Search Results

Search found 20265 results on 811 pages for 'oracle bi 11g scorecards dashboards strategy execution'.

Page 518/811 | < Previous Page | 514 515 516 517 518 519 520 521 522 523 524 525  | Next Page >

  • What is an achievable way of setting content budgets (e.g. polygon count) for level content in a 3D title?

    - by MrCranky
    In answering this question for swquinn, the answer raised a more pertinent question that I'd like to hear answers to. I'll post our own strategy (promise I won't accept it as the answer), but I'd like to hear others. Specifically: how do you go about setting a sensible budget for your content team. Usually one of the very first questions asked in a development is: what's our polygon budget? Of course, these days it's rare that vertex/poly count alone is the limiting factor, instead shader complexity, fill-rate, lighting complexity, all come into play. What the content team want are some hard numbers / limits to work to such that they have a reasonable expectation that their content, once it actually gets into the engine, will not be too heavy. Given that 'it depends' isn't a particularly useful answer, I'd like to hear a strategy that allows me to give them workable limits without being a) misleading, or b) wrong.

    Read the article

  • Exploring TCP throughput with DTrace (2)

    - by user12820842
    Last time, I described how we can use the overlap in distributions of unacknowledged byte counts and send window to determine whether the peer's receive window may be too small, limiting throughput. Let's combine that comparison with a comparison of congestion window and slow start threshold, all on a per-port/per-client basis. This will help us Identify whether the congestion window or the receive window are limiting factors on throughput by comparing the distributions of congestion window and send window values to the distribution of outstanding (unacked) bytes. This will allow us to get a visual sense for how often we are thwarted in our attempts to fill the pipe due to congestion control versus the peer not being able to receive any more data. Identify whether slow start or congestion avoidance predominate by comparing the overlap in the congestion window and slow start distributions. If the slow start threshold distribution overlaps with the congestion window, we know that we have switched between slow start and congestion avoidance, possibly multiple times. Identify whether the peer's receive window is too small by comparing the distribution of outstanding unacked bytes with the send window distribution (i.e. the peer's receive window). I discussed this here. # dtrace -s tcp_window.d dtrace: script 'tcp_window.d' matched 10 probes ^C cwnd 80 10.175.96.92 value ------------- Distribution ------------- count 1024 | 0 2048 | 4 4096 | 6 8192 | 18 16384 | 36 32768 |@ 79 65536 |@ 155 131072 |@ 199 262144 |@@@ 400 524288 |@@@@@@ 798 1048576 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3848 2097152 | 0 ssthresh 80 10.175.96.92 value ------------- Distribution ------------- count 268435456 | 0 536870912 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5543 1073741824 | 0 unacked 80 10.175.96.92 value ------------- Distribution ------------- count -1 | 0 0 | 1 1 | 0 2 | 0 4 | 0 8 | 0 16 | 0 32 | 0 64 | 0 128 | 0 256 | 3 512 | 0 1024 | 0 2048 | 4 4096 | 9 8192 | 21 16384 | 36 32768 |@ 78 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5391 131072 | 0 swnd 80 10.175.96.92 value ------------- Distribution ------------- count 32768 | 0 65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 5543 131072 | 0 Here we are observing a large file transfer via http on the webserver. Comparing these distributions, we can observe: That slow start congestion control is in operation. The distribution of congestion window values lies below the range of slow start threshold values (which are in the 536870912+ range), so the connection is in slow start mode. Both the unacked byte count and the send window values peak in the 65536-131071 range, but the send window value distribution is narrower. This tells us that the peer TCP's receive window is not closing. The congestion window distribution peaks in the 1048576 - 2097152 range while the receive window distribution is confined to the 65536-131071 range. Since the cwnd distribution ranges as low as 2048-4095, we can see that for some of the time we have been observing the connection, congestion control has been a limiting factor on transfer, but for the majority of the time the receive window of the peer would more likely have been the limiting factor. However, we know the window has never closed as the distribution of swnd values stays within the 65536-131071 range. So all in all we have a connection that has been mildly constrained by congestion control, but for the bulk of the time we have been observing it neither congestion or peer receive window have limited throughput. Here's the script: #!/usr/sbin/dtrace -s tcp:::send / (args[4]-tcp_flags & (TH_SYN|TH_RST|TH_FIN)) == 0 / { @cwnd["cwnd", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_cwnd); @ssthresh["ssthresh", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_cwnd_ssthresh); @unacked["unacked", args[4]-tcp_sport, args[2]-ip_daddr] = quantize(args[3]-tcps_snxt - args[3]-tcps_suna); @swnd["swnd", args[4]-tcp_sport, args[2]-ip_daddr] = quantize((args[4]-tcp_window)*(1 tcps_snd_ws)); } One surprise here is that slow start is still in operation - one would assume that for a large file transfer, acknowledgements would push the congestion window up past the slow start threshold over time. The slow start threshold is in fact still close to it's initial (very high) value, so that would suggest we have not experienced any congestion (the slow start threshold is adjusted when congestion occurs). Also, the above measurements were taken early in the connection lifetime, so the congestion window did not get a changes to get bumped up to the level of the slow start threshold. A good strategy when examining these sorts of measurements for a given service (such as a webserver) would be start by examining the distributions above aggregated by port number only to get an overall feel for service performance, i.e. is congestion control or peer receive window size an issue, or are we unconstrained to fill the pipe? From there, the overlap of distributions will tell us whether to drill down into specific clients. For example if the send window distribution has multiple peaks, we may want to examine if particular clients show issues with their receive window.

    Read the article

  • SEO Marketing - How to Promote Your Website and Gain More Traffic?

    Having problems in promoting your website? Do your risk everything to put your website on top with weak SEO marketing strategy? SEO Marketing is a very important part in promoting your website and to market your products. It will help you gain more traffic to your website and increase your page rank. However, it will be only a waste of money if your website has weak seo marketing strategy. Remember that people nowadays use the internet to gain any information in any website or probably your website.

    Read the article

  • Selenium screenshots using rspec

    - by Thomas Albright
    I am trying to capture screenshots on test failure using selenium-client and rspec. I run this command: $ spec my_spec.rb \ --require 'rubygems,selenium/rspec/reporting/selenium_test_report_formatter' \ --format=Selenium::RSpec::SeleniumTestReportFormatter:./report.html It creates the report correctly when everything passes, since no screenshots are required. However, when the test fails, I get this message, and the report has blank screenshots: WARNING: Could not capture HTML snapshot: execution expired WARNING: Could not capture page screenshot: execution expired WARNING: Could not capture system screenshot: execution expired Problem while capturing system stateexecution expired What is causing this 'execution expired' error? Am I missing something important in my spec? Here is the code for my_spec.rb: require 'rubygems' gem "rspec", "=1.2.8" gem "selenium-client" require "selenium/client" require "selenium/rspec/spec_helper" describe "Databases" do attr_reader :selenium_driver alias :page :selenium_driver before(:all) do @selenium_driver = Selenium::Client::Driver.new \ :host => "192.168.0.10", :port => 4444, :browser => "*firefox", :url => "http://192.168.0.11/", :timeout_in_seconds => 10 end before(:each) do @selenium_driver.start_new_browser_session end # The system capture need to happen BEFORE closing the Selenium session append_after(:each) do @selenium_driver.close_current_browser_session end it "backed up" do page.open "/SQLDBDetails.aspx page.click "btnBackup", :wait_for => :page page.text?("Pending Backup").should be_true end end

    Read the article

  • rewrite not a member of LiftRules

    - by José Leal
    Hi guys, I was following http://www.assembla.com/wiki/show/liftweb/URL_Rewriting tutorial for url rewritting in liftweb.. but I get this error: error: value rewrite is not a member of object net.liftweb.http.LiftRules .. it is really odd.. and the documentation says that it exists. I'm using idea IDE, and I've done everything from scratch, using the lift maven blank archifact. Some more info: [INFO] ------------------------------------------------------------------------ [INFO] Building Joseph3 [INFO] task-segment: [tomcat:run] [INFO] ------------------------------------------------------------------------ [INFO] Preparing tomcat:run [INFO] [resources:resources {execution: default-resources}] [WARNING] Using platform encoding (UTF-8 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 0 resource [INFO] [yuicompressor:compress {execution: default}] [INFO] nb warnings: 0, nb errors: 0 [INFO] artifact org.mortbay.jetty:jetty: checking for updates from scala-tools.org [INFO] artifact org.mortbay.jetty:jetty: checking for updates from central [INFO] [compiler:compile {execution: default-compile}] [INFO] Nothing to compile - all classes are up to date [INFO] [scala:compile {execution: default}] [INFO] Checking for multiple versions of scala [INFO] /home/dpz/Scala/Doit/Joseph3/src/main/scala:-1: info: compiling [INFO] Compiling 2 source files to /home/dpz/Scala/Doit/Joseph3/target/classes at 1274922123910 [ERROR] /home/dpz/Scala/Doit/Joseph3/src/main/scala/bootstrap/liftweb/Boot.scala:16: error: value rewrite is not a member of object net.liftweb.http.LiftRules [INFO] LiftRules.rewrite.prepend(NamedPF("ProductExampleRewrite") { [INFO] ^ [ERROR] one error found [INFO] ------------------------------------------------------------------------ [ERROR] BUILD ERROR [INFO] ------------------------------------------------------------------------ [INFO] wrap: org.apache.commons.exec.ExecuteException: Process exited with an error: 1(Exit value: 1) [INFO] ------------------------------------------------------------------------ [INFO] For more information, run Maven with the -e switch [INFO] ------------------------------------------------------------------------ [INFO] Total time: 19 seconds [INFO] Finished at: Thu May 27 03:02:07 CEST 2010 [INFO] Final Memory: 20M/175M [INFO] ------------------------------------------------------------------------ Process finished with exit code 1 enter code here

    Read the article

  • How to inherit the current path when invoking Maven's exec-maven-plugin?

    - by wishihadabettername
    I have an <exec-maven-plugin> which calls an external command (in this case, svnversion). The command is in the path for the current user. However, when a separate shell is spawned by the plugin, the path is not initialized. I don't want to hardcode or define a variable for each external command (there would be too much to maintain, especially that there are both Windows and *nix users). My pom.xml contains the following: <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>exec-maven-plugin</artifactId> <version>1.1</version> <executions> <execution> <id>svnversion-exec</id> <phase>process-resources</phase> <goals> <goal>exec</goal> </goals> <configuration> <executable>svnversion</executable> <arguments> <argument><![CDATA[ >version.txt ]]></argument> </arguments> </configuration> </execution> </executions> </plugin> Currently I get the following output: [INFO] [exec:exec {execution: svnversion-exec}] 'svnversion' is not recognized as an internal or external command, operable program or batch file. [ERROR] BUILD ERROR: Result of cmd.exe /X /C "svnversion >version.txt" execution is: '1'. Thank you!

