Search Results

Search found 32516 results on 1301 pages for 'oracle off topic'.

Page 515/1301 | < Previous Page | 511 512 513 514 515 516 517 518 519 520 521 522  | Next Page >

  • Seeking on a Heap, and Two Useful DMVs

    - by Paul White
    So far in this mini-series on seeks and scans, we have seen that a simple ‘seek’ operation can be much more complex than it first appears.  A seek can contain one or more seek predicates – each of which can either identify at most one row in a unique index (a singleton lookup) or a range of values (a range scan).  When looking at a query plan, we will often need to look at the details of the seek operator in the Properties window to see how many operations it is performing, and what type of operation each one is.  As you saw in the first post in this series, the number of hidden seeking operations can have an appreciable impact on performance. Measuring Seeks and Scans I mentioned in my last post that there is no way to tell from a graphical query plan whether you are seeing a singleton lookup or a range scan.  You can work it out – if you happen to know that the index is defined as unique and the seek predicate is an equality comparison, but there’s no separate property that says ‘singleton lookup’ or ‘range scan’.  This is a shame, and if I had my way, the query plan would show different icons for range scans and singleton lookups – perhaps also indicating whether the operation was one or more of those operations underneath the covers. In light of all that, you might be wondering if there is another way to measure how many seeks of either type are occurring in your system, or for a particular query.  As is often the case, the answer is yes – we can use a couple of dynamic management views (DMVs): sys.dm_db_index_usage_stats and sys.dm_db_index_operational_stats. Index Usage Stats The index usage stats DMV contains counts of index operations from the perspective of the Query Executor (QE) – the SQL Server component that is responsible for executing the query plan.  It has three columns that are of particular interest to us: user_seeks – the number of times an Index Seek operator appears in an executed plan user_scans – the number of times a Table Scan or Index Scan operator appears in an executed plan user_lookups – the number of times an RID or Key Lookup operator appears in an executed plan An operator is counted once per execution (generating an estimated plan does not affect the totals), so an Index Seek that executes 10,000 times in a single plan execution adds 1 to the count of user seeks.  Even less intuitively, an operator is also counted once per execution even if it is not executed at all.  I will show you a demonstration of each of these things later in this post. Index Operational Stats The index operational stats DMV contains counts of index and table operations from the perspective of the Storage Engine (SE).  It contains a wealth of interesting information, but the two columns of interest to us right now are: range_scan_count – the number of range scans (including unrestricted full scans) on a heap or index structure singleton_lookup_count – the number of singleton lookups in a heap or index structure This DMV counts each SE operation, so 10,000 singleton lookups will add 10,000 to the singleton lookup count column, and a table scan that is executed 5 times will add 5 to the range scan count. The Test Rig To explore the behaviour of seeks and scans in detail, we will need to create a test environment.  The scripts presented here are best run on SQL Server 2008 Developer Edition, but the majority of the tests will work just fine on SQL Server 2005.  A couple of tests use partitioning, but these will be skipped if you are not running an Enterprise-equivalent SKU.  Ok, first up we need a database: USE master; GO IF DB_ID('ScansAndSeeks') IS NOT NULL DROP DATABASE ScansAndSeeks; GO CREATE DATABASE ScansAndSeeks; GO USE ScansAndSeeks; GO ALTER DATABASE ScansAndSeeks SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE ScansAndSeeks SET AUTO_CLOSE OFF, AUTO_SHRINK OFF, AUTO_CREATE_STATISTICS OFF, AUTO_UPDATE_STATISTICS OFF, PARAMETERIZATION SIMPLE, READ_COMMITTED_SNAPSHOT OFF, RESTRICTED_USER ; Notice that several database options are set in particular ways to ensure we get meaningful and reproducible results from the DMVs.  In particular, the options to auto-create and update statistics are disabled.  There are also three stored procedures, the first of which creates a test table (which may or may not be partitioned).  The table is pretty much the same one we used yesterday: The table has 100 rows, and both the key_col and data columns contain the same values – the integers from 1 to 100 inclusive.  The table is a heap, with a non-clustered primary key on key_col, and a non-clustered non-unique index on the data column.  The only reason I have used a heap here, rather than a clustered table, is so I can demonstrate a seek on a heap later on.  The table has an extra column (not shown because I am too lazy to update the diagram from yesterday) called padding – a CHAR(100) column that just contains 100 spaces in every row.  It’s just there to discourage SQL Server from choosing table scan over an index + RID lookup in one of the tests. The first stored procedure is called ResetTest: CREATE PROCEDURE dbo.ResetTest @Partitioned BIT = 'false' AS BEGIN SET NOCOUNT ON ; IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; IF @Partitioned = 'true' BEGIN -- Enterprise, Trial, or Developer -- required for partitioning tests IF SERVERPROPERTY('EngineEdition') = 3 BEGIN EXECUTE (' DROP TABLE dbo.Example ; IF EXISTS ( SELECT 1 FROM sys.partition_schemes WHERE name = N''PS'' ) DROP PARTITION SCHEME PS ; IF EXISTS ( SELECT 1 FROM sys.partition_functions WHERE name = N''PF'' ) DROP PARTITION FUNCTION PF ; CREATE PARTITION FUNCTION PF (INTEGER) AS RANGE RIGHT FOR VALUES (20, 40, 60, 80, 100) ; CREATE PARTITION SCHEME PS AS PARTITION PF ALL TO ([PRIMARY]) ; CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ON PS (key_col); '); END ELSE BEGIN RAISERROR('Invalid SKU for partition test', 16, 1); RETURN; END; END ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; END; GO The second stored procedure, ShowStats, displays information from the Index Usage Stats and Index Operational Stats DMVs: CREATE PROCEDURE dbo.ShowStats @Partitioned BIT = 'false' AS BEGIN -- Index Usage Stats DMV (QE) SELECT index_name = ISNULL(I.name, I.type_desc), scans = IUS.user_scans, seeks = IUS.user_seeks, lookups = IUS.user_lookups FROM sys.dm_db_index_usage_stats AS IUS JOIN sys.indexes AS I ON I.object_id = IUS.object_id AND I.index_id = IUS.index_id WHERE IUS.database_id = DB_ID(N'ScansAndSeeks') AND IUS.object_id = OBJECT_ID(N'dbo.Example', N'U') ORDER BY I.index_id ; -- Index Operational Stats DMV (SE) IF @Partitioned = 'true' SELECT index_name = ISNULL(I.name, I.type_desc), partitions = COUNT(IOS.partition_number), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; ELSE SELECT index_name = ISNULL(I.name, I.type_desc), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; END; The final stored procedure, RunTest, executes a query written against the example table: CREATE PROCEDURE dbo.RunTest @SQL VARCHAR(8000), @Partitioned BIT = 'false' AS BEGIN -- No execution plan yet SET STATISTICS XML OFF ; -- Reset the test environment EXECUTE dbo.ResetTest @Partitioned ; -- Previous call will throw an error if a partitioned -- test was requested, but SKU does not support it IF @@ERROR = 0 BEGIN -- IO statistics and plan on SET STATISTICS XML, IO ON ; -- Test statement EXECUTE (@SQL) ; -- Plan and IO statistics off SET STATISTICS XML, IO OFF ; EXECUTE dbo.ShowStats @Partitioned; END; END; The Tests The first test is a simple scan of the heap table: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example'; The top result set comes from the Index Usage Stats DMV, so it is the Query Executor’s (QE) view.  The lower result is from Index Operational Stats, which shows statistics derived from the actions taken by the Storage Engine (SE).  We see that QE performed 1 scan operation on the heap, and SE performed a single range scan.  Let’s try a single-value equality seek on a unique index next: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 32'; This time we see a single seek on the non-clustered primary key from QE, and one singleton lookup on the same index by the SE.  Now for a single-value seek on the non-unique non-clustered index: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32'; QE shows a single seek on the non-clustered non-unique index, but SE shows a single range scan on that index – not the singleton lookup we saw in the previous test.  That makes sense because we know that only a single-value seek into a unique index is a singleton seek.  A single-value seek into a non-unique index might retrieve any number of rows, if you think about it.  The next query is equivalent to the IN list example seen in the first post in this series, but it is written using OR (just for variety, you understand): EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32 OR data = 33'; The plan looks the same, and there’s no difference in the stats recorded by QE, but the SE shows two range scans.  Again, these are range scans because we are looking for two values in the data column, which is covered by a non-unique index.  I’ve added a snippet from the Properties window to show that the query plan does show two seek predicates, not just one.  Now let’s rewrite the query using BETWEEN: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data BETWEEN 32 AND 33'; Notice the seek operator only has one predicate now – it’s just a single range scan from 32 to 33 in the index – as the SE output shows.  For the next test, we will look up four values in the key_col column: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col IN (2,4,6,8)'; Just a single seek on the PK from the Query Executor, but four singleton lookups reported by the Storage Engine – and four seek predicates in the Properties window.  On to a more complex example: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WITH (INDEX([PK dbo.Example key_col])) WHERE key_col BETWEEN 1 AND 8'; This time we are forcing use of the non-clustered primary key to return eight rows.  The index is not covering for this query, so the query plan includes an RID lookup into the heap to fetch the data and padding columns.  The QE reports a seek on the PK and a lookup on the heap.  The SE reports a single range scan on the PK (to find key_col values between 1 and 8), and eight singleton lookups on the heap.  Remember that a bookmark lookup (RID or Key) is a seek to a single value in a ‘unique index’ – it finds a row in the heap or cluster from a unique RID or clustering key – so that’s why lookups are always singleton lookups, not range scans. Our next example shows what happens when a query plan operator is not executed at all: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 8 AND @@TRANCOUNT < 0'; The Filter has a start-up predicate which is always false (if your @@TRANCOUNT is less than zero, call CSS immediately).  The index seek is never executed, but QE still records a single seek against the PK because the operator appears once in an executed plan.  The SE output shows no activity at all.  This next example is 2008 and above only, I’m afraid: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WHERE key_col BETWEEN 1 AND 30', @Partitioned = 'true'; This is the first example to use a partitioned table.  QE reports a single seek on the heap (yes – a seek on a heap), and the SE reports two range scans on the heap.  SQL Server knows (from the partitioning definition) that it only needs to look at partitions 1 and 2 to find all the rows where key_col is between 1 and 30 – the engine seeks to find the two partitions, and performs a range scan seek on each partition. The final example for today is another seek on a heap – try to work out the output of the query before running it! EXECUTE dbo.RunTest @SQL = 'SELECT TOP (2) WITH TIES * FROM Example WHERE key_col BETWEEN 1 AND 50 ORDER BY $PARTITION.PF(key_col) DESC', @Partitioned = 'true'; Notice the lack of an explicit Sort operator in the query plan to enforce the ORDER BY clause, and the backward range scan. © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Basics of Join Factorization

