Search Results

Search found 49452 results on 1979 pages for 'type testing'.

Page 52/1979 | < Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >

  • How do you apply development practices like version control, testing and continuous integration/deployment to system administration?

    - by arex1337
    Imagine you're going to manage a number of servers with a number of different services that's used by a number of people. Now say you want to reconfigure or replace some software on one of those servers. Obviously you don't want to work on servers that are in production. If this was a code change, as a developer, I would make the change on my local development machine, test it locally and commit the change to a version control system. The changes could then be deployed in a staging environment, tested further and finally deployed in a production environment. It would also be easy for me to roll back, if necessary. Generally, or specifically, how do you achieve this in system administration? (The first thing that comes to mind is to use virtual machines and put virtual machine images in version control, but I'm sure there is a lot of literature and clever solutions I'm not presently aware of.)

    Read the article

  • SQL database testing: How to capture state of my database for rollback.

    - by Rising Star
    I have a SQL server (MS SQL 2005) in my development environment. I have a suite of unit tests for some .net code that will connect to the database and perform some operations. If the code under test works correctly, then the database should be in the same (or similar) state to how it was before the tests. However, I would like to be able to roll back the database to its state from before the tests run. One way of doing this would be to programmatically use transactions to roll back each test operation, but this is difficult and cumbersome to program; it could easily lead to errors in the test code. I would like to be able to run my tests confidently knowing that if they destroy my tables, I can quickly restore them? What is a good way to save a snapshot of one of my databases with its tables so that I can easily restore the database to it's state from before the test?

    Read the article

  • Should Development / Testing / QA / Staging environments be similar?

    - by Walter White
    Hi all, After much time and effort, we're finally using maven to manage our application lifecycle for development. We still unfortunately use ANT to build an EAR before deploying to Test / QA / Staging. My question is, while we made that leap forward, developers are still free to do as they please for testing their code. One issue that we have is half our team is using Tomcat to test on and the other half is using Jetty. I prefer Jetty slightly over Tomcat, but regardless we using WAS for all the other environments. My question is, should we develop on the same application server we're deploying to? We've had numerous bugs come up from these differences in environments. Tomcat, Jetty, and WAS are different under the hood. My opinion is that we all should develop on what we're deploying to production with so we don't have the problem of well, it worked fine on my machine. While I prefer Jetty, I just assume we all work on the same environment even if it means deploying to WAS which is slow and cumbersome. What are your team dynamics like? Our lead developers stepped down from the team and development has been a free for all since then. Walter

    Read the article

  • Testing Routes in ASP.NET MVC with MvcContrib

    - by Guilherme Cardoso
    I've decide to write about unit testing in the next weeks. If we decide to develop with Test-Driven Developement pattern, it's important to not forget the routes. This article shows how to test routes. I'm importing my routes from my RegisterRoutes method from the Global.asax of Project.Web created by default (in SetUp). I'm using ShouldMapTp() from MvcContrib: http://mvccontrib.codeplex.com/ The controller is specified in the ShouldMapTo() signature, and we use lambda expressions for the action and parameters that are passed to that controller. [SetUp] public void Setup() { Project.Web.MvcApplication.RegisterRoutes(RouteTable.Routes); } [Test] public void Should_Route_HomeController() { "~/Home" .ShouldMapTo<HomeController>(action => action.Index()); } [Test] public void Should_Route_EventsController() { "~/Events" .ShouldMapTo<EventsController>(action => action.Index()); "~/Events/View/44/Concert-DevaMatri-22-January-" .ShouldMapTo<EventosController>(action => action.Read(1, "Title")); // In this example,44 is the Id for my Event and "Concert-DevaMatri-22-January" is the title for that Event } [TearDown] public void teardown() { RouteTable.Routes.Clear(); }

