug reports and dealing with clients. I had to take two days' training on node.js just to see if it would be suitable for a project we were considering. Is there a name for this job? Project Manager and Systems Architect don't quite seem to have the same stuff, and IT manager seems way off. I only want to know so that I can get some qualification towards it and try to move into this kind of work full-time.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • What is the best Programming Language for Kiosk Application? [closed]

    - by Jen Lin
    I need your suggestions guys regarding the project I'm planning to create. I want to create a kiosk software/application that is capable to access database in a server. (So, there's a networking here..)Because the information that will be displayed in a Kiosk screen will be coming from a database in other computer. So my problem here is, I don't know which programming language is the best for this kind of application. I'm thinking about using Visual Basic 6.0 since my group is comfortable using this programming language, but I also want to consider the design. I don't like a plain button. Hope to hear from you guys, thanks much :)

    Read the article

  • Webcast Replay Available: Technical Preview of EBS 12.2 Online Patching

    - by BillSawyer
    I am pleased to release the replay and presentation for ATG Live Webcast: Technical Preview of EBS 12.2 Online Patching (Presentation) Kevin Hudson, Senior Director and one of the Online Patching architects, discussed one of the cornerstone new features in our upcoming Oracle E-Business Suite 12.2 release. This ground-breaking feature is based upon Edition-Based Redefinition, a new 11gR2 Database feature that was built to Oracle Applications division specifications to allow the E-Business Suite's database tier to be patched while the environment is running.  Online Patching combines the use of Edition-Based Redefinition and new E-Business Suite technologies to allow patching to the E-Business Suite's database and application tier servers while the environment is being actively used by its end-users. (June 2012) Finding other recorded ATG webcastsThe catalog of ATG Live Webcast replays, presentations, and all ATG training materials is available in this blog's Webcasts and Training section.

    Read the article

  • Why my VPN doesn't work anymore?