    - by Hong Su
    We continue our series on optimizer transformations with a post that describes the Join Factorization transformation. The Join Factorization transformation was introduced in Oracle 11g Release 2 and applies to UNION ALL queries. Union all queries are commonly used in database applications, especially in data integration applications. In many scenarios the branches in a UNION All query share a common processing, i.e, refer to the same tables. In the current Oracle execution strategy, each branch of a UNION ALL query is evaluated independently, which leads to repetitive processing, including data access and join. The join factorization transformation offers an opportunity to share the common computations across the UNION ALL branches. Currently, join factorization only factorizes common references to base tables only, i.e, not views. Consider a simple example of query Q1. Q1:    select t1.c1, t2.c2    from t1, t2, t3    where t1.c1 = t2.c1 and t1.c1 > 1 and t2.c2 = 2 and t2.c2 = t3.c2   union all    select t1.c1, t2.c2    from t1, t2, t4    where t1.c1 = t2.c1 and t1.c1 > 1 and t2.c3 = t4.c3; Table t1 appears in both the branches. As does the filter predicates on t1 (t1.c1 > 1) and the join predicates involving t1 (t1.c1 = t2.c1). Nevertheless, without any transformation, the scan (and the filtering) on t1 has to be done twice, once per branch. Such a query may benefit from join factorization which can transform Q1 into Q2 as follows: Q2:    select t1.c1, VW_JF_1.item_2    from t1, (select t2.c1 item_1, t2.c2 item_2                   from t2, t3                    where t2.c2 = t3.c2 and t2.c2 = 2                                  union all                   select t2.c1 item_1, t2.c2 item_2                   from t2, t4                    where t2.c3 = t4.c3) VW_JF_1    where t1.c1 = VW_JF_1.item_1 and t1.c1 > 1; In Q2, t1 is "factorized" and thus the table scan and the filtering on t1 is done only once (it's shared). If t1 is large, then avoiding one extra scan of t1 can lead to a huge performance improvement. Another benefit of join factorization is that it can open up more join orders. Let's look at query Q3. Q3:    select *    from t5, (select t1.c1, t2.c2                  from t1, t2, t3                  where t1.c1 = t2.c1 and t1.c1 > 1 and t2.c2 = 2 and t2.c2 = t3.c2                 union all                  select t1.c1, t2.c2                  from t1, t2, t4                  where t1.c1 = t2.c1 and t1.c1 > 1 and t2.c3 = t4.c3) V;   where t5.c1 = V.c1 In Q3, view V is same as Q1. Before join factorization, t1, t2 and t3 must be joined first before they can be joined with t5. But if join factorization factorizes t1 from view V, t1 can then be joined with t5. This opens up new join orders. That being said, join factorization imposes certain join orders. For example, in Q2, t2 and t3 appear in the first branch of the UNION ALL query in view VW_JF_1. T2 must be joined with t3 before it can be joined with t1 which is outside of the VW_JF_1 view. The imposed join order may not necessarily be the best join order. For this reason, join factorization is performed under cost-based transformation framework; this means that we cost the plans with and without join factorization and choose the cheapest plan. Note that if the branches in UNION ALL have DISTINCT clauses, join factorization is not valid. For example, Q4 is NOT semantically equivalent to Q5.   Q4:     select distinct t1.*      from t1, t2      where t1.c1 = t2.c1  union all      select distinct t1.*      from t1, t2      where t1.c1 = t2.c1 Q5:    select distinct t1.*     from t1, (select t2.c1 item_1                   from t2                union all                   select t2.c1 item_1                  from t2) VW_JF_1     where t1.c1 = VW_JF_1.item_1 Q4 might return more rows than Q5. Q5's results are guaranteed to be duplicate free because of the DISTINCT key word at the top level while Q4's results might contain duplicates.   The examples given so far involve inner joins only. Join factorization is also supported in outer join, anti join and semi join. But only the right tables of outer join, anti join and semi joins can be factorized. It is not semantically correct to factorize the left table of outer join, anti join or semi join. For example, Q6 is NOT semantically equivalent to Q7. Q6:     select t1.c1, t2.c2    from t1, t2    where t1.c1 = t2.c1(+) and t2.c2 (+) = 2  union all    select t1.c1, t2.c2    from t1, t2      where t1.c1 = t2.c1(+) and t2.c2 (+) = 3 Q7:     select t1.c1, VW_JF_1.item_2    from t1, (select t2.c1 item_1, t2.c2 item_2                  from t2                  where t2.c2 = 2                union all                  select t2.c1 item_1, t2.c2 item_2                  from t2                                                                                                    where t2.c2 = 3) VW_JF_1       where t1.c1 = VW_JF_1.item_1(+)                                                                  However, the right side of an outer join can be factorized. For example, join factorization can transform Q8 to Q9 by factorizing t2, which is the right table of an outer join. Q8:    select t1.c2, t2.c2    from t1, t2      where t1.c1 = t2.c1 (+) and t1.c1 = 1 union all    select t1.c2, t2.c2    from t1, t2    where t1.c1 = t2.c1(+) and t1.c1 = 2 Q9:   select VW_JF_1.item_2, t2.c2   from t2,             (select t1.c1 item_1, t1.c2 item_2            from t1            where t1.c1 = 1           union all            select t1.c1 item_1, t1.c2 item_2            from t1            where t1.c1 = 2) VW_JF_1   where VW_JF_1.item_1 = t2.c1(+) All of the examples in this blog show factorizing a single table from two branches. This is just for ease of illustration. Join factorization can factorize multiple tables and from more than two UNION ALL branches.  SummaryJoin factorization is a cost-based transformation. It can factorize common computations from branches in a UNION ALL query which can lead to huge performance improvement. 

    Read the article

  • 12c - Utl_Call_Stack...