    Read the article

  • Could not load type System.Configuration.NameValueSectionHandler

    If you upgrade older .NET sites from 1.x to 2.x or greater, you may encounter this error when you have configuration settings that look like this: <section name="CacheSettings" type="System.Configuration.NameValueFileSectionHandler, System"/> Once you try to run this on an upgraded appdomain, you may encounter this error: An error occurred creating the configuration section handler for CacheSettings: Could not load type 'System.Configuration.NameValueSectionHandler' from assembly 'System.Configuration, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a'. Microsoft moved a bunch of the Configuration related classes into a separate assembly, System.Configuration, and created a new class, ConfigurationManager.  This presents its own challenges which Ive blogged about in the past if you are wondering where ConfigurationManager is located.  However, the above error is separate. The issue in this case is that the NameValueSectionHandler is still in the System assembly, but is in the System.Configuration namespace.  This causes confusion which can be alleviated by using the following section definition: <section name="CacheSettings" type="System.Configuration.NameValueSectionHandler, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" /> (you can remove the extra line breaks within the type=) With this in place, your web application should once more be able to load up the NameValueSectionHandler.  I do recommend using your own custom configuration section handlers instead of appSettings, and I would further suggest that you not use NamveValueSectionHandler if you can avoid it, but instead prefer a strongly typed configuration section handler. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • USB Hub and Ubuntu