    Read the article

  • m2e lifecycle-mapping not found

    - by TraderJoeChicago
    I am trying to use the solution described here to solve the annoying "Plugin execution not covered by lifecycle configuration: org.codehaus.mojo:build-helper-maven-plugin:1.7:add-source (execution: default, phase: generate-sources)" when I place the following plugin on my pom.xml: <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>build-helper-maven-plugin</artifactId> <executions> <execution> <phase>generate-sources</phase> <goals><goal>add-source</goal></goals> <configuration> <sources> <source>src/bootstrap/java</source> </sources> </configuration> </execution> </executions> </plugin> But when I run mvn clean install I get this: Reason: POM 'org.eclipse.m2e:lifecycle-mapping' not found in repository: Unable to download the artifact from any repository Does anyone have a clue on how to make m2e and maven happy?

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Gone With the Wind?

    - by antony.reynolds
    Where Have All the Composites Gone? I was just asked to help out with an interesting problem at a customer.  All their composites had disappeared from the EM console, none of them showed as loading in the log files and there was an ominous error message in the logs. Symptoms After a server restart the customer noticed that none of his composites were available, they didn’t show in the EM console and in the log files they saw this error message: SEVERE: WLSFabricKernelInitializer.getCompositeList Error during parsing and processing of deployed-composites.xml file This indicates some sort of problem when parsing the deployed-composites.xml file.  This is very bad because the deployed-composites.xml file is basically the table of contents that tells SOA Infrastructure what composites to load and where to find them in MDS.  If you can’t read this file you can’t load any composites and your SOA Server now has all the utility of a chocolate teapot. Verification We can look at the deployed-composites.xml file from MDS either by connecting JDeveloper to MDS, exporting the file using WLST or exporting the whole soa-infra MDS partition by using EM->SOA->soa-infra->Administration->MDS Configuration.  Exporting via EM is probably the easiest because it then prepares you to fix the problem later.  After exporting the partition to local storage on the SOA Server I then ran an XSLT transform across the file deployed-composites/deployed-composites.xml. <?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.w3.org/1999/xhtml">     <xsl:output indent="yes"/>     <xsl:template match="/">         <testResult>             <composite-series>                 <xsl:attribute name="elementCount"><xsl:value-of select="count(deployed-composites/composite-series)"/></xsl:attribute>                 <xsl:attribute name="nameAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series[@name])"/></xsl:attribute>                 <xsl:attribute name="defaultAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series[@default])"/></xsl:attribute>                 <composite-revision>                     <xsl:attribute name="elementCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision)"/></xsl:attribute>                     <xsl:attribute name="dnAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision[@dn])"/></xsl:attribute>                     <xsl:attribute name="stateAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision[@state])"/></xsl:attribute>                     <xsl:attribute name="modeAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision[@mode])"/></xsl:attribute>                     <xsl:attribute name="locationAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision[@location])"/></xsl:attribute>                     <composite>                         <xsl:attribute name="elementCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision/composite)"/></xsl:attribute>                         <xsl:attribute name="dnAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision/composite[@dn])"/></xsl:attribute>                         <xsl:attribute name="deployedTimeAttributeCount"><xsl:value-of select="count(deployed-composites/composite-series/composite-revision/composite[@deployedTime])"/></xsl:attribute>                     </composite>                 </composite-revision>                 <xsl:apply-templates select="deployed-composites/composite-series"/>             </composite-series>         </testResult>     </xsl:template>     <xsl:template match="composite-series">             <xsl:if test="not(@name) or not(@default) or composite-revision[not(@dn) or not(@state) or not(@mode) or not(@location)]">                 <ErrorNode>                     <xsl:attribute name="elementPos"><xsl:value-of select="position()"/></xsl:attribute>                     <xsl:copy-of select="."/>                 </ErrorNode>             </xsl:if>     </xsl:template> </xsl:stylesheet> The output from this is not pretty but it shows any <composite-series> tags that are missing expected attributes (name and default).  It also shows how many composites are in the file (111) and how many revisions of those composites (115). <?xml version="1.0" encoding="UTF-8"?> <testResult xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.w3.org/1999/xhtml">    <composite-series elementCount="111" nameAttributeCount="110" defaultAttributeCount="110">       <composite-revision elementCount="115" dnAttributeCount="114" stateAttributeCount="115"                           modeAttributeCount="115"                           locationAttributeCount="114">          <composite elementCount="115" dnAttributeCount="114" deployedTimeAttributeCount="115"/>       </composite-revision>       <ErrorNode elementPos="82">          <composite-series xmlns="">             <composite-revision state="on" mode="active">                <composite deployedTime="2010-12-15T11:50:16.067+01:00"/>             </composite-revision>          </composite-series>       </ErrorNode>    </composite-series> </testResult> From this I could see that one of the <composite-series> elements (number 82 of 111) seemed to be corrupt. Having found the problem I now needed to fix it. Fixing the Problem The solution was really quite easy.  First for safeties sake I took a backup of the exported MDS partition.  I then edited the deployed-composites/deployed-composites.xml file to remove the offending <composite-series> tag. Finally I restarted the SOA domain and was rewarded by seeing that the deployed composites were now visible. Summary One possible cause of not being able to see deployed composites after a SOA 11g system restart is a corrupt deployed-composites.xml file.  Retrieving this file from MDS, repairing it, and replacing it back into MDS can solve the problem.  This still leaves the problem of how did this file become corrupt!

    Read the article

  • WebLogic Server Performance and Tuning: Part I - Tuning JVM

    - by Gokhan Gungor
    Each WebLogic Server instance runs in its own dedicated Java Virtual Machine (JVM) which is their runtime environment. Every Admin Server in any domain executes within a JVM. The same also applies for Managed Servers. WebLogic Server can be used for a wide variety of applications and services which uses the same runtime environment and resources. Oracle WebLogic ships with 2 different JVM, HotSpot and JRocket but you can choose which JVM you want to use. JVM is designed to optimize itself however it also provides some startup options to make small changes. There are default values for its memory and garbage collection. In real world, you will not want to stick with the default values provided by the JVM rather want to customize these values based on your applications which can produce large gains in performance by making small changes with the JVM parameters. We can tell the garbage collector how to delete garbage and we can also tell JVM how much space to allocate for each generation (of java Objects) or for heap. Remember during the garbage collection no other process is executed within the JVM or runtime, which is called STOP THE WORLD which can affect the overall throughput. Each JVM has its own memory segment called Heap Memory which is the storage for java Objects. These objects can be grouped based on their age like young generation (recently created objects) or old generation (surviving objects that have lived to some extent), etc. A java object is considered garbage when it can no longer be reached from anywhere in the running program. Each generation has its own memory segment within the heap. When this segment gets full, garbage collector deletes all the objects that are marked as garbage to create space. When the old generation space gets full, the JVM performs a major collection to remove the unused objects and reclaim their space. A major garbage collect takes a significant amount of time and can affect system performance. When we create a managed server either on the same machine or on remote machine it gets its initial startup parameters from $DOMAIN_HOME/bin/setDomainEnv.sh/cmd file. By default two parameters are set:     Xms: The initial heapsize     Xmx: The max heapsize Try to set equal initial and max heapsize. The startup time can be a little longer but for long running applications it will provide a better performance. When we set -Xms512m -Xmx1024m, the physical heap size will be 512m. This means that there are pages of memory (in the state of the 512m) that the JVM does not explicitly control. It will be controlled by OS which could be reserve for the other tasks. In this case, it is an advantage if the JVM claims the entire memory at once and try not to spend time to extend when more memory is needed. Also you can use -XX:MaxPermSize (Maximum size of the permanent generation) option for Sun JVM. You should adjust the size accordingly if your application dynamically load and unload a lot of classes in order to optimize the performance. You can set the JVM options/heap size from the following places:     Through the Admin console, in the Server start tab     In the startManagedWeblogic script for the managed servers     $DOMAIN_HOME/bin/startManagedWebLogic.sh/cmd     JAVA_OPTIONS="-Xms1024m -Xmx1024m" ${JAVA_OPTIONS}     In the setDomainEnv script for the managed servers and admin server (domain wide)     USER_MEM_ARGS="-Xms1024m -Xmx1024m" When there is free memory available in the heap but it is too fragmented and not contiguously located to store the object or when there is actually insufficient memory we can get java.lang.OutOfMemoryError. We should create Thread Dump and analyze if that is possible in case of such error. The second option we can use to produce higher throughput is to garbage collection. We can roughly divide GC algorithms into 2 categories: parallel and concurrent. Parallel GC stops the execution of all the application and performs the full GC, this generally provides better throughput but also high latency using all the CPU resources during GC. Concurrent GC on the other hand, produces low latency but also low throughput since it performs GC while application executes. The JRockit JVM provides some useful command-line parameters that to control of its GC scheme like -XgcPrio command-line parameter which takes the following options; XgcPrio:pausetime (To minimize latency, parallel GC) XgcPrio:throughput (To minimize throughput, concurrent GC ) XgcPrio:deterministic (To guarantee maximum pause time, for real time systems) Sun JVM has similar parameters (like  -XX:UseParallelGC or -XX:+UseConcMarkSweepGC) to control its GC scheme. We can add -verbosegc -XX:+PrintGCDetails to monitor indications of a problem with garbage collection. Try configuring JVM’s of all managed servers to execute in -server mode to ensure that it is optimized for a server-side production environment.

    Read the article

  • Fan running continously on HP Pavillion G6 notebook with 12.04.1 LTS, help please?

