Search Results

Search found 1317 results on 53 pages for 'sata'.

Page 52/53 | < Previous Page | 48 49 50 51 52 53  | Next Page >

  • Inside Red Gate - Be Reasonable!

    - by simonc
    As I discussed in my previous posts, divisions and project teams within Red Gate are allowed a lot of autonomy to manage themselves. It's not just the teams though, there's an awful lot of freedom given to individual employees within the company as well. Reasonableness How Red Gate treats it's employees is embodied in the phrase 'You will be reasonable with us, and we will be reasonable with you'. As an employee, you are trusted to do your job to the best of you ability. There's no one looking over your shoulder, no one clocking you in and out each day. Everyone is working at the company because they want to, and one of the core ideas of Red Gate is that the company exists to 'let people do the best work of their lives'. Everything is geared towards that. To help you do your job, office services and the IT department are there. If you need something to help you work better (a third or fourth monitor, footrests, or a new keyboard) then ask people in Information Systems (IS) or Office Services and you will be given it, no questions asked. Everyone has administrator access to their own machines, and you can install whatever you want on it. If there's a particular bit of software you need, then ask IS and they will buy it. As an example, last year I wanted to replace my main hard drive with an SSD; I had a summer job at school working in a computer repair shop, so knew what to do. I went to IS and asked for 'an SSD, a SATA cable, and a screwdriver'. And I got it there and then, even the screwdriver. Awesome. I screwed it in myself, copied all my main drive files across, and I was good to go. Of course, if you're not happy doing that yourself, then IS will sort it all out for you, no problems. If you need something that the company doesn't have (say, a book off Amazon, or you need some specifications printing off & bound), then everyone has a expense limit of £100 that you can use without any sign-off needed from your managers. If you need a company credit card for whatever reason, then you can get it. This freedom extends to working hours and holiday; you're expected to be in the office 11am-3pm each day, but outside those times you can work whenever you want. If you need a half-day holiday on a days notice, or even the same day, then you'll get it, unless there's a good reason you're needed that day. If you need to work from home for a day or so for whatever reason, then you can. If it's reasonable, then it's allowed. Trust issues? A lot of trust, and a lot of leeway, is given to all the people in Red Gate. Everyone is expected to work hard, do their jobs to the best of their ability, and there will be a minimum of bureaucratic obstacles that stop you doing your work. What happens if you abuse this trust? Well, an example is company trip expenses. You're free to expense what you like; food, drink, transport, etc, but if you expenses are not reasonable, then you will never travel with the company again. Simple as that. Everyone knows when they're abusing the system, so simply don't do it. Along with reasonableness, another phrase used is 'Don't be an a**hole'. If you act like an a**hole, and abuse any of the trust placed in you, even if you're the best tester, salesperson, dev, or manager in the company, then you won't be a part of the company any more. From what I know about other companies, employee trust is highly variable between companies, all the way up to CCTV trained on employee's monitors. As a dev, I want to produce well-written & useful code that solves people's problems. Being able to get whatever I need - install whatever tools I need, get time off when I need to, obtain reference books within a day - all let me do my job, and so let Red Gate help other people do their own jobs through the tools we produce. Plus, I don't think I would like working for a company that doesn't allow admin access to your own machine and blocks Facebook! Cross posted from Simple Talk.

    Read the article

  • KVM guest io is much slower than host io: is that normal?

    - by Evolver
    I have a Qemu-KVM host system setup on CentOS 6.3. Four 1TB SATA HDDs working in Software RAID10. Guest CentOS 6.3 is installed on separate LVM. People say that they see guest performance almost equal to host performance, but I don't see that. My i/o tests are showing 30-70% slower performance on guest than on host system. I tried to change scheduler (set elevator=deadline on host and elevator=noop on guest), set blkio.weight to 1000 in cgroup, change io to virtio... But none of these changes gave me any significant results. This is a guest .xml config part: <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/dev/vgkvmnode/lv2'/> <target dev='vda' bus='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/> </disk> There are my tests: Host system: iozone test # iozone -a -i0 -i1 -i2 -s8G -r64k random random KB reclen write rewrite read reread read write 8388608 64 189930 197436 266786 267254 28644 66642 dd read test: one process and then four simultaneous processes # dd if=/dev/vgkvmnode/lv2 of=/dev/null bs=1M count=1024 iflag=direct 1073741824 bytes (1.1 GB) copied, 4.23044 s, 254 MB/s # dd if=/dev/vgkvmnode/lv2 of=/dev/null bs=1M count=1024 iflag=direct skip=1024 & dd if=/dev/vgkvmnode/lv2 of=/dev/null bs=1M count=1024 iflag=direct skip=2048 & dd if=/dev/vgkvmnode/lv2 of=/dev/null bs=1M count=1024 iflag=direct skip=3072 & dd if=/dev/vgkvmnode/lv2 of=/dev/null bs=1M count=1024 iflag=direct skip=4096 1073741824 bytes (1.1 GB) copied, 14.4528 s, 74.3 MB/s 1073741824 bytes (1.1 GB) copied, 14.562 s, 73.7 MB/s 1073741824 bytes (1.1 GB) copied, 14.6341 s, 73.4 MB/s 1073741824 bytes (1.1 GB) copied, 14.7006 s, 73.0 MB/s dd write test: one process and then four simultaneous processes # dd if=/dev/zero of=test bs=1M count=1024 oflag=direct 1073741824 bytes (1.1 GB) copied, 6.2039 s, 173 MB/s # dd if=/dev/zero of=test bs=1M count=1024 oflag=direct & dd if=/dev/zero of=test2 bs=1M count=1024 oflag=direct & dd if=/dev/zero of=test3 bs=1M count=1024 oflag=direct & dd if=/dev/zero of=test4 bs=1M count=1024 oflag=direct 1073741824 bytes (1.1 GB) copied, 32.7173 s, 32.8 MB/s 1073741824 bytes (1.1 GB) copied, 32.8868 s, 32.6 MB/s 1073741824 bytes (1.1 GB) copied, 32.9097 s, 32.6 MB/s 1073741824 bytes (1.1 GB) copied, 32.9688 s, 32.6 MB/s Guest system: iozone test # iozone -a -i0 -i1 -i2 -s512M -r64k random random KB reclen write rewrite read reread read write 524288 64 93374 154596 141193 149865 21394 46264 dd read test: one process and then four simultaneous processes # dd if=/dev/mapper/VolGroup-lv_home of=/dev/null bs=1M count=1024 iflag=direct skip=1024 1073741824 bytes (1.1 GB) copied, 5.04356 s, 213 MB/s # dd if=/dev/mapper/VolGroup-lv_home of=/dev/null bs=1M count=1024 iflag=direct skip=1024 & dd if=/dev/mapper/VolGroup-lv_home of=/dev/null bs=1M count=1024 iflag=direct skip=2048 & dd if=/dev/mapper/VolGroup-lv_home of=/dev/null bs=1M count=1024 iflag=direct skip=3072 & dd if=/dev/mapper/VolGroup-lv_home of=/dev/null bs=1M count=1024 iflag=direct skip=4096 1073741824 bytes (1.1 GB) copied, 24.7348 s, 43.4 MB/s 1073741824 bytes (1.1 GB) copied, 24.7378 s, 43.4 MB/s 1073741824 bytes (1.1 GB) copied, 24.7408 s, 43.4 MB/s 1073741824 bytes (1.1 GB) copied, 24.744 s, 43.4 MB/s dd write test: one process and then four simultaneous processes # dd if=/dev/zero of=test bs=1M count=1024 oflag=direct 1073741824 bytes (1.1 GB) copied, 10.415 s, 103 MB/s # dd if=/dev/zero of=test bs=1M count=1024 oflag=direct & dd if=/dev/zero of=test2 bs=1M count=1024 oflag=direct & dd if=/dev/zero of=test3 bs=1M count=1024 oflag=direct & dd if=/dev/zero of=test4 bs=1M count=1024 oflag=direct 1073741824 bytes (1.1 GB) copied, 49.8874 s, 21.5 MB/s 1073741824 bytes (1.1 GB) copied, 49.8608 s, 21.5 MB/s 1073741824 bytes (1.1 GB) copied, 49.8693 s, 21.5 MB/s 1073741824 bytes (1.1 GB) copied, 49.9427 s, 21.5 MB/s I wonder is that normal situation or did I missed something?

    Read the article

  • SQL SERVER – Core Concepts – Elasticity, Scalability and ACID Properties – Exploring NuoDB an Elastically Scalable Database System

    - by pinaldave
    I have been recently exploring Elasticity and Scalability attributes of databases. You can see that in my earlier blog posts about NuoDB where I wanted to look at Elasticity and Scalability concepts. The concepts are very interesting, and intriguing as well. I have discussed these concepts with my friend Joyti M and together we have come up with this interesting read. The goal of this article is to answer following simple questions What is Elasticity? What is Scalability? How ACID properties vary from NOSQL Concepts? What are the prevailing problems in the current database system architectures? Why is NuoDB  an innovative and welcome change in database paradigm? Elasticity This word’s original form is used in many different ways and honestly it does do a decent job in holding things together over the years as a person grows and contracts. Within the tech world, and specifically related to software systems (database, application servers), it has come to mean a few things - allow stretching of resources without reaching the breaking point (on demand). What are resources in this context? Resources are the usual suspects – RAM/CPU/IO/Bandwidth in the form of a container (a process or bunch of processes combined as modules). When it is about increasing resources the simplest idea which comes to mind is the addition of another container. Another container means adding a brand new physical node. When it is about adding a new node there are two questions which comes to mind. 1) Can we add another node to our software system? 2) If yes, does adding new node cause downtime for the system? Let us assume we have added new node, let us see what the new needs of the system are when a new node is added. Balancing incoming requests to multiple nodes Synchronization of a shared state across multiple nodes Identification of “downstate” and resolution action to bring it to “upstate” Well, adding a new node has its advantages as well. Here are few of the positive points Throughput can increase nearly horizontally across the node throughout the system Response times of application will increase as in-between layer interactions will be improved Now, Let us put the above concepts in the perspective of a Database. When we mention the term “running out of resources” or “application is bound to resources” the resources can be CPU, Memory or Bandwidth. The regular approach to “gain scalability” in the database is to look around for bottlenecks and increase the bottlenecked resource. When we have memory as a bottleneck we look at the data buffers, locks, query plans or indexes. After a point even this is not enough as there needs to be an efficient way of managing such large workload on a “single machine” across memory and CPU bound (right kind of scheduling)  workload. We next move on to either read/write separation of the workload or functionality-based sharing so that we still have control of the individual. But this requires lots of planning and change in client systems in terms of knowing where to go/update/read and for reporting applications to “aggregate the data” in an intelligent way. What we ideally need is an intelligent layer which allows us to do these things without us getting into managing, monitoring and distributing the workload. Scalability In the context of database/applications, scalability means three main things Ability to handle normal loads without pressure E.g. X users at the Y utilization of resources (CPU, Memory, Bandwidth) on the Z kind of hardware (4 processor, 32 GB machine with 15000 RPM SATA drives and 1 GHz Network switch) with T throughput Ability to scale up to expected peak load which is greater than normal load with acceptable response times Ability to provide acceptable response times across the system E.g. Response time in S milliseconds (or agreed upon unit of measure) – 90% of the time The Issue – Need of Scale In normal cases one can plan for the load testing to test out normal, peak, and stress scenarios to ensure specific hardware meets the needs. With help from Hardware and Software partners and best practices, bottlenecks can be identified and requisite resources added to the system. Unfortunately this vertical scale is expensive and difficult to achieve and most of the operational people need the ability to scale horizontally. This helps in getting better throughput as there are physical limits in terms of adding resources (Memory, CPU, Bandwidth and Storage) indefinitely. Today we have different options to achieve scalability: Read & Write Separation The idea here is to do actual writes to one store and configure slaves receiving the latest data with acceptable delays. Slaves can be used for balancing out reads. We can also explore functional separation or sharing as well. We can separate data operations by a specific identifier (e.g. region, year, month) and consolidate it for reporting purposes. For functional separation the major disadvantage is when schema changes or workload pattern changes. As the requirement grows one still needs to deal with scale need in manual ways by providing an abstraction in the middle tier code. Using NOSQL solutions The idea is to flatten out the structures in general to keep all values which are retrieved together at the same store and provide flexible schema. The issue with the stores is that they are compromising on mostly consistency (no ACID guarantees) and one has to use NON-SQL dialect to work with the store. The other major issue is about education with NOSQL solutions. Would one really want to make these compromises on the ability to connect and retrieve in simple SQL manner and learn other skill sets? Or for that matter give up on ACID guarantee and start dealing with consistency issues? Hybrid Deployment – Mac, Linux, Cloud, and Windows One of the challenges today that we see across On-premise vs Cloud infrastructure is a difference in abilities. Take for example SQL Azure – it is wonderful in its concepts of throttling (as it is shared deployment) of resources and ability to scale using federation. However, the same abilities are not available on premise. This is not a mistake, mind you – but a compromise of the sweet spot of workloads, customer requirements and operational SLAs which can be supported by the team. In today’s world it is imperative that databases are available across operating systems – which are a commodity and used by developers of all hues. An Ideal Database Ability List A system which allows a linear scale of the system (increase in throughput with reasonable response time) with the addition of resources A system which does not compromise on the ACID guarantees and require developers to learn new paradigms A system which does not force fit a new way interacting with database by learning Non-SQL dialect A system which does not force fit its mechanisms for providing availability across its various modules. Well NuoDB is the first database which has all of the above abilities and much more. In future articles I will cover my hands-on experience with it. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: NuoDB

    Read the article

  • Hard drive mounted at / , duplicate mounted hard drive after using MountManager