    - by aserwin
    I have a powered 7 port hub connected to my Ubuntu box and it does nothing. The devices (zip drive and web cam) work direct, but aren't recognized through the hub. This worked fine in Windows 7. I can't prove it is the OS because this is a new motherboard and processor. Any advice? EDIT : Output from lsusb -v Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:12.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0503 highspeed power enable connect Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:13.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ehci_hcd iProduct 2 EHCI Host Controller iSerial 1 0000:00:16.2 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 4 wHubCharacteristic 0x000a No power switching (usb 1.0) Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Device Status: 0x0001 Self Powered Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:12.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:13.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 5 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Port 5: 0000.0100 power Device Status: 0x0001 Self Powered Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:14.5 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 2 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Device Status: 0x0001 Self Powered Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 0 Full speed (or root) hub bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0001 1.1 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic ohci_hcd iProduct 2 OHCI Host Controller iSerial 1 0000:00:16.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0002 1x 2 bytes bInterval 255 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 4 wHubCharacteristic 0x0002 No power switching (usb 1.0) Ganged overcurrent protection bPwrOn2PwrGood 2 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0303 lowspeed power enable connect Port 2: 0000.0100 power Port 3: 0000.0100 power Port 4: 0000.0100 power Device Status: 0x0001 Self Powered Bus 008 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 1 Single TT bMaxPacketSize0 64 idVendor 0x1d6b Linux Foundation idProduct 0x0002 2.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic xhci_hcd iProduct 2 xHCI Host Controller iSerial 1 0000:02:00.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 25 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 Hub Descriptor: bLength 9 bDescriptorType 41 nNbrPorts 2 wHubCharacteristic 0x0009 Per-port power switching Per-port overcurrent protection TT think time 8 FS bits bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere DeviceRemovable 0x00 PortPwrCtrlMask 0xff Hub Port Status: Port 1: 0000.0100 power Port 2: 0000.0100 power Device Status: 0x0001 Self Powered Bus 009 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 3.00 bDeviceClass 9 Hub bDeviceSubClass 0 Unused bDeviceProtocol 3 bMaxPacketSize0 9 idVendor 0x1d6b Linux Foundation idProduct 0x0003 3.0 root hub bcdDevice 3.02 iManufacturer 3 Linux 3.2.0-32-generic xhci_hcd iProduct 2 xHCI Host Controller iSerial 1 0000:02:00.0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 31 bNumInterfaces 1 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xe0 Self Powered Remote Wakeup MaxPower 0mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 9 Hub bInterfaceSubClass 0 Unused bInterfaceProtocol 0 Full speed (or root) hub iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0004 1x 4 bytes bInterval 12 bMaxBurst 0 Hub Descriptor: bLength 12 bDescriptorType 42 nNbrPorts 2 wHubCharacteristic 0x0009 Per-port power switching Per-port overcurrent protection bPwrOn2PwrGood 10 * 2 milli seconds bHubContrCurrent 0 milli Ampere bHubDecLat 0.0 micro seconds wHubDelay 0 nano seconds DeviceRemovable 0x00 Hub Port Status: Port 1: 0000.02a0 5Gbps power Rx.Detect Port 2: 0000.02a0 5Gbps power Rx.Detect Binary Object Store Descriptor: bLength 5 bDescriptorType 15 wTotalLength 15 bNumDeviceCaps 1 SuperSpeed USB Device Capability: bLength 10 bDescriptorType 16 bDevCapabilityType 3 bmAttributes 0x00 Latency Tolerance Messages (LTM) Supported wSpeedsSupported 0x0008 Device can operate at SuperSpeed (5Gbps) bFunctionalitySupport 3 Lowest fully-functional device speed is SuperSpeed (5Gbps) bU1DevExitLat 3 micro seconds bU2DevExitLat 2047 micro seconds Device Status: 0x0001 Self Powered Bus 001 Device 002: ID 04a9:1709 Canon, Inc. PIXMA MP150 Scanner Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 idVendor 0x04a9 Canon, Inc. idProduct 0x1709 PIXMA MP150 Scanner bcdDevice 1.08 iManufacturer 1 Canon iProduct 2 MP150 iSerial 3 20BC24 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 62 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xc0 Self Powered MaxPower 2mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 3 bInterfaceClass 255 Vendor Specific Class bInterfaceSubClass 0 bInterfaceProtocol 255 iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x07 EP 7 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x88 EP 8 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x89 EP 9 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0040 1x 64 bytes bInterval 11 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 2 bInterfaceClass 7 Printer bInterfaceSubClass 1 Printer bInterfaceProtocol 2 Bidirectional iInterface 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x01 EP 1 OUT bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 2 Transfer Type Bulk Synch Type None Usage Type Data wMaxPacketSize 0x0200 1x 512 bytes bInterval 0 Device Qualifier (for other device speed): bLength 10 bDescriptorType 6 bcdUSB 2.00 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 64 bNumConfigurations 1 Device Status: 0x0001 Self Powered Bus 007 Device 002: ID 046d:c517 Logitech, Inc. LX710 Cordless Desktop Laser Device Descriptor: bLength 18 bDescriptorType 1 bcdUSB 1.10 bDeviceClass 0 (Defined at Interface level) bDeviceSubClass 0 bDeviceProtocol 0 bMaxPacketSize0 8 idVendor 0x046d Logitech, Inc. idProduct 0xc517 LX710 Cordless Desktop Laser bcdDevice 38.10 iManufacturer 1 Logitech iProduct 2 USB Receiver iSerial 0 bNumConfigurations 1 Configuration Descriptor: bLength 9 bDescriptorType 2 wTotalLength 59 bNumInterfaces 2 bConfigurationValue 1 iConfiguration 0 bmAttributes 0xa0 (Bus Powered) Remote Wakeup MaxPower 98mA Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 0 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 1 Keyboard iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 59 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x81 EP 1 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Interface Descriptor: bLength 9 bDescriptorType 4 bInterfaceNumber 1 bAlternateSetting 0 bNumEndpoints 1 bInterfaceClass 3 Human Interface Device bInterfaceSubClass 1 Boot Interface Subclass bInterfaceProtocol 2 Mouse iInterface 0 HID Device Descriptor: bLength 9 bDescriptorType 33 bcdHID 1.10 bCountryCode 0 Not supported bNumDescriptors 1 bDescriptorType 34 Report wDescriptorLength 177 Report Descriptors: ** UNAVAILABLE ** Endpoint Descriptor: bLength 7 bDescriptorType 5 bEndpointAddress 0x82 EP 2 IN bmAttributes 3 Transfer Type Interrupt Synch Type None Usage Type Data wMaxPacketSize 0x0008 1x 8 bytes bInterval 10 Device Status: 0x0000 (Bus Powered) This is with the powered hub plugged in.