    - by Ankit
    Fan is running continously on my HP Pavillion G6 notebook with 12.04.1 LTS. My system specifications are:- Ram: 6Gb Graphics Card:- 1 GB (AMD Raedon 64XX). HDD: 540 GB. Please find a list of ACPI errors logs from dmesg as follows:- buffer@ankit:~$ dmesg | grep ACPI -i [ 0.000000] BIOS-e820: 000000009cebf000 - 000000009cfbf000 (ACPI NVS) [ 0.000000] BIOS-e820: 000000009cfbf000 - 000000009cfff000 (ACPI data) [ 0.000000] ACPI: RSDP 00000000000fe020 00024 (v02 HPQOEM) [ 0.000000] ACPI: XSDT 000000009cffe120 00084 (v01 HPQOEM SLIC-MPC 00000001 01000013) [ 0.000000] ACPI: FACP 000000009cffc000 000F4 (v04 HPQOEM SLIC-MPC 00000001 MSFT 01000013) [ 0.000000] ACPI: DSDT 000000009cfec000 0C132 (v01 HP 1670 00000000 MSFT 01000013) [ 0.000000] ACPI: FACS 000000009cf6c000 00040 [ 0.000000] ACPI: ASF! 000000009cffd000 000A5 (v32 HP 1670 00000001 MSFT 01000013) [ 0.000000] ACPI: HPET 000000009cffb000 00038 (v01 HP 1670 00000001 MSFT 01000013) [ 0.000000] ACPI: APIC 000000009cffa000 0008C (v02 HP 1670 00000001 MSFT 01000013) [ 0.000000] ACPI: MCFG 000000009cff9000 0003C (v01 HP 1670 00000001 MSFT 01000013) [ 0.000000] ACPI: SLIC 000000009cfeb000 00176 (v01 HPQOEM SLIC-MPC 00000001 MSFT 01000013) [ 0.000000] ACPI: SSDT 000000009cfea000 00D52 (v01 HP 1670 00001000 MSFT 01000013) [ 0.000000] ACPI: BOOT 000000009cfe8000 00028 (v01 HP 1670 00000001 MSFT 01000013) [ 0.000000] ACPI: ASPT 000000009cfe5000 00034 (v07 HP 1670 00000001 MSFT 01000013) [ 0.000000] ACPI: SSDT 000000009cfe4000 00780 (v01 HP 1670 00003000 INTL 20100121) [ 0.000000] ACPI: SSDT 000000009cfe3000 00996 (v01 HP 1670 00003000 INTL 20100121) [ 0.000000] ACPI: SSDT 000000009cfdd000 0219F (v01 HP 1670 00001000 INTL 20100121) [ 0.000000] ACPI: Local APIC address 0xfee00000 [ 0.000000] ACPI: PM-Timer IO Port: 0x408 [ 0.000000] ACPI: Local APIC address 0xfee00000 [ 0.000000] ACPI: LAPIC (acpi_id[0x01] lapic_id[0x00] enabled) [ 0.000000] ACPI: LAPIC (acpi_id[0x02] lapic_id[0x01] enabled) [ 0.000000] ACPI: LAPIC (acpi_id[0x03] lapic_id[0x02] enabled) [ 0.000000] ACPI: LAPIC (acpi_id[0x04] lapic_id[0x03] enabled) [ 0.000000] ACPI: LAPIC (acpi_id[0x05] lapic_id[0x00] disabled) [ 0.000000] ACPI: LAPIC (acpi_id[0x06] lapic_id[0x00] disabled) [ 0.000000] ACPI: LAPIC (acpi_id[0x07] lapic_id[0x00] disabled) [ 0.000000] ACPI: LAPIC (acpi_id[0x08] lapic_id[0x00] disabled) [ 0.000000] ACPI: IOAPIC (id[0x00] address[0xfec00000] gsi_base[0]) [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 0 global_irq 2 dfl dfl) [ 0.000000] ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 high level) [ 0.000000] ACPI: IRQ0 used by override. [ 0.000000] ACPI: IRQ2 used by override. [ 0.000000] ACPI: IRQ9 used by override. [ 0.000000] Using ACPI (MADT) for SMP configuration information [ 0.000000] ACPI: HPET id: 0x8086a201 base: 0xfed00000 [ 0.005902] ACPI: Core revision 20110623 [ 0.536006] PM: Registering ACPI NVS region at 9cebf000 (1048576 bytes) [ 0.538423] ACPI FADT declares the system doesn't support PCIe ASPM, so disable it [ 0.538429] ACPI: bus type pci registered [ 0.656088] ACPI: Added _OSI(Module Device) [ 0.656094] ACPI: Added _OSI(Processor Device) [ 0.656098] ACPI: Added _OSI(3.0 _SCP Extensions) [ 0.656103] ACPI: Added _OSI(Processor Aggregator Device) [ 0.660335] ACPI: EC: Look up EC in DSDT [ 0.664416] ACPI: Executed 1 blocks of module-level executable AML code [ 0.728303] [Firmware Bug]: ACPI: BIOS _OSI(Linux) query ignored [ 0.729536] ACPI: SSDT 000000009ce70798 00727 (v01 PmRef Cpu0Cst 00003001 INTL 20100121) [ 0.730622] ACPI: Dynamic OEM Table Load: [ 0.730630] ACPI: SSDT (null) 00727 (v01 PmRef Cpu0Cst 00003001 INTL 20100121) [ 0.760829] ACPI: SSDT 000000009ce71a98 00303 (v01 PmRef ApIst 00003000 INTL 20100121) [ 0.761992] ACPI: Dynamic OEM Table Load: [ 0.761998] ACPI: SSDT (null) 00303 (v01 PmRef ApIst 00003000 INTL 20100121) [ 0.792451] ACPI: SSDT 000000009ce6fd98 00119 (v01 PmRef ApCst 00003000 INTL 20100121) [ 0.793521] ACPI: Dynamic OEM Table Load: [ 0.793528] ACPI: SSDT (null) 00119 (v01 PmRef ApCst 00003000 INTL 20100121) [ 0.872981] ACPI: Interpreter enabled [ 0.872992] ACPI: (supports S0 S3 S4 S5) [ 0.873064] ACPI: Using IOAPIC for interrupt routing [ 0.882723] ACPI: EC: GPE = 0x16, I/O: command/status = 0x66, data = 0x62 [ 0.883072] ACPI: No dock devices found. [ 0.883084] PCI: Using host bridge windows from ACPI; if necessary, use "pci=nocrs" and report a bug [ 0.883882] ACPI: PCI Root Bridge [PCI0] (domain 0000 [bus 00-fe]) [ 0.924187] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0._PRT] [ 0.924509] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.RP01._PRT] [ 0.924581] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.RP02._PRT] [ 0.924659] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.RP03._PRT] [ 0.924758] ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.PEG0._PRT] [ 0.924973] pci0000:00: Requesting ACPI _OSC control (0x1d) [ 0.925064] pci0000:00: ACPI _OSC request failed (AE_ERROR), returned control mask: 0x1d [ 0.925069] ACPI _OSC control for PCIe not granted, disabling ASPM [ 0.930212] ACPI: PCI Interrupt Link [LNKA] (IRQs 1 3 4 5 6 10 *11 12 14 15) [ 0.930327] ACPI: PCI Interrupt Link [LNKB] (IRQs 1 3 4 5 6 10 *11 12 14 15) [ 0.930436] ACPI: PCI Interrupt Link [LNKC] (IRQs 1 3 4 5 6 10 *11 12 14 15) [ 0.930547] ACPI: PCI Interrupt Link [LNKD] (IRQs 1 3 4 5 6 *10 11 12 14 15) [ 0.930655] ACPI: PCI Interrupt Link [LNKE] (IRQs 1 3 4 5 6 10 11 12 14 15) *0, disabled. [ 0.930764] ACPI: PCI Interrupt Link [LNKF] (IRQs 1 3 4 5 6 10 11 12 14 15) *0, disabled. [ 0.930873] ACPI: PCI Interrupt Link [LNKG] (IRQs 1 3 4 5 6 10 *11 12 14 15) [ 0.930979] ACPI: PCI Interrupt Link [LNKH] (IRQs 1 3 4 5 6 10 11 12 14 15) *0, disabled. [ 0.932142] PCI: Using ACPI for IRQ routing [ 0.967119] pnp: PnP ACPI init [ 0.967151] ACPI: bus type pnp registered [ 0.968356] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) [ 0.968516] pnp 00:01: Plug and Play ACPI device, IDs PNP0200 (active) [ 0.968586] pnp 00:02: Plug and Play ACPI device, IDs INT0800 (active) [ 0.968818] pnp 00:03: Plug and Play ACPI device, IDs PNP0103 (active) [ 0.968915] pnp 00:04: Plug and Play ACPI device, IDs PNP0c04 (active) [ 0.969206] system 00:05: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.969293] pnp 00:06: Plug and Play ACPI device, IDs PNP0b00 (active) [ 0.969418] pnp 00:07: Plug and Play ACPI device, IDs PNP0303 (active) [ 0.969528] pnp 00:08: Plug and Play ACPI device, IDs SYN1e3f SYN1e00 SYN0002 PNP0f13 (active) [ 0.969969] system 00:09: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.970574] system 00:0a: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.970617] pnp: PnP ACPI: found 11 devices [ 0.970622] ACPI: ACPI bus type pnp unregistered [ 1.138064] ACPI: Deprecated procfs I/F for AC is loaded, please retry with CONFIG_ACPI_PROCFS_POWER cleared [ 1.138331] ACPI: AC Adapter [ACAD] (off-line) [ 1.139068] ACPI: Lid Switch [LID0] [ 1.139176] ACPI: Power Button [PWRB] [ 1.139286] ACPI: Power Button [PWRF] [ 1.144637] ACPI: Thermal Zone [TZ01] (0 C) [ 1.144677] ACPI: Deprecated procfs I/F for battery is loaded, please retry with CONFIG_ACPI_PROCFS_POWER cleared [ 1.144693] ACPI: Battery Slot [BAT0] (battery present) [ 1.206926] ACPI: Battery Slot [BAT0] (battery present) [ 13.176993] acpi device:1a: registered as cooling_device4 [ 13.179931] acpi device:1b: registered as cooling_device5 [ 13.180221] ACPI: Video Device [VGA] (multi-head: yes rom: no post: no) [ 13.219589] acpi device:20: registered as cooling_device6 [ 13.220851] ACPI: Video Device [GFX0] (multi-head: yes rom: no post: no) [ 1649.915134] i8042 aux 00:08: wake-up capability disabled by ACPI [ 1649.915147] i8042 kbd 00:07: wake-up capability enabled by ACPI [ 1650.931028] r8169 0000:03:00.0: wake-up capability enabled by ACPI [ 1650.954743] ehci_hcd 0000:00:1d.0: wake-up capability enabled by ACPI [ 1650.978733] ehci_hcd 0000:00:1a.0: wake-up capability enabled by ACPI [ 1651.010950] ACPI: Preparing to enter system sleep state S3 [ 1652.251505] ACPI: Low-level resume complete [ 1652.360953] ACPI: Waking up from system sleep state S3 [ 1652.427581] ehci_hcd 0000:00:1a.0: wake-up capability disabled by ACPI [ 1652.435579] ehci_hcd 0000:00:1d.0: wake-up capability disabled by ACPI [ 1652.437887] r8169 0000:03:00.0: wake-up capability disabled by ACPI [ 1652.506660] i8042 kbd 00:07: wake-up capability disabled by ACPI [ 1661.238234] ACPI Error: No handler for Region [CMS0] (ffff8801d5035558) [SystemCMOS] (20110623/evregion-373) [ 1661.238253] ACPI Error: Region SystemCMOS (ID=5) has no handler (20110623/exfldio-292) [ 1661.238268] ACPI Error: Method parse/execution failed [\_SB_.PCI0.LPCB.EC0_._Q33] (Node ffff8801d5054de8), AE_NOT_EXIST (20110623/psparse-536) [ 3151.784288] i8042 aux 00:08: wake-up capability disabled by ACPI [ 3151.784301] i8042 kbd 00:07: wake-up capability enabled by ACPI [ 3152.797676] r8169 0000:03:00.0: wake-up capability enabled by ACPI [ 3152.821379] ehci_hcd 0000:00:1d.0: wake-up capability enabled by ACPI [ 3152.845367] ehci_hcd 0000:00:1a.0: wake-up capability enabled by ACPI [ 3152.877600] ACPI: Preparing to enter system sleep state S3 [ 3154.313213] ACPI: Low-level resume complete [ 3154.422297] ACPI: Waking up from system sleep state S3 [ 3154.489692] ehci_hcd 0000:00:1a.0: wake-up capability disabled by ACPI [ 3154.497667] ehci_hcd 0000:00:1d.0: wake-up capability disabled by ACPI [ 3154.505947] r8169 0000:03:00.0: wake-up capability disabled by ACPI [ 3154.568985] i8042 kbd 00:07: wake-up capability disabled by ACPI [ 3162.745149] ACPI Error: No handler for Region [CMS0] (ffff8801d5035558) [SystemCMOS] (20110623/evregion-373) [ 3162.745168] ACPI Error: Region SystemCMOS (ID=5) has no handler (20110623/exfldio-292) [ 3162.745183] ACPI Error: Method parse/execution failed [\_SB_.PCI0.LPCB.EC0_._Q33] (Node ffff8801d5054de8), AE_NOT_EXIST (20110623/psparse-536) [ 6775.723501] ACPI Error: No handler for Region [CMS0] (ffff8801d5035558) [SystemCMOS] (20110623/evregion-373) [ 6775.723519] ACPI Error: Region SystemCMOS (ID=5) has no handler (20110623/exfldio-292) [ 6775.723535] ACPI Error: Method parse/execution failed [\_SB_.PCI0.LPCB.EC0_._Q33] (Node ffff8801d5054de8), AE_NOT_EXIST (20110623/psparse-536) [10388.004760] ACPI Error: No handler for Region [CMS0] (ffff8801d5035558) [SystemCMOS] (20110623/evregion-373) [10388.004778] ACPI Error: Region SystemCMOS (ID=5) has no handler (20110623/exfldio-292) [10388.004801] ACPI Error: Method parse/execution failed [\_SB_.PCI0.LPCB.EC0_._Q33] (Node ffff8801d5054de8), AE_NOT_EXIST (20110623/psparse-536) [10723.591930] i8042 aux 00:08: wake-up capability disabled by ACPI [10723.591942] i8042 kbd 00:07: wake-up capability enabled by ACPI [10724.607624] r8169 0000:03:00.0: wake-up capability enabled by ACPI [10724.631349] ehci_hcd 0000:00:1d.0: wake-up capability enabled by ACPI [10724.655339] ehci_hcd 0000:00:1a.0: wake-up capability enabled by ACPI [10724.687572] ACPI: Preparing to enter system sleep state S3 [10726.123176] ACPI: Low-level resume complete [10726.232181] ACPI: Waking up from system sleep state S3 [10726.303653] ehci_hcd 0000:00:1a.0: wake-up capability disabled by ACPI [10726.311648] ehci_hcd 0000:00:1d.0: wake-up capability disabled by ACPI [10726.315734] r8169 0000:03:00.0: wake-up capability disabled by ACPI [10726.379287] i8042 kbd 00:07: wake-up capability disabled by ACPI [10734.393523] ACPI Error: No handler for Region [CMS0] (ffff8801d5035558) [SystemCMOS] (20110623/evregion-373) [10734.393542] ACPI Error: Region SystemCMOS (ID=5) has no handler (20110623/exfldio-292) [10734.393557] ACPI Error: Method parse/execution failed [\_SB_.PCI0.LPCB.EC0_._Q33] (Node ffff8801d5054de8), AE_NOT_EXIST (20110623/ps Continuous sound from the fan is very annoying, any help would highly appreciated.