    - by HellHarvest
    possible duplicate post I'm running 12.04 64bit. My system is a dual boot for both Ubuntu and Windows7. Both operating systems are sharing the drive named "Elements". My volume named "Elements" is a 1TB SATA NTFS hard drive that shows up twice in the side bar in nautilus. One of the icons is functional and even has the convenient "eject" icon next to it. Below is a picture of the left menu in Nautilus, with System Monitor-File Systems tab open on top of it. Can someone advise me about how to get rid of this extra icon? I think the problem is much more deep-rooted than just a GUI glitch on Nautilus' part. The other icon does nothing but spit out the following error when I click on it (image below). This only happened AFTER I tried using Mount Manager to automate mounting the drive at start up. I've already uninstalled Mount Manager, and restarted, but the problem didn't go away. The hard drive does mount automatically now, so I guess that's cool. But now, every time I boot up now and open Nautilus, BOTH of these icons appear, one of which is fictitious and useless. According to the image above and the outputs of several other commands, it appears to be mounted at / In which case, no matter where I am in Nautilus when I try to click on that icon, of course it will tell me that that drive is in use by another program... Nautilus. I'm afraid of trying to unmount this hard drive (sdb6) because of where it appears to be mounted. I'm kind of a noob, and I have this gut feeling that tells me trying to unmount a drive at / will destroy my entire file system. This fear was further strengthened by the output of "$ fsck" at the very bottom of this post. Error immediately below when that 2nd "Elements" hard drive is clicked in Nautilus: Unable to mount Elements Mount is denied because the NTFS volume is already exclusively opened. The volume may be already mounted, or another software may use it which could be identified for example by the help of the 'fuser' command. It's odd to me that that error message above claims that it's an NTFS volume when everything else tell me that it's an ext4 volume. The actual hard drive "Elements" is in fact an NTFS volume. Here's the output of a few commands and configuration files that may be of interest: $ fuser -a / /: 2120r 2159rc 2160rc 2172r 2178rc 2180rc 2188r 2191rc 2200rc 2203rc 2205rc 2206r 2211r 2212r 2214r 2220r 2228r 2234rc 2246rc 2249rc 2254rc 2260rc 2261r 2262r 2277rc 2287rc 2291rc 2311rc 2313rc 2332rc 2334rc 2339rc 2343rc 2344rc 2352rc 2372rc 2389rc 2422r 2490r 2496rc 2501rc 2566r 2573rc 2581rc 2589rc 2592r 2603r 2611rc 2613rc 2615rc 2678rc 2927r 2981r 3104rc 4156rc 4196rc 4206rc 4213rc 4240rc 4297rc 5032rc 7609r 7613r 7648r 9593rc 18829r 18833r 19776r $ sudo df -h Filesystem Size Used Avail Use% Mounted on /dev/sdb6 496G 366G 106G 78% / udev 2.0G 4.0K 2.0G 1% /dev tmpfs 791M 1.5M 790M 1% /run none 5.0M 0 5.0M 0% /run/lock none 2.0G 672K 2.0G 1% /run/shm /dev/sda1 932G 312G 620G 34% /media/Elements /home/solderblob/.Private 496G 366G 106G 78% /home/solderblob /dev/sdb2 188G 100G 88G 54% /media/A2B24EACB24E852F /dev/sdb1 100M 25M 76M 25% /media/System Reserved $ sudo fdisk -l Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00093cab Device Boot Start End Blocks Id System /dev/sda1 2048 1953519615 976758784 7 HPFS/NTFS/exFAT Disk /dev/sdb: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000e8d9b Device Boot Start End Blocks Id System /dev/sdb1 * 2048 206847 102400 7 HPFS/NTFS/exFAT /dev/sdb2 206848 392378768 196085960+ 7 HPFS/NTFS/exFAT /dev/sdb3 392380414 1465147391 536383489 5 Extended /dev/sdb5 1456762880 1465147391 4192256 82 Linux swap / Solaris /dev/sdb6 392380416 1448374271 527996928 83 Linux /dev/sdb7 1448376320 1456758783 4191232 82 Linux swap / Solaris Partition table entries are not in disk order $ cat /etc/fstab # <file system> <mount point> <type> <options> <dump> <pass> UUID=77039a2a-83d4-47a1-8a8c-a2ec4e4dfd0e / ext4 defaults 0 1 UUID=F6549CC4549C88CF /media/Elements ntfs-3g users 0 0 $ sudo blkid /dev/sda1: LABEL="Elements" UUID="F6549CC4549C88CF" TYPE="ntfs" /dev/sdb1: LABEL="System Reserved" UUID="5CDE130FDE12E156" TYPE="ntfs" /dev/sdb2: UUID="A2B24EACB24E852F" TYPE="ntfs" /dev/sdb6: UUID="77039a2a-83d4-47a1-8a8c-a2ec4e4dfd0e" TYPE="ext4" $ sudo blkid -c /dev/null (appears to be exactly the same as above) /dev/sda1: LABEL="Elements" UUID="F6549CC4549C88CF" TYPE="ntfs" /dev/sdb1: LABEL="System Reserved" UUID="5CDE130FDE12E156" TYPE="ntfs" /dev/sdb2: UUID="A2B24EACB24E852F" TYPE="ntfs" /dev/sdb6: UUID="77039a2a-83d4-47a1-8a8c-a2ec4e4dfd0e" TYPE="ext4" $ mount /dev/sdb6 on / type ext4 (rw) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) /dev/sda1 on /media/Elements type fuseblk (rw,noexec,nosuid,nodev,allow_other,blksize=4096) binfmt_misc on /proc/sys/fs/binfmt_misc type binfmt_misc (rw,noexec,nosuid,nodev) /home/solderblob/.Private on /home/solderblob type ecryptfs (ecryptfs_check_dev_ruid,ecryptfs_cipher=aes,ecryptfs_key_bytes=16,ecryptfs_unlink_sigs,ecryptfs_sig=76a47b0175afa48d,ecryptfs_fnek_sig=391b2d8b155215f7) gvfs-fuse-daemon on /home/solderblob/.gvfs type fuse.gvfs-fuse-daemon (rw,nosuid,nodev,user=solderblob) /dev/sdb2 on /media/A2B24EACB24E852F type fuseblk (rw,nosuid,nodev,allow_other,default_permissions,blksize=4096) /dev/sdb1 on /media/System Reserved type fuseblk (rw,nosuid,nodev,allow_other,default_permissions,blksize=4096) $ ls -a . A2B24EACB24E852F Ubuntu 12.04.1 LTS amd64 .. Elements System Reserved $ cat /proc/mounts rootfs / rootfs rw 0 0 sysfs /sys sysfs rw,nosuid,nodev,noexec,relatime 0 0 proc /proc proc rw,nosuid,nodev,noexec,relatime 0 0 udev /dev devtmpfs rw,relatime,size=2013000k,nr_inodes=503250,mode=755 0 0 devpts /dev/pts devpts rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000 0 0 tmpfs /run tmpfs rw,nosuid,relatime,size=809872k,mode=755 0 0 /dev/disk/by-uuid/77039a2a-83d4-47a1-8a8c-a2ec4e4dfd0e / ext4 rw,relatime,user_xattr,acl,barrier=1,data=ordered 0 0 none /sys/fs/fuse/connections fusectl rw,relatime 0 0 none /sys/kernel/debug debugfs rw,relatime 0 0 none /sys/kernel/security securityfs rw,relatime 0 0 none /run/lock tmpfs rw,nosuid,nodev,noexec,relatime,size=5120k 0 0 none /run/shm tmpfs rw,nosuid,nodev,relatime 0 0 /dev/sda1 /media/Elements fuseblk rw,nosuid,nodev,noexec,relatime,user_id=0,group_id=0,allow_other,blksize=4096 0 0 binfmt_misc /proc/sys/fs/binfmt_misc binfmt_misc rw,nosuid,nodev,noexec,relatime 0 0 /home/solderblob/.Private /home/solderblob ecryptfs rw,relatime,ecryptfs_fnek_sig=391b2d8b155215f7,ecryptfs_sig=76a47b0175afa48d,ecryptfs_cipher=aes,ecryptfs_key_bytes=16,ecryptfs_unlink_sigs 0 0 gvfs-fuse-daemon /home/solderblob/.gvfs fuse.gvfs-fuse-daemon rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0 /dev/sdb2 /media/A2B24EACB24E852F fuseblk rw,nosuid,nodev,relatime,user_id=0,group_id=0,default_permissions,allow_other,blksize=4096 0 0 /dev/sdb1 /media/System\040Reserved fuseblk rw,nosuid,nodev,relatime,user_id=0,group_id=0,default_permissions,allow_other,blksize=4096 0 0 gvfs-fuse-daemon /root/.gvfs fuse.gvfs-fuse-daemon rw,nosuid,nodev,relatime,user_id=0,group_id=0 0 0 $ fsck fsck from util-linux 2.20.1 e2fsck 1.42 (29-Nov-2011) /dev/sdb6 is mounted. WARNING!!! The filesystem is mounted. If you continue you ***WILL*** cause ***SEVERE*** filesystem damage. Do you really want to continue<n>? no check aborted.

    Read the article

  • 2 drives, slow software RAID1 (md)

    - by bart613
    Hello, I've got a server from hetzner.de (EQ4) with 2* SAMSUNG HD753LJ drives (750G 32MB cache). OS is CentOS 5 (x86_64). Drives are combined together into two RAID1 partitions: /dev/md0 which is 512MB big and has only /boot partitions /dev/md1 which is over 700GB big and is one big LVM which hosts other partitions Now, I've been running some benchmarks and it seems like even though exactly the same drives, speed differs a bit on each of them. # hdparm -tT /dev/sda /dev/sda: Timing cached reads: 25612 MB in 1.99 seconds = 12860.70 MB/sec Timing buffered disk reads: 352 MB in 3.01 seconds = 116.80 MB/sec # hdparm -tT /dev/sdb /dev/sdb: Timing cached reads: 25524 MB in 1.99 seconds = 12815.99 MB/sec Timing buffered disk reads: 342 MB in 3.01 seconds = 113.64 MB/sec Also, when I run eg. pgbench which is stressing IO quite heavily, I can see following from iostat output: Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util sda 0.00 231.40 0.00 298.00 0.00 9683.20 32.49 0.17 0.58 0.34 10.24 sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda2 0.00 231.40 0.00 298.00 0.00 9683.20 32.49 0.17 0.58 0.34 10.24 sdb 0.00 231.40 0.00 301.80 0.00 9740.80 32.28 14.19 51.17 3.10 93.68 sdb1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sdb2 0.00 231.40 0.00 301.80 0.00 9740.80 32.28 14.19 51.17 3.10 93.68 md1 0.00 0.00 0.00 529.60 0.00 9692.80 18.30 0.00 0.00 0.00 0.00 md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dm-0 0.00 0.00 0.00 0.60 0.00 4.80 8.00 0.00 0.00 0.00 0.00 dm-1 0.00 0.00 0.00 529.00 0.00 9688.00 18.31 24.51 49.91 1.81 95.92 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util sda 0.00 152.40 0.00 330.60 0.00 5176.00 15.66 0.19 0.57 0.19 6.24 sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda2 0.00 152.40 0.00 330.60 0.00 5176.00 15.66 0.19 0.57 0.19 6.24 sdb 0.00 152.40 0.00 326.20 0.00 5118.40 15.69 19.96 55.36 3.01 98.16 sdb1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sdb2 0.00 152.40 0.00 326.20 0.00 5118.40 15.69 19.96 55.36 3.01 98.16 md1 0.00 0.00 0.00 482.80 0.00 5166.40 10.70 0.00 0.00 0.00 0.00 md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dm-0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dm-1 0.00 0.00 0.00 482.80 0.00 5166.40 10.70 30.19 56.92 2.05 99.04 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util sda 0.00 181.64 0.00 324.55 0.00 5445.11 16.78 0.15 0.45 0.21 6.87 sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sda2 0.00 181.64 0.00 324.55 0.00 5445.11 16.78 0.15 0.45 0.21 6.87 sdb 0.00 181.84 0.00 328.54 0.00 5493.01 16.72 18.34 61.57 3.01 99.00 sdb1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 sdb2 0.00 181.84 0.00 328.54 0.00 5493.01 16.72 18.34 61.57 3.01 99.00 md1 0.00 0.00 0.00 506.39 0.00 5477.05 10.82 0.00 0.00 0.00 0.00 md0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dm-0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 dm-1 0.00 0.00 0.00 506.39 0.00 5477.05 10.82 28.77 62.15 1.96 99.00 And this is completely getting me confused. How come two exactly the same specced drives have such a difference in write speed (see util%)? I haven't really paid attention to those speeds before, so perhaps that something normal -- if someone could confirm I would be really grateful. Otherwise, if someone have seen such behavior again or knows what is causing such behavior I would really appreciate answer. I'll also add that both "smartctl -a" and "hdparm -I" output are exactly the same and are not indicating any hardware problems. The slower drive was changed already two times (to new ones). Also I asked to change the drives with places, and then sda were slower and sdb quicker (so the slow one was the same drive). SATA cables were changed two times already.

    Read the article

  • Windows 7: How to place SuperFetch cache on an SSD?

