Search Results

Search found 14532 results on 582 pages for 'dynamic types'.

Page 517/582 | < Previous Page | 513 514 515 516 517 518 519 520 521 522 523 524  | Next Page >

  • I am trying to figure out the best way to understand how to cache domain objects

    - by Brett Ryan
    I've always done this wrong, I'm sure a lot of others have too, hold a reference via a map and write through to DB etc.. I need to do this right, and I just don't know how to go about it. I know how I want my objects to be cached but not sure on how to achieve it. What complicates things is that I need to do this for a legacy system where the DB can change without notice to my application. So in the context of a web application, let's say I have a WidgetService which has several methods: Widget getWidget(); Collection<Widget> getAllWidgets(); Collection<Widget> getWidgetsByCategory(String categoryCode); Collection<Widget> getWidgetsByContainer(Integer parentContainer); Collection<Widget> getWidgetsByStatus(String status); Given this, I could decide to cache by method signature, i.e. getWidgetsByCategory("AA") would have a single cache entry, or I could cache widgets individually, which would be difficult I believe; OR, a call to any method would then first cache ALL widgets with a call to getAllWidgets() but getAllWidgets() would produce caches that match all the keys for the other method invocations. For example, take the following untested theoretical code. Collection<Widget> getAllWidgets() { Entity entity = cache.get("ALL_WIDGETS"); Collection<Widget> res; if (entity == null) { res = loadCache(); } else { res = (Collection<Widget>) entity.getValue(); } return res } Collection<Widget> loadCache() { // Get widgets from underlying DB Collection<Widget> res = db.getAllWidgets(); cache.put("ALL_WIDGETS", res); Map<String, List<Widget>> byCat = new HashMap<>(); for (Widget w : res) { // cache by different types of method calls, i.e. by category if (!byCat.containsKey(widget.getCategory()) { byCat.put(widget.getCategory(), new ArrayList<Widget>); } byCat.get(widget.getCatgory(), widget); } cacheCategories(byCat); return res; } Collection<Widget> getWidgetsByCategory(String categoryCode) { CategoryCacheKey key = new CategoryCacheKey(categoryCode); Entity ent = cache.get(key); if (entity == null) { loadCache(); } ent = cache.get(key); return ent == null ? Collections.emptyList() : (Collection<Widget>)ent.getValue(); } NOTE: I have not worked with a cache manager, the above code illustrates cache as some object that may hold caches by key/value pairs, though it's not modelled on any specific implementation. Using this I have the benefit of being able to cache all objects in the different ways they will be called with only single objects on the heap, whereas if I were to cache the method call invocation via say Spring It would (I believe) cache multiple copies of the objects. I really wish to try and understand the best ways to cache domain objects before I go down the wrong path and make it harder for myself later. I have read the documentation on the Ehcache website and found various articles of interest, but nothing to give a good solid technique. Since I'm working with an ERP system, some DB calls are very complicated, not that the DB is slow, but the business representation of the domain objects makes it very clumsy, coupled with the fact that there are actually 11 different DB's where information can be contained that this application is consolidating in a single view, this makes caching quite important.

    Read the article

  • Oracle at ARM TechCon

    - by Tori Wieldt
    ARM TechCon is a technical conference for hardware and software engineers, Oct. 30-Nov 1 in Santa Clara, California. Days two and three of the conference will be geared towards systems designers and software developers, those interested in building ARM processor-based modules, boards, and systems. It will cover all of the hardware and software, tools, ranging from low-power design, networking and connectivity, open source software, and security. Oracle is a sponsor of ARM TechCon, and will present three Java sessions and a hands-on-lab:  "Do You Like Coffee with Your Dessert? Java and the Raspberry Pi" - The Raspberry Pi, an ARM-powered single board computer running a full Linux distro off an SD card has caused a huge wave of interest among developers. This session looks at how Java can be used on a device such as this. Using Java SE for embedded devices and a port of JavaFX, the presentation includes a variety of demonstrations of what the Raspberry Pi is capable of. The Raspberry Pi also provides GPIO line access, and the session covers how this can be used from Java applications. Prepare to be amazed at what this tiny board can do. (Angela Caicedo, Java Evangelist) "Modernizing the Explosion of Advanced Microcontrollers with Embedded Java" - This session explains why Oracle Java ME Embedded is the right choice for building small, connected, and intelligent embedded solutions, such as industrial control applications, smart sensing, wireless connectivity, e-health, or general machine-to-machine (M2M) functionality---extending your business to new areas, driving efficiency, and reducing cost. The new Oracle Java ME Embedded product brings the benefits of Java technology to microcontroller platforms. It is a full-featured, complete, compliant software runtime with value-add features targeted to the embedded space and has the ability to interface with additional hardware components, remote manageability, and over-the-air software updates. It is accompanied by a feature-rich set of tools free of charge. (Fareed Suliman, Java Product Manager) "Embedded Java in Smart Energy and Healthcare" - This session covers embedded Java products and technologies that enable smart and connect devices in the Smart Energy and Healthcare/Medical industries. (speaker Kevin Lee) "Java SE Embedded Development on ARM Made Easy" - This Hands-on Lab aims to show that developers already familiar with the Java develop/debug/deploy lifecycle can apply those same skills to develop Java applications, using Java SE Embedded, on embedded devices. (speaker Jim Connors) In the Oracle booth #603, you can see the following demos: Industry Solutions with JavaThis exhibit consists of a number of industry solutions and how they can be powered by Java technology deployed on embedded systems.  Examples in consumer devices, home gateways, mobile health, smart energy, industrial control, and tablets all powered by applications running on the Java platform are shown.  Some of the solutions demonstrate the ability of Java to connect intelligent devices at the edge of the network to the datacenter or the cloud as a total end-to-end platform.Java in M2M with QualcommThis station will exhibit a new M2M solutions platform co-developed by Oracle and Qualcomm that enables wireless communications for embedded smart devices powered by Java, and share the types of industry solutions that are possible.  In addition, a new platform for wearable devices based on the ARM Cortex M3 platform is exhibited.Why Java for Embedded?Demonstration platforms will show how traditional development environments, tools, and Java programming skills can be used to create applications for embedded devices.  The advantages that Java provides because of  the runtime's abstraction of software from hardware, modularity and scalability, security, and application portability and manageability are shared with attendees. Drop by and see why Java is an optimal applications platform for embedded systems.

    Read the article

  • Introduction to WebCenter Personalization: &ldquo;The Conductor&rdquo;