    Read the article

  • JMaghreb 2012 Trip Report

    - by arungupta
    JMaghreb is the inaugural Java conference organized by Morocco JUG. It is the biggest Java conference in Maghreb (5 countries in North West Africa). Oracle was the exclusive platinum sponsor with several others. The registrations had to be closed at 1412 for the free conference and several folks were already on the waiting list. Rabat with 531 registrations and Casablanca with 426 were the top cities. Some statistics ... 850+ attendees over 2 days, 500+ every day 30 sessions were delivered by 18 speakers from 10 different countries 10 sessions in French and 20 in English 6 of the speakers spoke at JavaOne 2012 8 will be at Devoxx Attendees from 5 different countries and 57 cities in Morocco 40.9% qualified them as professional and rest as students Topics ranged from HTML5, Java EE 7, ADF, JavaFX, MySQL, JCP, Vaadin, Android, Community, JCP Java EE 6 hands-on lab was sold out within 7 minutes and JavaFX in 12 minutes I gave the keynote along with Simon Ritter which was basically a recap of the Strategy and Technical keynotes presented at JavaOne 2012. An informal survey during the keynote showed the following numbers: 25% using NetBeans, 90% on Eclipse, 3 on JDeveloper, 1 on IntelliJ About 10 subscribers to free online Java magazine. This digital magazine is a comprehensive source of information for everything Java - subscribe for free!! About 10-15% using Java SE 7. Download JDK 7 and get started today! Even JDK 8 builds have been available for a while now. My second talk explained the core concepts of WebSocket and how JSR 356 is providing a standard API to build WebSocket-driven applications in Java EE 7. TOTD #183 explains how you can easily get started with WebSocket in GlassFish 4. The complete slide deck is available: Next day started with a community keynote by Sonya Barry. Some of us live the life of JCP, JSR, EG, EC, RI, etc every day, but not every body is. To address that, Sonya prepared an excellent introductory presentation providing an explanation of these terms and how java.net infrastructure supports Java development. The registration for the lab showed there is a definite demand for these technologies in this part of the world. I delivered the Java EE 6 hands-on lab to a packed room of about 120 attendees. Most of the attendees were able to progress and follow the lab instructions. Some of the attendees did not have a laptop but were taking extensive notes on paper notepads. Several attendees were already using Java EE 6 in their projects and typically they are the ones asking deep dive questions. Also gave out three copies of my recently released Java EE 6 Pocket Guide and new GlassFish t-shirts. Definitely feels happy to coach ~120 more Java developers learn standards-based enterprise Java programming. I also participated in a JCP BoF along with Werner, Sonya, and Badr. Adotp-a-JSR, java.net infrastructure, how to file a JSR, what is an RI, and other similar topics were discussed in a candid manner. You can follow @JMaghrebConf or check out their facebook page. java.net published a timely conversation with Badr El Houari - the fearless leader of the Morocco JUG team. Did you know that Morocco JUG stood for JCP EC elections (ADD LINK) ? Even though they did not get elected but did fairly well. Now some sample tweets from #JMaghreb ... #JMaghreb is over. Impressive for a first edition! Thanks @badrelhouari and all the @MoroccoJUG team ! Since you @speakjava : System.out.println("Thank you so much dear Tech Evangelist ! The JavaFX was pretty amazing !!! "); #JMaghreb @YounesVendetta @arungupta @JMaghrebConf Right ! hope he will be back to morocco again and again .. :) @Alji_ @arungupta @JMaghrebConf That dude is a genius ;) Put it on your wall :p @arungupta rocking Java EE 6 at @JMaghrebConf #Java #JavaEE #JMaghreb http://t.co/isl0Iq5p @sonyabarry you are an awesome speaker ;-) #JMaghreb rich more than 550 attendees in day one. Expecting more tomorrow! ongratulations @badrelhouari the organisation was great! The talks were pretty interesting, and the turnout was surprising at #JMaghreb! #JMaghreb is truly awesome... The speakers are unbelievable ! #JavaFX... Just amazing #JMaghreb Charmed by the talk about #javaFX ( nodes architecture, MVC, Lazy loading, binding... ) gotta start using it intead of SWT. #JMaghreb JavaFX is killing JFreeChart. It supports Charts a lot of kind of them ... #JMaghreb The british man is back #JMaghreb I do like him!! #JMaghreb @arungupta rocking @JMaghrebConf. pic.twitter.com/CNohA3PE @arungupta Great talk about the future of Java EE (JEE 7 & JEE 8) Thank you. #JMaghreb JEE7 more mooore power , leeess less code !! #JMaghreb They are simplifying the existing API for Java Message Service 2.0 #JMaghreb good to know , the more the code is simplified the better ! The Glassdoor guy #arungupta is doing it RIGHT ! #JMaghreb Great presentation of The Future of the Java Platform: Java EE 7, Java SE 8 & Beyond #jMaghreb @arungupta is a great Guy apparently #JMaghreb On a personal front, the hotel (Soiftel Jardin des Roses) was pretty nice and the location was perfect. There was a 1.8 mile loop dirt trail right next to it so I managed to squeeze some runs before my upcoming marathon. Also enjoyed some great Moroccan cuisine - Couscous, Tajine, mint tea, and moroccan salad. Visit to Kasbah of the Udayas, Hassan II (one of the tallest mosque in the world), and eating in a restaurant in a kasbah are some of the exciting local experiences. Now some pictures from the event (and around the city) ... And the complete album: Many thanks to Badr, Faisal, and rest of the team for organizing a great conference. They are already thinking about how to improve the content, logisitics, and flow for the next year. I'm certainly looking forward to JMaghreb 2.0 :-)

    Read the article

  • Why It Is So Important to Know Your Customer

    - by Christie Flanagan
    Over the years, I endured enough delayed flights, air turbulence and misadventures in airport security clearance to watch my expectations for the air travel experience fall to abysmally low levels. The extent of my loyalty to any one carrier had more to do with the proximity of the airport parking garage to their particular gate than to any effort on the airline’s part to actually earn and retain my business. That all changed one day when I found myself at the airport hoping to catch a return flight home a few hours earlier than expected, using an airline I had flown with for the first time just that week.  When you travel regularly for business, being able to catch a return flight home that’s even an hour or two earlier than originally scheduled is a big deal. It can mean the difference between having a normal evening with your family and having to sneak in like a cat burglar after everyone is fast asleep. And so I found myself on this particular day hoping to catch an earlier flight home. I approached the gate agent and was told that I could go on standby for their next flight out. Then I asked how much it was going to cost to change the flight, knowing full well that I wouldn’t get reimbursed by my company for any change fees. “Oh, there’s no charge to fly on standby,” the gate agent told me. I made a funny look. I couldn’t believe what I was hearing. This airline was going to let my fly on standby, at no additional charge, even though I was a new customer with no status or points. It had been years since I’d seen an airline pass up a short term revenue generating opportunity in favor of a long term loyalty generating one.  At that moment, this particular airline gained my loyal business. Since then, this airline has had the opportunity to learn a lot about me. They know where I live, where I fly from, where I usually fly to, and where I like to sit on the plane. In general, I’ve found their customer service to be quite good whether at the airport, via call center and even through social channels. They email me occasionally, and when they do, they demonstrate that they know me by promoting deals for flights from where I live to places that I’d be interested in visiting. And that’s part of why I’m always so puzzled when I visit their website.Does this company with the great service, customer friendly policies, and clean planes demonstrate that they know me at all when I visit their website? The answer is no. Even when I log in using my loyalty program credentials, it’s pretty obvious that they’re presenting the same old home page and same old offers to every single one of their site visitors. I mean, those promotional offers that they’re featuring so prominently  -- they’re for flights that originate thousands of miles from where I live! There’s no way I’d ever book one of those flights and I’m sure I’m not the only one of their customers to feel that way.My reason for recounting this story is not to pick on the one customer experience flaw I've noticed with this particular airline, in fact, they do so many things right that I’ll continue to fly with them. But I did want to illustrate just how glaringly obvious it is to customers today when a touch point they have with a brand is impersonal, unconnected and out of sync. As someone who’s spent a number of years in the web experience management and online marketing space, it particularly peeves me when that out of sync touch point is a brand’s website, perhaps because I know how important it is to make a customer’s online experience relevant and how many powerful tools are available for making a relevant experience a reality. The fact is, delivering a one-size-fits-all online customer experience is no longer acceptable or particularly effective in today’s world. Today’s savvy customers expect you to know who they are and to understand their preferences, behavior and relationship with your brand. Not only do they expect you to know about them, but they also expect you to demonstrate this knowledge across all of their touch points with your brand in a consistent and compelling fashion, whether it be on your traditional website, your mobile web presence or through various social channels.Delivering the kind of personalized online experiences that customers want can have tremendous business benefits. This is not just about generating feelings of goodwill and higher customer satisfaction ratings either. More relevant and personalized online experiences boost the effectiveness of online marketing initiatives and the statistics prove this out. Personalized web experiences can help increase online conversion rates by 70% -- that’s a huge number.1  And more than three quarters of consumers indicate that they’ve made additional online purchases based on personalized product recommendations.2Now if only this airline would get on board with delivering a more personalized online customer experience. I’d certainly be happier and more likely to spring for one of their promotional offers. And by targeting relevant offers on their home page to appropriate segments of their site visitors, I bet they’d be happier and generating additional revenue too. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}  ***** If you're interested in hearing more perspectives on the benefits of demonstrating that you know your customers by delivering a more personalized experience, check out this white paper on creating a successful and meaningful customer experience on the web.  Also catch the video below on the business value of CX in attracting new customers featuring Oracle's VP of Customer Experience Strategy, Brian Curran. 1 Search Engine Watch 2 Marketing Charts