    - by Ian Boyd
    I'm thinking of adding a solid state drive (SSD) to my existing Windows 7 installation. I know I can (and should) move my paging file to the SSD: Should the pagefile be placed on SSDs? Yes. Most pagefile operations are small random reads or larger sequential writes, both of which are types of operations that SSDs handle well. In looking at telemetry data from thousands of traces and focusing on pagefile reads and writes, we find that Pagefile.sys reads outnumber pagefile.sys writes by about 40 to 1, Pagefile.sys read sizes are typically quite small, with 67% less than or equal to 4 KB, and 88% less than 16 KB. Pagefile.sys writes are relatively large, with 62% greater than or equal to 128 KB and 45% being exactly 1 MB in size. In fact, given typical pagefile reference patterns and the favorable performance characteristics SSDs have on those patterns, there are few files better than the pagefile to place on an SSD. What I don't know is if I even can put a SuperFetch cache (i.e. ReadyBoost cache) on the solid state drive. I want to get the benefit of Windows being able to cache gigabytes of frequently accessed data on a relativly small (e.g. 30GB) solid state drive. This is exactly what SuperFetch+ReadyBoost (or SuperFetch+ReadyDrive) was designed for. Will Windows offer (or let) me place a ReadyBoost cache on a solid state flash drive connected via SATA? A problem with the ReadyBoost cache over the ReadyDrive cache is that the ReadyBoost cache does not survive between reboots. The cache is encrypted with a per-session key, making its existing contents unusable during boot and SuperFetch pre-fetching during login. Update One I know that Windows Vista limited you to only one ReadyBoost.sfcache file (I do not know if Windows 7 removed that limitation): Q: Can use use multiple devices for EMDs? A: Nope. We've limited Vista to one ReadyBoost per machine Q: Why just one device? A: Time and quality. Since this is the first revision of the feature, we decided to focus on making the single device exceptional, without the difficulties of managing multiple caches. We like the idea, though, and it's under consideration for future versions. I also know that the 4GB limit on the cache file was a limitation of the FAT filesystem used on most USB sticks - an SSD drive would be formatted with NTFS: Q: What's the largest amount of flash that I can use for ReadyBoost? A: You can use up to 4GB of flash for ReadyBoost (which turns out to be 8GB of cache w/ the compression) Q: Why can't I use more than 4GB of flash? A: The FAT32 filesystem limits our ReadyBoost.sfcache file to 4GB Can a ReadyBoost cache on an NTFS volume be larger than 4GB? Update Two The ReadyBoost cache is encrypted with a per-boot session key. This means that the cache has to be re-built after each boot, and cannot be used to help speed boot times, or latency from login to usable. Windows ReadyDrive technology takes advantage of non-volatile (NV) memory (i.e. flash) that is incorporated with some hybrid hard drives. This flash cache can be used to help Windows boot, or resume from hibernate faster. Will Windows 7 use an internal SSD drive as a ReadyBoost/*ReadyDrive*/SuperFetch cache? Is it possible to make Windows store a SuperFetch cache (i.e. ReadyBoost) on a non-removable SSD? Is it possible to not encrypt the ReadyBoost cache, and if so will Windows 7 use the cache at boot time? See also SuperUser.com: ReadyBoost + SSD = ? Windows 7 - ReadyBoost & SSD drives? Support and Q&A for Solid-State Drives Using SDD as a cache for HDD, is there a solution? Performance increase using SSD for paging/fetch/cache or ReadyBoost? (Win7) Windows 7 To Boost SSD Performance How to Disable Nonvolatile Caching

    Read the article

  • Disk Drive not working

    - by user287681
    The CD/DVD drive on my sisters' (I'm helping her shift from Win. XP (now officially deprecated by Microsoft) to Ubuntu) system. Now, it may end up being a failed attempt, all together (Almost the whole last year (when she's been on XP) the disk drive hasn't (not even powering on) been working.), I just want to make sure I've explored every remote possibility. Because I figure, "Huh, now that I've got Ubuntu running, instead of XP, that (just) might make a difference.". I have tried using the sudo lshw command in the terminal, to (seemingly) no avil, but, who knows, you might be able to make something out of it. Here's the output: kyra@kyra-Satellite-P105:~$ sudo lshw [sudo] password for kyra: kyra-satellite-p105 description: Notebook product: Satellite P105 () vendor: TOSHIBA version: PSPA0U-0TN01M serial: 96084354W width: 64 bits capabilities: smbios-2.4 dmi-2.4 vsyscall32 configuration: administrator_password=disabled boot=oem-specific chassis=notebook frontpanel_password=unknown keyboard_password=unknown power-on_password=disabled uuid=00900559-F88E-D811-82E0-00163680E992 *-core description: Motherboard product: Satellite P105 vendor: TOSHIBA physical id: 0 version: Not Applicable serial: 1234567890 *-firmware description: BIOS vendor: TOSHIBA physical id: 0 version: V4.70 date: 01/19/20092 size: 92KiB capabilities: isa pci pcmcia pnp upgrade shadowing escd cdboot acpi usb biosbootspecification *-cpu description: CPU product: Intel(R) Core(TM)2 CPU T5500 @ 1.66GHz vendor: Intel Corp. physical id: 4 bus info: cpu@0 version: Intel(R) Core(TM)2 CPU T5 slot: U2E1 size: 1667MHz capacity: 1667MHz width: 64 bits clock: 166MHz capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx x86-64 constant_tsc arch_perfmon pebs bts rep_good nopl aperfmperf pni dtes64 monitor ds_cpl est tm2 ssse3 cx16 xtpr pdcm lahf_lm dtherm cpufreq *-cache:0 description: L1 cache physical id: 5 slot: L1 Cache size: 16KiB capacity: 16KiB capabilities: asynchronous internal write-back *-cache:1 description: L2 cache physical id: 6 slot: L2 Cache size: 2MiB capabilities: burst external write-back *-memory description: System Memory physical id: c slot: System board or motherboard size: 2GiB capacity: 3GiB *-bank:0 description: SODIMM DDR2 Synchronous physical id: 0 slot: M1 size: 1GiB width: 64 bits *-bank:1 description: SODIMM DDR2 Synchronous physical id: 1 slot: M2 size: 1GiB width: 64 bits *-pci description: Host bridge product: Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 03 width: 32 bits clock: 33MHz configuration: driver=agpgart-intel resources: irq:0 *-display:0 description: VGA compatible controller product: Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller vendor: Intel Corporation physical id: 2 bus info: pci@0000:00:02.0 version: 03 width: 32 bits clock: 33MHz capabilities: msi pm vga_controller bus_master cap_list rom configuration: driver=i915 latency=0 resources: irq:16 memory:d0200000-d027ffff ioport:1800(size=8) memory:c0000000-cfffffff memory:d0300000-d033ffff *-display:1 UNCLAIMED description: Display controller product: Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller vendor: Intel Corporation physical id: 2.1 bus info: pci@0000:00:02.1 version: 03 width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: latency=0 resources: memory:d0280000-d02fffff *-multimedia description: Audio device product: NM10/ICH7 Family High Definition Audio Controller vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 02 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:44 memory:d0340000-d0343fff *-pci:0 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:3000(size=4096) memory:84000000-841fffff ioport:84200000(size=2097152) *-pci:1 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:4000(size=4096) memory:84400000-846fffff ioport:84700000(size=2097152) *-network description: Wireless interface product: PRO/Wireless 3945ABG [Golan] Network Connection vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 02 serial: 00:13:02:d6:d2:35 width: 32 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwl3945 driverversion=3.13.0-29-generic firmware=15.32.2.9 ip=10.110.20.157 latency=0 link=yes multicast=yes wireless=IEEE 802.11abg resources: irq:43 memory:84400000-84400fff *-pci:2 description: PCI bridge product: NM10/ICH7 Family PCI Express Port 3 vendor: Intel Corporation physical id: 1c.2 bus info: pci@0000:00:1c.2 version: 02 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:5000(size=4096) memory:84900000-84afffff ioport:84b00000(size=2097152) *-usb:0 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #1 vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:23 ioport:1820(size=32) *-usb:1 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #2 vendor: Intel Corporation physical id: 1d.1 bus info: pci@0000:00:1d.1 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:19 ioport:1840(size=32) *-usb:2 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #3 vendor: Intel Corporation physical id: 1d.2 bus info: pci@0000:00:1d.2 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:18 ioport:1860(size=32) *-usb:3 description: USB controller product: NM10/ICH7 Family USB UHCI Controller #4 vendor: Intel Corporation physical id: 1d.3 bus info: pci@0000:00:1d.3 version: 02 width: 32 bits clock: 33MHz capabilities: uhci bus_master configuration: driver=uhci_hcd latency=0 resources: irq:16 ioport:1880(size=32) *-usb:4 description: USB controller product: NM10/ICH7 Family USB2 EHCI Controller vendor: Intel Corporation physical id: 1d.7 bus info: pci@0000:00:1d.7 version: 02 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci-pci latency=0 resources: irq:23 memory:d0544000-d05443ff *-pci:3 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: e2 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list resources: ioport:2000(size=4096) memory:d0000000-d00fffff ioport:80000000(size=67108864) *-pcmcia description: CardBus bridge product: PCIxx12 Cardbus Controller vendor: Texas Instruments physical id: 4 bus info: pci@0000:0a:04.0 version: 00 width: 32 bits clock: 33MHz capabilities: pcmcia bus_master cap_list configuration: driver=yenta_cardbus latency=176 maxlatency=5 mingnt=192 resources: irq:17 memory:d0004000-d0004fff ioport:2400(size=256) ioport:2800(size=256) memory:80000000-83ffffff memory:88000000-8bffffff *-firewire description: FireWire (IEEE 1394) product: PCIxx12 OHCI Compliant IEEE 1394 Host Controller vendor: Texas Instruments physical id: 4.1 bus info: pci@0000:0a:04.1 version: 00 width: 32 bits clock: 33MHz capabilities: pm ohci bus_master cap_list configuration: driver=firewire_ohci latency=64 maxlatency=4 mingnt=3 resources: irq:17 memory:d0007000-d00077ff memory:d0000000-d0003fff *-storage description: Mass storage controller product: 5-in-1 Multimedia Card Reader (SD/MMC/MS/MS PRO/xD) vendor: Texas Instruments physical id: 4.2 bus info: pci@0000:0a:04.2 version: 00 width: 32 bits clock: 33MHz capabilities: storage pm bus_master cap_list configuration: driver=tifm_7xx1 latency=64 maxlatency=4 mingnt=7 resources: irq:17 memory:d0005000-d0005fff *-generic description: SD Host controller product: PCIxx12 SDA Standard Compliant SD Host Controller vendor: Texas Instruments physical id: 4.3 bus info: pci@0000:0a:04.3 version: 00 width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: driver=sdhci-pci latency=64 maxlatency=4 mingnt=7 resources: irq:17 memory:d0007800-d00078ff *-network description: Ethernet interface product: PRO/100 VE Network Connection vendor: Intel Corporation physical id: 8 bus info: pci@0000:0a:08.0 logical name: eth0 version: 02 serial: 00:16:36:80:e9:92 size: 10Mbit/s capacity: 100Mbit/s width: 32 bits clock: 33MHz capabilities: pm bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e100 driverversion=3.5.24-k2-NAPI duplex=half latency=64 link=no maxlatency=56 mingnt=8 multicast=yes port=MII speed=10Mbit/s resources: irq:20 memory:d0006000-d0006fff ioport:2000(size=64) *-isa description: ISA bridge product: 82801GBM (ICH7-M) LPC Interface Bridge vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 02 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: driver=lpc_ich latency=0 resources: irq:0 *-ide description: IDE interface product: 82801GBM/GHM (ICH7-M Family) SATA Controller [IDE mode] vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 02 width: 32 bits clock: 66MHz capabilities: ide pm bus_master cap_list configuration: driver=ata_piix latency=0 resources: irq:19 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:18b0(size=16) *-serial UNCLAIMED description: SMBus product: NM10/ICH7 Family SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 02 width: 32 bits clock: 33MHz configuration: latency=0 resources: ioport:18c0(size=32) *-scsi physical id: 1 logical name: scsi0 capabilities: emulated *-disk description: ATA Disk product: ST9250421AS vendor: Seagate physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: SD13 serial: 5TH0B2HB size: 232GiB (250GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sectorsize=512 signature=000d7fd5 *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: 13bb4bdd-8cc9-40e2-a490-dbe436c2a02d size: 230GiB capacity: 230GiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2014-06-01 17:37:01 filesystem=ext4 lastmountpoint=/ modified=2014-06-01 21:15:21 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,data=ordered mounted=2014-06-01 21:15:21 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 2037MiB capacity: 2037MiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 2037MiB capabilities: nofs *-remoteaccess UNCLAIMED vendor: Intel physical id: 1 capabilities: inbound kyra@kyra-Satellite-P105:~$

    Read the article

  • Since upgrading to Solaris 11, my ARC size has consistently targeted 119MB, despite having 30GB RAM. What? Why?

    - by growse
    I ran a NAS/SAN box on Solaris 11 Express before Solaris 11 was released. The box is an HP X1600 with an attached D2700. In all, 12x 1TB 7200 SATA disks, 12x 300GB 10k SAS disks in separate zpools. Total RAM is 30GB. Services provided are CIFS, NFS and iSCSI. All was well, and I had a ZFS memory usage graph looking like this: A fairly healthy Arc size of around 23GB - making use of the available memory for caching. However, I then upgraded to Solaris 11 when that came out. Now, my graph looks like this: Partial output of arc_summary.pl is: System Memory: Physical RAM: 30701 MB Free Memory : 26719 MB LotsFree: 479 MB ZFS Tunables (/etc/system): ARC Size: Current Size: 915 MB (arcsize) Target Size (Adaptive): 119 MB (c) Min Size (Hard Limit): 64 MB (zfs_arc_min) Max Size (Hard Limit): 29677 MB (zfs_arc_max) It's targetting 119MB while sitting at 915MB. It's got 30GB to play with. Why? Did they change something? Edit To clarify, arc_summary.pl is Ben Rockwood's, and the relevent lines generating the above stats are: my $mru_size = ${Kstat}->{zfs}->{0}->{arcstats}->{p}; my $target_size = ${Kstat}->{zfs}->{0}->{arcstats}->{c}; my $arc_min_size = ${Kstat}->{zfs}->{0}->{arcstats}->{c_min}; my $arc_max_size = ${Kstat}->{zfs}->{0}->{arcstats}->{c_max}; my $arc_size = ${Kstat}->{zfs}->{0}->{arcstats}->{size}; The Kstat entries are there, I'm just getting odd values out of them. Edit 2 I've just re-measured the arc size with arc_summary.pl - I've verified these numbers with kstat: System Memory: Physical RAM: 30701 MB Free Memory : 26697 MB LotsFree: 479 MB ZFS Tunables (/etc/system): ARC Size: Current Size: 744 MB (arcsize) Target Size (Adaptive): 119 MB (c) Min Size (Hard Limit): 64 MB (zfs_arc_min) Max Size (Hard Limit): 29677 MB (zfs_arc_max) The thing that strikes me is that the Target Size is 119MB. Looking at the graph, it's targeted the exact same value (124.91M according to cacti, 119M according to arc_summary.pl - think the difference is just 1024/1000 rounding issues) ever since Solaris 11 was installed. It looks like the kernel's making zero effort to shift the target size to anything different. The current size is fluctuating as the needs of the system (large) fight with the target size, and it appears equilibrium is between 700 and 1000MB. So the question is now a little more pointed - why is Solaris 11 hard setting my ARC target size to 119MB, and how do I change it? Should I raise the min size to see what happens? I've stuck the output of kstat -n arcstats over at http://pastebin.com/WHPimhfg Edit 3 Ok, weirdness now. I know flibflob mentioned that there was a patch to fix this. I haven't applied this patch yet (still sorting out internal support issues) and I've not applied any other software updates. Last thursday, the box crashed. As in, completely stopped responding to everything. When I rebooted it, it came back up fine, but here's what my graph now looks like. It seems to have fixed the problem. This is proper la la land stuff now. I've literally no idea what's going on. :(