    - by noreply(at)blogger.com (Thomas Kyte)
    Over the next couple of months, I'll be writing about some cool new little features of Oracle Database 12c - things that might not make the front page of Oracle.com.  I'm going to start with a new package - UTL_CALL_STACK.In the past, developers have had access to three functions to try to figure out "where the heck am I in my code", they were:dbms_utility.format_call_stackdbms_utility.format_error_backtracedbms_utility.format_error_stackNow these routines, while useful, were of somewhat limited use.  Let's look at the format_call_stack routine for a reason why.  Here is a procedure that will just print out the current call stack for us:ops$tkyte%ORA12CR1> create or replace  2  procedure Print_Call_Stack  3  is  4  begin  5    DBMS_Output.Put_Line(DBMS_Utility.Format_Call_Stack());  6  end;  7  /Procedure created.Now, if we have a package - with nested functions and even duplicated function names:ops$tkyte%ORA12CR1> create or replace  2  package body Pkg is  3    procedure p  4    is  5      procedure q  6      is  7        procedure r  8        is  9          procedure p is 10          begin 11            Print_Call_Stack(); 12            raise program_error; 13          end p; 14        begin 15          p(); 16        end r; 17      begin 18        r(); 19      end q; 20    begin 21      q(); 22    end p; 23  end Pkg; 24  /Package body created.When we execute the procedure PKG.P - we'll see as a result:ops$tkyte%ORA12CR1> exec pkg.p----- PL/SQL Call Stack -----  object      line  object  handle    number  name0x6e891528         4  procedure OPS$TKYTE.PRINT_CALL_STACK0x6ec4a7c0        10  package body OPS$TKYTE.PKG0x6ec4a7c0        14  package body OPS$TKYTE.PKG0x6ec4a7c0        17  package body OPS$TKYTE.PKG0x6ec4a7c0        20  package body OPS$TKYTE.PKG0x76439070         1  anonymous blockBEGIN pkg.p; END;*ERROR at line 1:ORA-06501: PL/SQL: program errorORA-06512: at "OPS$TKYTE.PKG", line 11ORA-06512: at "OPS$TKYTE.PKG", line 14ORA-06512: at "OPS$TKYTE.PKG", line 17ORA-06512: at "OPS$TKYTE.PKG", line 20ORA-06512: at line 1The bit in red above is the output from format_call_stack whereas the bit in black is the error message returned to the client application (it would also be available to you via the format_error_backtrace API call). As you can see - it contains useful information but to use it you would need to parse it - and that can be trickier than it seems.  The format of those strings is not set in stone, they have changed over the years (I wrote the "who_am_i", "who_called_me" functions, I did that by parsing these strings - trust me, they change over time!).Starting in 12c - we'll have structured access to the call stack and a series of API calls to interrogate this structure.  I'm going to rewrite the print_call_stack function as follows:ops$tkyte%ORA12CR1> create or replace 2  procedure Print_Call_Stack  3  as  4    Depth pls_integer := UTL_Call_Stack.Dynamic_Depth();  5    6    procedure headers  7    is  8    begin  9        dbms_output.put_line( 'Lexical   Depth   Line    Name' ); 10        dbms_output.put_line( 'Depth             Number      ' ); 11        dbms_output.put_line( '-------   -----   ----    ----' ); 12    end headers; 13    procedure print 14    is 15    begin 16        headers; 17        for j in reverse 1..Depth loop 18          DBMS_Output.Put_Line( 19            rpad( utl_call_stack.lexical_depth(j), 10 ) || 20                    rpad( j, 7) || 21            rpad( To_Char(UTL_Call_Stack.Unit_Line(j), '99'), 9 ) || 22            UTL_Call_Stack.Concatenate_Subprogram 23                       (UTL_Call_Stack.Subprogram(j))); 24        end loop; 25    end; 26  begin 27    print; 28  end; 29  /Here we are able to figure out what 'depth' we are in the code (utl_call_stack.dynamic_depth) and then walk up the stack using a loop.  We will print out the lexical_depth, along with the line number within the unit we were executing plus - the unit name.  And not just any unit name, but the fully qualified, all of the way down to the subprogram name within a package.  Not only that - but down to the subprogram name within a subprogram name within a subprogram name.  For example - running the PKG.P procedure again results in:ops$tkyte%ORA12CR1> exec pkg.pLexical   Depth   Line    NameDepth             Number-------   -----   ----    ----1         6       20      PKG.P2         5       17      PKG.P.Q3         4       14      PKG.P.Q.R4         3       10      PKG.P.Q.R.P0         2       26      PRINT_CALL_STACK1         1       17      PRINT_CALL_STACK.PRINTBEGIN pkg.p; END;*ERROR at line 1:ORA-06501: PL/SQL: program errorORA-06512: at "OPS$TKYTE.PKG", line 11ORA-06512: at "OPS$TKYTE.PKG", line 14ORA-06512: at "OPS$TKYTE.PKG", line 17ORA-06512: at "OPS$TKYTE.PKG", line 20ORA-06512: at line 1This time - we get much more than just a line number and a package name as we did previously with format_call_stack.  We not only got the line number and package (unit) name - we got the names of the subprograms - we can see that P called Q called R called P as nested subprograms.  Also note that we can see a 'truer' calling level with the lexical depth, we can see we "stepped" out of the package to call print_call_stack and that in turn called another nested subprogram.This new package will be a nice addition to everyone's error logging packages.  Of course there are other functions in there to get owner names, the edition in effect when the code was executed and more. See UTL_CALL_STACK for all of the details.

    Read the article

  • 12c - flashforward, flashback or see it as of now...

    - by noreply(at)blogger.com (Thomas Kyte)
    Oracle 9i exposed flashback query to developers for the first time.  The ability to flashback query dates back to version 4 however (it just wasn't exposed).  Every time you run a query in Oracle it is in fact a flashback query - it is what multi-versioning is all about.However, there was never a flashforward query (well, ok, the workspace manager has this capability - but with lots of extra baggage).  We've never been able to ask a table "what will you look like tomorrow" - but now we do.The capability is called Temporal Validity.  If you have a table with data that is effective dated - has a "start date" and "end date" column in it - we can now query it using flashback query like syntax.  The twist is - the date we "flashback" to can be in the future.  It works by rewriting the query to transparently the necessary where clause and filter out the right rows for the right period of time - and since you can have records whose start date is in the future - you can query a table and see what it would look like at some future time.Here is a quick example, we'll start with a table:ops$tkyte%ORA12CR1> create table addresses  2  ( empno       number,  3    addr_data   varchar2(30),  4    start_date  date,  5    end_date    date,  6    period for valid(start_date,end_date)  7  )  8  /Table created.the new bit is on line 6 (it can be altered into an existing table - so any table  you have with a start/end date column will be a candidate).  The keyword is PERIOD, valid is an identifier I chose - it could have been foobar, valid just sounds nice in the query later.  You identify the columns in your table - or we can create them for you if they don't exist.  Then you just create some data:ops$tkyte%ORA12CR1> insert into addresses (empno, addr_data, start_date, end_date )  2  values ( 1234, '123 Main Street', trunc(sysdate-5), trunc(sysdate-2) );1 row created.ops$tkyte%ORA12CR1>ops$tkyte%ORA12CR1> insert into addresses (empno, addr_data, start_date, end_date )  2  values ( 1234, '456 Fleet Street', trunc(sysdate-1), trunc(sysdate+1) );1 row created.ops$tkyte%ORA12CR1>ops$tkyte%ORA12CR1> insert into addresses (empno, addr_data, start_date, end_date )  2  values ( 1234, '789 1st Ave', trunc(sysdate+2), null );1 row created.and you can either see all of the data:ops$tkyte%ORA12CR1> select * from addresses;     EMPNO ADDR_DATA                      START_DAT END_DATE---------- ------------------------------ --------- ---------      1234 123 Main Street                27-JUN-13 30-JUN-13      1234 456 Fleet Street               01-JUL-13 03-JUL-13      1234 789 1st Ave                    04-JUL-13or query "as of" some point in time - as  you can see in the predicate section - it is just doing a query rewrite to automate the "where" filters:ops$tkyte%ORA12CR1> select * from addresses as of period for valid sysdate-3;     EMPNO ADDR_DATA                      START_DAT END_DATE---------- ------------------------------ --------- ---------      1234 123 Main Street                27-JUN-13 30-JUN-13ops$tkyte%ORA12CR1> @planops$tkyte%ORA12CR1> select * from table(dbms_xplan.display_cursor);PLAN_TABLE_OUTPUT-------------------------------------------------------------------------------SQL_ID  cthtvvm0dxvva, child number 0-------------------------------------select * from addresses as of period for valid sysdate-3Plan hash value: 3184888728-------------------------------------------------------------------------------| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |-------------------------------------------------------------------------------|   0 | SELECT STATEMENT  |           |       |       |     3 (100)|          ||*  1 |  TABLE ACCESS FULL| ADDRESSES |     1 |    48 |     3   (0)| 00:00:01 |-------------------------------------------------------------------------------Predicate Information (identified by operation id):---------------------------------------------------   1 - filter((("T"."START_DATE" IS NULL OR              "T"."START_DATE"<=SYSDATE@!-3) AND ("T"."END_DATE" IS NULL OR              "T"."END_DATE">SYSDATE@!-3)))Note-----   - dynamic statistics used: dynamic sampling (level=2)24 rows selected.ops$tkyte%ORA12CR1> select * from addresses as of period for valid sysdate;     EMPNO ADDR_DATA                      START_DAT END_DATE---------- ------------------------------ --------- ---------      1234 456 Fleet Street               01-JUL-13 03-JUL-13ops$tkyte%ORA12CR1> @planops$tkyte%ORA12CR1> select * from table(dbms_xplan.display_cursor);PLAN_TABLE_OUTPUT-------------------------------------------------------------------------------SQL_ID  26ubyhw9hgk7z, child number 0-------------------------------------select * from addresses as of period for valid sysdatePlan hash value: 3184888728-------------------------------------------------------------------------------| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |-------------------------------------------------------------------------------|   0 | SELECT STATEMENT  |           |       |       |     3 (100)|          ||*  1 |  TABLE ACCESS FULL| ADDRESSES |     1 |    48 |     3   (0)| 00:00:01 |-------------------------------------------------------------------------------Predicate Information (identified by operation id):---------------------------------------------------   1 - filter((("T"."START_DATE" IS NULL OR              "T"."START_DATE"<=SYSDATE@!) AND ("T"."END_DATE" IS NULL OR              "T"."END_DATE">SYSDATE@!)))Note-----   - dynamic statistics used: dynamic sampling (level=2)24 rows selected.ops$tkyte%ORA12CR1> select * from addresses as of period for valid sysdate+3;     EMPNO ADDR_DATA                      START_DAT END_DATE---------- ------------------------------ --------- ---------      1234 789 1st Ave                    04-JUL-13ops$tkyte%ORA12CR1> @planops$tkyte%ORA12CR1> select * from table(dbms_xplan.display_cursor);PLAN_TABLE_OUTPUT-------------------------------------------------------------------------------SQL_ID  36bq7shnhc888, child number 0-------------------------------------select * from addresses as of period for valid sysdate+3Plan hash value: 3184888728-------------------------------------------------------------------------------| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |-------------------------------------------------------------------------------|   0 | SELECT STATEMENT  |           |       |       |     3 (100)|          ||*  1 |  TABLE ACCESS FULL| ADDRESSES |     1 |    48 |     3   (0)| 00:00:01 |-------------------------------------------------------------------------------Predicate Information (identified by operation id):---------------------------------------------------   1 - filter((("T"."START_DATE" IS NULL OR              "T"."START_DATE"<=SYSDATE@!+3) AND ("T"."END_DATE" IS NULL OR              "T"."END_DATE">SYSDATE@!+3)))Note-----   - dynamic statistics used: dynamic sampling (level=2)24 rows selected.All in all a nice, easy way to query effective dated information as of a point in time without a complex where clause.  You need to maintain the data - it isn't that a delete will turn into an update the end dates a record or anything - but if you have tables with start/end dates, this will make it much easier to query them.