    Read the article

  • The Unspoken - The Why of GC Ergonomics

    - by jonthecollector
    Do you use GC ergonomics, -XX:+UseAdaptiveSizePolicy, with the UseParallelGC collector? The jist of GC ergonomics for that collector is that it tries to grow or shrink the heap to meet a specified goal. The goals that you can choose are maximum pause time and/or throughput. Don't get too excited there. I'm speaking about UseParallelGC (the throughput collector) so there are definite limits to what pause goals can be achieved. When you say out loud "I don't care about pause times, give me the best throughput I can get" and then say to yourself "Well, maybe 10 seconds really is too long", then think about a pause time goal. By default there is no pause time goal and the throughput goal is high (98% of the time doing application work and 2% of the time doing GC work). You can get more details on this in my very first blog. GC ergonomics The UseG1GC has its own version of GC ergonomics, but I'll be talking only about the UseParallelGC version. If you use this option and wanted to know what it (GC ergonomics) was thinking, try -XX:AdaptiveSizePolicyOutputInterval=1 This will print out information every i-th GC (above i is 1) about what the GC ergonomics to trying to do. For example, UseAdaptiveSizePolicy actions to meet *** throughput goal *** GC overhead (%) Young generation: 16.10 (attempted to grow) Tenured generation: 4.67 (attempted to grow) Tenuring threshold: (attempted to decrease to balance GC costs) = 1 GC ergonomics tries to meet (in order) Pause time goal Throughput goal Minimum footprint The first line says that it's trying to meet the throughput goal. UseAdaptiveSizePolicy actions to meet *** throughput goal *** This run has the default pause time goal (i.e., no pause time goal) so it is trying to reach a 98% throughput. The lines Young generation: 16.10 (attempted to grow) Tenured generation: 4.67 (attempted to grow) say that we're currently spending about 16% of the time doing young GC's and about 5% of the time doing full GC's. These percentages are a decaying, weighted average (earlier contributions to the average are given less weight). The source code is available as part of the OpenJDK so you can take a look at it if you want the exact definition. GC ergonomics is trying to increase the throughput by growing the heap (so says the "attempted to grow"). The last line Tenuring threshold: (attempted to decrease to balance GC costs) = 1 says that the ergonomics is trying to balance the GC times between young GC's and full GC's by decreasing the tenuring threshold. During a young collection the younger objects are copied to the survivor spaces while the older objects are copied to the tenured generation. Younger and older are defined by the tenuring threshold. If the tenuring threshold hold is 4, an object that has survived fewer than 4 young collections (and has remained in the young generation by being copied to the part of the young generation called a survivor space) it is younger and copied again to a survivor space. If it has survived 4 or more young collections, it is older and gets copied to the tenured generation. A lower tenuring threshold moves objects more eagerly to the tenured generation and, conversely a higher tenuring threshold keeps copying objects between survivor spaces longer. The tenuring threshold varies dynamically with the UseParallelGC collector. That is different than our other collectors which have a static tenuring threshold. GC ergonomics tries to balance the amount of work done by the young GC's and the full GC's by varying the tenuring threshold. Want more work done in the young GC's? Keep objects longer in the survivor spaces by increasing the tenuring threshold. This is an example of the output when GC ergonomics is trying to achieve a pause time goal UseAdaptiveSizePolicy actions to meet *** pause time goal *** GC overhead (%) Young generation: 20.74 (no change) Tenured generation: 31.70 (attempted to shrink) The pause goal was set at 50 millisecs and the last GC was 0.415: [Full GC (Ergonomics) [PSYoungGen: 2048K-0K(26624K)] [ParOldGen: 26095K-9711K(28992K)] 28143K-9711K(55616K), [Metaspace: 1719K-1719K(2473K/6528K)], 0.0758940 secs] [Times: user=0.28 sys=0.00, real=0.08 secs] The full collection took about 76 millisecs so GC ergonomics wants to shrink the tenured generation to reduce that pause time. The previous young GC was 0.346: [GC (Allocation Failure) [PSYoungGen: 26624K-2048K(26624K)] 40547K-22223K(56768K), 0.0136501 secs] [Times: user=0.06 sys=0.00, real=0.02 secs] so the pause time there was about 14 millisecs so no changes are needed. If trying to meet a pause time goal, the generations are typically shrunk. With a pause time goal in play, watch the GC overhead numbers and you will usually see the cost of setting a pause time goal (i.e., throughput goes down). If the pause goal is too low, you won't achieve your pause time goal and you will spend all your time doing GC. GC ergonomics is meant to be simple because it is meant to be used by anyone. It was not meant to be mysterious and so this output was added. If you don't like what GC ergonomics is doing, you can turn it off with -XX:-UseAdaptiveSizePolicy, but be pre-warned that you have to manage the size of the generations explicitly. If UseAdaptiveSizePolicy is turned off, the heap does not grow. The size of the heap (and the generations) at the start of execution is always the size of the heap. I don't like that and tried to fix it once (with some help from an OpenJDK contributor) but it unfortunately never made it out the door. I still have hope though. Just a side note. With the default throughput goal of 98% the heap often grows to it's maximum value and stays there. Definitely reduce the throughput goal if footprint is important. Start with -XX:GCTimeRatio=4 for a more modest throughput goal (%20 of the time spent in GC). A higher value means a smaller amount of time in GC (as the throughput goal).

    Read the article

  • The Sensemaking Spectrum for Business Analytics: Translating from Data to Business Through Analysis

    - by Joe Lamantia
    One of the most compelling outcomes of our strategic research efforts over the past several years is a growing vocabulary that articulates our cumulative understanding of the deep structure of the domains of discovery and business analytics. Modes are one example of the deep structure we’ve found.  After looking at discovery activities across a very wide range of industries, question types, business needs, and problem solving approaches, we've identified distinct and recurring kinds of sensemaking activity, independent of context.  We label these activities Modes: Explore, compare, and comprehend are three of the nine recognizable modes.  Modes describe *how* people go about realizing insights.  (Read more about the programmatic research and formal academic grounding and discussion of the modes here: https://www.researchgate.net/publication/235971352_A_Taxonomy_of_Enterprise_Search_and_Discovery) By analogy to languages, modes are the 'verbs' of discovery activity.  When applied to the practical questions of product strategy and development, the modes of discovery allow one to identify what kinds of analytical activity a product, platform, or solution needs to support across a spread of usage scenarios, and then make concrete and well-informed decisions about every aspect of the solution, from high-level capabilities, to which specific types of information visualizations better enable these scenarios for the types of data users will analyze. The modes are a powerful generative tool for product making, but if you've spent time with young children, or had a really bad hangover (or both at the same time...), you understand the difficult of communicating using only verbs.  So I'm happy to share that we've found traction on another facet of the deep structure of discovery and business analytics.  Continuing the language analogy, we've identified some of the ‘nouns’ in the language of discovery: specifically, the consistently recurring aspects of a business that people are looking for insight into.  We call these discovery Subjects, since they identify *what* people focus on during discovery efforts, rather than *how* they go about discovery as with the Modes. Defining the collection of Subjects people repeatedly focus on allows us to understand and articulate sense making needs and activity in more specific, consistent, and complete fashion.  In combination with the Modes, we can use Subjects to concretely identify and define scenarios that describe people’s analytical needs and goals.  For example, a scenario such as ‘Explore [a Mode] the attrition rates [a Measure, one type of Subject] of our largest customers [Entities, another type of Subject] clearly captures the nature of the activity — exploration of trends vs. deep analysis of underlying factors — and the central focus — attrition rates for customers above a certain set of size criteria — from which follow many of the specifics needed to address this scenario in terms of data, analytical tools, and methods. We can also use Subjects to translate effectively between the different perspectives that shape discovery efforts, reducing ambiguity and increasing impact on both sides the perspective divide.  For example, from the language of business, which often motivates analytical work by asking questions in business terms, to the perspective of analysis.  The question posed to a Data Scientist or analyst may be something like “Why are sales of our new kinds of potato chips to our largest customers fluctuating unexpectedly this year?” or “Where can innovate, by expanding our product portfolio to meet unmet needs?”.  Analysts translate questions and beliefs like these into one or more empirical discovery efforts that more formally and granularly indicate the plan, methods, tools, and desired outcomes of analysis.  From the perspective of analysis this second question might become, “Which customer needs of type ‘A', identified and measured in terms of ‘B’, that are not directly or indirectly addressed by any of our current products, offer 'X' potential for ‘Y' positive return on the investment ‘Z' required to launch a new offering, in time frame ‘W’?  And how do these compare to each other?”.  Translation also happens from the perspective of analysis to the perspective of data; in terms of availability, quality, completeness, format, volume, etc. By implication, we are proposing that most working organizations — small and large, for profit and non-profit, domestic and international, and in the majority of industries — can be described for analytical purposes using this collection of Subjects.  This is a bold claim, but simplified articulation of complexity is one of the primary goals of sensemaking frameworks such as this one.  (And, yes, this is in fact a framework for making sense of sensemaking as a category of activity - but we’re not considering the recursive aspects of this exercise at the moment.) Compellingly, we can place the collection of subjects on a single continuum — we call it the Sensemaking Spectrum — that simply and coherently illustrates some of the most important relationships between the different types of Subjects, and also illuminates several of the fundamental dynamics shaping business analytics as a domain.  As a corollary, the Sensemaking Spectrum also suggests innovation opportunities for products and services related to business analytics. The first illustration below shows Subjects arrayed along the Sensemaking Spectrum; the second illustration presents examples of each kind of Subject.  Subjects appear in colors ranging from blue to reddish-orange, reflecting their place along the Spectrum, which indicates whether a Subject addresses more the viewpoint of systems and data (Data centric and blue), or people (User centric and orange).  This axis is shown explicitly above the Spectrum.  Annotations suggest how Subjects align with the three significant perspectives of Data, Analysis, and Business that shape business analytics activity.  This rendering makes explicit the translation and bridging function of Analysts as a role, and analysis as an activity. Subjects are best understood as fuzzy categories [http://georgelakoff.files.wordpress.com/2011/01/hedges-a-study-in-meaning-criteria-and-the-logic-of-fuzzy-concepts-journal-of-philosophical-logic-2-lakoff-19731.pdf], rather than tightly defined buckets.  For each Subject, we suggest some of the most common examples: Entities may be physical things such as named products, or locations (a building, or a city); they could be Concepts, such as satisfaction; or they could be Relationships between entities, such as the variety of possible connections that define linkage in social networks.  Likewise, Events may indicate a time and place in the dictionary sense; or they may be Transactions involving named entities; or take the form of Signals, such as ‘some Measure had some value at some time’ - what many enterprises understand as alerts.   The central story of the Spectrum is that though consumers of analytical insights (represented here by the Business perspective) need to work in terms of Subjects that are directly meaningful to their perspective — such as Themes, Plans, and Goals — the working realities of data (condition, structure, availability, completeness, cost) and the changing nature of most discovery efforts make direct engagement with source data in this fashion impossible.  Accordingly, business analytics as a domain is structured around the fundamental assumption that sense making depends on analytical transformation of data.  Analytical activity incrementally synthesizes more complex and larger scope Subjects from data in its starting condition, accumulating insight (and value) by moving through a progression of stages in which increasingly meaningful Subjects are iteratively synthesized from the data, and recombined with other Subjects.  The end goal of  ‘laddering’ successive transformations is to enable sense making from the business perspective, rather than the analytical perspective.Synthesis through laddering is typically accomplished by specialized Analysts using dedicated tools and methods. Beginning with some motivating question such as seeking opportunities to increase the efficiency (a Theme) of fulfillment processes to reach some level of profitability by the end of the year (Plan), Analysts will iteratively wrangle and transform source data Records, Values and Attributes into recognizable Entities, such as Products, that can be combined with Measures or other data into the Events (shipment of orders) that indicate the workings of the business.  More complex Subjects (to the right of the Spectrum) are composed of or make reference to less complex Subjects: a business Process such as Fulfillment will include Activities such as confirming, packing, and then shipping orders.  These Activities occur within or are conducted by organizational units such as teams of staff or partner firms (Networks), composed of Entities which are structured via Relationships, such as supplier and buyer.  The fulfillment process will involve other types of Entities, such as the products or services the business provides.  The success of the fulfillment process overall may be judged according to a sophisticated operating efficiency Model, which includes tiered Measures of business activity and health for the transactions and activities included.  All of this may be interpreted through an understanding of the operational domain of the businesses supply chain (a Domain).   We'll discuss the Spectrum in more depth in succeeding posts.