    - by xx77aBs
    I have openvpn server running on debian lenny. There is only one client - and it is running Windows 7 64-bit. This has worked for few months without any problems. And now, let's say for the last 7 days, it doesn't work at all. I connect successfully from client to the server, but I can't access anything through VPN. I have set it up so that all internet traffic is routed through VPN, and now when I connect with the client, the client can't do anything on the net (open any webpage, ping google, anything ...). Can you help me to figure out what's wrong ? I don't know where to start. I've also tried to connect to another openvpn server (I've installed and configured openvpn on another server, and when I try to connect to it result is the same). So I think there's something wrong with client ... Here is my connection log: Wed Apr 04 21:35:59 2012 OpenVPN 2.3-alpha1 Win32-MSVC++ [SSL (OpenSSL)] [LZO2] [PF_INET6] [IPv6 payload 20110522-1 (2.2.0)] built on Feb 21 2012 Enter Management Password: Wed Apr 04 21:35:59 2012 MANAGEMENT: TCP Socket listening on [AF_INET]127.0.0.10:25340 Wed Apr 04 21:35:59 2012 Need hold release from management interface, waiting... Wed Apr 04 21:36:00 2012 MANAGEMENT: Client connected from [AF_INET]127.0.0.10:25340 Wed Apr 04 21:36:00 2012 MANAGEMENT: CMD 'state on' Wed Apr 04 21:36:00 2012 MANAGEMENT: CMD 'log all on' Wed Apr 04 21:36:00 2012 MANAGEMENT: CMD 'hold off' Wed Apr 04 21:36:00 2012 MANAGEMENT: CMD 'hold release' Wed Apr 04 21:36:00 2012 WARNING: No server certificate verification method has been enabled. See http://openvpn.net/howto.html#mitm for more info. Wed Apr 04 21:36:00 2012 NOTE: OpenVPN 2.1 requires '--script-security 2' or higher to call user-defined scripts or executables Wed Apr 04 21:36:00 2012 Socket Buffers: R=[8192->8192] S=[8192->8192] Wed Apr 04 21:36:00 2012 MANAGEMENT: >STATE:1333568160,RESOLVE,,, Wed Apr 04 21:36:00 2012 UDPv4 link local: [undef] Wed Apr 04 21:36:00 2012 UDPv4 link remote: [AF_INET]11.22.33.44:1234 Wed Apr 04 21:36:00 2012 MANAGEMENT: >STATE:1333568160,WAIT,,, Wed Apr 04 21:36:00 2012 MANAGEMENT: >STATE:1333568160,AUTH,,, Wed Apr 04 21:36:00 2012 TLS: Initial packet from [AF_INET]11.22.33.44:1234, sid=ee329574 f15e9e04 Wed Apr 04 21:36:00 2012 VERIFY OK: depth=1, C=US, ST=CA, L=SanFrancisco, O=Fort-Funston, CN=Fort-Funston CA, [email protected] Wed Apr 04 21:36:00 2012 VERIFY OK: depth=0, C=US, ST=CA, L=SanFrancisco, O=Fort-Funston, CN=server_key, [email protected] Wed Apr 04 21:36:01 2012 Data Channel Encrypt: Cipher 'BF-CBC' initialized with 128 bit key Wed Apr 04 21:36:01 2012 Data Channel Encrypt: Using 160 bit message hash 'SHA1' for HMAC authentication Wed Apr 04 21:36:01 2012 Data Channel Decrypt: Cipher 'BF-CBC' initialized with 128 bit key Wed Apr 04 21:36:01 2012 Data Channel Decrypt: Using 160 bit message hash 'SHA1' for HMAC authentication Wed Apr 04 21:36:01 2012 Control Channel: TLSv1, cipher TLSv1/SSLv3 DHE-RSA-AES256-SHA, 1024 bit RSA Wed Apr 04 21:36:01 2012 [server_key] Peer Connection Initiated with [AF_INET]11.22.33.44:1234 Wed Apr 04 21:36:02 2012 MANAGEMENT: >STATE:1333568162,GET_CONFIG,,, Wed Apr 04 21:36:03 2012 SENT CONTROL [server_key]: 'PUSH_REQUEST' (status=1) Wed Apr 04 21:36:03 2012 PUSH: Received control message: 'PUSH_REPLY,redirect-gateway def1,route 172.16.100.1,topology net30,ping 10,ping-restart 120,ifconfig 172.16.100.6 172.16.100.5' Wed Apr 04 21:36:03 2012 OPTIONS IMPORT: timers and/or timeouts modified Wed Apr 04 21:36:03 2012 OPTIONS IMPORT: --ifconfig/up options modified Wed Apr 04 21:36:03 2012 OPTIONS IMPORT: route options modified Wed Apr 04 21:36:03 2012 ROUTE_GATEWAY 192.168.1.1/255.255.255.0 I=15 HWADDR=00:1f:1f:3f:61:55 Wed Apr 04 21:36:03 2012 do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0 Wed Apr 04 21:36:03 2012 MANAGEMENT: >STATE:1333568163,ASSIGN_IP,,172.16.100.6, Wed Apr 04 21:36:03 2012 open_tun, tt->ipv6=0 Wed Apr 04 21:36:03 2012 TAP-WIN32 device [VPN] opened: \\.\Global\{E28FD52B-F6C3-4094-A36A-30CB02FAC7E8}.tap Wed Apr 04 21:36:03 2012 TAP-Win32 Driver Version 9.9 Wed Apr 04 21:36:03 2012 Notified TAP-Win32 driver to set a DHCP IP/netmask of 172.16.100.6/255.255.255.252 on interface {E28FD52B-F6C3-4094-A36A-30CB02FAC7E8} [DHCP-serv: 172.16.100.5, lease-time: 31536000] Wed Apr 04 21:36:03 2012 Successful ARP Flush on interface [31] {E28FD52B-F6C3-4094-A36A-30CB02FAC7E8} Wed Apr 04 21:36:08 2012 TEST ROUTES: 2/2 succeeded len=1 ret=1 a=0 u/d=up Wed Apr 04 21:36:08 2012 C:\Windows\system32\route.exe ADD 11.22.33.44 MASK 255.255.255.255 192.168.1.1 Wed Apr 04 21:36:08 2012 ROUTE: CreateIpForwardEntry succeeded with dwForwardMetric1=25 and dwForwardType=4 Wed Apr 04 21:36:08 2012 Route addition via IPAPI succeeded [adaptive] Wed Apr 04 21:36:08 2012 C:\Windows\system32\route.exe ADD 0.0.0.0 MASK 128.0.0.0 172.16.100.5 Wed Apr 04 21:36:08 2012 ROUTE: CreateIpForwardEntry succeeded with dwForwardMetric1=30 and dwForwardType=4 Wed Apr 04 21:36:08 2012 Route addition via IPAPI succeeded [adaptive] Wed Apr 04 21:36:08 2012 C:\Windows\system32\route.exe ADD 128.0.0.0 MASK 128.0.0.0 172.16.100.5 Wed Apr 04 21:36:08 2012 ROUTE: CreateIpForwardEntry succeeded with dwForwardMetric1=30 and dwForwardType=4 Wed Apr 04 21:36:08 2012 Route addition via IPAPI succeeded [adaptive] Wed Apr 04 21:36:08 2012 MANAGEMENT: >STATE:1333568168,ADD_ROUTES,,, Wed Apr 04 21:36:08 2012 C:\Windows\system32\route.exe ADD 172.16.100.1 MASK 255.255.255.255 172.16.100.5 Wed Apr 04 21:36:08 2012 ROUTE: CreateIpForwardEntry succeeded with dwForwardMetric1=30 and dwForwardType=4 Wed Apr 04 21:36:08 2012 Route addition via IPAPI succeeded [adaptive] Wed Apr 04 21:36:08 2012 Initialization Sequence Completed Wed Apr 04 21:36:08 2012 MANAGEMENT: >STATE:1333568168,CONNECTED,SUCCESS,172.16.100.6,11.22.33.44 Client's route table after connection with OpenVPN: IPv4 Route Table =========================================================================== Active Routes: Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 192.168.1.1 192.168.1.41 281 0.0.0.0 128.0.0.0 172.16.100.1 172.16.100.6 31 94.23.53.45 255.255.255.255 192.168.1.1 192.168.1.41 25 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306 128.0.0.0 128.0.0.0 172.16.100.1 172.16.100.6 31 172.16.100.4 255.255.255.252 On-link 172.16.100.6 286 172.16.100.6 255.255.255.255 On-link 172.16.100.6 286 172.16.100.7 255.255.255.255 On-link 172.16.100.6 286 192.168.1.0 255.255.255.0 On-link 192.168.1.41 281 192.168.1.41 255.255.255.255 On-link 192.168.1.41 281 192.168.1.255 255.255.255.255 On-link 192.168.1.41 281 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306 224.0.0.0 240.0.0.0 On-link 192.168.1.41 281 224.0.0.0 240.0.0.0 On-link 172.16.100.6 286 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306 255.255.255.255 255.255.255.255 On-link 192.168.1.41 281 255.255.255.255 255.255.255.255 On-link 172.16.100.6 286 =========================================================================== Persistent Routes: Network Address Netmask Gateway Address Metric 0.0.0.0 0.0.0.0 192.168.1.1 Default =========================================================================== IPv6 Route Table =========================================================================== Active Routes: If Metric Network Destination Gateway 13 58 ::/0 On-link 1 306 ::1/128 On-link 13 58 2001::/32 On-link 13 306 2001:0:5ef5:79fd:3cc3:6b9:ac7c:14db/128 On-link 15 281 fe80::/64 On-link 31 286 fe80::/64 On-link 13 306 fe80::/64 On-link 13 306 fe80::3cc3:6b9:ac7c:14db/128 On-link 31 286 fe80::7d72:9515:7213:35e3/128 On-link 15 281 fe80::9cec:ce3f:89de:a123/128 On-link 1 306 ff00::/8 On-link 13 306 ff00::/8 On-link 15 281 ff00::/8 On-link 31 286 ff00::/8 On-link =========================================================================== Persistent Routes: None