    Read the article

  • DBCC CHECKDB on VVLDB and latches (Or: My Pain is Your Gain)

    - by Argenis
      Does your CHECKDB hurt, Argenis? There is a classic blog series by Paul Randal [blog|twitter] called “CHECKDB From Every Angle” which is pretty much mandatory reading for anybody who’s even remotely considering going for the MCM certification, or its replacement (the Microsoft Certified Solutions Master: Data Platform – makes my fingers hurt just from typing it). Of particular interest is the post “Consistency Options for a VLDB” – on it, Paul provides solid, timeless advice (I use the word “timeless” because it was written in 2007, and it all applies today!) on how to perform checks on very large databases. Well, here I was trying to figure out how to make CHECKDB run faster on a restored copy of one of our databases, which happens to exceed 7TB in size. The whole thing was taking several days on multiple systems, regardless of the storage used – SAS, SATA or even SSD…and I actually didn’t pay much attention to how long it was taking, or even bothered to look at the reasons why - as long as it was finishing okay and found no consistency errors. Yes – I know. That was a huge mistake, as corruption found in a database several days after taking place could only allow for further spread of the corruption – and potentially large data loss. In the last two weeks I increased my attention towards this problem, as we noticed that CHECKDB was taking EVEN LONGER on brand new all-flash storage in the SAN! I couldn’t really explain it, and were almost ready to blame the storage vendor. The vendor told us that they could initially see the server driving decent I/O – around 450Mb/sec, and then it would settle at a very slow rate of 10Mb/sec or so. “Hum”, I thought – “CHECKDB is just not pushing the I/O subsystem hard enough”. Perfmon confirmed the vendor’s observations. Dreaded @BlobEater What was CHECKDB doing all the time while doing so little I/O? Eating Blobs. It turns out that CHECKDB was taking an extremely long time on one of our frankentables, which happens to be have 35 billion rows (yup, with a b) and sucks up several terabytes of space in the database. We do have a project ongoing to purge/split/partition this table, so it’s just a matter of time before we deal with it. But the reality today is that CHECKDB is coming to a screeching halt in performance when dealing with this particular table. Checking sys.dm_os_waiting_tasks and sys.dm_os_latch_stats showed that LATCH_EX (DBCC_OBJECT_METADATA) was by far the top wait type. I remembered hearing recently about that wait from another post that Paul Randal made, but that was related to computed-column indexes, and in fact, Paul himself reminded me of his article via twitter. But alas, our pathologic table had no non-clustered indexes on computed columns. I knew that latches are used by the database engine to do internal synchronization – but how could I help speed this up? After all, this is stuff that doesn’t have a lot of knobs to tweak. (There’s a fantastic level 500 talk by Bob Ward from Microsoft CSS [blog|twitter] called “Inside SQL Server Latches” given at PASS 2010 – and you can check it out here. DISCLAIMER: I assume no responsibility for any brain melting that might ensue from watching Bob’s talk!) Failed Hypotheses Earlier on this week I flew down to Palo Alto, CA, to visit our Headquarters – and after having a great time with my Monkey peers, I was relaxing on the plane back to Seattle watching a great talk by SQL Server MVP and fellow MCM Maciej Pilecki [twitter] called “Masterclass: A Day in the Life of a Database Transaction” where he discusses many different topics related to transaction management inside SQL Server. Very good stuff, and when I got home it was a little late – that slow DBCC CHECKDB that I had been dealing with was way in the back of my head. As I was looking at the problem at hand earlier on this week, I thought “How about I set the database to read-only?” I remembered one of the things Maciej had (jokingly) said in his talk: “if you don’t want locking and blocking, set the database to read-only” (or something to that effect, pardon my loose memory). I immediately killed the CHECKDB which had been running painfully for days, and set the database to read-only mode. Then I ran DBCC CHECKDB against it. It started going really fast (even a bit faster than before), and then throttled down again to around 10Mb/sec. All sorts of expletives went through my head at the time. Sure enough, the same latching scenario was present. Oh well. I even spent some time trying to figure out if NUMA was hurting performance. Folks on Twitter made suggestions in this regard (thanks, Lonny! [twitter]) …Eureka? This past Friday I was still scratching my head about the whole thing; I was ready to start profiling with XPERF to see if I could figure out which part of the engine was to blame and then get Microsoft to look at the evidence. After getting a bunch of good news I’ll blog about separately, I sat down for a figurative smack down with CHECKDB before the weekend. And then the light bulb went on. A sparse column. I thought that I couldn’t possibly be experiencing the same scenario that Paul blogged about back in March showing extreme latching with non-clustered indexes on computed columns. Did I even have a non-clustered index on my sparse column? As it turns out, I did. I had one filtered non-clustered index – with the sparse column as the index key (and only column). To prove that this was the problem, I went and setup a test. Yup, that'll do it The repro is very simple for this issue: I tested it on the latest public builds of SQL Server 2008 R2 SP2 (CU6) and SQL Server 2012 SP1 (CU4). First, create a test database and a test table, which only needs to contain a sparse column: CREATE DATABASE SparseColTest; GO USE SparseColTest; GO CREATE TABLE testTable (testCol smalldatetime SPARSE NULL); GO INSERT INTO testTable (testCol) VALUES (NULL); GO 1000000 That’s 1 million rows, and even though you’re inserting NULLs, that’s going to take a while. In my laptop, it took 3 minutes and 31 seconds. Next, we run DBCC CHECKDB against the database: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; This runs extremely fast, as least on my test rig – 198 milliseconds. Now let’s create a filtered non-clustered index on the sparse column: CREATE NONCLUSTERED INDEX [badBadIndex] ON testTable (testCol) WHERE testCol IS NOT NULL; With the index in place now, let’s run DBCC CHECKDB one more time: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; In my test system this statement completed in 11433 milliseconds. 11.43 full seconds. Quite the jump from 198 milliseconds. I went ahead and dropped the filtered non-clustered indexes on the restored copy of our production database, and ran CHECKDB against that. We went down from 7+ days to 19 hours and 20 minutes. Cue the “Argenis is not impressed” meme, please, Mr. LaRock. My pain is your gain, folks. Go check to see if you have any of such indexes – they’re likely causing your consistency checks to run very, very slow. Happy CHECKDBing, -Argenis ps: I plan to file a Connect item for this issue – I consider it a pretty serious bug in the engine. After all, filtered indexes were invented BECAUSE of the sparse column feature – and it makes a lot of sense to use them together. Watch this space and my twitter timeline for a link.

    Read the article

  • Did a recent WinXP update break CD/DVD read speeds? SP2/SP3

    - by quack quixote
    I have two systems with fresh installations of Windows XP Pro SP3 (SP3 slipstreamed into the installer; fully updated after install). One's a refurbished 2.4GHz Pentium4 system; the other is a new 1.6GHz Atom330 build. Both have brand-new dual-layer CD/DVD burners (one's a LiteOn IDE, the other an LG SATA). Both take a really looooong time to read a single-layer DVD in Windows with Cygwin tools. Specifically, 40 minutes or more. I burn backup data to single-layer DVD+/-R and use MD5 hashes for data verification (made with the standard md5sum tool in Unix or Cygwin). The hashes are burned to disc with the data files, and I use this command to verify: $ cd /path/to/disc/mountpoint ; time md5sum -c < md5.txt Here's how long that takes to run on a full single-layer DVD+/-R disc: Old system (WinXP SP2, 1.8GHz Athlon 2500+, last summer): ~10 minutes Old system (Ubuntu 9.04, 1.8GHz Athlon 2500+): ~10 minutes Old system (Debian 5, dual 550MHz P3): ~10 minutes New Pentium4 system (running Ubuntu 9.04): ~5 minutes New Pentium4 system (running WinXP SP3, file copy from Win Explorer): ~6 minutes New Atom330 system (running WinXP SP3, file copy from Win Explorer): ~6 minutes Now the weird stuff: Old system (WinXP SP2, 1.8GHz Athlon 2500+, today): ~25 minutes New Pentium4 system (running WinXP SP3, read from Cygwin): ~40-50 minutes (?!!) New Atom330 system (running WinXP SP3, read from Cygwin): ~40 minutes (can do it in ~30 minutes ...if i have another program spin up the drive first) Since both systems will copy files in 6 minutes using Windows Explorer, I know it's not a hardware problem. Windows just never spins up the drive during the Cygwin read, so it stays super-slow the whole time. Other programs like EAC and DVD Decrypter seem to spin up the disc just fine during their processing. DMA is enabled on both systems. (Can confirm in Windows' Device Manager on the Atom330, not on the P4.) Nero's DriveSpeed tool doesn't seem to have any effect. Copy times are comparable from commandline with Windows' xcopy. Copying with Cygwin's cp looks more like the problem state -- it will spin up the drive for a short time, never reaches full speed, and lets it spin back down again for most of the copy. What I need is to get full read speeds from Cygwin. Is this a known issue with SP3 or some other recent Windows update? Any other ideas? Update: More testing; Windows will spin up the drive when data is copied with Windows tools, but not when read in place or copied with Cygwin tools. It doesn't make sense to me that Windows spins up the drive for copying, but not for other reads. Might be more of a Cygwin problem? Update 2: GUI activity is sluggish during the problem state -- during the Cygwin verifies, there's a slight but noticable delay when dragging windows or icons around on the desktop, switching windows, Alt-Tabbing through open applications, opening new windows, etc. It reminds me of the delay when opening a Windows Explorer window on My Computer just after inserting a DVD. I've tried updating Cygwin (from 1.5.x to 1.7.x), but no change in the problem behavior. I've also noticed this issue occurs on WinXP SP2, but it's not exactly the same -- some spin-up occurs, so the read happens in ~25-30 minutes instead of 40+. The SP2 system used to run the verifies in ~10 minutes, and when it first changed (not sure exactly when, maybe in late November or early December 2009) I thought it was dying hardware. This is why I suspect an official update of breaking this functionality; this has worked for years on that SP2 box.

    Read the article

  • Can't sync filesystem without reboot

    - by Fabio
    I'm having an issue with a linux server. Once a week the running mysql instance hangs and there is no way to fully stop it. If I kill it, it remains in zombie status and init does not reap its pid. The server is used for staging deployments and some internal tools, so it's not under heavy load. The only process constantly used id mysql and for this I think that it's the only process which suffer of this issue. I've searched system logs for errors and the only thing I found is this error (repeated a couple of times) in dmesg output: [706560.640085] INFO: task mysqld:31965 blocked for more than 120 seconds. [706560.640198] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [706560.640312] mysqld D ffff88032fd93f40 0 31965 1 0x00000000 [706560.640317] ffff880242a27d18 0000000000000086 ffff88031a50dd00 ffff880242a27fd8 [706560.640321] ffff880242a27fd8 ffff880242a27fd8 ffff88031e549740 ffff88031a50dd00 [706560.640325] ffff88031a50dd00 ffff88032fd947f8 0000000000000002 ffffffff8112f250 [706560.640328] Call Trace: [706560.640338] [<ffffffff8112f250>] ? __lock_page+0x70/0x70 [706560.640344] [<ffffffff816cb1b9>] schedule+0x29/0x70 [706560.640347] [<ffffffff816cb28f>] io_schedule+0x8f/0xd0 [706560.640350] [<ffffffff8112f25e>] sleep_on_page+0xe/0x20 [706560.640353] [<ffffffff816c9900>] __wait_on_bit+0x60/0x90 [706560.640356] [<ffffffff8112f390>] wait_on_page_bit+0x80/0x90 [706560.640360] [<ffffffff8107dce0>] ? autoremove_wake_function+0x40/0x40 [706560.640363] [<ffffffff8112f891>] filemap_fdatawait_range+0x101/0x190 [706560.640366] [<ffffffff81130975>] filemap_write_and_wait_range+0x65/0x70 [706560.640371] [<ffffffff8122e441>] ext4_sync_file+0x71/0x320 [706560.640376] [<ffffffff811c3e6d>] do_fsync+0x5d/0x90 [706560.640379] [<ffffffff811c40d0>] sys_fsync+0x10/0x20 [706560.640383] [<ffffffff816d495d>] system_call_fastpath+0x1a/0x1f When this happens the only way to make everything working again is a full reboot, but in order to do that I'm forced to use this command after I've manually stopped all running processes echo b > /proc/sysrq-trigger otherwise normal reboot process hangs forever. I've tracked reboots script and I've found out that also the reboot process hangs on a sync call, this one in /etc/init.d/sendsigs (I'm on ubuntu) # Flush the kernel I/O buffer before we start to kill # processes, to make sure the IO of already stopped services to # not slow down the remaining processes to a point where they # are accidentily killed with SIGKILL because they did not # manage to shut down in time. sync I'm almost sure that the cause of this is an hardware issue (the RAID controller???) also because I've other two machines with the same hardware and software configuration and they don't suffer of this, but I can't find any hint in syslog or dmesg. I've also installed smartmontools and mcelog packages but none of them did report any issue. What can I do to track the cause of this issue? Today is happened again, here is the status of system after triggering a reboot init---console-kit-dae---64*[{console-kit-dae}] +-dbus-daemon +-mcelog +-mysqld---{mysqld} +-newrelic-daemon---newrelic-daemon---11*[{newrelic-daemon}] +-ntpd +-polkitd---{polkitd} +-python3 +-rpc.idmapd +-rpc.statd +-rpcbind +-sh---rc---S20sendsigs---sync +-smartd +-snmpd +-sshd---sshd---zsh---sudo---zsh---pstree +-sshd---sshd---zsh---sudo---zsh And here is the status of sync process # ps aux | grep sync root 3637 0.1 0.0 4352 372 ? D 05:53 0:00 sync i.e. Uninterruptible sleep... Hardware specs as reported by lshw I think the raid controller is a fake raid. I usually don't deal with hardware (and for the record I don't have physical access to it) description: Computer product: X7DBP () vendor: Supermicro version: 0123456789 serial: 0123456789 width: 64 bits capabilities: smbios-2.4 dmi-2.4 vsyscall32 configuration: administrator_password=disabled boot=normal frontpanel_password=unknown keyboard_password=unknown power-on_password=disabled uuid=53D19F64-D663-A017-8922-0030487C1FEE *-core description: Motherboard product: X7DBP vendor: Supermicro physical id: 0 version: PCB Version serial: 0123456789 *-firmware description: BIOS vendor: Phoenix Technologies LTD physical id: 0 version: 6.00 date: 05/29/2007 size: 106KiB capacity: 960KiB capabilities: pci pnp upgrade shadowing escd cdboot bootselect edd int13floppy2880 acpi usb ls120boot zipboot biosbootspecification *-storage description: RAID bus controller product: 631xESB/632xESB SATA RAID Controller vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 version: 09 width: 32 bits clock: 66MHz capabilities: storage pm bus_master cap_list configuration: driver=ahci latency=0 resources: irq:19 ioport:18a0(size=8) ioport:1874(size=4) ioport:1878(size=8) ioport:1870(size=4) ioport:1880(size=32) memory:d8500400-d85007ff

    Read the article

  • Performance issues when using SSD for a developer notebook (WAMP/LAMP stack)?