    Read the article

  • Alcatel-Lucent: Enterprise 2.0: The Top 5 Things I would Do Over

    - by Kellsey Ruppel
    Happy Monday! Does anyone else feel as if the weekend went entirely too quickly? At least for those of us in the United States, we have the 4th of July Holiday next week to look forward to This week on the blog, we are going to focus on "WebCenter by Example" and highlight best practices from customers and partners. I recently came across this article and I think this is a great example of how we can learn from one another when it comes to social collaboration adoption. Do you agree with Jem? What things or best practices have you learned in your organizations?  By Jem Janik, Enterprise community manager, Alcatel-Lucent  Not so long ago, Engage, the Alcatel-Lucent employee social network and collaboration platform, celebrated its third birthday. With more than 25,000 members actively interacting each month, Engage has been a big enough success that it’s been the subject of external articles, and often those of us who helped launch it will go out and speak about what aspects contributed to that success. Hindsight is still 20/20 and what it takes to successfully launch an enterprise 2.0 community is fairly well-known now.  Today I want to tell you what I suspect you really want to know about.  As the enterprise community manager for Engage, after three years in, what are the top 5 things I wish we (and I mostly mean me) could do over? #5 Define your analytics solution from the start There is so much to do when you launch a community and initially growing it without complete chaos is quite a task.  It doesn’t take too long to get to a point where you want to focus your continued efforts in growing company collaboration.  Do people truly talk across regional boundaries or have we shifted siloed conversations to a new platform.  Is there one organization that doesn’t interact with another? If you are lucky you’ll have someone in your community team well versed in the world of databases and SQL queries, but it takes time to figure out what backend analytics data actually means. Professional support can be expensive and it may be hard to justify later as it typically has the community manager as the only main customer.  Figure out what you think you’ll want to know and how to get it early on. The sooner the better even if it doesn’t seem that critical at the time. #4 Lobbies guide you to the right places One piece of feedback that comes up more and more as we keep growing Engage is it’s hard to find stuff, or new people are not sure where to start. Something we’re doing now is defining some general topic areas of interest to be like “lobbies” into the platform and some common hashtags to go with them. I liken this to walking into a large medical or professional building for the first time.  There are hundreds of offices, and you look to a sign in the lobby to get guided to the right place for you.  We’re building that sign for members now, but again we missed the boat as the majority of the company has had their initial Engage experience. #3 Clean up, clean up, clean up Knowledge work and folksonomies are messy! The day we opened the doors to Engage I would have said we should keep everything ever created in Engage with an argument that it was a window into our collective knowledge so nothing should go.  Well, 6000+ groups and 200,000+ pieces of content later, I’ve changed my mind.  As previously mentioned, with too much “stuff” the system can be overwhelming to new members and it makes it harder to get what you’re looking for.   Do we need that help document about a tool we no longer have? NO!  Do we need that group that had 1 document and 2 discussions in the last two years? NO! Should we only have one group about a given topic instead of 4?  YES! Last fall, Engage defined a cleanup process for groups not used for a long time.  We also formed a volunteer cleaning army who are extra eyes on the hunt for “stuff” that should be updated, merged, or deleted.  It’s better late than never, but in line with what’s becoming a theme I wish these efforts had started earlier. #2 Communications & local community management One of the most important aspects of my job is to make sure people who should be talking to each other are actually doing it.  Connecting people to the other people they should know, the groups they should join, a piece of content that shouldn’t be missed.   I have worked both inside and outside of communications teams, and they are the best informed people in your company.  They know when something big is coming, how it impacts employees, how it fits with strategy, who else knows more, etc.  Having communications professionals who are power users can help scale up community management because they are already so well connected.  They also need to have the platform skills to pay attention without suffering email overload, how to grab someone’s attention, etc.  I wish I’d had figured this out much earlier.  If I had I would have groomed more communications colleagues into advocates and power members right at the start. #1 Grooming advocates vs. natural advocates I’ve just alluded to this above already. The very best advocates are those who naturally embrace your platform and automatically start to see new ways to work within it.  Those advocates seem to come out of the woodwork naturally since some of them are early adopters.  Not surprisingly, our best advocates today are those same people who were willing to come kick the tires when the community was completely empty.  Unfortunately, we didn’t get a global spread of those natural advocates.  I did ask around when we first launched for other people who might be good candidates, but didn’t push too hard as there were so many other things to get ready.  That was a mistake.  If I could get a redo I would have formally asked for people to be assigned where there were gaps and groomed them into an advocate.  Today as we find new advocates to fill the gaps, people are hesitant as the initial set has three years of practice are ahead of the curve power members; it definitely would have been easier earlier on. As fairly early adopters to corporate scale enterprise collaboration, there hasn’t been a roadmap to follow as we’ve grown Engage, which is part of the fun! It’s clear a lot of issues are more easily tackled the earlier you identify and begin to correct them, and I’ve identified the main five I wish I could redo.  In the spirit of collaboration, I hope someone else learns from my mistakes! View the original article by Jem here. 

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 4

    - by MarkPearl
    Learning Outcomes Explain the characteristics of memory systems Describe the memory hierarchy Discuss cache memory principles Discuss issues relevant to cache design Describe the cache organization of the Pentium Computer Memory Systems There are key characteristics of memory… Location – internal or external Capacity – expressed in terms of bytes Unit of Transfer – the number of bits read out of or written into memory at a time Access Method – sequential, direct, random or associative From a users perspective the two most important characteristics of memory are… Capacity Performance – access time, memory cycle time, transfer rate The trade off for memory happens along three axis… Faster access time, greater cost per bit Greater capacity, smaller cost per bit Greater capacity, slower access time This leads to people using a tiered approach in their use of memory   As one goes down the hierarchy, the following occurs… Decreasing cost per bit Increasing capacity Increasing access time Decreasing frequency of access of the memory by the processor The use of two levels of memory to reduce average access time works in principle, but only if conditions 1 to 4 apply. A variety of technologies exist that allow us to accomplish this. Thus it is possible to organize data across the hierarchy such that the percentage of accesses to each successively lower level is substantially less than that of the level above. A portion of main memory can be used as a buffer to hold data temporarily that is to be read out to disk. This is sometimes referred to as a disk cache and improves performance in two ways… Disk writes are clustered. Instead of many small transfers of data, we have a few large transfers of data. This improves disk performance and minimizes processor involvement. Some data designed for write-out may be referenced by a program before the next dump to disk. In that case the data is retrieved rapidly from the software cache rather than slowly from disk. Cache Memory Principles Cache memory is substantially faster than main memory. A caching system works as follows.. When a processor attempts to read a word of memory, a check is made to see if this in in cache memory… If it is, the data is supplied, If it is not in the cache, a block of main memory, consisting of a fixed number of words is loaded to the cache. Because of the phenomenon of locality of references, when a block of data is fetched into the cache, it is likely that there will be future references to that same memory location or to other words in the block. Elements of Cache Design While there are a large number of cache implementations, there are a few basic design elements that serve to classify and differentiate cache architectures… Cache Addresses Cache Size Mapping Function Replacement Algorithm Write Policy Line Size Number of Caches Cache Addresses Almost all non-embedded processors support virtual memory. Virtual memory in essence allows a program to address memory from a logical point of view without needing to worry about the amount of physical memory available. When virtual addresses are used the designer may choose to place the cache between the MMU (memory management unit) and the processor or between the MMU and main memory. The disadvantage of virtual memory is that most virtual memory systems supply each application with the same virtual memory address space (each application sees virtual memory starting at memory address 0), which means the cache memory must be completely flushed with each application context switch or extra bits must be added to each line of the cache to identify which virtual address space the address refers to. Cache Size We would like the size of the cache to be small enough so that the overall average cost per bit is close to that of main memory alone and large enough so that the overall average access time is close to that of the cache alone. Also, larger caches are slightly slower than smaller ones. Mapping Function Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping main memory blocks into cache lines. The choice of mapping function dictates how the cache is organized. Three techniques can be used… Direct – simplest technique, maps each block of main memory into only one possible cache line Associative – Each main memory block to be loaded into any line of the cache Set Associative – exhibits the strengths of both the direct and associative approaches while reducing their disadvantages For detailed explanations of each approach – read the text book (page 148 – 154) Replacement Algorithm For associative and set associating mapping a replacement algorithm is needed to determine which of the existing blocks in the cache must be replaced by a new block. There are four common approaches… LRU (Least recently used) FIFO (First in first out) LFU (Least frequently used) Random selection Write Policy When a block resident in the cache is to be replaced, there are two cases to consider If no writes to that block have happened in the cache – discard it If a write has occurred, a process needs to be initiated where the changes in the cache are propagated back to the main memory. There are several approaches to achieve this including… Write Through – all writes to the cache are done to the main memory as well at the point of the change Write Back – when a block is replaced, all dirty bits are written back to main memory The problem is complicated when we have multiple caches, there are techniques to accommodate for this but I have not summarized them. Line Size When a block of data is retrieved and placed in the cache, not only the desired word but also some number of adjacent words are retrieved. As the block size increases from very small to larger sizes, the hit ratio will at first increase because of the principle of locality, which states that the data in the vicinity of a referenced word are likely to be referenced in the near future. As the block size increases, more useful data are brought into cache. The hit ratio will begin to decrease as the block becomes even bigger and the probability of using the newly fetched information becomes less than the probability of using the newly fetched information that has to be replaced. Two specific effects come into play… Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch overwrites older cache contents, a small number of blocks results in data being overwritten shortly after they are fetched. As a block becomes larger, each additional word is farther from the requested word and therefore less likely to be needed in the near future. The relationship between block size and hit ratio is complex, and no set approach is judged to be the best in all circumstances.   Pentium 4 and ARM cache organizations The processor core consists of four major components: Fetch/decode unit – fetches program instruction in order from the L2 cache, decodes these into a series of micro-operations, and stores the results in the L2 instruction cache Out-of-order execution logic – Schedules execution of the micro-operations subject to data dependencies and resource availability – thus micro-operations may be scheduled for execution in a different order than they were fetched from the instruction stream. As time permits, this unit schedules speculative execution of micro-operations that may be required in the future Execution units – These units execute micro-operations, fetching the required data from the L1 data cache and temporarily storing results in registers Memory subsystem – This unit includes the L2 and L3 caches and the system bus, which is used to access main memory when the L1 and L2 caches have a cache miss and to access the system I/O resources