    - by Steve Pepper
    There are some new faces in the town of WebCenter with the latest 11g PS3 release.  A new component has introduced itself as "Oracle WebCenter Personalization", a.k.a WCP, to simplify delivery of a personalized experience and content to end users.  This posting reviews one of the primary components within WCP: "The Conductor". The Conductor: This ain't just an ordinary cloud... One of the founding principals behind WebCenter Personalization was to provide an open client-side API that remains independent of the technology invoking it, in addition to independence from the architecture running it.  The Conductor delivers this, and much, much more. The Conductor is the engine behind WebCenter Personalization that allows flow-based documents, called "Scenarios", to be managed and executed on the server-side through a well published and RESTful api.      The Conductor also supports an extensible model for custom provider integration that can be easily invoked within a Scenario to promote seamless integration with existing business assets. Introducing the Scenario Conductor Scenarios are declarative offline-authored documents using the custom Personalization JDeveloper bundle included with WebCenter.  A Scenario contains one (or more) statements that can: Create variables that are scoped to the current execution context Iterate over collections, or loop until a specific condition is met Execute one or more statements when a condition is met Invoke other scenarios that exist within the same namespace Invoke a data provider that integrates with custom applications Once a variable is assigned within the Scenario's execution context, it can be referenced anywhere within the same Scenario using the common Expression Language syntax used in J2EE web containers. Scenarios are then published and tested to the Integrated WebLogic Server domain, or published remotely to other domains running WebCenter Personalization. Various Client-side Models The Conductor server API is built upon RESTful services that support a wide variety of clients able to communicate over HTTP.  The Conductor supports the following client-side models: REST:  Popular browser-based languages can be used to manage and execute Conductor Scenarios.  There are other public methods to retrieve configured provider metadata that can be used by custom applications. The Conductor currently supports XML and JSON for it's API syntax. Java: WebCenter Personalization delivers a robust and light-weight java client with the popular Jersey framework as it's foundation.  It has never been easier to write a remote java client to manage remote RESTful services. Expression Language (EL): Allow the results of Scenario execution to control your user interface or embed personalized content using the session-scoped managed bean.  The EL client can also be used in straight JSP pages with minimal configuration. Extensible Provider Framework The Conductor supports a pluggable provider framework for integrating custom code with Scenario execution.  There are two types of providers supported by the Conductor: Function Provider: Function Providers are simple java annotated classes with static methods that are meant to be served as utilities.  Some common uses would include: object creation or instantiation, data transformation, and the like.  Function Providers can be invoked using the common EL syntax from variable assignments, conditions, and loops. For example:  ${myUtilityClass:doStuff(arg1,arg2))} If you are familiar with EL Functions, Function Providers are based on the same concept. Data Provider: Like Function Providers, Data Providers are annotated java classes, but they must adhere to a much more strict object model.  Data Providers have access to a wealth of Conductor services, such as: Access to namespace-scoped configuration API that can be managed by Oracle Enterprise Manager, Scenario execution context for expression resolution, and more.  Oracle ships with three out-of-the-box data providers that supports integration with: Standardized Content Servers(CMIS),  Federated Profile Properties through the Properties Service, and WebCenter Activity Graph. Useful References If you are looking to immediately get started writing your own application using WebCenter Personalization Services, you will find the following references helpful in getting you on your way: Personalizing WebCenter Applications Authoring Personalized Scenarios in JDeveloper Using Personalization APIs Externally Implementing and Calling Function Providers Implementing and Calling Data Providers

    Read the article

  • Move over DFS and Robocopy, here is SyncToy!

    - by andywe
    Ever since Windows 2000, I have always had the need to replicate data to multiple endpoints with the same content. Until DFS was introduced, the method of thinking was to either manually copy the data location by location, or to batch script it with xcopy and schedule a task. Even though this worked (and still does today), it was cumbersome, and intensive on the network, especially when dealing with larger amounts of data. Then along came robocopy, as an internal tool written by an enterprising programmer at Microsoft. We used it quite a bit, especially when we could not use DFS in the early days. It was received so well, it made it into the public realm. At least now we could have the ability to determine what files had changed and only replicate those. Well, over time there has been evolution of this ideal. DFS is obviously the Windows enterprise class service to do this, along with BrancheCache..however you don’t always need or want the power of DFS, especially when it comes to small datacenter installations, or remote offices. I have specific data sets that are on closed or restricted networks, that either have a security need for this, or are in remote countries where bandwidth is a premium. FOr this, I use the latest evolution for one off replication names Synctoy. Synctoy is from Microsoft, seemingly released in 2009, that wraps a nice GUI around setting up a paired set of folders (remember the mobile briefcase from Windows 98?), and allowing you the choice of synchronization methods. 1 way, or 2 way. Simply create a paired set of folders on the source and destination, choose your options for content, exclude any file types you don’t want to replicate, and click run. Scheduling is even easier. MS has included a wrapper for doing just this so all you enter in your task schedule in the SynToyCMD.exe, a –R as an argument, and the time schedule. No more complicated command lines or scripts.   I find this especially useful when I use MS backup to back up a system volume, but only want subsets of backup information of a data share and ONLY when that dataset has changed. Not relying on full backups and incremental. An example of this is my application installation master share. I back this up with SyncToy because I do not need multiple backup copies..one copy elsewhere suffices to back it up. At home, very useful for your pictures, videos, music, ect..the backup is online and ready to access, not waiting for you to restore a backup file, and no need to institute a domain simply to have DFS.'   Do note there is a risk..if you accidently delete a file and do not catch this before the next sync, then depending on your SyncToy settings, you can indeed lose that file as the destination updates..so due diligence applies. I make it a rule to sync manly one way…I use my master share for making changes, and allow the schedule to follow suit. Any real important file I lock down as read only through file permissions so it cannot be deleted unless I intervene.   Check out the tool and have some fun! http://www.microsoft.com/en-us/download/details.aspx?DisplayLang=en&id=15155

    Read the article

  • Consumer Oriented Search In Oracle Endeca Information Discovery - Part 2

    - by Bob Zurek
    As discussed in my last blog posting on this topic, Information Discovery, a core capability of the Oracle Endeca Information Discovery solution enables businesses to search, discover and navigate through a wide variety of big data including structured, unstructured and semi-structured data. With search as a core advanced capabilities of our product it is important to understand some of the key differences and capabilities in the underlying data store of Oracle Endeca Information Discovery and that is our Endeca Server. In the last post on this subject, we talked about Exploratory Search capabilities along with support for cascading relevance. Additional search capabilities in the Endeca Server, which differentiate from simple keyword based "search boxes" in other Information Discovery products also include: The Endeca Server Supports Set Search.  The Endeca Server is organized around set retrieval, which means that it looks at groups of results (all the documents that match a search), as well as the relationship of each individual result to the set. Other approaches only compute the relevance of a document by comparing the document to the search query – not by comparing the document to all the others. For example, a search for “U.S.” in another approach might match to the title of a document and get a high ranking. But what if it were a collection of government documents in which “U.S.” appeared in many titles, making that clue less meaningful? A set analysis would reveal this and be used to adjust relevance accordingly. The Endeca Server Supports Second-Order Relvance. Unlike simple search interfaces in traditional BI tools, which provide limited relevance ranking, such as a list of results based on key word matching, Endeca enables users to determine the most salient terms to divide up the result. Determining this second-order relevance is the key to providing effective guidance. Support for Queries and Filters. Search is the most common query type, but hardly complete, and users need to express a wide range of queries. Oracle Endeca Information Discovery also includes navigation, interactive visualizations, analytics, range filters, geospatial filters, and other query types that are more commonly associated with BI tools. Unlike other approaches, these queries operate across structured, semi-structured and unstructured content stored in the Endeca Server. Furthermore, this set is easily extensible because the core engine allows for pluggable features to be added. Like a search engine, queries are answered with a results list, ranked to put the most likely matches first. Unlike “black box” relevance solutions, which generalize one strategy for everyone, we believe that optimal relevance strategies vary across domains. Therefore, it provides line-of-business owners with a set of relevance modules that let them tune the best results based on their content. The Endeca Server query result sets are summarized, which gives users guidance on how to refine and explore further. Summaries include Guided Navigation® (a form of faceted search), maps, charts, graphs, tag clouds, concept clusters, and clarification dialogs. Users don’t explicitly ask for these summaries; Oracle Endeca Information Discovery analytic applications provide the right ones, based on configurable controls and rules. For example, the analytic application might guide a procurement agent filtering for in-stock parts by visualizing the results on a map and calculating their average fulfillment time. Furthermore, the user can interact with summaries and filters without resorting to writing complex SQL queries. The user can simply just click to add filters. Within Oracle Endeca Information Discovery, all parts of the summaries are clickable and searchable. We are living in a search driven society where business users really seem to enjoy entering information into a search box. We do this everyday as consumers and therefore, we have gotten used to looking for that box. However, the key to getting the right results is to guide that user in a way that provides additional Discovery, beyond what they may have anticipated. This is why these important and advanced features of search inside the Endeca Server have been so important. They have helped to guide our great customers to success. 

    Read the article

  • What common interface would be appropriate for these game object classes?