    Read the article

  • rake aborted! undefined local variable or method

    - by Subhransu
    In a fresh new Ubuntu machine, I have installed ruby with sudo apt-get install ruby1.8 and then installed rubygem1.8 with : sudo apt-get install rubygems and after that installed rails3.2.8 with : gem install rails The procedure was very simple. But here comes the problem. When I tried checking the version of rake with rake --trace -version I got the following error: rake aborted! undefined local variable or method `rsion' for #<Rake::Application:0xb72c731c> /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:316:in `standard_rake_options' /usr/lib/ruby/1.8/optparse.rb:1298:in `eval' /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:316:in `standard_rake_options' /usr/lib/ruby/1.8/optparse.rb:1298:in `call' /usr/lib/ruby/1.8/optparse.rb:1298:in `parse_in_order' /usr/lib/ruby/1.8/optparse.rb:1254:in `catch' /usr/lib/ruby/1.8/optparse.rb:1254:in `parse_in_order' /usr/lib/ruby/1.8/optparse.rb:1248:in `order!' /usr/lib/ruby/1.8/optparse.rb:1339:in `permute!' /usr/lib/ruby/1.8/optparse.rb:1360:in `parse!' /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:425:in `handle_options' /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:74:in `init' /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:133:in `standard_exception_handling' /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:72:in `init' /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:64:in `run' /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:133:in `standard_exception_handling' /var/lib/gems/1.8/gems/rake-0.9.2.2/lib/rake/application.rb:63:in `run' /var/lib/gems/1.8/gems/rake-0.9.2.2/bin/rake:33 /usr/local/bin/rake:19:in `load' /usr/local/bin/rake:19 Is it the problem due to I have installed straight from ubuntu apt-get package manager ?

    Read the article

  • Deploying play! 2.0 application on an apache server with a reverse proxy

    - by locrizak
    I'm trying to deploy my play! 2.0 application on an Ubuntu 11.10 server and I have been running into error after error and hope someone can help me here. I am try to deploy my Play! application using a reverse proxy on Apache 2. I have enabled the apache proxy modules and configured the proxy.conf file in mods_enabled. The vhost for my domain looks like this: <Directory /var/www/stage.domain.com AllowOverride None Order Deny,Allow Deny from all </Directory <VirtualHost *:80 DocumentRoot /var/www/stage.domain.com/web ServerName stage.domain.com ServerAdmin [email protected] # ProxyRequests Off # ProxyPreserveHost On <Proxy * Order allow,deny Allow from all </Proxy # ProxyVia On # ProxyPass /play/ http://localhost:9000/ # ProxyPassReverse /play/ http://localhost:9000/ ErrorLog /var/log/ispconfig/httpd/stage.domain.com/error.log ErrorDocument 400 /error/400.html ErrorDocument 401 /error/401.html ErrorDocument 403 /error/403.html ErrorDocument 404 /error/404.html ErrorDocument 405 /error/405.html ErrorDocument 500 /error/500.html ErrorDocument 502 /error/502.html ErrorDocument 503 /error/503.html <IfModule mod_ssl.c </IfModule <Directory /var/www/stage.domain.com/web Options FollowSymLinks AllowOverride All Order allow,deny Allow from all </Directory <Directory /var/www/clients/client2/web7/web Options FollowSymLinks AllowOverride All Order allow,deny Allow from all </Directory # Clear PHP settings of this website <FilesMatch "\.ph(p3?|tml)$" SetHandler None </FilesMatch # mod_php enabled AddType application/x-httpd-php .php .php3 .php4 .php5 php_admin_value sendmail_path "/usr/sbin/sendmail -t -i [email protected]" php_admin_value upload_tmp_dir /var/www/clients/client2/web7/tmp php_admin_value session.save_path /var/www/clients/client2/web7/tmp # PHPIniDir /var/www/conf/web7 php_admin_value open_basedir /var/www/clients/client2/web7/:/var/www/clients/client2/web7/web:/va$ # add support for apache mpm_itk <IfModule mpm_itk_module AssignUserId web7 client2 </IfModule <IfModule mod_dav_fs.c # Do not execute PHP files in webdav directory <Directory /var/www/clients/client2/web7/webdav <FilesMatch "\.ph(p3?|tml)$" SetHandler None </FilesMatch </Directory # DO NOT REMOVE THE COMMENTS! # IF YOU REMOVE THEM, WEBDAV WILL NOT WORK ANYMORE! # WEBDAV BEGIN # WEBDAV END </IfModule # <Location /play/ # ProxyPass http://localhost:9000/ # SetEnv force-proxy-request-1.0 1 # SetEnv proxy-nokeepalive 1 # </Location ProxyRequests Off ProxyPass /play/ http://localhost:9000/ ProxyPassReverse /play/ localhost:9000/ ProxyPass /play http://localhost:9000/ ProxyPassReverse /play http://localhost:9000/ # SetEnv force-proxy-request-1.0 1 # SetEnv proxy-nokeepalive 1 </VirtualHost This vhost file was generated by ispconfig and I have not touched anything that was there before just added onto. As you can see by the commented out parts I have tried a lot of different things based on random tutorials I have found but all of them have ended up in Internal Server Error, 503 and most often a '502 Bad Gateway`. I can start play and it does connect successfully to my database. I can get a page to show up when there is an error and the play! stack trace error pages comes up but where everything is fine I get one of the errors above. My application.conf file looks like this: db info ....... application.mode=PROD logger.root=ERROR # Logger used by the framework: logger.play=INFO # Logger provided to your application: logger.application=DEBUG http.path="/play/" XForwardedSupport="127.0.0.1" And my hosts file looks like this (I have never changed or added anything to the host file): 127.0.0.1 localhost 127.0.1.1 matrix # The following lines are desirable for IPv6 capable hosts ::1 ip6-localhost ip6-loopback fe00::0 ip6-localnet ff00::0 ip6-mcastprefix ff02::1 ip6-allnodes ff02::2 ip6-allrouters Any insights onto what I might be doing wrong or if theres anything I can try please let me know! Thanks!! Edit Again the reverse proxy will work (I checked with sending to to google.com). Its when there is a successful connection to Netty. It's like Netty refuses the connection to the page. Edit 2 output from apachectl -S _default_:8081 127.0.0.1 (/etc/apache2/sites-enabled/000-apps.vhost:10) *:8090 is a NameVirtualHost default server 127.0.0.1 (/etc/apache2/sites-enabled/000-ispconfig.vhost:10) port 8090 namevhost 127.0.0.1 (/etc/apache2/sites-enabled/000-ispconfig.vhost:10) *:80 is a NameVirtualHost default server 127.0.0.1 (/etc/apache2/sites-enabled/000-default:1) port 80 namevhost 127.0.0.1 (/etc/apache2/sites-enabled/000-default:1) port 80 namevhost domain.com (/etc/apache2/sites-enabled/100-domain.com.vhost:7) port 80 namevhost domain.com (/etc/apache2/sites-enabled/100-domain.com.vhost:7) port 80 namevhost domain.com (/etc/apache2/sites-enabled/100-domain.com.vhost:7) port 80 namevhost domain.com (/etc/apache2/sites-enabled/100-domain.com.vhost:7) port 80 namevhost domain.com (/etc/apache2/sites-enabled/100-domain.com.vhost:7) port 80 namevhost stage.domain.com (/etc/apache2/sites-enabled/100-stage.domain.com.vhost:7) port 80 namevhost domain.com (/etc/apache2/sites-enabled/100-domain.com.vhost:7)