    Read the article

  • Concurrency Utilities for Java EE Early Draft (JSR 236)

    - by arungupta
    Concurrency Utilities for Java EE is being worked as JSR 236 and has released an Early Draft. It provides concurrency capabilities to Java EE application components without compromising container integrity. Simple (common) and advanced concurrency patterns are easily supported without sacrificing usability. Using Java SE concurrency utilities such as java.util.concurrent API, java.lang.Thread and java.util.Timer in a Java EE application component such as EJB or Servlet are problematic since the container and server have no knowledge of these resources. JSR 236 enables concurrency largely by extending the Concurrency Utilities API developed under JSR-166. This also allows a consistency between Java SE and Java EE concurrency programming model. There are four main programming interfaces available: ManagedExecutorService ManagedScheduledExecutorService ContextService ManagedThreadFactory ManagedExecutorService is a managed version of java.util.concurrent.ExecutorService. The implementations of this interface are provided by the container and accessible using JNDI reference: <resource-env-ref>  <resource-env-ref-name>    concurrent/BatchExecutor  </resource-env-ref-name>  <resource-env-ref-type>    javax.enterprise.concurrent.ManagedExecutorService  </resource-env-ref-type><resource-env-ref> and available as: @Resource(name="concurrent/BatchExecutor")ManagedExecutorService executor; Its recommended to bind the JNDI references in the java:comp/env/concurrent subcontext. The asynchronous tasks that need to be executed need to implement java.lang.Runnable or java.util.concurrent.Callable interface as: public class MyTask implements Runnable { public void run() { // business logic goes here }} OR public class MyTask2 implements Callable<Date> {  public Date call() { // business logic goes here   }} The task is then submitted to the executor using one of the submit method that return a Future instance. The Future represents the result of the task and can also be used to check if the task is complete or wait for its completion. Future<String> future = executor.submit(new MyTask(), String.class);. . .String result = future.get(); Another example to submit tasks is: class MyTask implements Callback<Long> { . . . }class MyTask2 implements Callback<Date> { . . . }ArrayList<Callable> tasks = new ArrayList<();tasks.add(new MyTask());tasks.add(new MyTask2());List<Future<Object>> result = executor.invokeAll(tasks); The ManagedExecutorService may be configured for different properties such as: Hung Task Threshold: Time in milliseconds that a task can execute before it is considered hung Pool Info Core Size: Number of threads to keep alive Maximum Size: Maximum number of threads allowed in the pool Keep Alive: Time to allow threads to remain idle when # of threads > Core Size Work Queue Capacity: # of tasks that can be stored in inbound buffer Thread Use: Application intend to run short vs long-running tasks, accordingly pooled or daemon threads are picked ManagedScheduledExecutorService adds delay and periodic task running capabilities to ManagedExecutorService. The implementations of this interface are provided by the container and accessible using JNDI reference: <resource-env-ref>  <resource-env-ref-name>    concurrent/BatchExecutor  </resource-env-ref-name>  <resource-env-ref-type>    javax.enterprise.concurrent.ManagedExecutorService  </resource-env-ref-type><resource-env-ref> and available as: @Resource(name="concurrent/timedExecutor")ManagedExecutorService executor; And then the tasks are submitted using submit, invokeXXX or scheduleXXX methods. ScheduledFuture<?> future = executor.schedule(new MyTask(), 5, TimeUnit.SECONDS); This will create and execute a one-shot action that becomes enabled after 5 seconds of delay. More control is possible using one of the newly added methods: MyTaskListener implements ManagedTaskListener {  public void taskStarting(...) { . . . }  public void taskSubmitted(...) { . . . }  public void taskDone(...) { . . . }  public void taskAborted(...) { . . . } }ScheduledFuture<?> future = executor.schedule(new MyTask(), 5, TimeUnit.SECONDS, new MyTaskListener()); Here, ManagedTaskListener is used to monitor the state of a task's future. ManagedThreadFactory provides a method for creating threads for execution in a managed environment. A simple usage is: @Resource(name="concurrent/myThreadFactory")ManagedThreadFactory factory;. . .Thread thread = factory.newThread(new Runnable() { . . . }); concurrent/myThreadFactory is a JNDI resource. There is lot of interesting content in the Early Draft, download it, and read yourself. The implementation will be made available soon and also be integrated in GlassFish 4 as well. Some references for further exploring ... Javadoc Early Draft Specification concurrency-ee-spec.java.net [email protected]

    Read the article

  • Solaris 11.1 changes building of code past the point of __NORETURN

    - by alanc
    While Solaris 11.1 was under development, we started seeing some errors in the builds of the upstream X.Org git master sources, such as: "Display.c", line 65: Function has no return statement : x_io_error_handler "hostx.c", line 341: Function has no return statement : x_io_error_handler from functions that were defined to match a specific callback definition that declared them as returning an int if they did return, but these were calling exit() instead of returning so hadn't listed a return value. These had been generating warnings for years which we'd been ignoring, but X.Org has made enough progress in cleaning up code for compiler warnings and static analysis issues lately, that the community turned up the default error levels, including the gcc flag -Werror=return-type and the equivalent Solaris Studio cc flags -v -errwarn=E_FUNC_HAS_NO_RETURN_STMT, so now these became errors that stopped the build. Yet on Solaris, gcc built this code fine, while Studio errored out. Investigation showed this was due to the Solaris headers, which during Solaris 10 development added a number of annotations to the headers when gcc was being used for the amd64 kernel bringup before the Studio amd64 port was ready. Since Studio did not support the inline form of these annotations at the time, but instead used #pragma for them, the definitions were only present for gcc. To resolve this, I fixed both sides of the problem, so that it would work for building new X.Org sources on older Solaris releases or with older Studio compilers, as well as fixing the general problem before it broke more software building on Solaris. To the X.Org sources, I added the traditional Studio #pragma does_not_return to recognize that functions like exit() don't ever return, in patches such as this Xserver patch. Adding a dummy return statement was ruled out as that introduced unreachable code errors from compilers and analyzers that correctly realized you couldn't reach that code after a return statement. And on the Solaris 11.1 side, I updated the annotation definitions in <sys/ccompile.h> to enable for Studio 12.0 and later compilers the annotations already existing in a number of system headers for functions like exit() and abort(). If you look in that file you'll see the annotations we currently use, though the forms there haven't gone through review to become a Committed interface, so may change in the future. Actually getting this integrated into Solaris though took a bit more work than just editing one header file. Our ELF binary build comparison tool, wsdiff, actually showed a large number of differences in the resulting binaries due to the compiler using this information for branch prediction, code path analysis, and other possible optimizations, so after comparing enough of the disassembly output to be comfortable with the changes, we also made sure to get this in early enough in the release cycle so that it would get plenty of test exposure before the release. It also required updating quite a bit of code to avoid introducing new lint or compiler warnings or errors, and people building applications on top of Solaris 11.1 and later may need to make similar changes if they want to keep their build logs similarly clean. Previously, if you had a function that was declared with a non-void return type, lint and cc would warn if you didn't return a value, even if you called a function like exit() or panic() that ended execution. For instance: #include <stdlib.h> int callback(int status) { if (status == 0) return status; exit(status); } would previously require a never executed return 0; after the exit() to avoid lint warning "function falls off bottom without returning value". Now the compiler & lint will both issue "statement not reached" warnings for a return 0; after the final exit(), allowing (or in some cases, requiring) it to be removed. However, if there is no return statement anywhere in the function, lint will warn that you've declared a function returning a value that never does so, suggesting you can declare it as void. Unfortunately, if your function signature is required to match a certain form, such as in a callback, you not be able to do so, and will need to add a /* LINTED */ to the end of the function. If you need your code to build on both a newer and an older release, then you will either need to #ifdef these unreachable statements, or, to keep your sources common across releases, add to your sources the corresponding #pragma recognized by both current and older compiler versions, such as: #pragma does_not_return(exit) #pragma does_not_return(panic) Hopefully this little extra work is paid for by the compilers & code analyzers being able to better understand your code paths, giving you better optimizations and more accurate errors & warning messages.

    Read the article

  • JavaOne Latin America 2012 is a wrap!