    Read the article

  • nginx proxying websockets, must be missing something

    - by CodeMonkey
    I have a basic chat app written in node.js using express and socket.io; it works fine when connecting directly to node on port 3000 But doesn't work when I try to use nginx v1.4.2 as a proxy. I start off using the connection map map $http_upgrade $connection_upgrade { default upgrade; '' close; } Then add the locations location /socket.io/ { proxy_pass http://node; proxy_redirect off; proxy_http_version 1.1; proxy_set_header Host $http_host; proxy_set_header X-Forwarded-For $remote_addr; proxy_set_header X-Request-Id $txid; proxy_set_header X-Session-Id $uid_set+$uid_got; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection $connection_upgrade; proxy_buffering off; proxy_read_timeout 86400; keepalive_timeout 90; proxy_cache off; access_log /var/log/nginx/webservice.access.log; error_log /var/log/nginx/webservice.error.log; } location /web-service/ { proxy_pass http://node; proxy_redirect off; proxy_http_version 1.1; proxy_set_header Host $http_host; proxy_set_header X-Forwarded-For $remote_addr; proxy_set_header X-Request-Id $txid; proxy_set_header X-Session-Id $uid_set+$uid_got; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection $connection_upgrade; proxy_buffering off; proxy_read_timeout 86400; keepalive_timeout 90; access_log /var/log/nginx/webservice.access.log; error_log /var/log/nginx/webservice.error.log; rewrite /web-service/(.*) /$1 break; proxy_cache off; } These are built up using all of the tips to get it working that I could find. The error log does not show any errors. (except when I stop node to test the error logging is working) When through nginx I do see a websocket connection in the dev tools, with the status of 101; but the frames tab under the resuects is empty. The only differnece I can see in the response headers is a case difference - "upgrade" vs "Upgrade" - through nginx : Connection:upgrade Date:Fri, 08 Nov 2013 11:49:25 GMT Sec-WebSocket-Accept:LGB+iEBb8Ql9zYfqNfuuXzdzjgg= Server:nginx/1.4.2 Upgrade:websocket direct from node Connection:Upgrade Sec-WebSocket-Accept:8nwPpvg+4wKMOyQBEvxWXutd8YY= Upgrade:websocket output from node (when used through nginx) debug - served static content /socket.io.js debug - client authorized info - handshake authorized iaej2VQlsbLFIhachyb1 debug - setting request GET /socket.io/1/websocket/iaej2VQlsbLFIhachyb1 debug - set heartbeat interval for client iaej2VQlsbLFIhachyb1 debug - client authorized for debug - websocket writing 1:: debug - websocket writing 5:::{"name":"message","args":[{"message":"welcome to the chat"}]} debug - clearing poll timeout debug - jsonppolling writing io.j[0]("8::"); debug - set close timeout for client 7My3F4CuvZC0I4Olhybz debug - jsonppolling closed due to exceeded duration debug - clearing poll timeout debug - jsonppolling writing io.j[0]("8::"); debug - set close timeout for client AkCYl0nWNZAHeyUihyb0 debug - jsonppolling closed due to exceeded duration debug - setting request GET /socket.io/1/xhr-polling/iaej2VQlsbLFIhachyb1?t=1383911206158 debug - setting poll timeout debug - discarding transport debug - cleared heartbeat interval for client iaej2VQlsbLFIhachyb1 debug - setting request GET /socket.io/1/jsonp-polling/iaej2VQlsbLFIhachyb1?t=1383911216160&i=0 debug - setting poll timeout debug - discarding transport debug - clearing poll timeout debug - clearing poll timeout debug - jsonppolling writing io.j[0]("8::"); debug - set close timeout for client iaej2VQlsbLFIhachyb1 debug - jsonppolling closed due to exceeded duration debug - setting request GET /socket.io/1/jsonp-polling/iaej2VQlsbLFIhachyb1?t=1383911236429&i=0 debug - setting poll timeout debug - discarding transport debug - cleared close timeout for client iaej2VQlsbLFIhachyb1 when direct to node, the client does not start polling. The normal http stuff node outputs works fine with nginx. Clearly something I am not seeing, but I am stuck, thanks :)

    Read the article

  • Slides of my HOL on MySQL Cluster

    - by user13819847
    Hi!Thanks everyone who attended my hands-on lab on MySQL Cluster at MySQL Connect last Saturday.The following are the links for the slides, the HOL instructions, and the code examples.I'll try to summarize my HOL below.Aim of the HOL was to help attendees to familiarize with MySQL Cluster. In particular, by learning: the basics of MySQL Cluster Architecture the basics of MySQL Cluster Configuration and Administration how to start a new Cluster for evaluation purposes and how to connect to it We started by introducing MySQL Cluster. MySQL Cluster is a proven technology that today is successfully servicing the most performance-intensive workloads. MySQL Cluster is deployed across telecom networks and is powering mission-critical web applications. Without trading off use of commodity hardware, transactional consistency and use of complex queries, MySQL Cluster provides: Web Scalability (web-scale performance on both reads and writes) Carrier Grade Availability (99.999%) Developer Agility (freedom to use SQL or NoSQL access methods) MySQL Cluster implements: an Auto-Sharding, Multi-Master, Shared-nothing Architecture, where independent nodes can scale horizontally on commodity hardware with no shared disks, no shared memory, no single point of failure In the architecture of MySQL Cluster it is possible to find three types of nodes: management nodes: responsible for reading the configuration files, maintaining logs, and providing an interface to the administration of the entire cluster data nodes: where data and indexes are stored api nodes: provide the external connectivity (e.g. the NDB engine of the MySQL Server, APIs, Connectors) MySQL Cluster is recommended in the situations where: it is crucial to reduce service downtime, because this produces a heavy impact on business sharding the database to scale write performance higly impacts development of application (in MySQL Cluster the sharding is automatic and transparent to the application) there are real time needs there are unpredictable scalability demands it is important to have data-access flexibility (SQL & NoSQL) MySQL Cluster is available in two Editions: Community Edition (Open Source, freely downloadable from mysql.com) Carrier Grade Edition (Commercial Edition, can be downloaded from eDelivery for evaluation purposes) MySQL Carrier Grade Edition adds on the top of the Community Edition: Commercial Extensions (MySQL Cluster Manager, MySQL Enterprise Monitor, MySQL Cluster Installer) Oracle's Premium Support Services (largest team of MySQL experts backed by MySQL developers, forward compatible hot fixes, multi-language support, and more) We concluded talking about the MySQL Cluster vision: MySQL Cluster is the default database for anyone deploying rapidly evolving, realtime transactional services at web-scale, where downtime is simply not an option. From a practical point of view the HOL's steps were: MySQL Cluster installation start & monitoring of the MySQL Cluster processes client connection to the Management Server and to an SQL Node connection using the NoSQL NDB API and the Connector J In the hope that this blog post can help you get started with MySQL Cluster, I take the opportunity to thank you for the questions you made both during the HOL and at the MySQL Cluster booth. Slides are also on SlideShares: Santo Leto - MySQL Connect 2012 - Getting Started with Mysql Cluster Happy Clustering!