    - by András Szepesházi
    I'm a web application developer using my notebook as a standalone development environment (WAMP stack). I just switched from a Core2-duo Vista 32 bit notebook with 2Gb RAM and SATA HDD, to an i5-2520M Win7 64 bit with 4Gb RAM and 128 GB SDD (Corsair P3 128). My initial experience was what I expected, fast boot, quick load of all the applications (Eclipse takes now 5 seconds as opposed to 30s on my old notebook), overall great experience. Then I started to build up my development stack, both as LAMP (using VirtualBox with a debian guest) and WAMP (windows native apache + mysql + php). I wanted to compare those two. This still all worked great out, then I started to pull in my projects to these stacks. And here came the nasty surprise, one of those projects produced a lot worse response times than on my old notebook (that was true for both the VirtualBox and WAMP stack). Apache, php and mysql configurations were practically identical in all environments. I started to do a lot of benchmarking and profiling, and here is what I've found: All general benchmarks (Performance Test 7.0, HDTune Pro, wPrime2 and some more) gave a big advantage to the new notebook. Nothing surprising here. Disc specific tests showed that read/write operations peaked around 380M/160M for the SSD, and all the different sized block operations also performed very well. Started apache performance benchmarking with Apache Benchmark for a small static html file (10 concurrent threads, 500 iterations). Old notebook: min 47ms, median 111ms, max 156ms New WAMP stack: min 71ms, median 135ms, max 296ms New LAMP stack (in VirtualBox): min 6ms, median 46ms, max 175ms Right here I don't get why the native WAMP stack performed so bad, but at least the LAMP environment brought the expected speed. Apache performance measurement for non-cached php content. The php runs a loop of 1000 and generates sha1(uniqid()) inisde. Again, 10 concurrent threads, 500 iterations were used for the benchmark. Old notebook: min 0ms, median 39ms, max 218ms New WAMP stack: min 20ms, median 61ms, max 186ms New LAMP stack (in VirtualBox): min 124ms, median 704ms, max 2463ms What the hell? The new LAMP performed miserably, and even the new native WAMP was outperformed by the old notebook. php + mysql test. The test consists of connecting to a database and reading a single record form a table using INNER JOIN on 3 more (indexed) tables, repeated 100 times within a loop. Databases were identical. 10 concurrent threads, 100 iterations were used for the benchmark. Old notebook: min 1201ms, median 1734ms, max 3728ms New WAMP stack: min 367ms, median 675ms, max 1893ms New LAMP stack (in VirtualBox): min 1410ms, median 3659ms, max 5045ms And the same test with concurrency set to 1 (instead of 10): Old notebook: min 1201ms, median 1261ms, max 1357ms New WAMP stack: min 399ms, median 483ms, max 539ms New LAMP stack (in VirtualBox): min 285ms, median 348ms, max 444ms Strictly for my purposes, as I'm using a self contained development environment (= low concurrency) I could be satisfied with the second test's result. Though I have no idea why the VirtualBox environment performed so bad with higher concurrency. Finally I performed a test of including many php files. The application that I mentioned at the beginning, the one that was performing so bad, has a heavy bootstrap, loads hundreds of small library and configuration files while initializing. So this test does nothing else just includes about 100 files. Concurrency set to 1, 100 iterations: Old notebook: min 140ms, median 168ms, max 406ms New WAMP stack: min 434ms, median 488ms, max 604ms New LAMP stack (in VirtualBox): min 413ms, median 1040ms, max 1921ms Even if I consider that VirtualBox reached those files via shared folders, and that slows things down a bit, I still don't see how could the old notebook outperform so heavily both new configurations. And I think this is the real root of the slow performance, as the application uses even more includes, and the whole bootstrap will occur several times within a page request (for each ajax call, for example). To sum it up, here I am with a brand new high-performance notebook that loads the same page in 20 seconds, that my old notebook can do in 5-7 seconds. Needless to say, I'm not a very happy person right now. Why do you think I experience these poor performance values? What are my options to remedy this situation?

    Read the article

  • first install for windows eight.....da beta

    - by raysmithequip
    The W8 preview is now installed and I am enjoying it.  I remember the learning curve of my first unix machine back in the eighties, this ain't that.It is normal for me to do the first os install with a keyboard and low end monitor...you never know what you'll encounter out in the field.  The OS took like a fish to water.  I used a low end INTEL motherboard dp55w I gathered on the cheap, an 1157 i5 from the used bin a pair of 6 gig ddr3 sticks, a rosewell 550 watt power supply a cheap used twenty buck sub 200g wd sata drive, a half working dvd burner and an asus fanless nvidia vid card, not a great one but Sub 50.00 on newey eggey...I did have to hunt the ms forums for a key and of course to activate the thing, if dos would of needed this outmoded ritual, we would still be on cpm and osborne would be a household name, of course little do people know that this ritual was common as far back as the seventies on att unix installs....not, but it was possible, I used to joke about when I ran a bbs, what hell would of been wrought had dos 3.2 machines been required to dial into my bbs to send fido mail to ms and wait for an acknowledgement.  All in all the thing was pushing a seven on the ms richter scale, not including the vid card, sadly it came in at just a tad over three....I wanted to evaluate it for a possible replacement on critical machines that in the past went down due to a vid card fan failure....you have no idea what a customer thinks when you show them a failed vid card fan..."you mean that little plastic piece of junk caused all this!!??!!!"...yea man.  Some production machines don't need any sort of vid, I will at least keep it on the maybe list for those, MTBF is a very important factor, some big box stores should put percentage of failure rate within 24 month estimates on the outside of the carton for sure.  And a warning that the power supplies are already at their limit.  Let's face it, today even 550w can be iffy.A few neat eye candy improvements over the earlier windows is nice, the metro screen is nice, anyone who has used a newer phone recently will intuitively drag their fingers across the screen....lot of good that was with no mouse or touch screen though.  Lucky me, I have been using windows since day one, I still have a copy of win 2.0 (and every other version) for no good reason.  Still the old ix collection of disks is much larger, recompiling any kernal is another silly ritual, same machine, different day, same recompile...argh. Rh is my all time fav, mandrake was always missing something, like it rewrote the init file or something, novell is ok as long as you stay on the beaten path and of course ubuntu normally recompiles with the same errors consistantly....makes life easy that way....no errors on windows eight, just a screen that did not match the installed hardware, natuarally I alt tabbed right out of it, then hit the flag key to find the start menu....no start button. I miss the start button already. Keyboard cowboy funnin and I was browsing the harddrive, nothing stunning there, I like that, means I can find stuff. Only I can't find what I want, the start button....the start menu is that first screen for touch tablets. No biggie for useruser, that is where they will want to be, I can see that. Admins won't want to be there, it is easy enough to get the control panel a bazzilion other ways though, just not the start button. (see a pattern here?). Personally, from the keyboard I find it fun to hit the carets along the location bar at the top of the explorer screen with tabs and arrows and choose SHOW ALL CONTROL PANEL ITEMS, or thereabouts. Bottom line, I love seven and I'll love eight even more!...very happy I did not have to follow the normal rule of thumb (a customer watching me build a system and asking questions said "oh I get it, so every piece you put in there is basically a hundred bucks, right?)...ok, sure, pretty much, more or less, well, ya dude.  It will be WAY past october till I get a real touch screen but I did pick up a pair of cheap tatungs so I can try the NEW main start screen, I parse a lot of folders and have a vision of how a pair of touch screens will be easier than landing a rover on mars.  Ok.  fine, they are way smallish, and I don't expect multitouch to work but we are talking a few percent of a new 21 inch viewsonic touch screen.  Will this OS be a game changer?  I don't know.  Bottom line with all the pads and droids in the world, it is more of a catch up move at first glance.  Not something ms is used to.  An app store?  I can see ms's motivation, the others have it.  I gather there will not be gadgets there, go ahead and see what ms did  to the once populated gadget page...go ahead, google gadgets and take a gander, used to hundreds of gadgets, they are already gone.  They replaced gadgets?  sort of, I'll drop that, it's a bit of a sore point for me.  More of interest was what happened when I downloaded stuff off codeplex and some other normal programs that I like, like orbitron, top o' my list!!...cardware it is...anyways, click on the exe, get a screen, normal for windows, this one indicated that I was not running a normal windows program and had a button for  exit the install, naw, I hit details, a hidden run program anyways came into view....great, my path to the normal windows has detected a program tha.....yea ok, acl is on, fine, moving along I got orbitron installed in record time and was tracking the iss on the newest Microsoft OS, beta of course, felt like the first time I setup bsd all those year ago...FUN!!...I suppose I gotta start to think about budgeting for the real os when it comes out in october, by then I should have a rasberry pi and be done with fedora remixed.  Of course that sounds like fun too!!  I would use this OS on a tablet or phone.  I don't like the idea of being hearded to an app store, don't like that on anything, we are americans and want real choices not marketed hype, lest you are younger with opm (other peoples money).   This os would be neat on a zune, but I suspect the zune is a gonner, I am rooting for microsoft, after all their default password is not admin anymore, nor alpine,  it's blank. Others force a password, my first fawn password was so long I could not even log into it with the password in front of me, who the heck uses %$# anyways, and if I was writing a brute force attack what the heck kinda impasse is that anyways at .00001 microseconds of a code execution cycle (just a non qualified number, not a real clock speed)....AI is where it will be before too long, MS is on that path, perhaps soon someone will sit down and write an app for the kinect that watches your eyes while you scan the new main start screen, clicking on the big E icon when you blink.....boy is that going to be fun!!!! sure. Blink,dammit,blink,dammit...... OPM no doubt.I like windows eight, we are moving forwards, better keep a close eye on ubuntu.  The real clinch comes when open source becomes paid source......don't blink, I already see plenty of very expensive 'ix apps, some even in app stores already.  more to come.......

    Read the article

  • How to place SuperFetch cache on an SSD?

    - by Ian Boyd
    I'm thinking of adding a solid state drive (SSD) to my existing Windows 7 installation. I know I can (and should) move my paging file to the SSD: Should the pagefile be placed on SSDs? Yes. Most pagefile operations are small random reads or larger sequential writes, both of which are types of operations that SSDs handle well. In looking at telemetry data from thousands of traces and focusing on pagefile reads and writes, we find that Pagefile.sys reads outnumber pagefile.sys writes by about 40 to 1, Pagefile.sys read sizes are typically quite small, with 67% less than or equal to 4 KB, and 88% less than 16 KB. Pagefile.sys writes are relatively large, with 62% greater than or equal to 128 KB and 45% being exactly 1 MB in size. In fact, given typical pagefile reference patterns and the favorable performance characteristics SSDs have on those patterns, there are few files better than the pagefile to place on an SSD. What I don't know is if I even can put a SuperFetch cache (i.e. ReadyBoost cache) on the solid state drive. I want to get the benefit of Windows being able to cache gigabytes of frequently accessed data on a relativly small (e.g. 30GB) solid state drive. This is exactly what SuperFetch+ReadyBoost (or SuperFetch+ReadyDrive) was designed for. Will Windows offer (or let) me place a ReadyBoost cache on a solid state flash drive connected via SATA? A problem with the ReadyBoost cache over the ReadyDrive cache is that the ReadyBoost cache does not survive between reboots. The cache is encrypted with a per-session key, making its existing contents unusable during boot and SuperFetch pre-fetching during login. Update One I know that Windows Vista limited you to only one ReadyBoost.sfcache file (I do not know if Windows 7 removed that limitation): Q: Can use use multiple devices for EMDs? A: Nope. We've limited Vista to one ReadyBoost per machine Q: Why just one device? A: Time and quality. Since this is the first revision of the feature, we decided to focus on making the single device exceptional, without the difficulties of managing multiple caches. We like the idea, though, and it's under consideration for future versions. I also know that the 4GB limit on the cache file was a limitation of the FAT filesystem used on most USB sticks - an SSD drive would be formatted with NTFS: Q: What's the largest amount of flash that I can use for ReadyBoost? A: You can use up to 4GB of flash for ReadyBoost (which turns out to be 8GB of cache w/ the compression) Q: Why can't I use more than 4GB of flash? A: The FAT32 filesystem limits our ReadyBoost.sfcache file to 4GB Can a ReadyBoost cache on an NTFS volume be larger than 4GB? Update Two The ReadyBoost cache is encrypted with a per-boot session key. This means that the cache has to be re-built after each boot, and cannot be used to help speed boot times, or latency from login to usable. Windows ReadyDrive technology takes advantage of non-volatile (NV) memory (i.e. flash) that is incorporated with some hybrid hard drives. This flash cache can be used to help Windows boot, or resume from hibernate faster. Will Windows 7 use an internal SSD drive as a ReadyBoost/*ReadyDrive*/SuperFetch cache? Is it possible to make Windows store a SuperFetch cache (i.e. ReadyBoost) on a non-removable SSD? Is it possible to not encrypt the ReadyBoost cache, and if so will Windows 7 use the cache at boot time? See also SuperUser.com: ReadyBoost + SSD = ? Windows 7 - ReadyBoost & SSD drives? Support and Q&A for Solid-State Drives Using SDD as a cache for HDD, is there a solution? Performance increase using SSD for paging/fetch/cache or ReadyBoost? (Win7) Windows 7 To Boost SSD Performance How to Disable Nonvolatile Caching

    Read the article

  • Real tortoises keep it slow and steady. How about the backups?