    Read the article

  • Process, Participate, Play: Oracle BPM and SOA at Oracle OpenWorld

    - by Oracle OpenWorld Blog Team
    Oracle OpenWorld 2012 provides a unique opportunity for BPM and SOA professionals to meet industry leaders and peers, and get insight into the latest product advancements that will help their companies gain a competitive advantage.Via a variety of sessions, hands-on labs, birds-of-a-feather sessions, and demos, attendees will learn how Oracle SOA Suite, Oracle BPM Suite, and Oracle SOA Governance provide a unified and collaborative environment for design and deployment of dynamic business processes. Topics include architecture, integration, implementation, and best practices for on-premises or cloud deployments. Participants will learn how new capabilities of BPM and SOA can help their enterprises gain unprecedented visibility, agility and efficiencies.Maximize the value of attending Oracle Open World by attending sessions that best meet your needs and goals. This exciting series of SOA and BPM sessions is focused on three different audience segments. Business managers or business analysts, click here  IT executives or enterprise architects, click here Developers looking to sharpen their SOA skills, click here To stay in touch with the details and announcements for Oracle BPM Suite and Oracle SOA Suite, check out the BPM and SOA blogs.

    Read the article

  • Go Big or Go Special

    - by Ajarn Mark Caldwell
    Watching Shark Tank tonight and the first presentation was by Mango Mango Preserves and it highlighted an interesting contrast in business trends today and how to capitalize on opportunities.  <Spoiler Alert> Even though every one of the sharks was raving about the product samples they tried, with two of them going for second and third servings, none of them made a deal to invest in the company.</Spoiler>  In fact, one of the sharks, Kevin O’Leary, kept ripping into the owners with statements to the effect that he thinks they are headed over a financial cliff because he felt their costs were way out of line and would be their downfall if they didn’t take action to radically cut costs. He said that he had previously owned a jams and jellies business and knew the cost ratios that you had to have to make it work.  I don’t doubt he knows exactly what he’s talking about and is 100% accurate…for doing business his way, which I’ll call “Go Big”.  But there’s a whole other way to do business today that would be ideal for these ladies to pursue. As I understand it, based on his level of success in various businesses and the fact that he is even in a position to be investing in other companies, Kevin’s approach is to go mass market (Go Big) and make hundreds of millions of dollars in sales (or something along that scale) while squeezing out every ounce of cost that you can to produce an acceptable margin.  But there is a very different way of making a very successful business these days, which is all about building a passionate and loyal community of customers that are rooting for your success and even actively trying to help you succeed by promoting your product or company (Go Special).  This capitalizes on the power of social media, niche marketing, and The Long Tail.  One of the most prolific writers about capitalizing on this trend is Seth Godin, and I hope that the founders of Mango Mango pick up a couple of his books (probably Purple Cow and Tribes would be good starts) or at least read his blog.  I think the adoration expressed by all of the sharks for the product is the biggest hint that they have a remarkable product and that they are perfect for this type of business approach. Both are completely valid business models, and it may certainly be that the scale at which Kevin O’Leary wants to conduct business where he invests his money is well beyond the long tail, but that doesn’t mean that there is not still a lot of money to be made there.  I wish them the best of luck with their endeavors!