    Read the article

  • OBIEE 11.1.1 - Disable Wrap Data Types in WebLogic Server 10.3.x

    - by Ahmed Awan
    By default, JDBC data type’s objects are wrapped with a WebLogic wrapper. This allows for features like debugging output and track connection usage to be done by the server. The wrapping can be turned off by setting this value to false. This improves performance, in some cases significantly, and allows for the application to use the native driver objects directly. Tip: How to Disable Wrapping in WLS Administration Console You can use the Administration Console to disable data type wrapping for following JDBC data sources in bifoundation_domain domain: Data Source Name bip_datasource mds-owsm EPMSystemRegistry   To disable wrapping for each JDBC data source (as stated in above table): 1.     If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit. 2.     In the Domain Structure tree, expand Services, then select Data Sources. 3.     On the Summary of Data Sources page, click the data source name for example “mds-owsm”. 4.     Select the Configuration: Connection Pool tab. 5.     Scroll down and click Advanced to show the advanced connection pool options. 6.     In Wrap Data Types, deselect the checkbox to disable wrapping. 7.     Click Save. 8.     To activate these changes, in the Change Center of the Administration Console, click Activate Changes. Important Note: This change does not take effect immediately—it requires the server be restarted.

    Read the article

  • How can I run supervisord without using root?

    - by Jason Baker
    I seem to be having trouble figuring out why supervisord won't run as a non-root user. If I start it with the user set to jason (pid 1000), I get the following in the log file: 2010-05-24 08:53:32,143 CRIT Set uid to user 1000 2010-05-24 08:53:32,143 WARN Included extra file "/home/jason/src/tsched/celeryd.conf" during parsing 2010-05-24 08:53:32,189 INFO RPC interface 'supervisor' initialized 2010-05-24 08:53:32,189 WARN cElementTree not installed, using slower XML parser for XML-RPC 2010-05-24 08:53:32,189 CRIT Server 'unix_http_server' running without any HTTP authentication checking 2010-05-24 08:53:32,190 INFO daemonizing the supervisord process 2010-05-24 08:53:32,191 INFO supervisord started with pid 3444 ...then the process dies for some unknown reason. If I start it without sudo (under the user jason), I get similar output: 2010-05-24 08:51:32,859 INFO supervisord started with pid 3306 2010-05-24 08:52:15,761 CRIT Can't drop privilege as nonroot user 2010-05-24 08:52:15,761 WARN Included extra file "/home/jason/src/tsched/celeryd.conf" during parsing 2010-05-24 08:52:15,807 INFO RPC interface 'supervisor' initialized 2010-05-24 08:52:15,807 WARN cElementTree not installed, using slower XML parser for XML-RPC 2010-05-24 08:52:15,807 CRIT Server 'unix_http_server' running without any HTTP authentication checking 2010-05-24 08:52:15,808 INFO daemonizing the supervisord process 2010-05-24 08:52:15,809 INFO supervisord started with pid 3397 ...and it still doesn't run. If it's any help, here's the supervisord.conf file I'm using: [unix_http_server] file=/tmp/supervisor.sock ; path to your socket file [supervisord] logfile=./supervisord.log ; supervisord log file logfile_maxbytes=50MB ; maximum size of logfile before rotation logfile_backups=10 ; number of backed up logfiles loglevel=debug ; info, debug, warn, trace pidfile=./supervisord.pid ; pidfile location nodaemon=false ; run supervisord as a daemon minfds=1024 ; number of startup file descriptors minprocs=200 ; number of process descriptors user=jason ; default user childlogdir=./supervisord/ ; where child log files will live [rpcinterface:supervisor] supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface [supervisorctl] serverurl=unix:///tmp/supervisor.sock ; use unix:// schem for a unix sockets. [include] # Uncomment this line for celeryd for Python files=celeryd.conf # Uncomment this line for celeryd for Django. ;files=django/celeryd.conf ...and here's celeryd.conf: [program:celery] command=bin/celeryd --loglevel=INFO --logfile=./celeryd.log environment=PYTHONPATH='./tsched_worker', JIVA_DB_PLATFORM='oracle', ORACLE_HOME='/usr/lib/oracle/xe/app/oracle/product/10.2.0/server', LD_LIBRARY_PATH='/usr/lib/oracle/xe/app/oracle/product/10.2.0/server/lib', TNS_ADMIN='/home/jason', CELERY_CONFIG_MODULE='tsched_worker.celeryconfig' directory=. user=jason numprocs=1 stdout_logfile=/var/log/celeryd.log stderr_logfile=/var/log/celeryd.log autostart=true autorestart=true startsecs=10 ; Need to wait for currently executing tasks to finish at shutdown. ; Increase this if you have very long running tasks. stopwaitsecs = 600 ; if rabbitmq is supervised, set its priority higher ; so it starts first priority=998 Can anyone help me figure out what's going on?

    Read the article

  • Looking for Your Next Challenge...Don't Stretch Too Far

    - by david.talamelli
    In my role as a Recruiter at Oracle I receive a large number of resumes of people who are interested in working with us. People contact me for a number of reasons, it can be about a specific role that we may be hiring for or they may send me an email asking if there are any suitable roles for them. Sometimes when I speak to people we have similar roles available to the roles that they may actually be in now. Sometimes people are interested in making this type of sideways move if their motivation to change jobs is not necessarily that they are looking for increased responsibility or career advancement (example: money, redundancy, work environment). However there are times when after walking through a specific role with a candidate that they may say to me - "You know that is very similar to the role that I am doing now. I would not want to move unless my next role presents me with the next challenge in my career". This is a far statement - if a person is looking to change jobs for the next step in their career they should be looking at suitable opportunities that will address their need. In this instance a sideways step will not really present any new challenges or responsibilities. The main change would be the company they are working for. Candidates looking for a new role because they are looking to move up the ladder should be looking for a role that offers them the next level of responsibility. I think the best job changes for people who are looking for career advancement are the roles that stretch someone outside of their comfort zone but do not stretch them so much that they can't cope with the added responsibilities and pressure. In my head I often think of this example in the same context of an elastic band - you can stretch it, but only so much before it snaps. That is what you should be looking for - to be stretched but not so much that you snap. If you are for example in an individual contributor role and would like to move into a management role - you may not be quite ready to take on a role that is managing a large workforce or requires significant people management experience. While your intentions may be right, your lack of management experience may fit you outside of the scope of search to be successful this type of role. In this example you can move from an individual contributor role to a management role but it may need to be managing a smaller team rather than a larger team. While you are trying to make this transition you can try to pick up some responsibilities in your current role that would give you the skills and experience you need for your next role. Never be afraid to put your hand up to help on a new project or piece of work. You never know when that newly gained experience may come in handy in your career. This article was originally posted on David Talamelli's Blog - David's Journal on Tap