    - by Jefffrey
    Question A component based system's goal is to solve the problems that derives from inheritance: for example the fact that some parts of the code (that are called components) are reused by very different classes that, hypothetically, would lie in a very different branch of the inheritance tree. That's a very nice concept, but I've found out that CBS is often hard to accomplish without using ugly hacks. Implementations of this system are often far from clean. But I don't want to discuss this any further. My question is: how can I solve the same problems a CBS try to solve with a very clean interface? (possibly with examples, there are a lot of abstract talks about the "perfect" design already). Context Here's an example I was going for before realizing I was just reinventing inheritance again: class Human { public: Position position; Movement movement; Sprite sprite; // other human specific components }; class Zombie { Position position; Movement movement; Sprite sprite; // other zombie specific components }; After writing that I realized I needed an interface, otherwise I would have needed N containers for N different types of objects (or to use boost::variant to gather them all together). So I've thought of polymorphism (move what systems do in a CBS design into class specific functions): class Entity { public: virtual void on_event(Event) {} // not pure virtual on purpose virtual void on_update(World) {} virtual void on_draw(Window) {} }; class Human : public Entity { private: Position position; Movement movement; Sprite sprite; public: virtual void on_event(Event) { ... } virtual void on_update(World) { ... } virtual void on_draw(Window) { ... } }; class Zombie : public Entity { private: Position position; Movement movement; Sprite sprite; public: virtual void on_event(Event) { ... } virtual void on_update(World) { ... } virtual void on_draw(Window) { ... } }; Which was nice, except for the fact that now the outside world would not even be able to know where a Human is positioned (it does not have access to its position member). That would be useful to track the player position for collision detection or if on_update the Zombie would want to track down its nearest human to move towards him. So I added const Position& get_position() const; to both the Zombie and Human classes. And then I realized that both functionality were shared, so it should have gone to the common base class: Entity. Do you notice anything? Yes, with that methodology I would have a god Entity class full of common functionality (which is the thing I was trying to avoid in the first place). Meaning of "hacks" in the implementation I'm referring to I'm talking about the implementations that defines Entities as simple IDs to which components are dynamically attached. Their implementation can vary from C-stylish: int last_id; Position* positions[MAX_ENTITIES]; Movement* movements[MAX_ENTITIES]; Where positions[i], movements[i], component[i], ... make up the entity. Or to more C++-style: int last_id; std::map<int, Position> positions; std::map<int, Movement> movements; From which systems can detect if an entity/id can have attached components.

    Read the article

  • CI tests to enforce specific development rules - good practice?

    - by KeithS
    The following is all purely hypothetical and any particular portion of it may or may not accurately describe real persons or situations, whether living, dead or just pretending. Let's say I'm a senior dev or architect in charge of a dev team working on a project. This project includes a security library for user authentication/authorization of the application under development. The library must be available for developers to edit; however, I wish to "trust but verify" that coders are not doing things that could compromise the security of the finished system, and because this isn't my only responsibility I want it to be done in an automated way. As one example, let's say I have an interface that represents a user which has been authenticated by the system's security library. The interface exposes basic user info and a list of things the user is authorized to do (so that the client app doesn't have to keep asking the server "can I do this?"), all in an immutable fashion of course. There is only one implementation of this interface in production code, and for the purposes of this post we can say that all appropriate measures have been taken to ensure that this implementation can only be used by the one part of our code that needs to be able to create concretions of the interface. The coders have been instructed that this interface and its implementation are sacrosanct and any changes must go through me. However, those are just words; the security library's source is open for editing by necessity. Any of my devs could decide that this secured, private, hash-checked implementation needs to be public so that they could do X, or alternately they could create their own implementation of this public interface in a different library, exposing the hashing algorithm that provides the secure checksum, in order to do Y. I may not be made aware of these changes so that I can beat the developer over the head for it. An attacker could then find these little nuggets in an unobfuscated library of the compiled product, and exploit it to provide fake users and/or falsely-elevated administrative permissions, bypassing the entire security system. This possibility keeps me awake for a couple of nights, and then I create an automated test that reflectively checks the codebase for types deriving from the interface, and fails if it finds any that are not exactly what and where I expect them to be. I compile this test into a project under a separate folder of the VCS that only I have rights to commit to, have CI compile it as an external library of the main project, and set it up to run as part of the CI test suite for user commits. Now, I have an automated test under my complete control that will tell me (and everyone else) if the number of implementations increases without my involvement, or an implementation that I did know about has anything new added or has its modifiers or those of its members changed. I can then investigate further, and regain the opportunity to beat developers over the head as necessary. Is this considered "reasonable" to want to do in situations like this? Am I going to be seen in a negative light for going behind my devs' backs to ensure they aren't doing something they shouldn't?

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • Process for Securing Web Sites and Applications

    - by Aamir Hasan
    The following quick-start guide provides a detailed overview of how to configure security for IIS 6.0. Reduce the Attack Surface of the Web Server 1.       Enable only essential Windows Server 2003 components and services. 2.       Enable only essential IIS 6.0 components and services. 3.       Enable only essential Web service extensions. 4.       Enable only essential Multipurpose Internet Mail Extensions (MIME) types. 5.       Configure Windows Server 2003 security settings. Prevent Unauthorized Access to Web Sites and Applications 1.       Store content on a dedicated disk volume. 2.       Set IIS Web site permissions. 3.       Set IP address and domain name restrictions. 4.       Set the NTFS file system permissions. Isolate Web Sites and Applications 1.       Evaluate the effects of impersonation on application compatibility: 2·         Identify the impersonation behavior for ASP applications. 3·         Select the impersonation behavior for ASP.NET applications. 4.       Configure Web sites and applications for isolation. Configure User Authentication 1.       Configure Web site authentication. 2·         Select the Web site authentication method. 3·         Configure the Web site authentication method. 4.       Configure File Transfer Protocol (FTP) site authentication. Encrypt Confidential Data Exchanged with Clients 1.       Use Secure Sockets Layer (SSL) to encrypt confidential data. 2.       Use Internet Protocol security (IPSec) or virtual private network (VPN) with remote administration. Maintain Web Site and Application Security 1.       Obtain and apply current security patches. 2.       Enable Windows Server 2003 security logs. 3.       Enable file access auditing for Web site content. 4.       Configure IIS logs. 5.       Review security policies, processes, and procedures.  Note:To secure the Web sites and applications in a Web farm, use the process described in this chapter to configure security for each server in the Web farm. Link:http://www.studentacad.com/post/2010/04/28/Process-for-Securing-Web-Sites-and-Applications.aspx

    Read the article

  • Collaborative Organizations build Organizational Culture

    “A Collaborative organization builds its culture based on the idea of the family or an athletic team.”(Hoefling, 2001) As I grew up, I participated in many different types of clubs, civic organizations, and sports teams.  Now looking back at the more successful undertakings, I can see three commonalities amongst them. They all shared a defined purpose or goal, defined functional roles, and a shared sense of responsibility to the group. Defined Purpose or Goal In order to unit people to work together, they must share a common goal or have a common purpose. An example of this would be the Lions Club International Foundation. There purpose is to help everyone to lead healthier and more productive lives, nurtures the potential of youth, promotes health, serves the elderly, empowers the disabled and helps victims of disasters. This organization holds localized meetings across the world and works in conjunction with other localized clubs within there organization along with other organizations to promote common goals. If there are no common goals for the group, then there is nothing that binds people to the group, and nothing will be done. Defined Functional Roles In order for an organization to work and function as a team, they must have defined roles and everyone must know how their roles are interdependent on each other. Lets shed light on this subject by looking at a football team’s offense.  Each player has an assigned role to play each time the ball is snapped. The offensive line blocks for the running back or quarterback, the quarterback passes the ball to the wide receiver or hands it off to the running back and the running back and wide receivers run with the ball towards the goal line. Each member of this team shares a common goal of scoring a touchdown, but if each team member does not fulfill their assigned roles the offences will collapse and the team will lose yards. This will provide a set back to the teams goal of scoring a touchdown because they potential are then farther away from the goal line.  In addition, if all the players do not know their roles and how they are part of a larger team then even larger yard losses can occur. Shared Sense of Personal Responsibility to the Group Shared responsibility comes with the shared common goals. Each person in the organization must do their part to promote the common shared goal or purpose based on their abilities. A prime example of this is a wrestling team competing in a match. Points are awarded to the team based on how many wins the team achieves in the meet and of that how many wins where won by decision or by pin. If a wrestler pins his opponent the teams will receive 2 points for the win, but if the wrestler wins by decision, then the team only gets one point for the win. So it is the responsibility of each person on the team to not get pinned if they are unable to win the match. If the team member gets pinned then the other team receives an additional point for the win. References: Hoefling, T. (2001). Working Virtually: Managing People for Successful Virtual Teams and Organizations. Sterling, VA: Stylus Publishing, LLC.