    Read the article

  • BPM 11.1.1.5 for Apps: BPM for EBS Demo available

    - by JuergenKress
    For access to the Oracle demo systems please visit OPN and talk to your Partner Expert Demo Highlights This demo showcases BPM integration with E-Business Suite BPM Process Spaces, providing role-based dashboards and monitoring EBS processes Automated workflow generation, enforcement of business rules Seamless integration with E-Business Suite-iExpense module using SOA Worklist approvals via a mobile device Demo Architecture  & Demo Collateral & OFM Demos Corner & DSS Offerings & Scheduling Demos on DSS & DSS Support SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: BPM11g,BPM demo,dss SOA,BPM Suite,SOA Community,Oracle SOA,Oracle BPM,BPM,Community,OPN,Jürgen Kress

    Read the article

  • What is a better abstraction layer for D3D9 and OpenGL vertex data management?

    - by Sam Hocevar
    My rendering code has always been OpenGL. I now need to support a platform that does not have OpenGL, so I have to add an abstraction layer that wraps OpenGL and Direct3D 9. I will support Direct3D 11 later. TL;DR: the differences between OpenGL and Direct3D cause redundancy for the programmer, and the data layout feels flaky. For now, my API works a bit like this. This is how a shader is created: Shader *shader = Shader::Create( " ... GLSL vertex shader ... ", " ... GLSL pixel shader ... ", " ... HLSL vertex shader ... ", " ... HLSL pixel shader ... "); ShaderAttrib a1 = shader->GetAttribLocation("Point", VertexUsage::Position, 0); ShaderAttrib a2 = shader->GetAttribLocation("TexCoord", VertexUsage::TexCoord, 0); ShaderAttrib a3 = shader->GetAttribLocation("Data", VertexUsage::TexCoord, 1); ShaderUniform u1 = shader->GetUniformLocation("WorldMatrix"); ShaderUniform u2 = shader->GetUniformLocation("Zoom"); There is already a problem here: once a Direct3D shader is compiled, there is no way to query an input attribute by its name; apparently only the semantics stay meaningful. This is why GetAttribLocation has these extra arguments, which get hidden in ShaderAttrib. Now this is how I create a vertex declaration and two vertex buffers: VertexDeclaration *decl = VertexDeclaration::Create( VertexStream<vec3,vec2>(VertexUsage::Position, 0, VertexUsage::TexCoord, 0), VertexStream<vec4>(VertexUsage::TexCoord, 1)); VertexBuffer *vb1 = new VertexBuffer(NUM * (sizeof(vec3) + sizeof(vec2)); VertexBuffer *vb2 = new VertexBuffer(NUM * sizeof(vec4)); Another problem: the information VertexUsage::Position, 0 is totally useless to the OpenGL/GLSL backend because it does not care about semantics. Once the vertex buffers have been filled with or pointed at data, this is the rendering code: shader->Bind(); shader->SetUniform(u1, GetWorldMatrix()); shader->SetUniform(u2, blah); decl->Bind(); decl->SetStream(vb1, a1, a2); decl->SetStream(vb2, a3); decl->DrawPrimitives(VertexPrimitive::Triangle, NUM / 3); decl->Unbind(); shader->Unbind(); You see that decl is a bit more than just a D3D-like vertex declaration, it kinda takes care of rendering as well. Does this make sense at all? What would be a cleaner design? Or a good source of inspiration?