    Read the article

  • Deployment Options for AutoVue 20.0 Users

    - by celine.beck
    AutoVue release 20.0 boasts a brand new architecture. As part of this product rearchitecture, AutoVue can now be deployed either as a desktop deployment to serve the needs of individual users in their personal productivity; or in a Client / Server deployment for those that require connections to enterprise applications / back-end systems. The most common question that we hear from our customers about this new architecture is the following: "Is AutoVue Desktop Version still part of release 20.0 and if so, what is the difference between AutoVue Desktop Version and the Desktop deployment of AutoVue release 20.0?" A detailed answer to these questions is provided in a very complete article entitled Understanding Deployment Options for AutoVue 19.3 Desktop Version users upgrading to AutoVue 20.0 (note 1058254.1) which was posted on My Oracle Support. Is AutoVue Desktop Version still part of AutoVue 20.0? Yes, AutoVue Desktop Version 20.0 is still available to customers and partners, as a maintenance release of AutoVue 19.3. As such, it will not contain any of the new capabilities featured in AutoVue release 20.0. All format enhancements and new format support have been added to release 20.0 Desktop Version though. What is the different between AutoVue Desktop Version 20.0 and the Desktop Deployment of AutoVue release 20.0? AutoVue 20.0 Desktop deployment works like the AutoVue Desktop version. It is installed as a standalone product on each user's machine and runs a local instance of AutoVue. The AutoVue 20.0 Desktop deployment includes all new features, formats and performance enhancements included in release 20.0 (walkthrough capability, improved compare, ...) What deployment options are available to AutoVue 19.3 Desktop Version customers? AutoVue Desktop Version users can evolve at their own pace to the new AutoVue platform. With release 20.0, customers can opt to: Option 1: Stay on AutoVue Desktop Version 20.0 Option 2: Migrate to AutoVue and select the desktop deployment method Option 3: Migrate to AutoVue and select the Client/Server deployment method What is the Client / Server deployment of AutoVue 20.0? The Client/Server deployment has AutoVue installed on a server, to which local client machines connect to access and view documents. AutoVue 20.0 Client Server Deployment allows users to leverage the new online/offline capabilities in release 20.0 and easily switch between online and offline modes of operation. With the Client/Server deployment, customers also get a complete, open and standards-based set of integration tools that allows them to tie AutoVue to any enterprise applications to provide users with a consistent view of data and business objects and expand workflow automation to document-based processes. Related articles: AutoVue Release 20.0 Now Available, New Walkthrough Capability in AutoVue 20.0, Watch the AutoVue 20.0 Release Webcast, April 27 at 12pm EST

    Read the article

  • SOA Suite 11g Asynchronous Testing with soapUI

    - by Greg Mally
    Overview The Enterprise Manager test harness that comes bundled with SOA Suite 11g is a great tool for doing smoke tests and some minor load testing. When a more robust testing tool is needed, often times soapUI is leveraged for many reasons ranging from ease of use to cost effective. However, when you want to start doing some more complex testing other than synchronous web services with static content, then the free version of soapUI becomes a bit more challenging. In this blog I will show you how to test asynchronous web services with soapUI free edition. The following assumes that you have a working knowledge of soapUI and will not go into concepts like setting up a project etc. For the basics, please review the documentation for soapUI: http://www.soapui.org/Getting-Started/ Asynchronous Web Service Testing in soapUI When invoking an asynchronous web service, the caller must provide a callback for the response. Since our testing will originate from soapUI, then it is only natural that soapUI would provide the callback mechanism. This mechanism in soapUI is called a MockService. In a nutshell, a soapUI MockService is a simulation of a Web Service (aka, a process listening on a port). We will go through the steps in setting up the MockService for a simple asynchronous BPEL process. After creating your soapUI project based on an asynchronous BPEL process, you will see something like the following: Notice that soapUI created an interface for both the request and the response (i.e., callback). The interface that was created for the callback will be used to create the MockService. Right-click on the callback interface and select the Generate MockService menu item: You will be presented with the Generate MockService dialogue where we will tweak the Path and possibly the port (depends upon what ports are available on the machine where soapUI will be running). We will adjust the Path to include the operation name (append /processResponse in this example) and the port of 8088 is fine: Once the MockService is created, you should have something like the following in soapUI: This window acts as a console/view into the callback process. When the play button is pressed (green triangle in the upper left-hand corner), soapUI will start a process running on the configured Port that will accept web service invocations on the configured Path: At this point we are “almost” ready to try out the asynchronous test. But first we must provide the web service addressing (WS-A) configuration on the request message. We will edit the message for the request interface that was generated when the project was created (SimpleAsyncBPELProcessBinding > process > Request 1 in this example). At the bottom of the request message editor you will find the WS-A configuration by left-clicking on the WS-A label: Here we will setup WS-A by changing the default values to: Must understand: TRUE Add default wsa:Action: Add default wsa:Action (checked) Reply to: ${host where soapUI is running}:${MockService Port}${MockService Path} … in this example: http://192.168.1.181:8088/mockSimpleAsyncBPELProcessCallbackBinding/processResponse We now are ready to run the asynchronous test from soapUI free edition. Make sure that the MockService you created is running and then push the play button for the request (green triangle in the upper left-hand corner of the request editor). If everything is configured correctly, you should see the response show up in the MockService window: To view the response message/payload, just double-click on a response message in the Message Log window of the MockService: At this point you can now expand the project to include a Test Suite for some load balance tests etc. This same topic has been covered in various detail on other sites/blogs, but I wanted to simplify and detail how this is done in the context of SOA Suite 11g. It also serves as a nice introduction to another blog of mine: SOA Suite 11g Dynamic Payload Testing with soapUI Free Edition.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • What are the best ways to cope with «one of those days»? [closed]

    - by Júlio Santos
    I work in a fast-paced startup and am absolutely in love with what I do. Still, I wake up to a bad mood as often as the next guy. I find that forcing myself to play out my day as usual doesn't help — in fact, it only makes it worse, possibly ruining my productivity for the rest of the week. There are several ways I can cope with this, for instance: dropping the current task for the day and getting that awesome but low-priority feature in place; doing some pending research for future development (i.e. digging up ruby gems); spending the day reading and educating myself; just taking the day off. The first three items are productive in themselves, and taking the day off recharges my coding mana for the rest of the week. Being a young developer, I'm pretty sure there's a multitude of alternatives that I haven't come across yet. How can programmers cope with off days? Edit: I am looking for answers related specifically to this profession. I therefore believe that coping with off days in our field is fundamentally different that doing so in other areas. Programmers (especially in a start-up) are a unique breed in this context in the sense that they tend to have a multitude of tasks at hand on any given moment, so they can easily switch between these without wreaking too much havoc. Programmers also tend to work based on clear, concise objectives — provided they are well managed either by themselves or a third party — and hence have a great deal of flexibility when it comes to managing their time. Finally, our line of work creates the opportunity — necessity, if you will — to fit a plethora of tasks not directly related to the current one, such as research and staying on top of new releases and software updates.

    Read the article

  • Magic Mouse and Alum keyboard autosleep?

    - by Moshe
    How does the power management of the wireless keyboard and magic mouse work with iMac? (late 2009) Do I need to manually power off the keyboard and mouse when I shut off my Mac or do they power off/sleep automatically? ( BONUS: How often should the batteries be replaced? )

    Read the article

  • Adding Descriptive Flex Field (DFF) through OAF Personalization

    - by Manoj Madhusoodanan
    In this blog I will explain how to add a DFF to a existing OAF page through personalization.I am using Supplier Quick Update Page ( /oracle/apps/pos/supplier/webui/SuppSummPG ). If you want to see how to create DFF please click here. In this scenario I am using a custom DFF. Following are the details. Application -> Payables ( Code: SQLAP )Name -> XXCUST_SUPPLIER_DFFTitle -> XXCUST - Supplier DFFTable Name -> AP_SUPPLIERSDFV View name -> XXCUST_SUPPLIER_DFVReference Fields -> ATTRIBUTE_CATEGORY Following are the Context Field Details. Prompt -> Supplier TypeValue Set -> XXCUST_SUP_TYPE ( Values : External and Internal )Reference Field -> ATTRIBUTE_CATEGORY Below table shows the segment details of XXCUST_SUPPLIER_DFF. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Code Segments Column Value Set Global Data Elements Identification Number ATTRIBUTE1 15 Characters External Type ATTRIBUTE2 XXCUST_EXT_SUP_TYPE Values          Domestic           International Internal Department ATTRIBUTE2 15 Characters Following steps you need to perform to create flex item in the Quick Update page. 1) Click on Personalize Page.In the Personalize Page click on Complete View. 2) Click on Create Item.( Based on where you want to place the DFF choose appropriate layout). 3) Create flex item with following details. 4) If you want to arrange the item in the page click on Reorder. Following is the output.