    Read the article

  • What Counts for a DBA: Skill

    - by drsql
    “Practice makes perfect:” right? Well, not exactly. The reality of it all is that this saying is an untrustworthy aphorism. I discovered this in my “younger” days when I was a passionate tennis player, practicing and playing 20+ hours a week. No matter what my passion level was, without some serious coaching (and perhaps a change in dietary habits), my skill level was never going to rise to a level where I could make any money at the sport that involved something other than selling tennis balls at a sporting goods store. My game may have improved with all that practice but I had too many bad practices to overcome. Practice by itself merely reinforces what we know and what we can figure out naturally. The truth is actually closer to the expression used by Vince Lombardi: “Perfect practice makes perfect.” So how do you get to become skilled as a DBA if practice alone isn’t sufficient? Hit the Internet and start searching for SQL training and you can find 100 different sites. There are also hundreds of blogs, magazines, books, conferences both onsite and virtual. But then how do you know who is good? Unfortunately often the worst guide can be to find out the experience level of the writer. Some of the best DBAs are frighteningly young, and some got their start back when databases were stored on stacks of paper with little holes in it. As a programmer, is it really so hard to understand normalization? Set based theory? Query optimization? Indexing and performance tuning? The biggest barrier often is previous knowledge, particularly programming skills cultivated before you get started with SQL. In the world of technology, it is pretty rare that a fresh programmer will gravitate to database programming. Database programming is very unsexy work, because without a UI all you have are a bunch of text strings that you could never impress anyone with. Newbies spend most of their time building UIs or apps with procedural code in C# or VB scoring obvious interesting wins. Making matters worse is that SQL programming requires mastery of a much different toolset than most any mainstream programming skill. Instead of controlling everything yourself, most of the really difficult work is done by the internals of the engine (written by other non-relational programmers…we just can’t get away from them.) So is there a golden road to achieving a high skill level? Sadly, with tennis, I am pretty sure I’ll never discover it. However, with programming it seems to boil down to practice in applying the appropriate techniques for whatever type of programming you are doing. Can a C# programmer build a great database? As long as they don’t treat SQL like C#, absolutely. Same goes for a DBA writing C# code. None of this stuff is rocket science, as long as you learn to understand that different types of programming require different skill sets and you as a programmer must recognize the difference between one of the procedural languages and SQL and treat them differently. Skill comes from practicing doing things the right way and making “right” a habit.

    Read the article

  • Consolidation in a Database Cloud

    - by B R Clouse
    Consolidation of multiple databases onto a shared infrastructure is the next step after Standardization.  The potential consolidation density is a function of the extent to which the infrastructure is shared.  The three models provide increasing degrees of sharing: Server: each database is deployed in a dedicated VM. Hardware is shared, but most of the software infrastructure is not. Standardization is often applied incompletely since operating environments can be moved as-is onto the shared platform. The potential for VM sprawl is an additional downside. Database: multiple database instances are deployed on a shared software / hardware infrastructure. This model is very efficient and easily implemented with the features in the Oracle Database and supporting products. Many customers have moved to this model and achieved significant, measurable benefits. Schema: multiple schemas are deployed within a single database instance. The most efficient model, it places constraints on the environment. Usually this model will be implemented only by customers deploying their own applications.  (Note that a single deployment can combine Database and Schema consolidations.) Customer value: lower costs, better system utilization In this phase of the maturity model, under-utilized hardware can be used to host more workloads, or retired and those workloads migrated to consolidation platforms. Customers benefit from higher utilization of the hardware resources, resulting in reduced data center floor space, and lower power and cooling costs. And, the OpEx savings from Standardization are multiplied, since there are fewer physical components (both hardware and software) to manage. Customer value: higher productivity The OpEx benefits from Standardization are compounded since not only are there fewer types of things to manage, now there are fewer entities to manage. In this phase, customers discover that their IT staff has time to move away from "day-to-day" tasks and start investing in higher value activities. Database users benefit from consolidating onto shared infrastructures by relieving themselves of the requirement to maintain their own dedicated servers. Also, if the shared infrastructure offers capabilities such as High Availability / Disaster Recovery, which are often beyond the budget and skillset of a standalone database environment, then moving to the consolidation platform can provide access to those capabilities, resulting in less downtime. Capabilities / Characteristics In this phase, customers will typically deploy fixed-size clusters and consolidate on a cluster until that cluster is deemed "full," at which point a new cluster is built. Customers will define one or a few cluster architectures that are used wherever possible; occasionally there may be deployments which must be handled as exceptions. The "full" policy may be based on number of databases deployed on the cluster, or observed peak workload, etc. IT will own the provisioning of new databases on a cluster, making the decision of when and where to place new workloads. Resources may be managed dynamically, e.g., as a priority workload increases, it may be given more CPU and memory to handle the spike. Users will be charged at a fixed, relatively coarse level; or in some cases, no charging will be applied. Activities / Tasks Oracle offers several tools to plan a successful consolidation. Real Application Testing (RAT) has a feature to help plan and validate database consolidations. Enterprise Manager 12c's Cloud Management Pack for Database includes a planning module. Looking ahead, customers should start planning for the Services phase by defining the Service Catalog that will be made available for database services.

    Read the article

  • Red Meat's Music is Rare - and Well Done

    - by Oracle OpenWorld Blog Team
    By Karen Shamban The blogger has questions; San Francisco-based country band Red Meat has answers. Although we forgot to ask how they got their band name, dang it. Read on and enjoy the honesty and insight. Q. What do you like best about performing in front of a live audience?A. Probably just having fun and entertaining the audience. We've been together for almost two decades, and in that time we've played for crowds of five people, and for crowds of more than 15,000. Both are equally important to us, and just as fun. We turn Jill and Smelley loose on the between-songs repartee, and let the songs shine through. On the best night, we feed on the audience's love and vice-versa. It's emotional vampirism of the best sort. [Blogger's note: now that whole "red meat" thing is starting to make sense ...] Q. Do you prefer smaller, intimate venues or larger, louder ones? Why?A. We love both. Whether it's a chance to connect with a small room or huge audience, we always try to hit 'em between the eyes! Q. What about your fans surprises you?A. Since we've been together for so long, we're pretty much on our third generation of fans now. We're excited that the Bakersfield sound has that same effect on the new, younger fans as it did on the punk rockers that we played to 20 years ago. And we still see them at our shows too! Q. What about your live act surprises your fans?A. For people who haven't seen Red Meat before, they may be dragged to a show thinking they don't like country music. But they're surprised to hear it done in a way that excites them so much. We get a lot of first-timers coming up to us after a performance and asking, "Wait, THAT'S what country music can sound like?" Q. There are going to be a lot of technical people (you could call them geeks) in the Oracle crowd - what are they going to love about your performance?A. Just what everyone loves about a Red Meat show - the chance to drink beer, dance, get rowdy, and have a great time. Q. Have you been on tour recently? If so, what do you like about touring, and what do you dislike?A. Actually, we're going to be coming off the road immediately into the Oracle OpenWorld Music Festival, having just played some Texas dates. On tour, we love playing for fans who don't get to see us as often as our California fans do. And food. Most of our conversations in the van center around food. Q. Ever think about playing another kind of music? If so, what, and why?A. Our tastes and influences in the band run all over the place. Obviously we love the Bakersfield artists - Buck Owens, Merle Haggard, Dwight Yoakam - but we love other types of roots music as well, along with the Beatles, NRBQ, MC5, punk/new wave, and countless bar bands that we've had the privilege of playing with through the years. But as far as playing a different kind of music as Red Meat? Nah. We love what we're doing. Q. What are the top three things people should know about your music?A1. Country music, done right, has unlimited soul.A2. Red Meat is a modern band, playing original material, with a great debt to the Bakersfield sound of Buck Owens and Merle Haggard.A3. It's FUN. More details on the Festival and the band: Oracle OpenWorld Music Festival Red Meat

    Read the article

  • The five steps of business intelligence adoption: where are you?