    Read the article

  • People, Process & Engagement: WebCenter Partner Keste

    - by Michael Snow
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Within the WebCenter group here at Oracle, discussions about people, process and engagement cross over many vertical industries and products. Amidst our growing partner ecosystem, the community provides us insight into great customer use cases every day. Such is the case with our partner, Keste, who provides us a guest post on our blog today with an overview of their innovative solution for a customer in the transportation industry. Keste is an Oracle software solutions and development company headquartered in Dallas, Texas. As a Platinum member of the Oracle® PartnerNetwork, Keste designs, develops and deploys custom solutions that automate complex business processes. Seamless Customer Self-Service Experience in the Trucking Industry with Oracle WebCenter Portal  Keste, Oracle Platinum Partner Customer Overview Omnitracs, Inc., a Qualcomm company provides mobility solutions for trucking fleets to companies in the transportation industry. Omnitracs’ mobility services include basic communications such as text as well as advanced monitoring services such as GPS tracking, temperature tracking of perishable goods, load tracking and weighting distribution, and many others. Customer Business Needs Already the leading provider of mobility solutions for large trucking fleets, they chose to target smaller trucking fleets as new customers. However their existing high-touch customer support method would not be a cost effective or scalable method to manage and service these smaller customers. Omnitracs needed to provide several self-service features to make customer support more scalable while keeping customer satisfaction levels high and the costs manageable. The solution also had to be very intuitive and easy to use. The systems that Omnitracs sells to these trucking customers require professional installation and smaller customers need to track and schedule the installation. Information captured in Oracle eBusiness Suite needed to be readily available for new customers to track these purchases and delivery details. Omnitracs wanted a high impact User Interface to significantly improve customer experience with the ability to integrate with EBS, provisioning systems as well as CRM systems that were already implemented. Omnitracs also wanted to build an architecture platform that could potentially be extended to other Portals. Omnitracs’ stated goal was to deliver an “eBay-like” or “Amazon-like” experience for all of their customers so that they could reach a much broader market beyond their large company customer base. Solution Overview In order to manage the increased complexity, the growing support needs of global customers and improve overall product time-to-market in a cost-effective manner, IT began to deliver a self-service model. This self service model not only transformed numerous business processes but is also allowing the business to keep up with the growing demands of the (internal and external) customers. This solution was a customer service Portal that provided self service capabilities for large and small customers alike for Activation of mobility products, managing add-on applications for the devices (much like the Apple App Store), transferring services when trucks are sold to other companies as well as deactivation all without the involvement of a call service agent or sending multiple emails to different Omnitracs contacts. This is a conceptual view of the Customer Portal showing the details of the components that make up the solution. 12.00 The portal application for transactions was entirely built using ADF 11g R2. Omnitracs’ business had a pressing requirement to have a portal available 24/7 for its customers. Since there were interactions with EBS in the back-end, the downtimes on the EBS would negate this availability. Omnitracs devised a decoupling strategy at the database side for the EBS data. The decoupling of the database was done using Oracle Data Guard and completely insulated the solution from any eBusiness Suite down time. The customer has no knowledge whether eBS is running or not. Here are two sample screenshots of the portal application built in Oracle ADF. Customer Benefits The Customer Portal not only provided the scalability to grow the business but also provided the seamless integration with other disparate applications. Some of the key benefits are: Improved Customer Experience: With a modern look and feel and a Portal that has the aspects of an App Store, the customer experience was significantly improved. Page response times went from several seconds to sub-second for all of the pages. Enabled new product launches: After successfully dominating the large fleet market, Omnitracs now has a scalable solution to sell and manage smaller fleet customers giving them a huge advantage over their nearest competitors. Dozens of new customers have been acquired via this portal through an onboarding process that now takes minutes Seamless Integrations Improves Customer Support: ADF 11gR2 allowed Omnitracs to bring a diverse list of applications into one integrated solution. This provided a seamless experience for customers to route them from Marketing focused application to a customer-oriented portal. Internally, it also allowed Sales Representatives to have an integrated flow for taking a prospect through the various steps to onboard them as a customer. Key integrations included: Unity Core Salesforce.com Merchant e-Solution for credit card Custom Omnitracs Applications like CUPS and AUTO Security utilizing OID and OVD Back end integration with EBS (Data Guard) and iQ Database Business Impact Significant business impacts were realized through the launch of customer portal. It not only allows the business to push through in underserved segments, but also reduces the time it needs to spend on customer support—allowing the business to focus more on sales and identifying the market for new products. Some of the Immediate Benefits are The entire onboarding process is now completely automated and now completes in minutes. This represents an 85% productivity improvement over their previous processes. And it was 160 times faster! With the success of this self-service solution, the business is now targeting about 3X customer growth in the next five years. This represents a tripling of their overall customer base and significant downstream revenue for the ongoing services. 90%+ improvement of customer onboarding and management process by utilizing, single sign on integration using OID/OAM solution, performance improvements and new self-service functionality Unified login for all Customers, Partners and Internal Users enables login to a common portal and seamless access to all other integrated applications targeted at the respective audience Significantly improved customer experience with a better look and feel with a more user experience focused Portal screens. Helped sales of the new product by having an easy way of ordering and activating the product. Data Guard helped increase availability of the Portal to 99%+ and make it independent of EBS downtime. This gave customers the feel of high availability of the portal application. Some of the anticipated longer term Benefits are: Platform that can be leveraged to launch any new product introduction and enable all product teams to reach new customers and new markets Easy integration with content management to allow business owners more control of the product catalog Overall reduced TCO with standardization of the Oracle platform Managed IT support cost savings through optimization of technology skills needed to support and modify this solution ------------------------------------------------------------ 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 -"/ /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif";}

    Read the article

  • JWT Token Security with Fusion Sales Cloud

    - by asantaga
    When integrating SalesCloud with a 3rd party application you often need to pass the users identity to the 3rd party application so that  The 3rd party application knows who the user is The 3rd party application needs to be able to do WebService callbacks to Sales Cloud as that user.  Until recently without using SAML, this wasn't easily possible and one workaround was to pass the username, potentially even the password, from Sales Cloud to the 3rd party application using URL parameters.. With Oracle Fusion R8 we now have a proper solution and that is called "JWT Token support". This is based on the industry JSON Web Token standard , for more information see here JWT Works by allowing the user the ability to generate a token (lasts a short period of time) for a specific application. This token is then passed to the 3rd party application as a GET parameter.  The 3rd party application can then call into SalesCloud and use this token for all webservice calls, the calls will be executed as the user who generated the token in the first place, or they can call a special HR WebService (UserService-findSelfUserDetails() ) with the token and Fusion will respond with the users details. Some more details  The following will go through the scenario that you want to embed a 3rd party application within a WebContent frame (iFrame) within the opportunity screen.  1. Define your application using the topology manager in setup and maintenance  See this documentation link on topology manager 2. From within your groovy script which defines the iFrame you wish to embed, write some code which looks like this : def thirdpartyapplicationurl = oracle.topologyManager.client.deployedInfo.DeployedInfoProvider.getEndPoint("My3rdPartyApplication" )def crmkey= (new oracle.apps.fnd.applcore.common.SecuredTokenBean().getTrustToken())def url = thirdpartyapplicationurl +"param1="+OptyId+"&jwt ="+crmkeyreturn (url)  This snippet generates a URL which contains The Hostname/endpoint of the 3rd party application Two Parameters The opportunityId stored in parameter "param1" The JWT Token store in  parameter "jwt" 3. From your 3rd Party Application you now have two options Execute a webservice call by first setting the header parameter "Authentication" to the JWT token. The webservice call will be executed against Fusion Applications "As" the user who execute the process To find out "Who you are" , set the header parameter to "Authentication" and execute the special webservice call findSelfUserDetails(), in the UserDetailsService For more information  Oracle Sales Cloud Documentation , specific chapter on JWT Token OTN samples, specifically the Rich UI With JWT Token Sample Oracle Fusion Applications General Documentation