    Read the article

  • You Can't Win on Price

    - by David Dorf
    This year I did the majority of my Christmas shopping from the comfort of my home office. There aren't many things in stores you can't find online these days. I find it easier to search, research, and compare products online rather than walking the mall anyway. But there's a segment of the population that likes to be in the store, touching the products. For those people, smartphones avail them some of the e-commerce features I mentioned right there in the aisles. First it was RedLaser, then TheFind, ShopSavvy and many others. But the one that should be scaring retailers is Amazon's PriceCheck application. It lets you scan the product barcode, take a picture of the product, or speak the product's name. Once the product is identified, it shows the online prices, with Amazon at the top of the list. Within 10 seconds you can order the item and Amazon Prime members get free 2-day shipping too. I don't think fashion and grocery retailers need to worry much, but I have to believe smartphones are helping Amazon win a little more of the brand-name hardgoods market. So what's a retailer to do? Best Buy has begun to put QR Codes on their shelf labels that are easily scanned by smartphones and take the consumer to a Best Buy Web page where they can get extended information about the product. The consumer is getting the additional information they want, and Best Buy avoids the price comparisons. Of course if a consumer chooses to use the Amazon PriceCheck app, then all bets are off. That's when Best Buy has to hope the in-store experience and customer service will save the sale. My point is that the internet makes information available to everyone, and smartphones make it available anywhere. Unless you want your store to be Amazon's local showroom, you need to be price-competitive but differentiate on other aspects of the shopping experience. With the cost of running a physical store, you can't win on price.

    Read the article

  • Talking JavaOne with Rock Star Simon Ritter

    - by Janice J. Heiss
    Oracle’s Java Technology Evangelist Simon Ritter is well known at JavaOne for his quirky and fun-loving sessions, which, this year include: CON4644 -- “JavaFX Extreme GUI Makeover” (with Angela Caicedo on how to improve UIs in JavaFX) CON5352 -- “Building JavaFX Interfaces for the Real World” (Kinect gesture tracking and mind reading) CON5348 -- “Do You Like Coffee with Your Dessert?” (Some cool demos of Java of the Raspberry Pi) CON6375 -- “Custom JavaFX Charts: (How to extend JavaFX Chart controls with some interesting things) I recently asked Ritter about the significance of the Raspberry Pi, the topic of one of his sessions that consists of a credit card-sized single-board computer developed in the UK with the intention of stimulating the teaching of basic computer science in schools. “I don't think there's one definitive thing that makes the RP significant,” observed Ritter, “but a combination of things that really makes it stand out. First, it's the cost: $35 for what is effectively a completely usable computer. OK, so you have to add a power supply, SD card for storage and maybe a screen, keyboard and mouse, but this is still way cheaper than a typical PC. The choice of an ARM processor is also significant, as it avoids problems like cooling (no heat sink or fan) and can use a USB power brick.  Combine these two things with the immense groundswell of community support and it provides a fantastic platform for teaching young and old alike about computing, which is the real goal of the project.”He informed me that he’ll be at the Raspberry Pi meetup on Saturday (not part of JavaOne). Check out the details here.JavaFX InterfacesWhen I asked about how JavaFX can interface with the real world, he said that there are many ways. “JavaFX provides you with a simple set of programming interfaces that can create complex, cool and compelling user interfaces,” explained Ritter. “Because it's just Java code you can combine JavaFX with any other Java library to provide data to display and control the interface. What I've done for my session is look at some of the possible ways of doing this using some of the amazing hardware that's available today at very low cost. The Kinect sensor has added a new dimension to gaming in terms of interaction; there's a Java API to access this so you can easily collect skeleton tracking data from it. Some clever people have also written libraries that can track gestures like swipes, circles, pushes, and so on. We use these to control parts of the UI. I've also experimented with a Neurosky EEG sensor that can in some ways ‘read your mind’ (well, at least measure some of the brain functions like attention and meditation).  I've written a Java library for this that I include as a way of controlling the UI. We're not quite at the stage of just thinking a command though!” Here Comes Java EmbeddedAnd what, from Ritter’s perspective, is the most exciting thing happening in the world of Java today? “I think it's seeing just how Java continues to become more and more pervasive,” he said. “One of the areas that is growing rapidly is embedded systems.  We've talked about the ‘Internet of things’ for many years; now it's finally becoming a reality. With the ability of more and more devices to include processing, storage and networking we need an easy way to write code for them that's reliable, has high performance, and is secure. Java fits all these requirements. With Java Embedded being a conference within a conference, I'm very excited about the possibilities of Java in this space.”Check out Ritter’s sessions or say hi if you run into him.

    Read the article

  • Devoxx 2011 Trip Report + Pictures

    - by arungupta
    3350 attendees from 40 countries lived in "paradise" for 5 days last week. This paradise had 170+ rock star speakers delivering 200+ hours of technical content in about 150 sessions. And it truly was a paradise with a clear differentiation from other Java conferences. There were several Oracle speakers at the paradise covering the entire gamut of Java platform. I delivered a Java EE 6 hands-on lab (new content), showcased Java EE 7 and GlassFish 4.0 early work at the keynote, and participated in a panel to talk about Contexts and Dependency Injection. The demo in the keynote showed how to deploy a Java EE application in a managed environment. The demo showed a Conference Planner application that can be used by conference organizers to display sessions, tracks, and speaker information. This same application can be deployed and display data from JavaOne 2011 or Devoxx 2011 based upon the SQL chosen for database initialization. If javaone-sf-2011.sql is chosen for datbase initialization then the application looks like as shown: If devoxx-2011.sql is chosen then the application looks like as shown: And of course, clicking on Tracks, Speakers, Sessions shows you information from the respective conference. The complete source code for the application and detailed instructions are availaable at glassfish.org/javaone2011. In short: Download the sample app and unzip Download GlassFish build b05. Download platform-specific Load Balancer template Run "bin/install.sh" to configure GlassFish Pick javaone-sf-2011.sql or devoxx-2011.sql for database initialization You can also watch the application in action in this video: A breaking news shared at the conference was that Devoxx France is coming from April 18- 20 and 75% of the talks will be in French. Stay tuned for more details on that. I'm sure Antonio and gang will put up a great show out there! Just a tip for the first timers to Devoxx ... A bus leaves from Brussels airport to Antwerp city center between 4am - 11pm at the top of every hour, takes about 45 minutes, and costs 10 euros (only cash). Take a tram #6 (going towards Luchtbal) from Astrid station (next to the city center) and get off at the last station for Metropolis. It takes about 15 minutes. Purchase a day pass at the station using kiosks (much cheaper) or you can buy in the bus as well (about double the price). Either way, cash only. Here are a few pictures captured from the event: And the complete album here: Thank you Stephan for giving me an opportunity to speak at my first Devoxx. I hope to be back next year, just in time for Java EE 7 going final!

    Read the article

  • The Minimalist Approach to Content Governance - Retire Phase

    - by Kellsey Ruppel
     Originally posted by John Brunswick. Good news - the Retire Phase is actually more fun than the Manage Phase. During the Retire Phase our content management team should not have to track down content creators if the Request Phase of this process was completed successfully. The ownership meta data, success criteria and time stamp that was applied to the original content submission will help to manage content at the end of the content life cycle. The Retire Phase will provide the opportunity for us to prune irrelevant content items through archiving or deletion, keeping the content system clear of irrelevant information, streamlining users ability to browse and search for content.   1. Act on Metrics Established during the Request Phase Why - Some information is only relevant for a given amount of time. In Content Platform Migration Strategy - Artifacts vs Perishable Content we examined two content types - Artifacts and Perishable content. Understanding the differences between Artifacts and Perishable content will allow us to explicitly respect their various lifespans. Additionally, some content may have been part of a project that failed to meet the success criteria outlined in the Request Phase. Any content that did not meet the metrics outlined in the Request Phase should be considered for deletion. How - Thankfully by adhering to to The Minimalist Approach to Content Governance our content should have some level of meta data associated with it that will allow us to quickly sort and understand how to deal with it. Content Management Systems like Oracle's Universal Content Management (UCM) natively allow you to create and save advanced searches that can use content meta data like folders, author, expiration date, security settings and custom meta data to pull back listings of content for examination. Additionally, analytics are available for all content items that allow us to determine if the usage is meeting success criteria that may have been previously outlined during the request phase. The lists that are produced from these approaches can be quickly reviewed for each project with the content owners and based on the nature of the content and success criteria undergo archiving or deletion. Impact - Retiring content that is no longer relevant will allow end users to have fast and relevant access to information across your enterprise. As we mentioned in our first post in this series - it is easy to quickly start producing content, but the challenge is ensuring that the environment is easy to navigate and use on the third week and during the third year. The light level of effort that was placed into the Request Phase of this process will set us up to keep content clean and relevant for a long time to come. With an up-to-date content repository users will be able to quickly find access to the information that is critical to their work processes. You might not get a holiday named in your honor managing the content system, but will appreciate their quick access to quality information.