    - by Red Gate Software BI Tools Team
    When I was in Orlando and New York last month, I spoke to a lot of business intelligence users. What they told me suggested a path of BI adoption. The user’s place on the path depends on the size and sophistication of their organisation. Step 1: A company with a database of customer transactions will often want to examine particular data, like revenue and unit sales over the last period for each product and territory. To do this, they probably use simple SQL queries or stored procedures to produce data on demand. Step 2: The results from step one are saved in an Excel document, so business users can analyse them with filters or pivot tables. Alternatively, SQL Server Reporting Services (SSRS) might be used to generate a report of the SQL query for display on an intranet page. Step 3: If these queries are run frequently, or business users want to explore data from multiple sources more freely, it may become necessary to create a new database structured for analysis rather than CRUD (create, retrieve, update, and delete). For example, data from more than one system — plus external information — may be incorporated into a data warehouse. This can become ‘one source of truth’ for the business’s operational activities. The warehouse will probably have a simple ‘star’ schema, with fact tables representing the measures to be analysed (e.g. unit sales, revenue) and dimension tables defining how this data is aggregated (e.g. by time, region or product). Reports can be generated from the warehouse with Excel, SSRS or other tools. Step 4: Not too long ago, Microsoft introduced an Excel plug-in, PowerPivot, which allows users to bring larger volumes of data into Excel documents and create links between multiple tables.  These BISM Tabular documents can be created by the database owners or other expert Excel users and viewed by anyone with Excel PowerPivot. Sometimes, business users may use PowerPivot to create reports directly from the primary database, bypassing the need for a data warehouse. This can introduce problems when there are misunderstandings of the database structure or no single ‘source of truth’ for key data. Step 5: Steps three or four are often enough to satisfy business intelligence needs, especially if users are sophisticated enough to work with the warehouse in Excel or SSRS. However, sometimes the relationships between data are too complex or the queries which aggregate across periods, regions etc are too slow. In these cases, it can be necessary to formalise how the data is analysed and pre-build some of the aggregations. To do this, a business intelligence professional will typically use SQL Server Analysis Services (SSAS) to create a multidimensional model — or “cube” — that more simply represents key measures and aggregates them across specified dimensions. Step five is where our tool, SSAS Compare, becomes useful, as it helps review and deploy changes from development to production. For us at Red Gate, the primary value of SSAS Compare is to establish a dialog with BI users, so we can develop a portfolio of products that support creation and deployment across a range of report and model types. For example, PowerPivot and the new BISM Tabular model create a potential customer base for tools that extend beyond BI professionals. We’re interested in learning where people are in this story, so we’ve created a six-question survey to find out. Whether you’re at step one or step five, we’d love to know how you use BI so we can decide how to build tools that solve your problems. So if you have a sixty seconds to spare, tell us on the survey!

    Read the article

  • Modernizr Rocks HTML5

    - by Laila
    HTML5 is a moving target.  At the moment, we don't know what will be in future versions.  In most circumstances, this really matters to the developer. When you're using Adobe Air, you can be reasonably sure what works, what is there, and what isn't, since you have a version of the browser built-in. With Metro, you can assume that you're going to be using at least IE 10.   If, however,  you are using HTML5 in a web application, then you are going to rely heavily on Feature Detection.  Feature-Detection is a collection of techniques that tell you, via JavaScript, whether the current browser has this feature natively implemented or not Feature Detection isn't just there for the esoteric stuff such as  Geo-location,  progress bars,  <canvas> support,  the new <input> types, Audio, Video, web workers or storage, but is required even for semantic markup, since old browsers make a pigs ear out of rendering this.  Feature detection can't rely just on reading the browser version and inferring from that what works. Instead, you must use JavaScript to check that an HTML5 feature is there before using it.  The problem with relying on the user-agent is that it takes a lot of historical data  to work out what version does what, and, anyway, the user-agent can be, and sometimes is, spoofed. The open-source library Modernizr  is just about the most essential  JavaScript library for anyone using HTML5, because it provides APIs to test for most of the CSS3 and HTML5 features before you use them, and is intelligent enough to alter semantic markup into 'legacy' 'markup  using shims  on page-load  for old browsers. It also allows you to check what video Codecs are installed for playing video. It also provides media queries  and conditional resource-loading (formerly YepNope.js.).  Generally, Modernizr gives you the choice of what you do about browsers that don't support the feature that you want. Often, the best choice is graceful degradation, but the resource-loading feature allows you to dynamically load JavaScript Shims to replace the standard API for missing or defective HTML5 functionality, called 'PolyFills'.  As the Modernizr site says 'Yes, not only can you use HTML5 today, but you can use it in the past, too!' The evolutionary progress of HTML5  requires a more defensive style of JavaScript programming where the programmer adopts a mindset of fearing the worst ( IE 6)  rather than assuming the best, whilst exploiting as many of the new HTML features as possible for the requirements of the site or HTML application.  Why would anyone want the distraction of developing their own techniques to do this when  Modernizr exists to do this for you? Laila

    Read the article

  • Using Content Analytics for More Effective Engagement

    - by Kellsey Ruppel
    Using Content Analytics for More Effective Engagement: Turning High-Volume Content into Templates for Success By Mitchell Palski, Oracle WebCenter Sales Consultant Many organizations use Oracle WebCenter Portal to develop these basic types of portals: Intranet portals used for collaboration, employee self-service, and company communication Extranet portals used by customers and partners for self-service and support Team collaboration portals that allow users to share documents and content, track activity, and engage in discussions Portals are intended to provide a personalized, single point of interaction with web-based applications and information. The user experiences that a Portal is capable of displaying should be relevant to an individual user or class of users (a group or role). The components of a Portal that would vary based on a user’s identity include: Web content such as images, news articles, and on-screen instruction Social tools such as threaded discussions, polls/surveys, and blogs Document management tools to upload, download, and edit files Web applications that present data visualizations and data entry modules These collections of content, tools, and applications make up valuable workspaces. The challenge that a development team may have is defining which combinations are the most effective for its users. No one wants to create and manage a workspace that goes un-used or (even worse) that is used but is ineffective. Oracle WebCenter Portal provides you with the capabilities to not only rapidly develop variations of portals, but also identify which portals are the most effective and should be re-used throughout an enterprise. Capturing Portal AnalyticsOracle WebCenter Portal provides an analytics service that allows administrators and business users to track and analyze portal usage. These analytics are captured in the form of: Usage tracking metrics Behavior tracking User Profile Correlation The out-of-the-box task reports that come with Oracle WebCenter Portal include: WebCenter Portal Traffic Page Traffic Login Metrics Portlet Traffic Portlet Response Time Portlet Instance Traffic Portlet Instance Response Time Search Metrics Document Metrics Wiki Metrics Blog Metrics Discussion Metrics Portal Traffic Portal Response Time By determining the usage and behavior tracking metrics that are associated with specific user profiles (including groups and roles), your administrators will be able to identify the components of your solution that are the most valuable.  Your first step as an administrator should be to identify the specific pages and/or components are used the most frequently. Next, determine the user(s) or user-group(s) that are accessing those high-use elements of a portal. It is also important to determine patterns in high-usage and see if they correlate to a specific schedule. One of the goals of any development team (especially those that are following Agile methodologies) should be to develop reusable web components to minimize redundant development. Oracle WebCenter Portal provides you the tools to capture the successful workspaces that have already been developed and identified so that they can be reused for similar user demographics. Re-using Successful PortalsWhen creating a new Portal in Oracle WebCenter, developers have the option to base that portal on a template that includes: Pre-seeded data such as pages, tools, user roles, and look-and-feel assets Specific sub-sets of page-layouts, tools, and other resources to standardize what is added to a Portal’s pages Any custom components that your team creates during development cycles Once you have identified a successful workspace and its most valuable components, leverage Oracle WebCenter’s ability to turn that custom portal into a portal template. By creating a template from your already successful portal, you are empowering your enterprise by providing a starting point for future initiatives. Your new projects, new teams, and new web pages can benefit from lessons learned and adjustments that have already been made to optimize user experiences instead of starting from scratch. ***For a complete explanation of how to work with Portal Templates, be sure to read the Fusion Middleware documentation available online.