    - by Maria Zakourdaev
      … Four tortoises were playing in the backyard when they decided they needed hibiscus flower snacks. They pooled their money and sent the smallest tortoise out to fetch the snacks. Two days passed and there was no sign of the tortoise. "You know, she is taking a lot of time", said one of the tortoises. A little voice from just out side the fence said, "If you are going to talk that way about me I won't go." Is it too much to request from the quite expensive 3rd party backup tool to be a way faster than the SQL server native backup? Or at least save a respectable amount of storage by producing a really smaller backup files?  By saying “really smaller”, I mean at least getting a file in half size. After Googling the internet in an attempt to understand what other “sql people” are using for database backups, I see that most people are using one of three tools which are the main players in SQL backup area:  LiteSpeed by Quest SQL Backup by Red Gate SQL Safe by Idera The feedbacks about those tools are truly emotional and happy. However, while reading the forums and blogs I have wondered, is it possible that many are accustomed to using the above tools since SQL 2000 and 2005.  This can easily be understood due to the fact that a 300GB database backup for instance, using regular a SQL 2005 backup statement would have run for about 3 hours and have produced ~150GB file (depending on the content, of course).  Then you take a 3rd party tool which performs the same backup in 30 minutes resulting in a 30GB file leaving you speechless, you run to management persuading them to buy it due to the fact that it is definitely worth the price. In addition to the increased speed and disk space savings you would also get backup file encryption and virtual restore -  features that are still missing from the SQL server. But in case you, as well as me, don’t need these additional features and only want a tool that performs a full backup MUCH faster AND produces a far smaller backup file (like the gain you observed back in SQL 2005 days) you will be quite disappointed. SQL Server backup compression feature has totally changed the market picture. Medium size database. Take a look at the table below, check out how my SQL server 2008 R2 compares to other tools when backing up a 300GB database. It appears that when talking about the backup speed, SQL 2008 R2 compresses and performs backup in similar overall times as all three other tools. 3rd party tools maximum compression level takes twice longer. Backup file gain is not that impressive, except the highest compression levels but the price that you pay is very high cpu load and much longer time. Only SQL Safe by Idera was quite fast with it’s maximum compression level but most of the run time have used 95% cpu on the server. Note that I have used two types of destination storage, SATA 11 disks and FC 53 disks and, obviously, on faster storage have got my backup ready in half time. Looking at the above results, should we spend money, bother with another layer of complexity and software middle-man for the medium sized databases? I’m definitely not going to do so.  Very large database As a next phase of this benchmark, I have moved to a 6 terabyte database which was actually my main backup target. Note, how multiple files usage enables the SQL Server backup operation to use parallel I/O and remarkably increases it’s speed, especially when the backup device is heavily striped. SQL Server supports a maximum of 64 backup devices for a single backup operation but the most speed is gained when using one file per CPU, in the case above 8 files for a 2 Quad CPU server. The impact of additional files is minimal.  However, SQLsafe doesn’t show any speed improvement between 4 files and 8 files. Of course, with such huge databases every half percent of the compression transforms into the noticeable numbers. Saving almost 470GB of space may turn the backup tool into quite valuable purchase. Still, the backup speed and high CPU are the variables that should be taken into the consideration. As for us, the backup speed is more critical than the storage and we cannot allow a production server to sustain 95% cpu for such a long time. Bottomline, 3rd party backup tool developers, we are waiting for some breakthrough release. There are a few unanswered questions, like the restore speed comparison between different tools and the impact of multiple backup files on restore operation. Stay tuned for the next benchmarks.    Benchmark server: SQL Server 2008 R2 sp1 2 Quad CPU Database location: NetApp FC 15K Aggregate 53 discs Backup statements: No matter how good that UI is, we need to run the backup tasks from inside of SQL Server Agent to make sure they are covered by our monitoring systems. I have used extended stored procedures (command line execution also is an option, I haven’t noticed any impact on the backup performance). SQL backup LiteSpeed SQL Backup SQL safe backup database <DBNAME> to disk= '\\<networkpath>\par1.bak' , disk= '\\<networkpath>\par2.bak', disk= '\\<networkpath>\par3.bak' with format, compression EXECUTE master.dbo.xp_backup_database @database = N'<DBName>', @backupname= N'<DBName> full backup', @desc = N'Test', @compressionlevel=8, @filename= N'\\<networkpath>\par1.bak', @filename= N'\\<networkpath>\par2.bak', @filename= N'\\<networkpath>\par3.bak', @init = 1 EXECUTE master.dbo.sqlbackup '-SQL "BACKUP DATABASE <DBNAME> TO DISK= ''\\<networkpath>\par1.sqb'', DISK= ''\\<networkpath>\par2.sqb'', DISK= ''\\<networkpath>\par3.sqb'' WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 4, INIT"' EXECUTE master.dbo.xp_ss_backup @database = 'UCMSDB', @filename = '\\<networkpath>\par1.bak', @backuptype = 'Full', @compressionlevel = 4, @backupfile = '\\<networkpath>\par2.bak', @backupfile = '\\<networkpath>\par3.bak' If you still insist on using 3rd party tools for the backups in your production environment with maximum compression level, you will definitely need to consider limiting cpu usage which will increase the backup operation time even more: RedGate : use THREADPRIORITY option ( values 0 – 6 ) LiteSpeed : use  @throttle ( percentage, like 70%) SQL safe :  the only thing I have found was @Threads option.   Yours, Maria

    Read the article

  • Intermittent lockups, unable to diagnose in over a year

    - by Magsol
    Here's a real doosie; I may just give my firstborn child to whomever helps me solve this problem. In July 2008, I assembled what would be my desktop computer for graduate school. Here are the specs of the machine I built: Thermaltake 750W PSU Corsair Dominator 2x2GB 240-pin SDRAM Thermaltake Tower Asus P5K Deluxe Motherboard Intel Core 2 Quad Q9300 2.5GHz CPU 2 x GeForce 8600 GT WD Caviar Blue 640GB hard drive CD burner DVD burner Soon thereafter, I ordered a new motherboard (because I was an idiot; that first motherboard supported CrossFire, not SLI), an Asus P5N-D. I was originally running Windows XP SP3. Pretty much right into the start of the fall semester, my desktop would simply lock up after awhile. If my system was largely idling, it would be after 1-3 days. If was gaming, it often happened an hour or two into my gaming session, indicating a link to activity level. Here's where it started getting interesting. I started looking at the system temps. The CPU was warmer than it should have been (~60s C), so I purchased some more efficient cooling compound a way better cooler for it. Now it hardly goes over 40 C. Intel was even kind enough to swap it out for free, just to rule it out. Lockups continued. The graphics cards were also running pretty warm: about 60 C idling. Removing one of them seemed to improve stability a little bit...as in, it wouldn't lock up quite as frequently, but still always eventually locked up. But it didn't matter which card I used or removed, the lockups continued. I reverted back to the original motherboard, the P5K Deluxe. Lockups continued. I purchased an entirely new motherboard, eVGA's nForce 750i. Lockups continued. Ran memtest86+ over and over and over, with no errors. Even RMA'd the memory. Lockups continued. Replaced the PSU with a Corsair 750W PSU. Lockups continued. Tried disconnecting all IDE drives (HDDs are SATA). Lockups continued. Replaced both graphics cards with a single Radeon HD 4980. Average temps are now always around 50 C when idling, 60 C only when gaming. Lockups continued. Throughout the whole ordeal, the system has been upgraded from Windows XP SP3 to Vista 32-bit, to Vista 64-bit, and is now at Windows 7 64-bit. Lockups have occurred at every step along the way (each OS was in place for at least a few months before the next upgrade). Edit: By "upgrade" I mean clean install each time. In addition to those reformats, I have performed many, many other reformats of the system and a reinstall of whatever OS had been previously installed in an attempt to rectify this problem, to no avail./Edit When the system locks up, there's no blue screen, no reboot, no error message of any kind. It simply freezes in place until I hit the reset button. Very, very rarely, once Windows boots back up, the system informs me that Windows has recovered from an error, but it can never find the source aside from some piece of hardware. I've swapped out every component in this computer, and there are more fans in it than I care to count...though for the sake of completeness: top 80mm case fan (out) rear 80mm case fan (out) rear 120mm case fan (out) front 120mm case fan (in) side 250mm case fan (in) giant CPU fan on-board motherboard fan (the eVGA board) triple-fan memory setup (came with the memory) PSU internal fan another 120mm fan I stuck on the underside of the video card to keep hot air from collecting at the bottom of the case I'm truly out of ideas. ANY help at all would be oh-so-very GREATLY appreciated. Thank you!

    Read the article

  • SmartOS reboots spontaneously

    - by Alex
    I run a SmartOS system on a Hetzner EX4S (Intel Core i7-2600, 32G RAM, 2x3Tb SATA HDD). There are six virtual machines on the host: [root@10-bf-48-7f-e7-03 ~]# vmadm list UUID TYPE RAM STATE ALIAS d2223467-bbe5-4b81-a9d1-439e9a66d43f KVM 512 running xxxx1 5f36358f-68fa-4351-b66f-830484b9a6ee KVM 1024 running xxxx2 d570e9ac-9eac-4e4f-8fda-2b1d721c8358 OS 1024 running xxxx3 ef88979e-fb7f-460c-bf56-905755e0a399 KVM 1024 running xxxx4 d8e06def-c9c9-4d17-b975-47dd4836f962 KVM 4096 running xxxx5 4b06fe88-db6e-4cf3-aadd-e1006ada7188 KVM 9216 running xxxx5 [root@10-bf-48-7f-e7-03 ~]# The host reboots several times a week with no crash dump in /var/crash and no messages in the /var/adm/messages log. Basically /var/adm/messages looks like there was a hard reset: 2012-11-23T08:54:43.210625+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T09:14:43.187589+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T09:34:43.165100+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T09:54:43.142065+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T10:14:43.119365+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T10:34:43.096351+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T10:54:43.073821+00:00 10-bf-48-7f-e7-03 rsyslogd: -- MARK -- 2012-11-23T10:57:55.610954+00:00 10-bf-48-7f-e7-03 genunix: [ID 540533 kern.notice] #015SunOS Release 5.11 Version joyent_20121018T224723Z 64-bit 2012-11-23T10:57:55.610962+00:00 10-bf-48-7f-e7-03 genunix: [ID 299592 kern.notice] Copyright (c) 2010-2012, Joyent Inc. All rights reserved. 2012-11-23T10:57:55.610967+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: lgpg 2012-11-23T10:57:55.610971+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: tsc 2012-11-23T10:57:55.610974+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: msr 2012-11-23T10:57:55.610978+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: mtrr 2012-11-23T10:57:55.610981+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: pge 2012-11-23T10:57:55.610984+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: de 2012-11-23T10:57:55.610987+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: cmov 2012-11-23T10:57:55.610995+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: mmx 2012-11-23T10:57:55.611000+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: mca 2012-11-23T10:57:55.611004+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: pae 2012-11-23T10:57:55.611008+00:00 10-bf-48-7f-e7-03 unix: [ID 223955 kern.info] x86_feature: cv8 The problem is that sometimes the host loses the network interface on reboot so we need to perform a manual hardware reset to bring it back. We do not have physical or virtual access to the server console - no KVM, no iLO or anything like this. So, the only way to debug is to analyze crash dumps/log files. I am not a SmartOS/Solaris expert so I am not sure how to proceed. Is there any equivalent of Linux netconsole for SmartOS? Can I just redirect the console output to the network port somehow? Maybe I am missing something obvious and crash information is located somewhere else.

    Read the article

  • Proliant server will not accept new hard disks in RAID 1+0?