    Read the article

  • Error trapping for a missing data source in a Spring MVC / Spring JDBC web app [migrated]

    - by Geeb
    I have written a web app that uses Spring MVC libraries and Spring JDBC to connect to an Oracle DB. (I don't use any ORM type libraries as I create stored procedures on Oracle that do my stuff and I'm quite happy with that.) I use a connection pool to Oracle managed by the Tomcat container The app generally works absolutely fine by the way! BUT... I noticed the other day when I tried to set up the app on another Tomcat instance that I had forgotten to configure the connection pool and obviously the app could not get hold of an org.apache.commons.dbcp.BasicDataSource object, so it crashed. I define the pool params in the tomcat "context.conf" In my "web.xml" I have: <servlet> <servlet-name>appServlet</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <init-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/Spring/appServlet/servlet-context.xml</param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>appServlet</servlet-name> <!-- Map *everything* to appServlet --> <url-pattern>/</url-pattern> </servlet-mapping> <resource-ref> <description>Oracle Datasource example</description> <res-ref-name>jdbc/ora1</res-ref-name> <res-type>org.apache.commons.dbcp.BasicDataSource</res-type> <res-auth>Container</res-auth> </resource-ref> And I have a Spring "servlet-context.xml" where JNDI is used to map the data source object provided by the connection pool to a Spring bean with the ID of "dataSource": <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/ora1" resource-ref="true" /> Here's the question: Where do I trap the case where the database cannot be accessed for whatever reason? I don't want the user to see a yard-and-a-half of Java stack trace in their browser, rather a nicer message that tells them there is a database problem etc. It seems that my app tries to configure the "dataSource" bean (in "servlet-context.xml") before any code has tested it can actually provide a dataSource object from the pool?! Maybe I'm not fully understanding exactly what is going on in these stages of the app firing up ... Thanks for any advice!

    Read the article

  • Windows Updates - Does Not Install, how can I remove it

    - by Kanini
    Everytime I shutdown my Windows XP, it comes up with the following screen which says "Turn Off with Installing Updates" (Of course, it also gives me an option as follows, "Click here to turn off without installing updates.") Now, when I do normal shutdown asking it to Install Updates and Turn it Off. It does not install the updates and every subsequent time I try to shut down the PC, it still comes with the prompt "Turn Off with Installing Updates". I managed to find out that this install was this "Installing Microsoft SQL Server 2005 Express Edition Service Pack 3 (KB955706) update 1 of 1 .... " Now, when I click on the Installing Updates icon (the yellow icon, that appears on the task bar near the clock), and Install it. It tries to install and it fails. Now, why is this install alone failing? Second, if we are not able to ascertain why this is failing, can we at least ensure that it is removed from the list of possible installs so that everytime it does not ask me to install it.

    Read the article

  • BIP Debugging to a file

    - by Tim Dexter
    If you use the standalone server or with OBIEE and use OC4J as the web server. Have you ever taken a looksee at the console window (doc/xterm) that you use to start it. Ever turned on debugging to see masses of info flow by that window and want to capture it all? I have been debugging today and watched all that info fly by and on Windoze gets lost before you can see it! The BIP developers use the System.out.println() and System.err.println()methods in the BIP applications to generate debugging formation. Normally the output from these method calls go to the console where the OC4J process is started. However you can specify command line options when starting OC4J to direct the stdout and stderr output directly to files. The ?out and ?err parameters tell OC4J which file to direct the output to. All you need do is modify the oc4j.cmd file used to start BIP. I didnt get fancy and just plugged in the following to the file under the start section. I just modified the line: set CMDARGS=-config "%SERVER_XML%" -userThreads to set CMDARGS=-config "%SERVER_XML%" -out D:\BI\OracleBI\oc4j_bi\j2ee\home\log\oc4j.out -err D:\BI\OracleBI\oc4j_bi\j2ee\home\log\oc4j.err -userThreads Bounced the server and I now have a ballooning pair of debug files that I can pour over to my hearts content. The .out file appears to contain BIP only log info and the .err file, OBIEE messages. If you are using another web server to host BIP, just check out the user docs to find out how to get the log files to write. Note to self, remember to turn off the debug when Im done!

    Read the article

  • WinSCP putting multiple files on sftp site

    - by NewToWinSCP
    WinSCP 5.2 I wanted to put multiple files with a file extension .pgp on an sftp site. When I tested my original command line (see below) and it only placed the first *.pgp alphabetical file (D:\a.csv.pgp) on the sftp site. I tried specifying *.PGP and *.pgp without any changes - only one file (D:\a.csv.pgp) would be copied each time. I got it to work for all files only if I specified a put command for each .pgp file. Any ideas on how to put all *.pgp on the sftp site? Original Command Line - Does Not Work d:\winscp\winscp /command "option echo off" "option batch on" "option confirm off" "open sftp" "put D:\*.pgp" "close" "exit" Works d:\winscp\winscp /command "option echo off" "option batch on" "option confirm off" "open sftp" "put D:\a.csv.pgp" "put D:\b.csv.pgp" "put D:\c.csv.pgp" "put D:\d.csv.pgp" "put D:\e.csv.pgp" "put D:\f.csv.pgp" "put D:\g.csv.pgp" "put D:\h.csv.pgp" "put D:\i.csv.pgp" "close" "exit"

    Read the article

  • Recruitment Drive - Things Don't Always Go As Planned - Stay Flexible by Kalyan Neelagiri

    - by david.talamelli
    I am one of the Recruiters for Oracle and work in our India Recruitment Team. When we are hiring for multiple positions we often hold Recruitment Events to interview a large number of people as effectively as possible. These Events are often held on the weekend as many people are not free to attend an all day event during the working week. Just recently during a recruitment campaign we were running I was tasked to set up a Recruitment Event for some roles we were hiring for. I have set up and run weekend recruitment events in the past which have all run smoothly. However, this time arranging this recruitment event was quite a challenge for me. The planned event was taking place on a Saturday. I had almost sent out the confirmed scheduled list of candidates to the respective hiring team on Friday and was on track for the event to take place, but unfortunately there was breaking news in the media that there was a strike called in the city because of some political agitations and protests taking place on the event day. The hiring manager had rushed to me asking for my thoughts and ideas. I was in two minds on what to do. One on hand I was not ready to cancel the event because of all the work that so many people had put into getting this prepared and also I did not want to reschedule the event at the last minute if I did not need to. On the other hand I understood it may be best to reschedule the event as people may not be able to attend based on the political protests taking place on the day. In the end I decided to gather and check for other options because this might cause confusion and a problem for the scheduled candidates to drive in to the venue. So we had concluded to reschedule our event plans and moved the event to the next week. The good news is that we successfully executed this recruitment drive the following Saturday. We were glad that 100% of the candidates we able to make it to the new interview date and despite all the agitations in the city we were successful in hiring people for all the roles we had open. Things do not always go as planned. The best laid plans can sometimes be for nought based on external factors outside of our control. What this experience has taught me is that rather than focus on the negatives when you are thrown a curveball the best approach is to stay flexible and focus on finding ways to reach your outcome. Your plans may need to change but you can still achieve the results you are after if you have the right mind set.

    Read the article

  • hp pavilion g6 1250 with a BCM 4313 doesn't see any wireless networks

    - by Ahmed Kotb
    i have tried using ubuntu 10.04 and ubuntu 11.10 and both have the same problem the driver is detected by the additional propriety drivers wizard and after installation, ubuntu can't see except on wireless network which is not mine (and i can't connect to it as it is secured) There are plenty of wireless networks around me but ubuntu can't detect them and if i tried to connect to one of them as if it was hidden connection time out. the command lspci -nvn | grep -i net gives 04:00.0 Network controller [0280]: Broadcom Corporation BCM4313 802.11b/g/n Wireless LAN Controller [14e4:4727] (rev 01) 05:00.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8101E/RTL8102E PCI Express Fast Ethernet controller [10ec:8136] (rev 05) iwconfig gives lo no wireless extensions. eth0 no wireless extensions. wlan0 IEEE 802.11bgn ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=19 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off i guess it is something related to Broadcom driver .. but i don't know , any help will be appreciated UPDATE: ok i installed a new copy of 11.10 to remove the effect of any trials i have made i followed the link (http://askubuntu.com/q/67806) as suggested all what i have done now is trying the command lsmod | grep brc and it gave me the following brcmsmac 631693 0 brcmutil 17837 1 brcmsmac mac80211 310872 1 brcmsmac cfg80211 199587 2 brcmsmac,mac80211 crc_ccitt 12667 1 brcmsmac then i blacklisted all the other drivers as mentioned in the link the wireless is still disabled.. in the last installation installing the Brodcom STA driver form the additional drivers enabled the menu but as i have said before it wasn't able to connect or even get a list of available networks so what should i do now ? the output of command rfkill list all rfkill list all 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no

    Read the article

< Previous Page | 511 512 513 514 515 516 517 518 519 520 521 522  | Next Page >