    Read the article

  • Application Logging needs work

    Application Logging Application logging is the act of logging events that occur within an application much like how a court report documents what happens in court case. Application logs can be useful for several reasons, but the most common use for logs is to recreate steps to find the root cause of applications errors. Other uses can include the detection of Fraud, verification of user activity, or provide audits on user/data interactions. “Logs can contain different kinds of data. The selection of the data used is normally affected by the motivation leading to the logging. “ (OWASP, 2009) OWASP also stats that logging include applicable debugging information like the event date time, responsible process, and a description of the event. “There are many reasons why a logging system is a necessary part of delivering a distributed application. One of the most important is the ability to track exactly how many users are using the application during different time periods.” (Hatton, 2000) Hatton also states that application logging helps system designers determine whether parts of an application aren't being used as designed. He implies that low usage can be used to identify if users like or do not like aspects of a system based on user usage of the application. This enables application designers to extract why users don't like aspects of an application so that changes can be made to increase its usefulness and effectiveness. “Logging memory usage can also assist you in tuning up the internals of your application. If you're experiencing a randomly occurring problem, being able to match activities performed with the memory status at the time may enable you to discover the cause of the problem. It also gives you a good indication of the health of the distributed server machine at the time any activity is performed. “ (Hatton, 2000) Commonly Logged Application Events (Defined by OWASP) Access of Data Creation of Data Modification of Data in any form Administrative Functions  Configuration Changes Debugging Information(Application Events)  Authorization Attempts  Data Deletion Network Communication  Authentication Events  Errors/Exceptions Application Error Logging The functionality associated with application error logging is actually the combination of proper error handling and applications logging.  If we look back at Figure 4 and Figure 5, these code examples allow developers to handle various types of errors that occur within the life cycle of an application’s execution. Application logging can be applied within the Catch section of the TryCatch statement allowing for the errors to be logged when they occur. By placing the logging within the Catch section specific error details can be accessed that help identify the source of the error, the path to the error, what caused the error and definition of the error that occurred. This can then be logged and reviewed at a later date in order recreate the error that was received based data found in the application log. By allowing applications to log errors developers IT staff can use them to recreate errors that are encountered by end-users or other dependent systems.

    Read the article

  • Problem in udp socket programing in c

    - by Md. Talha
    I complile the following C code of UDP client after I run './udpclient localhost 9191' in terminal.I put "Enter Text= " as Hello, but it is showing error in sendto as below: Enter text: hello hello : error in sendto()guest-1SDRJ2@md-K42F:~/Desktop$ " Note: I open 1st the server port as below in other terminal ./server 9191. I beleive there is no error in server code. The udp client is not passing message to server. If I don't use thread , the message is passing .But I have to do it by thread. UDP client Code: /* simple UDP echo client */ #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <netdb.h> #include <stdio.h> #include <pthread.h> #define STRLEN 1024 static void *readdata(void *); static void *writedata(void *); int sockfd, n, slen; struct sockaddr_in servaddr; char sendline[STRLEN], recvline[STRLEN]; int main(int argc, char *argv[]) { pthread_t readid,writeid; struct sockaddr_in servaddr; struct hostent *h; if(argc != 3) { printf("Usage: %s <proxy server ip> <port>\n", argv[0]); exit(0); } /* create hostent structure from user entered host name*/ if ( (h = gethostbyname(argv[1])) == NULL) { printf("\n%s: error in gethostbyname()", argv[0]); exit(0); } /* create server address structure */ bzero(&servaddr, sizeof(servaddr)); /* initialize it */ servaddr.sin_family = AF_INET; memcpy((char *) &servaddr.sin_addr.s_addr, h->h_addr_list[0], h->h_length); servaddr.sin_port = htons(atoi(argv[2])); /* get the port number from argv[2]*/ /* create a UDP socket: SOCK_DGRAM */ if ( (sockfd = socket(AF_INET,SOCK_DGRAM, 0)) < 0) { printf("\n%s: error in socket()", argv[0]); exit(0); } pthread_create(&readid,NULL,&readdata,NULL); pthread_create(&writeid,NULL,&writedata,NULL); while(1) { }; close(sockfd); } static void * writedata(void *arg) { /* get user input */ printf("\nEnter text: "); do { if (fgets(sendline, STRLEN, stdin) == NULL) { printf("\n%s: error in fgets()"); exit(0); } /* send a text */ if (sendto(sockfd, sendline, sizeof(sendline), 0, (struct sockaddr *) &servaddr, sizeof(servaddr)) < 0) { printf("\n%s: error in sendto()"); exit(0); } }while(1); } static void * readdata(void *arg) { /* wait for echo */ slen = sizeof(servaddr); if ( (n = recvfrom(sockfd, recvline, STRLEN, 0, (struct sockaddr *) &servaddr, &slen)) < 0) { printf("\n%s: error in recvfrom()"); exit(0); } /* null terminate the string */ recvline[n] = 0; fputs(recvline, stdout); }

    Read the article

  • Use a custom value object or a Guid as an entity identifier in a distributed system?

    - by Kazark
    tl;dr I've been told that in domain-driven design, an identifier for an entity could be a custom value object, i.e. something other than Guid, string, int, etc. Can this really be advisable in a distributed system? Long version I will invent an situation analogous to the one I am currently facing. Say I have a distributed system in which a central concept is an egg. The system allows you to order eggs and see spending reports and inventory-centric data such as quantity on hand, usage, valuation and what have you. There area variety of services backing these behaviors. And say there is also another app which allows you to compose recipes that link to a particular egg type. Now egg type is broken down by the species—ostrich, goose, duck, chicken, quail. This is fine and dandy because it means that users don't end up with ostrich eggs when they wanted quail eggs and whatnot. However, we've been getting complaints because jumbo chicken eggs are not even close to equivalent to small ones. The price is different, and they really aren't substitutable in recipes. And here we thought we were doing users a favor by not overwhelming them with too many options. Currently each of the services (say, OrderSubmitter, EggTypeDefiner, SpendingReportsGenerator, InventoryTracker, RecipeCreator, RecipeTracker, or whatever) are identifying egg types with an industry-standard integer representation the species (let's call it speciesCode). We realize we've goofed up because this change could effect every service. There are two basic proposed solutions: Use a predefined identifier type like Guid as the eggTypeID throughout all the services, but make EggTypeDefiner the only service that knows that this maps to a speciesCode and eggSizeCode (and potentially to an isOrganic flag in the future, or whatever). Use an EggTypeID value object which is a combination of speciesCode and eggSizeCode in every service. I've proposed the first solution because I'm hoping it better encapsulates the definition of what an egg type is in the EggTypeDefiner and will be more resilient to changes, say if some people now want to differentiate eggs by whether or not they are "organic". The second solution is being suggested by some people who understand DDD better than I do in the hopes that less enrichment and lookup will be necessary that way, with the justification that in DDD using a value object as an ID is fine. Also, they are saying that EggTypeDefiner is not a domain and EggType is not an entity and as such should not have a Guid for an ID. However, I'm not sure the second solution is viable. This "value object" is going to have to be serialized into JSON and URLs for GET requests and used with a variety of technologies (C#, JavaScript...) which breaks encapsulation and thus removes any behavior of the identifier value object (is either of the fields optional? etc.) Is this a case where we want to avoid something that would normally be fine in DDD because we are trying to do DDD in a distributed fashion? Summary Can it be a good idea to use a custom value object as an identifier in a distributed system (solution #2)?