    - by Leigh
    I have a HP ProLiant DL380 G5, I have two logical drives configured with RAID. I have one logical drive RAID 1+0 with two 72 gb 10k sas 1 port spare no 376597-001. I had one hard disk fail and ordered a replacement. The configuration utility showed error and would not rebuild the RAID. I presumed a hard disk fault and ordered a replacement again. In the mean time I put the original failed disk back in the server and this started rebuilding. Currently shows ok status however in the log I can see hardware errors. The new disk has come and I again have the same problem of not accepting the hard disk. I have updated the P400 controller with the latest firmware 7.24 , but still no luck. The only difference I can see is the original drive has firmware 0103 (same as the RAID drive) and the new one has HPD2. Any advice would be appreciated. Thanks in advance Logs from server ctrl all show config Smart Array P400 in Slot 1 (sn: PAFGK0P9VWO0UQ) array A (SAS, Unused Space: 0 MB) logicaldrive 1 (68.5 GB, RAID 1, Interim Recovery Mode) physicaldrive 2I:1:1 (port 2I:box 1:bay 1, SAS, 73.5 GB, OK) physicaldrive 2I:1:2 (port 2I:box 1:bay 2, SAS, 72 GB, Failed array B (SAS, Unused Space: 0 MB) logicaldrive 2 (558.7 GB, RAID 5, OK) physicaldrive 1I:1:5 (port 1I:box 1:bay 5, SAS, 300 GB, OK) physicaldrive 2I:1:3 (port 2I:box 1:bay 3, SAS, 300 GB, OK) physicaldrive 2I:1:4 (port 2I:box 1:bay 4, SAS, 300 GB, OK) ctrl all show config detail Smart Array P400 in Slot 1 Bus Interface: PCI Slot: 1 Serial Number: PAFGK0P9VWO0UQ Cache Serial Number: PA82C0J9VWL8I7 RAID 6 (ADG) Status: Disabled Controller Status: OK Hardware Revision: E Firmware Version: 7.24 Rebuild Priority: Medium Expand Priority: Medium Surface Scan Delay: 15 secs Surface Scan Mode: Idle Wait for Cache Room: Disabled Surface Analysis Inconsistency Notification: Disabled Post Prompt Timeout: 0 secs Cache Board Present: True Cache Status: OK Cache Status Details: A cache error was detected. Run more information. Cache Ratio: 100% Read / 0% Write Drive Write Cache: Disabled Total Cache Size: 256 MB Total Cache Memory Available: 208 MB No-Battery Write Cache: Disabled Battery/Capacitor Count: 0 SATA NCQ Supported: True Array: A Interface Type: SAS Unused Space: 0 MB Status: Failed Physical Drive Array Type: Data One of the drives on this array have failed or has Logical Drive: 1 Size: 68.5 GB Fault Tolerance: RAID 1 Heads: 255 Sectors Per Track: 32 Cylinders: 17594 Strip Size: 128 KB Full Stripe Size: 128 KB Status: Interim Recovery Mode Caching: Enabled Unique Identifier: 600508B10010503956574F305551 Disk Name: \\.\PhysicalDrive0 Mount Points: C:\ 68.5 GB Logical Drive Label: A0100539PAFGK0P9VWO0UQ0E93 Mirror Group 0: physicaldrive 2I:1:2 (port 2I:box 1:bay 2, S Mirror Group 1: physicaldrive 2I:1:1 (port 2I:box 1:bay 1, S Drive Type: Data physicaldrive 2I:1:1 Port: 2I Box: 1 Bay: 1 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 73.5 GB Rotational Speed: 10000 Firmware Revision: 0103 Serial Number: B379P8C006RK Model: HP DG072A9B7 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 2I:1:2 Port: 2I Box: 1 Bay: 2 Status: Failed Drive Type: Data Drive Interface Type: SAS Size: 72 GB Rotational Speed: 15000 Firmware Revision: HPD9 Serial Number: D5A1PCA04SL01244 Model: HP EH0072FARUA PHY Count: 2 PHY Transfer Rate: Unknown, Unknown Array: B Interface Type: SAS Unused Space: 0 MB Status: OK Array Type: Data Logical Drive: 2 Size: 558.7 GB Fault Tolerance: RAID 5 Heads: 255 Sectors Per Track: 32 Cylinders: 65535 Strip Size: 64 KB Full Stripe Size: 128 KB Status: OK Caching: Enabled Parity Initialization Status: Initialization Co Unique Identifier: 600508B10010503956574F305551 Disk Name: \\.\PhysicalDrive1 Mount Points: E:\ 558.7 GB Logical Drive Label: AF14FD12PAFGK0P9VWO0UQD007 Drive Type: Data physicaldrive 1I:1:5 Port: 1I Box: 1 Bay: 5 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 300 GB Rotational Speed: 10000 Firmware Revision: HPD4 Serial Number: 3SE07QH300009923X1X3 Model: HP DG0300BALVP Current Temperature (C): 32 Maximum Temperature (C): 45 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 2I:1:3 Port: 2I Box: 1 Bay: 3 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 300 GB Rotational Speed: 10000 Firmware Revision: HPD4 Serial Number: 3SE0AHVH00009924P8F3 Model: HP DG0300BALVP Current Temperature (C): 34 Maximum Temperature (C): 47 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown physicaldrive 2I:1:4 Port: 2I Box: 1 Bay: 4 Status: OK Drive Type: Data Drive Interface Type: SAS Size: 300 GB Rotational Speed: 10000 Firmware Revision: HPD4 Serial Number: 3SE08NAK00009924KWD6 Model: HP DG0300BALVP Current Temperature (C): 35 Maximum Temperature (C): 47 PHY Count: 2 PHY Transfer Rate: Unknown, Unknown

    Read the article

  • Looking for advice on Hyper-v storage replication

    - by Notre1
    I am designing a 2-host Hyper-V R2 cluster with 6-10 guests stored on a SMB iSCSI SAN device (probably Promise VessRAID). I will be getting at least two of the SAN devices and need to eliminate the storage a single point of failure. Ideally, that would involve real-time failover for the storage, like the Windows failover clustering does for the hosts. This design will be used at around six of our sites, and I would like to allow for us to eventually setup a cluster at colocation site and replicate each site's VMs there for DR. (Ideally a live multi-site cluster, but a manual import of the VMs would be fine for this sort of DR.) The tools that come with enterprise SANs, like EMC and NetApp, seem to be the most commonly used items for a Hyper-V cluster, but I can't afford their prices with my budget. Outside of them, the two tools that seem to be most common for Hyper-V storage replication are SteelEye (now SIOS) DataKeeper Cluster Edition and Double-Take Availability. Originally, I was planning on using Clustered Shared Volume(s) (CSV), but it seems like replication support for these is either not available or brand new in both these products. It looks like CSVs are supported in Double-Take 5.22, see this discussion, but I don't think I want to run something that new in production. Right now, it seems like the best option for me is not to implement CSVs, implement some sort of storage replication, and upgrade to CSVs at a later date once replicating them is more mature. I would love to have live migration, and CSVs are not required for live migration if you are using one LUN per VM, so I guess this is what I'll do. I would prefer to stick to the using the Microsoft Windows Server and Hyper-V tools and features as much as possible. From that standpoint, SteelEye looks more appealing than Double-Take because they make the DataKeeper volume(s) available to the Failover Clustering Manager and then failover clustering is all configured and managed through the native Microsoft tools. Double-Take says that "clustered Hyper-V hosts are not supported," and Double-Take Availability itself seems to be what is used for the actual clustering and failover. Does anyone know if any of these replication tools work with more than two hosts in the cluster? All the information I can find on the web only uses two hosts in their examples. Are there any better tools than SteelEye and Double-Take for doing what I am trying to do, which is eliminate the storage as as single point of failure? Neverfail, AppAssure, and DataCore all seem to offer similar functionality, but they don't seems to be as popular as SteelEye and Double-Take. I have seen a number of people suggest using Starwind iSCSI SAN software for the shared storage, which includes replication (and CSV replication at that). There are a couple of reasons I have not seriously considered this route: 1) The company I work for is exclusively a Dell shop and Dell does not have any servers with that I can pack with more than six 3.5" SATA drives. 2) In the future, it could be advantegous for us to not be locked into a particular brand or type of storage and third-party replication softwares all allow replication to heterogeneous storage devices. I am pretty new to iSCSI and clustering, so please let me know if it looks like I am planning something that goes against best practices or overlooking/missing something.

    Read the article

  • My computer freezes irregurarly

    - by Manhim
    My computer started to freeze at irregular times for 3 weeks now. What happens My computer freezes, the video stops. (No graphic glitches, it just stops) Sound keeps playing up to some time (Usually 10-30 seconds) then stops playing. Sometimes, randomly, the screen on my G-15 keyboard flickers and I see caracters not at the right places. Usually happens for about 1-2 seconds and a bit before my computer freezes. I have to keep the power button pressed for 4 seconds to shut my computer down. I still hear my hard drives and fans working. Sometimes it works with no problems for a full day, some other times it just keeps freezing each time I restart my computer and I have to leave it for the rest of the day. Sometimes my mouse freezes for a fraction of a second (Like 0.01 to 0.2 seconds) quite randomly, usually before it freezes. No errors spotted by the "Action center" unlike when I had problems with my last video card on this system (Driver errors). My G-15 LCD screen also freezes. What I did so far I have had similar problems in the past and I had changed my hard drive (It was faulty), so I tested my software RAID-0 array and it was faulty so I changed it. (I reinstalled Windows 7 with this part). I also tested with unplugging my secondary hard drive. My CPU was running at about 100 degree Celsius, I removed the dust between the fans and the heatsink and it's now between 50-60. I ran a CPU stress-test and it didn't freeze during the tests (using Prime95 on all cores) Ran a memory test (using memtest86+) for a single pass and there were no errors. Ran a GPU stress test with ati-tools and furmark and it didn't freeze during the tests. (No artefacts either) I had troubles with my graphic card when I got it, but I think that it got fixed with a driver update. I checked the voltages in my BIOS setup and they all seemed ok (±0.2 I think). I have ran on the computer without problems with Fedora 15 on an external hard drive (Appart that it couldn't load Gnome 3 and was reverting to Gnome 2, didn't want to install drivers since I use it on multiple computers) I used it to backup my files from the raid array to my 1TB hard drive for the reinstallation of Windows. (So the crashes only happenned on Windows) [The external hard drive is plugged directly on a SATA port] I contacted EVGA (My graphic card vendor) and pointed them on this question, I'm looking for an answer. Ran sensors on Fedora 15 and got this output: http://pastebin.com/0BHJnAvu When it happens When I play video games (Mostly) When I play flash games (Second most) When I'm looking at my desktop background (It rarely happens when I have a window open, but it does, sometimes) Specs Windows Seven x64 Home Premium Motherboard: M2N-SLI Deluxe CPU: AMD Phenom 9950 x2 @ 2.6GHz Memory: Kingston 4x2GB Dual Channel (Pretty basic memory sticks) Hard drives: Was 2x250GB (Western digital caviar) in raid-0 + 1TB (WD caviar black), I replaced the raid array with a 750GB (WD caviar black) [Yes I removed the array from the raid configurations] 750W Power supply No overcloking. Ever. There have been some power-downs like 4-5 weeks ago, but the problem didn't start immediately after. (I wasn't home, so my computer got shut-down) My current to-try list Change the thermal paste on my CPU. Change my graphic card with a temporary one and stress the computer. Change my power supply. In this situation, how can I successfully pin-point the current hardware problem? (If it's a hardware problem) Because I don't really have the budget to just forget and replace everything. I also don't really have hardware to test-replace current hardware.

    Read the article

  • Windows 7 inbuilt and 3rd party (de)fragmentation related queries

    - by Karan
    I have a pretty good idea of how files end up getting fragmented. That said, I just copied ~3,200 files of varying sizes (from a few KB to ~20GB) from an external USB HDD to an internal, freshly formatted (under Windows 7 x64), NTFS, 2TB, 5400RPM, WD, SATA, non-system (i.e. secondary) drive, filling it up 57%. Since it should have been very much possible for each file to have been stored in one contiguous block, I expected the drive to be fragmented not more than 1-2% at most after this rather lengthy exercise (unfortunately this older machine doesn't support USB 3.0). Windows 7's inbuilt defrag utility told me after a quick analysis that the drive was fragmented only 1% or so, which dovetailed neatly with my expectations. However, just out of curiosity I downloaded and ran the latest portable x64 version of Piriform's Defraggler, and was shocked to see the drive being reported as being ~85% fragmented! The portable version of Auslogics Disk Defrag also agreed with Defraggler, and both clearly expected to grind away for ~10 hours to completely defragment the drive. 1) How in blazes could the inbuilt and 3rd party defrag utils disagree so badly? I mean, 10-20% variance is probably understandable, but 1% and 85% are miles apart! This Engineering Windows 7 blog post states: In Windows XP, any file that is split into more than one piece is considered fragmented. Not so in Windows Vista if the fragments are large enough – the defragmentation algorithm was changed (from Windows XP) to ignore pieces of a file that are larger than 64MB. As a result, defrag in XP and defrag in Vista will report different amounts of fragmentation on a volume. ... [Please read the entire post so the quote is not taken out of context.] Could it simply be that the 3rd party defrag utils ignore this post-XP change and continue to use analysis algos similar to those XP used? 2) Assuming that the 3rd party utils aren't lying about the real extent of fragmentation (which Windows is downplaying post-XP), how could the files have even got fragmented so badly given they were just copied over afresh to an empty drive? 3) If vastly differing analysis algos explain the yawning gap, which do I believe? I'm no defrag fanatic for sure, but 85% is enough to make me seriously consider spending 10 hours defragging this drive. On the other hand, 1% reported by Windows' own defragger clearly implies that there is no cause for concern and defragging would actually have negative consequences (as per the post). Is Windows' assumption valid and should I just let it be, or will there be any noticeable performance gains after running one of the 3rd party utils for 10 hours straight? 4) I see that out of the box Windows 7 defrag is scheduled to run weekly. Does anyone know whether it defrags every single time, or only if its analysis reveals a fragmentation percentage over a set threshold? If the latter, what is this threshold and can it be changed, maybe via a Registry edit? Thanks for reading through (my first query on this wonderful site!) and for any helpful replies. Also, if you're answering question #3, please keep in mind that any speed increases post defragging with 3rd party utils vis-à-vis Windows' inbuilt program should not include pre-Vista (preferably pre-Win7) examples. Further, examples of programs that made your system boot faster won't help in this case, since this is a non-system drive (although one that'll still be used daily).

    Read the article

  • OS8- AK8- The bad news...