    Read the article

  • SOA &amp; Application Grid Specialization step 2 of 6 &ndash; References &amp; Marketing Kits

    - by Jürgen Kress
    In our fist step to become SOA Specialized & Application Grid Specialized we highlighted our OMM to register your opportunities. We continue our path to specialization with our marketing offerings to create your reference cases and run joint marketing campaigns. References: Be Recognized Through Partner Success Stories Oracle delivers a wide variety of services and solutions through our partners and we believe that those successes should be recognized and promoted. References are also required to become specialized. We showcase our partners’ capabilities in Oracle products and industries through partner success stories that are published on Oracle.com. For significant implementations, we may invite partners to participate in a press release or be interviewed in a podcast. To participate and take a further step to become specialized, please take a minute to complete the form and tell us about the successful project you have implemented. If your story is selected, we will contact you for an interview. Create your references The partner reference program Enables partners to be recognized by both Oracle and our customers Provides an opportunity for partners to showcase successes with their customers on Oracle solutions Helps raise awareness of our partners’ capabilities, elevating them above their competition Time to submit a SOA and Application Grid reference request today To learn more about partner references, check out the following resources: Judson Althoff’s YouTube Video: Be Recognized with OPN Specialized Reference Program OPN PartnerCast: Be Recognized…Your Reference Matters!!! (MP3) Partner/Customer Reference Brochure (PDF) Marketing Kits We have created OFM 11g marketing kit http://tinyurl.com/soamarketing (OPN account required) The marketing kit includes all the ppts and demos from our launch event. Oracle package includes: • Event templates like invitation, agenda ,confirmation follow up templates • OFM 11g presentations • Free usage of the Oracle Customer Visit Center • Condition: mandatory lead registration in the Oracle Open Market Model (OMM) To download the material, please make sure that you select the campaign “Enterprise: Fusion Middleware 11g”: OFM 11g Oracle Marketing 4 Partners Package http://tinyurl.com/soamarketing (OPN account required)   For more information on Specialization please visit our OPN Specialized Webcast Series And become a member in our SOA Partner Community for registration please visit www.oracle.com/goto/ema/soa Jürgen Kress, SOA Partner Adoption EMEA SOA Specialized Application Grid Specialized Proof 2 transactions with OMM Proof 2 transactions with OMM Create your 2 references Create your 2 references SOA Sales assessment 3, Oracle Application Grid Sales Specialist  SOA Pre-Sales assessment 3 Oracle Application Grid PreSales Specialist Support assessment 1 Support assessment 2 SOA Implementation assessment 4 Application Gridplementation assessment 4

    Read the article

  • New OBI 11g on-line Sales & Pre-sales Partner Assessment Tests

    - by Mike.Hallett(at)Oracle-BI&EPM
    Our OBI partners can now update their specialisation certification to the latest product version 11g for OBI: until recently, the accreditation had examined skills for OBI 10g.   New OPN on-line Sales & Pre-sales Assessment Tests Available Oracle Business Intelligence Foundation Suite 11g Sales Specialist   Oracle Business Intelligence Foundation Suite 11g PreSales Specialist   Oracle Business Intelligence Foundation Suite 11g Support Specialist

    Read the article

  • Oracle ouvre Application Development Framework à iOS et Android pour porter les applications d'entreprise en Java sur mobiles

    Oracle ouvre son Application Development Framework à iOS et Android Pour porter les applications d'entreprise sur mobiles, BlackBerry et Windows Phone devraient suivre ADF (Application Development Framework) de Oracle s'ouvre à iOS et Android avec l'arrivée d'ADF Mobile. Cette extension ? qui tourne sur JDeveloper IDE - permet de porter les applications Java réalisées avec le framework sur des mobiles en générant un code « hybride » (HTML,CSS, JS d'un côté, Java de l'autre). La partie Java pourra s’exécuter dans ces applications grâce à une JVM embarquée ? et allégée. L'UI étant prise en charge par les technos Webs. A noter, les outils générés avec ADF Mobile ne pourrant commu...

    Read the article

  • Is WCF suitable for writing an application which is shared among applications?

    - by RPK
    I have developed and deployed few ASP.NET applications. Sometimes I want to stop the users from either inserting or updating a record when: Maintenance is going on. Stop operations due to payment delay. In one of my recent application I have implemented this feature to first check the database operations for locked status. If any of the above condition fulfils, database operations like insert and update are not carried out. I now need this feature in all the old applications and the future applications I build. I want to know whether WCF is suitable in this scenario as I want to share methods or an independent locking application among various other applications. Is WCF appropriate for this type of scenario?