    Read the article

  • Editing files without race conditions?

    - by user2569445
    I have a CSV file that needs to be edited by multiple processes at the same time. My question is, how can I do this without introducing race conditions? It's easy to write to the end of the file without race conditions by open(2)ing it in "a" (O_APPEND) mode and simply write to it. Things get more difficult when removing lines from the file. The easiest solution is to read the file into memory, make changes to it, and overwrite it back to the file. If another process writes to it after it is in memory, however, that new data will be lost upon overwriting. To further complicate matters, my platform does not support POSIX record locks, checking for file existence is a race condition waiting to happen, rename(2) replaces the destination file if it exists instead of failing, and editing files in-place leaves empty bytes in it unless the remaining bytes are shifted towards the beginning of the file. My idea for removing a line is this (in pseudocode): filename = "/home/user/somefile"; file = open(filename, "r"); tmp = open(filename+".tmp", "ax") || die("could not create tmp file"); //"a" is O_APPEND, "x" is O_EXCL|O_CREAT while(write(tmp, read(file)); //copy the $file to $file+".new" close(file); //edit tmp file unlink(filename) || die("could not unlink file"); file = open(filename, "wx") || die("another process must have written to the file after we copied it."); //"w" is overwrite, "x" is force file creation while(write(file, read(tmp))); //copy ".tmp" back to the original file unlink(filename+".tmp") || die("could not unlink tmp file"); Or would I be better off with a simple lock file? Appender process: lock = open(filename+".lock", "wx") || die("could not lock file"); file = open(filename, "a"); write(file, "stuff"); close(file); close(lock); unlink(filename+".lock"); Editor process: lock = open(filename+".lock", "wx") || die("could not lock file"); file = open(filename, "rw"); while(contents += read(file)); //edit "contents" write(file, contents); close(file); close(lock); unlink(filename+".lock"); Both of these rely on an additional file that will be left over if a process terminates before unlinking it, causing other processes to refuse to write to the original file. In my opinion, these problems are brought on by the fact that the OS allows multiple writable file descriptors to be opened on the same file at the same time, instead of failing if a writable file descriptor is already open. It seems that O_CREAT|O_EXCL is the closest thing to a real solution for preventing filesystem race conditions, aside from POSIX record locks. Another possible solution is to separate the file into multiple files and directories, so that more granular control can be gained over components (lines, fields) of the file using O_CREAT|O_EXCL. For example, "file/$id/$field" would contain the value of column $field of the line $id. It wouldn't be a CSV file anymore, but it might just work. Yes, I know I should be using a database for this as databases are built to handle these types of problems, but the program is relatively simple and I was hoping to avoid the overhead. So, would any of these patterns work? Is there a better way? Any insight into these kinds of problems would be appreciated.

    Read the article

  • I.T. Chargeback : Core to Cloud Computing

    - by Anand Akela
    Contributed by Mark McGill Consolidation and Virtualization have been widely adopted over the years to help deliver benefits such as increased server utilization, greater agility and lower cost to the I.T. organization. These are key enablers of cloud, but in themselves they do not provide a complete cloud solution. Building a true enterprise private cloud involves moving from an admin driven world, where the I.T. department is ultimately responsible for the provisioning of servers, databases, middleware and applications, to a world where the consumers of I.T. resources can provision their infrastructure, platforms and even complete application stacks on demand. Switching from an admin-driven provisioning model to a user-driven model creates some challenges. How do you ensure that users provisioning resources will not provision more than they need? How do you encourage users to return resources when they have finished with them so that others can use them? While chargeback has existed as a concept for many years (especially in mainframe environments), it is the move to this self-service model that has created a need for a new breed of chargeback applications for cloud. Enabling self-service without some form of chargeback is like opening a shop where all of the goods are free. A successful chargeback solution will be able to allocate the costs of shared I.T. infrastructure based on the relative consumption by the users. Doing this creates transparency between the I.T. department and the consumers of I.T. When users are able to understand how their consumption translates to cost they are much more likely to be prudent when it comes to their use of I.T. resources. This also gives them control of their I.T. costs, as moderate usage will translate to a lower charge at the end of the month. Implementing Chargeback successfully create a win-win situation for I.T. and the consumers. Chargeback can help to ensure that I.T. resources are used for activities that deliver business value. It also improves the overall utilization of I.T. infrastructure as I.T. resources that are not needed are not left running idle. Enterprise Manager 12c provides an integrated metering and chargeback solution for Enterprise Manager Targets. This solution is built on top of the rich configuration and utilization information already available in Enterprise Manager. It provides metering not just for virtual machines, but also for physical hosts, databases and middleware. Enterprise Manager 12c provides metering based on the utilization and configuration of the following types of Enterprise Manager Target: Oracle VM Host Oracle Database Oracle WebLogic Server Using Enterprise Manager Chargeback, administrators are able to create a set of Charge Plans that are used to attach prices to the various metered resources. These plans can contain fixed costs (eg. $10/month/database), configuration based costs (eg. $10/month if OS is Windows) and utilization based costs (eg. $0.05/GB of Memory/hour) The self-service user provisioning these resources is then able to view a report that details their usage and helps them understand how this usage translates into cost. Armed with this information, the user is able to determine if the resources are delivering adequate business value based on what is being charged. Figure 1: Chargeback in Self-Service Portal Enterprise Manager 12c provides a variety of additional interfaces into this data. The administrator can access summary and trending reports. Summary reports allow the administrator to drill-down through the cost center hierarchy to identify, for example, the top resource consumers across the organization. Figure 2: Charge Summary Report Trending reports can be used for I.T. planning and budgeting as they show utilization and charge trends over a period of time. Figure 3: CPU Trend Report We also provide chargeback reports through BI Publisher. This provides a way for users who do not have an Enterprise Manager login (such as Line of Business managers) to view charge and usage information. For situations where a bill needs to be produced, chargeback can be integrated with billing applications such as Oracle Billing and Revenue Management (BRM). Further information on Enterprise Manager 12c’s integrated metering and chargeback: White Paper Screenwatch Cloud Management on OTN

    Read the article

  • Cloud Fact for Business Managers #3: Where You Data Is, and Who Has Access to It Might Surprise You

    - by yaldahhakim
    Written by: David Krauss While data security and operational risk conversations usually happen around the desk of a CCO/CSO (chief compliance and/or security officer), or perhaps the CFO, since business managers are now selecting cloud providers, they need to be able to at least ask some high-level questions on the topic of risk and compliance.  While the report found that 76% of adopters were motivated to adopt cloud apps because of quick access to software, most of these managers found that after they made a purchase decision their access to exciting new capabilities in the cloud could be hindered due to performance and scalability constraints put forth  by their cloud provider.  If you are going to let your business consume their mission critical business applications as a service, then it’s important to understand who is providing those cloud services and what kind of performance you are going to get.  Different types of departments, companies and industries will all have unique requirements so it’s key to take this also into consideration.   Nothing puts a CEO in a bad mood like a public data breach or finding out the company lost money when customers couldn’t buy a product or service because your cloud service provider had a problem.  With 42% of business managers having seen a data security breach in their department associated directly with the use of cloud applications, this is happening more than you think.   We’ve talked about the importance of being able to avoid information silos through a unified cloud approach and platform.  This is also important when keeping your data safe and secure, and a key conversation to have with your cloud provider.  Your customers want to know that their information is protected when they do business with you, just like you want your own company information protected.   This is really hard to do when each line of business is running different cloud application services managed by different cloud providers, all with different processes and controls.   It only adds to the complexity, and the more complex, the more risky and the chance that something will go wrong. What about compliance? Depending on the cloud provider, it can be difficult at best to understand who has access to your data, and were your data is actually stored.  Add to this multiple cloud providers spanning multiple departments and it becomes very problematic when trying to comply with certain industry and country data security regulations.  With 73% of business managers complaining that having cloud data handled externally by one or more cloud vendors makes it hard for their department to be compliant, this is a big time suck for executives and it puts the organization at risk. Is There A Complete, Integrated, Modern Cloud Out there for Business Executives?If you are a business manager looking to drive faster innovation for your business and want a cloud application that your CIO would approve of, I would encourage you take a look at Oracle Cloud.  It’s everything you want from a SaaS based application, but without compromising on functionality and other modern capabilities like embedded business intelligence, social relationship management (for your entire business), and advanced mobile.  And because Oracle Cloud is built and managed by Oracle, you can be confident that your cloud application services are enterprise-grade.  Over 25 Million users and 10 thousands companies around the globe rely on Oracle Cloud application services everyday – maybe your business should too.  For more information, visit cloud.oracle.com. Additional Resources •    Try it: cloud.oracle.com•    Learn more: http://www.oracle.com/us/corporate/features/complete-cloud/index.html•    Research Report: Cloud for Business Managers: The Good, the Bad, and the Ugly