    - by Steve Tunstall
    Ok I told you I would give you the bad news of AK8 to go along with all the cool new stuff, so here it is. It's not that bad, really, just things you need to be aware of. First, the 2013.1 code is being called OS8, AK8 and 2013.1 by different people. I mean different people INSIDE Oracle!! It was supposed to be easy, but it never is. So for the rest of this blog entry, I'm calling it AK8. AK8 is not compatible with the 7x10 series. Ever. The 7x10 series is not supported with AK8, and if you try to upgrade one, it will fail at the healthcheck. All 7x20 series, all of them regardless of age, are supported with AK8. Drive trays. Let's talk about drive trays and SAS cards. The older drive trays for the 7x20 series were called the "Riverwalk 2" or "DS2" trays. They were technically the "J4410" series JBODs that Sun used to sell a la carte before we stopped selling JBODs. Don't get me started on that, it still makes me mad. We used these for many years, and you can still buy them right now until December 15th, 2013, when they will no longer be sold. The DS2 tray only came as a 4u, 24 drive shelf. It held 3.5" drives, and you had a choice of 2TB, 3TB, 300GB or 600GB drives. The SAS HBA in the 7x20 series was called a "Thebe" card, with a part # of 7105394. The 7420, for example, came standard with two of these "Thebe" cards for connecting to the disk trays. Two Thebe cards could handle up to 12 trays, so one would add two more cards to go to 24 trays, or have up to six Thebe cards to handle 36 trays. This card was for external SAS only. It did not connect to the internal OS drives or the Readzillas, both of which used the internal SCSI controller of the server. These Riverwalk 2 trays ARE supported with AK8. You can upgrade your older 7420 or 7320, no problem, as-is. The much older Riverwalk 1 trays or J4400 trays are NOT supported by AK8. However, they were only used by the 7x10 series, and we already said that the 7x10 series was not supported. Here's where it gets tricky. Since last January, we have been selling the new style disk trays. We call them the "DE2-24P" and the "DE2-24C" trays. The "C" tray is for capacity drives, which are 3.5" 3TB or 4TB drives. The "P" trays are for performance drives, which are 2.5" 300GB and 900GB drives. These trays are NOT Riverwalk 2 trays, even though the "C" series may kind of look like it. Different manufacturer and different firmware. They are not new. Like I said, we've been selling them with the 7x20 series since last January. They are the only disk trays we will be selling going forward. Of course, AK8 supports them. So what's the problem? The problem is going to be for people who have to mix drive trays. Remember, your older 7x20 series has Thebe SAS2 HBAs. These have 2 SAS ports per card.  The new ZS3-2 and ZS3-4 systems, however, have the new "Thebe2" SAS2 HBAs. These Thebe2 cards have 4 ports per card. This is very cool, as we can now do more SAS channels with less cards. Instead of needing 4 SAS cards to grow to 24 trays like we did with the old Thebe cards, I can now do 24 trays with only 2 Thebe2 cards. This means more IO slots for fun things like Infiniband and 10G. So far, so good, right? These Thebe2 cards work with any disk tray. You can even mix older DS2 trays with the newer DE2 trays in the same system, as long as you have Thebe2 cards. Ah, there's your problem. You don't have Thebe2 cards in your old 7420, do you? Well, I told you the bad news wasn't that bad, right? We can take out your Thebe cards and replace them with Thebe2. You can then plug your older DS2 trays right back in, and also now get newer DE2 trays going forward. However, it's important that the trays are on different SAS channels. You can mix them in the same system, but not on the same channel. Ask your local SC if you need help with the new cable layout. By the way, the new ZS3-2 and ZS3-4 systems also include a new IO card called "Erie" cards. These are for INTERNAL SAS to the OS drives and the Readzillas. So those are now SAS2 instead of SATA like the older models. Yes, the Erie card uses an IO slot, but that's OK, because the Thebe2 cards allow us to use less SAS HBAs to grow the system, right? That's it. Not too much bad news and really not that bad. AK8 does not support the 7x10 series, and you may need new Thebe2 cards in your older systems if you want to add on newer DE2 trays. I think we can all agree that there are worse things out there. Like our Congress.   Next up.... More good news and cool AK8 tricks. Such as virtual NICS. 

    Read the article

  • Rosewill RSV-S5 and it's transferespeeds

    - by DoomStone
    I have just bought a Rosewill RSV-S5, I have installed 5x1,5Tb Western Digital Green disks in it. After that have I created a Raid5 on them all with the software that followed with the hardware. Not the raid it self works fine, but it is SLOW, I can only obtain a maximum of 25 MB/s, and if SABnzbd+ is downloading with 5 MB/s is it having a hard time streaming a normal DIVX (700 mb) movie. Is this normal or is there something wrong? Edit: should be able to handle 3 Gbps = 384 megabytes / second Edit 2: As you can see am I only downloading with 3,76 MB/s and I'm trying to watch V s02e08 (720p), but it is completely unwatchable, as I can see 30 sec, and the it buffers for 20 sec. Edit: Other information there might be required I'm running Windows Server 2008 R2, optimized for program performance. Windows is installed on a 60GB SSD. I have a 50 Mb/s internet connection and a 1 Gb/s LAN, all connected with Cat6 Ethernet cables. The MCE is using a Gigabyte EP35C-DS3R motherboard with 2 GB DDR2 ram. Edit 3: I have used chunk sizes for 128 KB Edit 4: I found this on newegg Pros: Enclosure for 5x2TB hard drive is fine. This is basically a rebranded San Digital TR5M-B product. For support Rosewill tells you to contact San Digital. No direct support from Silicon Image for the computer raid card. Cons: Includes computer Silicon Image 3132 raid card, extremely slow raid 5 write (our tests ~10MB/s). Compare to regular internal local drive write 30-60MB/s. We basically dumped the Sil3132 card and replaced with High Point RocketRaid 622 card for extra $69.99. Note for RR622, turn off ECRC (end to end CRC check) for card to work on IBM xserver. What took 12hrs to copy now took 2-3hrs. San Digital realized the problem and has the newer model TR5M-BP TowerRaid Plus that comes with High Point RocketRaid 622 card. Rosewill should discontinue this product and go with TR5M-BP. Could not get Silicon Image raid management software to work with complicated 2008R2 server with 10 NICs, application doesn't know how to talk to localhost port with all those NICs. No updates from Silicon Image and support from San Digital ignored. Gave up on Sil3132 card. Save yourself from a lot of headaches, get the RR622 card too if you are going to buy this product. Other Thoughts: The newer model is TR5M-BP TowerRaid Plus, comes with High Point RocketRaid 622 raid card for the PC instead of Silicon Image Sil3132. According to San Digital, raid 5 performance for Sil3132 read 80MB/s write 19MB/s, and RR622 read 154MB/s write 149MB/s. Our RR622 tests gave (8TB raid 5) write ~80-110MB/s copying 40GB file took 8mins. So I have now ordered a HighPoint RocketRAID 622 2P ext SATA III and hopes that it will solve my problems.

    Read the article

  • volume group disappeared after xfs_check run

    - by John P
    EDIT** I have a volume group consisting of 5 RAID1 devices grouped together into a lvm and formatted with xfs. The 5th RAID device lost its RAID config (cat /proc/mdstat does not show anything). The two drives are still present (sdj and sdk), but they have no partitions. The LVM appeared to be happily using sdj up until recently. (doing a pvscan showed the first 4 RAID1 devices + /dev/sdj) I removed the LVM from the fstab, rebooted, then ran xfs_check on the LV. It ran for about half an hour, then stopped with an error. I tried rebooting again, and this time when it came up, the logical volume was no longer there. It is now looking for /dev/md5, which is gone (though it had been using /dev/sdj earlier). /dev/sdj was having read errors, but after replacing the SATA cable, those went away, so the drive appears to be fine for now. Can I modify the /etc/lvm/backup/dedvol, change the device to /dev/sdj and do a vgcfgrestore? I could try doing a pvcreate --uuid KZron2-pPTr-ZYeQ-PKXX-4Woq-6aNc-AG4rRJ /dev/sdj to make it recognize it, but I'm afraid that would erase the data on the drive UPDATE: just changing the pv to point to /dev/sdj did not work vgcfgrestore --file /etc/lvm/backup/dedvol dedvol Couldn't find device with uuid 'KZron2-pPTr-ZYeQ-PKXX-4Woq-6aNc-AG4rRJ'. Cannot restore Volume Group dedvol with 1 PVs marked as missing. Restore failed. pvscan /dev/sdj: read failed after 0 of 4096 at 0: Input/output error Couldn't find device with uuid 'KZron2-pPTr-ZYeQ-PKXX-4Woq-6aNc-AG4rRJ'. Couldn't find device with uuid 'KZron2-pPTr-ZYeQ-PKXX-4Woq-6aNc-AG4rRJ'. Couldn't find device with uuid 'KZron2-pPTr-ZYeQ-PKXX-4Woq-6aNc-AG4rRJ'. Couldn't find device with uuid 'KZron2-pPTr-ZYeQ-PKXX-4Woq-6aNc-AG4rRJ'. PV /dev/sdd2 VG VolGroup00 lvm2 [74.41 GB / 0 free] PV /dev/md2 VG dedvol lvm2 [931.51 GB / 0 free] PV /dev/md3 VG dedvol lvm2 [931.51 GB / 0 free] PV /dev/md0 VG dedvol lvm2 [931.51 GB / 0 free] PV /dev/md4 VG dedvol lvm2 [931.51 GB / 0 free] PV unknown device VG dedvol lvm2 [1.82 TB / 63.05 GB free] Total: 6 [5.53 TB] / in use: 6 [5.53 TB] / in no VG: 0 [0 ] vgscan Reading all physical volumes. This may take a while... /dev/sdj: read failed after 0 of 4096 at 0: Input/output error /dev/sdj: read failed after 0 of 4096 at 2000398843904: Input/output error Found volume group "VolGroup00" using metadata type lvm2 Found volume group "dedvol" using metadata type lvm2 vgdisplay dedvol --- Volume group --- VG Name dedvol System ID Format lvm2 Metadata Areas 5 Metadata Sequence No 10 VG Access read/write VG Status resizable MAX LV 0 Cur LV 1 Open LV 0 Max PV 0 Cur PV 5 Act PV 5 VG Size 5.46 TB PE Size 4.00 MB Total PE 1430796 Alloc PE / Size 1414656 / 5.40 TB Free PE / Size 16140 / 63.05 GB VG UUID o1U6Ll-5WH8-Pv7Z-Rtc4-1qYp-oiWA-cPD246 dedvol { id = "o1U6Ll-5WH8-Pv7Z-Rtc4-1qYp-oiWA-cPD246" seqno = 10 status = ["RESIZEABLE", "READ", "WRITE"] flags = [] extent_size = 8192 # 4 Megabytes max_lv = 0 max_pv = 0 physical_volumes { pv0 { id = "Msiee7-Zovu-VSJ3-Y2hR-uBVd-6PaT-Ho9v95" device = "/dev/md2" # Hint only status = ["ALLOCATABLE"] flags = [] dev_size = 1953519872 # 931.511 Gigabytes pe_start = 384 pe_count = 238466 # 931.508 Gigabytes } pv1 { id = "ZittCN-0x6L-cOsW-v1v4-atVN-fEWF-e3lqUe" device = "/dev/md3" # Hint only status = ["ALLOCATABLE"] flags = [] dev_size = 1953519872 # 931.511 Gigabytes pe_start = 384 pe_count = 238466 # 931.508 Gigabytes } pv2 { id = "NRNo0w-kgGr-dUxA-mWnl-bU5v-Wld0-XeKVLD" device = "/dev/md0" # Hint only status = ["ALLOCATABLE"] flags = [] dev_size = 1953519872 # 931.511 Gigabytes pe_start = 384 pe_count = 238466 # 931.508 Gigabytes } pv3 { id = "2EfLFr-JcRe-MusW-mfAs-WCct-u4iV-W0pmG3" device = "/dev/md4" # Hint only status = ["ALLOCATABLE"] flags = [] dev_size = 1953519872 # 931.511 Gigabytes pe_start = 384 pe_count = 238466 # 931.508 Gigabytes } pv4 { id = "KZron2-pPTr-ZYeQ-PKXX-4Woq-6aNc-AG4rRJ" device = "/dev/md5" # Hint only status = ["ALLOCATABLE"] flags = [] dev_size = 3907028992 # 1.81935 Terabytes pe_start = 384 pe_count = 476932 # 1.81935 Terabytes } }

    Read the article

  • Looking for advice on Hyper-v storage replication

    - by Notre1
    I am designing a 2-host Hyper-V R2 cluster with 6-10 guests stored on a SMB iSCSI SAN device (probably Promise VessRAID). I will be getting at least two of the SAN devices and need to eliminate the storage a single point of failure. Ideally, that would involve real-time failover for the storage, like the Windows failover clustering does for the hosts. This design will be used at around six of our sites, and I would like to allow for us to eventually setup a cluster at colocation site and replicate each site's VMs there for DR. (Ideally a live multi-site cluster, but a manual import of the VMs would be fine for this sort of DR.) The tools that come with enterprise SANs, like EMC and NetApp, seem to be the most commonly used items for a Hyper-V cluster, but I can't afford their prices with my budget. Outside of them, the two tools that seem to be most common for Hyper-V storage replication are SteelEye (now SIOS) DataKeeper Cluster Edition and Double-Take Availability. Originally, I was planning on using Clustered Shared Volume(s) (CSV), but it seems like replication support for these is either not available or brand new in both these products. It looks like CSVs are supported in Double-Take 5.22, see this discussion, but I don't think I want to run something that new in production. Right now, it seems like the best option for me is not to implement CSVs, implement some sort of storage replication, and upgrade to CSVs at a later date once replicating them is more mature. I would love to have live migration, and CSVs are not required for live migration if you are using one LUN per VM, so I guess this is what I'll do. I would prefer to stick to the using the Microsoft Windows Server and Hyper-V tools and features as much as possible. From that standpoint, SteelEye looks more appealing than Double-Take because they make the DataKeeper volume(s) available to the Failover Clustering Manager and then failover clustering is all configured and managed through the native Microsoft tools. Double-Take says that "clustered Hyper-V hosts are not supported," and Double-Take Availability itself seems to be what is used for the actual clustering and failover. Does anyone know if any of these replication tools work with more than two hosts in the cluster? All the information I can find on the web only uses two hosts in their examples. Are there any better tools than SteelEye and Double-Take for doing what I am trying to do, which is eliminate the storage as as single point of failure? Neverfail, AppAssure, and DataCore all seem to offer similar functionality, but they don't seems to be as popular as SteelEye and Double-Take. I have seen a number of people suggest using Starwind iSCSI SAN software for the shared storage, which includes replication (and CSV replication at that). There are a couple of reasons I have not seriously considered this route: 1) The company I work for is exclusively a Dell shop and Dell does not have any servers with that I can pack with more than six 3.5" SATA drives. 2) In the future, it could be advantegous for us to not be locked into a particular brand or type of storage and third-party replication softwares all allow replication to heterogeneous storage devices. I am pretty new to iSCSI and clustering, so please let me know if it looks like I am planning something that goes against best practices or overlooking/missing something.

    Read the article

< Previous Page | 48 49 50 51 52 53  | Next Page >