    Read the article

  • Como estão os seus projetos em TI? ALM (Application lifecycle management) - Parte 1

    - by johnywercley
    O gráfico mostra um número assustador, em outras palavras, no mundo inteiro as coisas não andam bem, são pesquisas feitas por um importante orgão o “Stand Group”. Eles nos chamam atenção a quantidade de projetos com problemas, fazendo uma análise primária, somando a parte verde com azul veremos a porcentagem de projetos TI com problemas, projetos que chegam a de fato dar certo, são os de cores vermelhas, um número muito baixo. Se você fosse hoje investidor financeiro e tivesse que fazer um projeto...(read more)

    Read the article

  • Testing Workflows &ndash; Test-After

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-after.aspxIn this post I’m going to outline a few common methods that can be used to increase the coverage of of your test suite.  This won’t be yet another post on why you should be doing testing; there are plenty of those types of posts already out there.  Assuming you know you should be testing, then comes the problem of how do I actual fit that into my day job.  When the opportunity to automate testing comes do you take it, or do you even recognize it? There are a lot of ways (workflows) to go about creating automated tests, just like there are many workflows to writing a program.  When writing a program you can do it from a top-down approach where you write the main skeleton of the algorithm and call out to dummy stub functions, or a bottom-up approach where the low level functionality is fully implement before it is quickly wired together at the end.  Both approaches are perfectly valid under certain contexts. Each approach you are skilled at applying is another tool in your tool belt.  The more vectors of attack you have on a problem – the better.  So here is a short, incomplete list of some of the workflows that can be applied to increasing the amount of automation in your testing and level of quality in general.  Think of each workflow as an opportunity that is available for you to take. Test workflows basically fall into 2 categories:  test first or test after.  Test first is the best approach.  However, this post isn’t about the one and only best approach.  I want to focus more on the lesser known, less ideal approaches that still provide an opportunity for adding tests.  In this post I’ll enumerate some test-after workflows.  In my next post I’ll cover test-first. Bug Reporting When someone calls you up or forwards you a email with a vague description of a bug its usually standard procedure to create or verify a reproduction plan for the bug via manual testing and log that in a bug tracking system.  This can be problematic.  Often reproduction plans when written down might skip a step that seemed obvious to the tester at the time or they might be missing some crucial environment setting. Instead of data entry into a bug tracking system, try opening up the test project and adding a failing unit test to prove the bug.  The test project guarantees that all aspects of the environment are setup properly and no steps are missing.  The language in the test project is much more precise than the English that goes into a bug tracking system. This workflow can easily be extended for Enhancement Requests as well as Bug Reporting. Exploratory Testing Exploratory testing comes in when you aren’t sure how the system will behave in a new scenario.  The scenario wasn’t planned for in the initial system requirements and there isn’t an existing test for it.  By definition the system behaviour is “undefined”. So write a new unit test to define that behaviour.  Add assertions to the tests to confirm your assumptions.  The new test becomes part of the living system specification that is kept up to date with the test suite. Examples This workflow is especially good when developing APIs.  When you are finally done your production API then comes the job of writing documentation on how to consume the API.  Good documentation will also include code examples.  Don’t let these code examples merely exist in some accompanying manual; implement them in a test suite. Example tests and documentation do not have to be created after the production API is complete.  It is best to write the example code (tests) as you go just before the production code. Smoke Tests Every system has a typical use case.  This represents the basic, core functionality of the system.  If this fails after an upgrade the end users will be hosed and they will be scratching their heads as to how it could be possible that an update got released with this core functionality broken. The tests for this core functionality are referred to as “smoke tests”.  It is a good idea to have them automated and run with each build in order to avoid extreme embarrassment and angry customers. Coverage Analysis Code coverage analysis is a tool that reports how much of the production code base is exercised by the test suite.  In Visual Studio this can be found under the Test main menu item. The tool will report a total number for the code coverage, which can be anywhere between 0 and 100%.  Coverage Analysis shouldn’t be used strictly for numbers reporting.  Companies shouldn’t set minimum coverage targets that mandate that all projects must have at least 80% or 100% test coverage.  These arbitrary requirements just invite gaming of the coverage analysis, which makes the numbers useless. The analysis tool will break down the coverage by the various classes and methods in projects.  Instead of focusing on the total number, drill down into this view and see which classes have high or low coverage.  It you are surprised by a low number on a class this is an opportunity to add tests. When drilling through the classes there will be generally two types of reaction to a surprising low test coverage number.  The first reaction type is a recognition that there is low hanging fruit to be picked.  There may be some classes or methods that aren’t being tested, which could easy be.  The other reaction type is “OMG”.  This were you find a critical piece of code that isn’t under test.  In both cases, go and add the missing tests. Test Refactoring The general theme of this post up to this point has been how to add more and more tests to a test suite.  I’ll step back from that a bit and remind that every line of code is a liability.  Each line of code has to be read and maintained, which costs money.  This is true regardless whether the code is production code or test code. Remember that the primary goal of the test suite is that it be easy to read so that people can easily determine the specifications of the system.  Make sure that adding more and more tests doesn’t interfere with this primary goal. Perform code reviews on the test suite as often as on production code.  Hold the test code up to the same high readability standards as the production code.  If the tests are hard to read then change them.  Look to remove duplication.  Duplicate setup code between two or more test methods that can be moved to a shared function.  Entire test methods can be removed if it is found that the scenario it tests is covered by other tests.  Its OK to delete a test that isn’t pulling its own weight anymore. Remember to only start refactoring when all the test are green.  Don’t refactor the tests and the production code at the same time.  An automated test suite can be thought of as a double entry book keeping system.  The unchanging, passing production code serves as the tests for the test suite while refactoring the tests. As with all refactoring, it is best to fit this into your regular work rather than asking for time later to get it done.  Fit this into the standard red-green-refactor cycle.  The refactor step no only applies to production code but also the tests, but not at the same time.  Perhaps the cycle should be called red-green-refactor production-refactor tests (not quite as catchy).   That about covers most of the test-after workflows I can think of.  In my next post I’ll get into test-first workflows.

    Read the article

< Previous Page | 507 508 509 510 511 512 513 514 515 516 517 518  | Next Page >