    - by arungupta
    Third JavaOne in Latin America (2010, 2011) is now a wrap! Like last year, the event started with a Geek Bike Ride. I could not attend the bike ride because of pre-planned activities but heard lots of good comments about it afterwards. This is a great way to engage with JavaOne attendees in an informal setting. I highly recommend you joining next time! JavaOne Blog provides a a great coverage for the opening keynotes. I talked about all the great set of functionality that is coming in the Java EE 7 Platform. Also shared the details on how Java EE 7 JSRs are willing to take help from the Adopt-a-JSR program. glassfish.org/adoptajsr bridges the gap between JUGs willing to participate and looking for areas on where to help. The different specification leads have identified areas on where they are looking for feedback. So if you are JUG is interested in picking a JSR, I recommend to take a look at glassfish.org/adoptajsr and jump on the bandwagon. The main attraction for the Tuesday evening was the GlassFish Party. The party was packed with Latin American JUG leaders, execs from Oracle, and local community members. Free flowing food and beer/caipirinhas acted as great lubricant for great conversations. Some of them were considering the migration from Spring -> Java EE 6 and replacing their primary app server with GlassFish. Locaweb, a local hosting provider sponsored a round of beer at the party as well. They are planning to come with Java EE hosting next year and GlassFish would be a logical choice for them ;) I heard lots of positive feedback about the party afterwards. Many thanks to Bruno Borges for organizing a great party! Check out some more fun pictures of the party! Next day, I gave a presentation on "The Java EE 7 Platform: Productivity and HTML 5" and the slides are now available: With so much new content coming in the plaform: Java Caching API (JSR 107) Concurrency Utilities for Java EE (JSR 236) Batch Applications for the Java Platform (JSR 352) Java API for JSON (JSR 353) Java API for WebSocket (JSR 356) And JAX-RS 2.0 (JSR 339) and JMS 2.0 (JSR 343) getting major updates, there is definitely lot of excitement that was evident amongst the attendees. The talk was delivered in the biggest hall and had about 200 attendees. Also spent a lot of time talking to folks at the OTN Lounge. The JUG leaders appreciation dinner in the evening had its usual share of fun. Day 3 started with a session on "Building HTML5 WebSocket Apps in Java". The slides are now available: The room was packed with about 150 attendees and there was good interaction in the room as well. A collaborative whiteboard built using WebSocket was very well received. The following tweets made it more worthwhile: A WebSocket speek, by @ArunGupta, was worth every hour lost in transit. #JavaOneBrasil2012, #JavaOneBr @arungupta awesome presentation about WebSockets :) The session was immediately followed by the hands-on lab "Developing JAX-RS Web Applications Utilizing Server-Sent Events and WebSocket". The lab covers JAX-RS 2.0, Jersey-specific features such as Server-Sent Events, and a WebSocket endpoint using JSR 356. The complete self-paced lab guide can be downloaded from here. The lab was planned for 2 hours but several folks finished the entire exercise in about 75 mins. The wonderfully written lab material and an added incentive of Java EE 6 Pocket Guide did the trick ;-) I also spoke at "The Java Community Process: How You Can Make a Positive Difference". It was really great to see several JUG leaders talking about Adopt-a-JSR program and other activities that attendees can do to participate in the JCP. I shared details about Adopt a Java EE 7 JSR as well. The community keynote in the evening was looking fun but I had to leave in between to go through the peak Sao Paulo traffic time :) Enjoy the complete set of pictures in the album:

    Read the article

  • Social Media Talk: Facebook, Really?? How Has It Become This Popular??

    - by david.talamelli
    If you have read some of my previous posts over the past few years either here or on my personal blog David's Journal on Tap you will know I am a Social Media enthusiast. I use various social media sites everday in both my work and personal life. I was surprised to read today on Mashable.com that Facebook now Commands 41% of Social Media Trafic. When I think of the Social Media sites I use most, the sites that jump into my mind first are LinkedIn, Blogging and Twitter. I do use Facebook in both work and in my personal life but on the list of sites I use it probably ranks closer to the bottom of the list rather than the top. I know Facebook is engrained in everything these days - but really I am not a huge Facebook fan - and I am finding that over the past 3-6 months my interest in Facebook is going down rather than up. From a work perspective - SM sites let me connect with candidates and communities and they help me talk about the things that I am doing here at Oracle. From a personal perspective SM sites let me keep in touch with friends and family both here and overseas in a really simple and easy way. Sites like LinkedIn give me a great way to proactively talk to both active and passive candidates. Twitter is fantastic to keep in touch with industry trends and keep up to date on the latest trending topics as well as follow conversations about whatever keyword you want to follow. Blogging lets me share my thoughts and ideas with others and while FB does have some great benefits I don't think the benefits outweigh the negatives of using FB. I use TweetDeck to keep track of my twitter feeds, the latest LinkedIn updates and Facebook updates. Tweetdeck is a great tool as it consolidates these 3 SM sites for me and I can quickly scan to see the latest news on any of them. From what I have seen from Facebook it looks like 70%-80% of people are using FB to grow their farm on farmville, start a mafia war on mafiawars or read their horoscope, check their love percentage, etc...... In between all these "updates" every now and again you do see a real update from someone who actually has something to say but there is so much "white noise" on FB from all the games and apps that is hard to see the real messages from all the 'games' information. I don't like having to scroll through what seems likes pages of farmville updates only to get one real piece of information. For me this is where FB's value really drops off. While I use SM everyday I try to use SM effectively. Sifting through so much noise is not effective and really I am not all that interested in Farmville, MafiaWars or any similar game/app. But what about Groups and Facebook Ads?? Groups are ok, but I am not sure I would call them SM game changers - yes there is a group for everything out there, but a group whether it is on FB or not is only as good as the community that supports and participates in it. Many of the Groups on FB (and elsewhere) are set up and never used or promoted by the moderator. I have heard that FB ads do have an impact, and I have not really looked at them - the question of cost jumps and return on investment comes to my mind though. FB does have some benefits, it is a great way to keep in touch with people and a great way to talk to others. I think it would have been interesting to see a different statistic measuring how effective that 41% of Social Media Traffic via FB really is or is it just a case of more people jumping online to play games. To me FB does not equal SM effectiveness, at the moment it is a tool that I sometimes need to use as opposed to want to use. This article was originally posted on David Talamelli's Blog - David's Journal on Tap

    Read the article

  • Java Spotlight Episode 57: Live From #Devoxx - Ben Evans and Martijn Verburg of the London JUG with Yara Senger of SouJava

    - by Roger Brinkley
    Tweet Live from Devoxx 11,  an interview with Ben Evans and Martijn Verburg from the London JUG along with  Yara Senger from the SouJava JUG on the JCP Executive Committee Elections, JSR 248, and Adopt-a-JSR program. Both the London JUG and SouJava JUG are JCP Standard Edition Executive Committee Members. Joining us this week on the Java All Star Developer Panel are Geertjan Wielenga, Principal Product Manger in Oracle Developer Tools; Stephen Chin, Java Champion and Java FX expert; and Antonio Goncalves, Paris JUG leader. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link: Java Spotlight Podcast in iTunes. Show Notes News Netbeans 7.1 JDK 7 upgrade tools Netbeans First Patch Program OpenJFX approved as an OpenJDK project Devoxx France April 18-20, 2012 Events Nov 22-25, OTN Developer Days in the Nordics Nov 22-23, Goto Conference, Prague Dec 6-8, Java One Brazil, Sao Paulo Feature interview Ben Evans has lived in "Interesting Times" in technology - he was the lead performance testing engineer for the Google IPO, worked on the initial UK trials of 3G networks with BT, built award-winning websites for some of Hollywood's biggest hits of the 90s, rearchitected and reimagined technology helping some of the most vulnerable people in the UK and has worked on everything from some of the UKs very first ecommerce sites, through to multi-billion dollar currency trading systems. He helps to run the London Java Community, and represents the JUG on the Java SE/EE Executive Committee. His first book "The Well-Grounded Java Developer" (with Martijn Verburg) has just been published by Manning. Martijn Verburg (aka 'the Diabolical Developer') herds Cats in the Java/open source communities and is constantly humbled by the creative power to be found there. Currently he resides in London where he co-leads the London JUG (a JCP EC member), runs a couple of open source projects & drinks too much beer at his local pub. You can find him online moderating at the Javaranch or discussing (ranting?) subjects on the Prgorammers Stack Exchange site. Most recently he's become a regular speaker at conferences on Java, open source and software development and has recently wrapped up his first Manning title - "The Well-Grounded Java Developer" with his co-author Ben Evans. Yara Senger is the partner and director of teacher education and Globalcode, graduated from the University of Sao Paulo, Sao Carlos, has significant experience in Brazil and abroad in developing solutions to critical Java. She is the co-creator of Java programs Academy and Academy of Web Developer, accumulating over 1000 hours in the classroom teaching Java. She currently serves as the President of Sou Java. In this interview Ben, Martijn, and Yara talk about the JCP Executive Committee Elections, JSR 348, and the Adopt-a-JSR program. Mail Bag What's Cool Show Transcripts Transcript for this show is available here when available.

    Read the article

  • Tuxedo 11gR1 Client Server Affinity

    - by todd.little
    One of the major new features in Oracle Tuxedo 11gR1 is the ability to define an affinity between clients and servers. In previous releases of Tuxedo, the only way to ensure that multiple requests from a client went to the same server was to establish a conversation with tpconnect() and then use tpsend() and tprecv(). Although this works it has some drawbacks. First for single-threaded servers, the server is tied up for the entire duration of the conversation and cannot service other clients, an obvious scalability issue. I believe the more significant drawback is that the application programmer has to switch from the simple request/response model provided by tpcall() to the half duplex tpsend() and tprecv() calls used with conversations. Switching between the two typically requires a fair amount of redesign and recoding. The Client Server Affinity feature in Tuxedo 11gR1 allows by way of configuration an application to define affinities that can exist between clients and servers. This is done in the *SERVICES section of the UBBCONFIG file. Using new parameters for services defined in the *SERVICES section, customers can determine when an affinity session is created or deleted, the scope of the affinity, and whether requests can be routed outside the affinity scope. The AFFINITYSCOPE parameter can be MACHINE, GROUP, or SERVER, meaning that while the affinity session is in place, all requests from the client will be routed to the same MACHINE, GROUP, or SERVER. The creation and deletion of affinity is defined by the SESSIONROLE parameter and a service can be defined as either BEGIN, END, or NONE, where BEGIN starts an affinity session, END deletes the affinity session, and NONE does not impact the affinity session. Finally customers can define how strictly they want the affinity scope adhered to using the AFFINITYSTRICT parameter. If set to MANDATORY, all requests made during an affinity session will be routed to a server in the affinity scope. Thus if the affinity scope is SERVER, all subsequent tpcall() requests will be sent to the same server the affinity scope was established with. If the server doesn't offer that service, even though other servers do offer the service, the call will fail with TPNOENT. Setting AFFINITYSTRICT to PRECEDENT tells Tuxedo to try and route the request to a server in the affinity scope, but if that's not possible, then Tuxedo can try to route the request to servers out of scope. All of this begs the question, why? Why have this feature? There many uses for this capability, but the most common is when there is state that is maintained in a server, group of servers, or in a machine and subsequent requests from a client must be routed to where that state is maintained. This might be something as simple as a database cursor maintained by a server on behalf of a client. Alternatively it might be that the server has a connection to an external system and subsequent requests need to go back to the server that has that connection. A more sophisticated case is where a group of servers maintains some sort of cache in shared memory and subsequent requests need to be routed to where the cache is maintained. Although this last case might be able to be handled by data dependent routing, using client server affinity allows the cache to be partitioned dynamically instead of statically.

    Read the article

< Previous Page | 514 515 516 517 518 519 520 521 522 523 524 525  | Next Page >