    Read the article

  • Getting 2D Platformer entity collision Response Correct (side-to-side + jumping/landing on heads)

    - by jbrennan
    I've been working on a 2D (tile based) 2D platformer for iOS and I've got basic entity collision detection working, but there's just something not right about it and I can't quite figure out how to solve it. There are 2 forms of collision between player entities as I can tell, either the two players (human controlled) are hitting each other side-to-side (i. e. pushing against one another), or one player has jumped on the head of the other player (naturally, if I wanted to expand this to player vs enemy, the effects would be different, but the types of collisions would be identical, just the reaction should be a little different). In my code I believe I've got the side-to-side code working: If two entities press against one another, then they are both moved back on either side of the intersection rectangle so that they are just pushing on each other. I also have the "landed on the other player's head" part working. The real problem is, if the two players are currently pushing up against each other, and one player jumps, then at one point as they're jumping, the height-difference threshold that counts as a "land on head" is passed and then it registers as a jump. As a life-long player of 2D Mario Bros style games, this feels incorrect to me, but I can't quite figure out how to solve it. My code: (it's really Objective-C but I've put it in pseudo C-style code just to be simpler for non ObjC readers) void checkCollisions() { // For each entity in the scene, compare it with all other entities (but not with one it's already compared against) for (int i = 0; i < _allGameObjects.count(); i++) { // GameObject is an Entity GEGameObject *firstGameObject = _allGameObjects.objectAtIndex(i); // Don't check against yourself or any previous entity for (int j = i+1; j < _allGameObjects.count(); j++) { GEGameObject *secondGameObject = _allGameObjects.objectAtIndex(j); // Get the collision bounds for both entities, then see if they intersect // CGRect is a C-struct with an origin Point (x, y) and a Size (w, h) CGRect firstRect = firstGameObject.collisionBounds(); CGRect secondRect = secondGameObject.collisionBounds(); // Collision of any sort if (CGRectIntersectsRect(firstRect, secondRect)) { //////////////////////////////// // // // Check for jumping first (???) // // //////////////////////////////// if (firstRect.origin.y > (secondRect.origin.y + (secondRect.size.height * 0.7))) { // the top entity could be pretty far down/in to the bottom entity.... firstGameObject.didLandOnEntity(secondGameObject); } else if (secondRect.origin.y > (firstRect.origin.y + (firstRect.size.height * 0.7))) { // second entity was actually on top.... secondGameObject.didLandOnEntity.(firstGameObject); } else if (firstRect.origin.x > secondRect.origin.x && firstRect.origin.x < (secondRect.origin.x + secondRect.size.width)) { // Hit from the RIGHT CGRect intersection = CGRectIntersection(firstRect, secondRect); // The NUDGE just offsets either object back to the left or right // After the nudging, they are exactly pressing against each other with no intersection firstGameObject.nudgeToRightOfIntersection(intersection); secondGameObject.nudgeToLeftOfIntersection(intersection); } else if ((firstRect.origin.x + firstRect.size.width) > secondRect.origin.x) { // hit from the LEFT CGRect intersection = CGRectIntersection(firstRect, secondRect); secondGameObject.nudgeToRightOfIntersection(intersection); firstGameObject.nudgeToLeftOfIntersection(intersection); } } } } } I think my collision detection code is pretty close, but obviously I'm doing something a little wrong. I really think it's to do with the way my jumps are checked (I wanted to make sure that a jump could happen from an angle (instead of if the falling player had been at a right angle to the player below). Can someone please help me here? I haven't been able to find many resources on how to do this properly (and thinking like a game developer is new for me). Thanks in advance!

    Read the article

  • When should I use a Process Model versus a Use Case?

    - by Dave Burke
    This Blog entry is a follow on to https://blogs.oracle.com/oum/entry/oum_is_business_process_and and addresses a question I sometimes get asked…..i.e. “when I am gathering requirements on a Project, should I use a Process Modeling approach, or should I use a Use Case approach?” Not surprisingly, the short answer is “it depends”! Let’s take a scenario where you are working on a Sales Force Automation project. We’ll call the process that is being implemented “Lead-to-Order”. I would typically think of this type of project as being “Process Centric”. In other words, the focus will be on orchestrating a series of human and system related tasks that ultimately deliver value to the business in a cost effective way. Put in even simpler terms……implement an automated pre-sales system. For this type of (Process Centric) project, requirements would typically be gathered through a series of Workshops where the focal point will be on creating, or confirming, the Future-State (To-Be) business process. If pre-defined “best-practice” business process models exist, then of course they could and should be used during the Workshops, but even in their absence, the focus of the Workshops will be to define the optimum series of Tasks, their connections, sequence, and dependencies that will ultimately reflect a business process that meets the needs of the business. Now let’s take another scenario. Assume you are working on a Content Management project that involves automating the creation and management of content for User Manuals, Web Sites, Social Media publications etc. Would you call this type of project “Process Centric”?.......well you could, but it might also fall into the category of complex configuration, plus some custom extensions to a standard software application (COTS). For this type of project it would certainly be worth considering using a Use Case approach in order to 1) understand the requirements, and 2) to capture the functional requirements of the custom extensions. At this point you might be asking “why couldn’t I use a Process Modeling approach for my Content Management project?” Well, of course you could, but you just need to think about which approach is the most effective. Start by analyzing the types of Tasks that will eventually be automated by the system, for example: Best Suited To? Task Name Process Model Use Case Notes Manage outbound calls Ö A series of linked human and system tasks for calling and following up with prospects Manage content revision Ö Updating the content on a website Update User Preferences Ö Updating a users display preferences Assign Lead Ö Reviewing a lead, then assigning it to a sales person Convert Lead to Quote Ö Updating the status of a lead, and then converting it to a sales order As you can see, it’s not an exact science, and either approach is viable for the Tasks listed above. However, where you have a series of interconnected Tasks or Activities, than when combined, deliver value to the business, then that would be a good indicator to lead with a Process Modeling approach. On the other hand, when the Tasks or Activities in question are more isolated and/or do not cross traditional departmental boundaries, then a Use Case approach might be worth considering. Now let’s take one final scenario….. As you captured the To-Be Process flows for the Sales Force automation project, you discover a “Gap” in terms of what the client requires, and what the standard COTS application can provide. Let’s assume that the only way forward is to develop a Custom Extension. This would now be a perfect opportunity to document the functional requirements (behind the Gap) using a Use Case approach. After all, we will be developing some new software, and one of the most effective ways to begin the Software Development Lifecycle is to follow a Use Case approach. As always, your comments are most welcome.

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

< Previous Page | 513 514 515 516 517 518 519 520 521 522 523 524  | Next Page >