    Read the article

  • Unit testing ASP.NET Web API controllers that rely on the UrlHelper

    - by cibrax
    UrlHelper is the class you can use in ASP.NET Web API to automatically infer links from the routing table without hardcoding anything. For example, the following code uses the helper to infer the location url for a new resource,public HttpResponseMessage Post(User model) { var response = Request.CreateResponse(HttpStatusCode.Created, user); var link = Url.Link("DefaultApi", new { id = id, controller = "Users" }); response.Headers.Location = new Uri(link); return response; } That code uses a previously defined route “DefaultApi”, which you might configure in the HttpConfiguration object (This is the route generated by default when you create a new Web API project). The problem with UrlHelper is that it requires from some initialization code before you can invoking it from a unit test (for testing the Post method in this example). If you don’t initialize the HttpConfiguration and Request instances associated to the controller from the unit test, it will fail miserably. After digging into the ASP.NET Web API source code a little bit, I could figure out what the requirements for using the UrlHelper are. It relies on the routing table configuration, and a few properties you need to add to the HttpRequestMessage. The following code illustrates what’s needed,var controller = new UserController(); controller.Configuration = new HttpConfiguration(); var route = controller.Configuration.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var routeData = new HttpRouteData(route, new HttpRouteValueDictionary { { "id", "1" }, { "controller", "Users" } } ); controller.Request = new HttpRequestMessage(HttpMethod.Post, "http://localhost:9091/"); controller.Request.Properties.Add(HttpPropertyKeys.HttpConfigurationKey, controller.Configuration); controller.Request.Properties.Add(HttpPropertyKeys.HttpRouteDataKey, routeData);  The HttpRouteData instance should be initialized with the route values you will use in the controller method (“id” and “controller” in this example). Once you have correctly setup all those properties, you shouldn’t have any problem to use the UrlHelper. There is no need to mock anything else. Enjoy!!.

    Read the article

  • Service Testing made easy with SO-Aware Test Workbench

    - by cibrax
    I happy to announce today a new addition to our SO-Aware service repository toolset, SO-Aware Test Workbench, a WPF desktop application for doing functional and load testing against existing WCF Services. This tool is completely integrated to the SO-Aware service repository, which makes configuring new load and functional tests for WCF Soap and REST services a breeze. From now on, the service repository can play a very important role in an organization by facilitating collaboration between developers and testers. Developers can create and register new services in the repository with all the related artifacts like configuration. On the other hand, Testers can just pick one of the existing services in the repository and create functional or load tests from there, with no need to deal with specific details of the service implementation, location or configuration settings. Developers and Testers can later use the result of those tests to modify the services or adjust different settings on the tests or service configuration. Gustavo Machado, one of the developers behind this project, has written an excellent post describing all the functionality that can find today in the tool. You can also see the tool in action in this Endpoint Tv episode with Jesus and Ron Jacobs.

    Read the article

  • BizTalk 2009 - Error when Testing Map with Flat File Source Schema

    - by StuartBrierley
    I have recently been creating some flat file schemas using the BizTalk Server 2009 Flat File Schema Wizard.  I have then been mapping these flat file schemas to a "normal" xml schema format. I have not previsouly had any cause to map flat files and ran into some trouble when testing the first of these flat file maps; with an instance of the flat file as the source it threw an XSL transform error: Test Map.btm: error btm1050: XSL transform error: Unable to write output instance to the following <file:///C:\Documents and Settings\sbrierley\Local Settings\Temp\_MapData\Test Mapping\Test Map_output.xml>. Data at the root level is invalid. Line 1, position 1. Due to the complexity of the map in question I decided to created a small test map using the same source and destination schemas to see if I could pinpoint the problem.  Although the source message instance vaildated correctly against the flat file schema, when I then tested this simplified map I got the same error. After a time of fruitless head scratching and some serious google time I figured out what the problem was. Looking at the map properties I noticed that I had the test map input set to "XML" - for a flat file instance this should be set to "native".

    Read the article

  • Supporting and testing multiple versions of a software library in a Maven project

    - by Duncan Jones
    My company has several versions of its software in use by our customers at any one time. My job is to write bespoke Java software for the customers based on the version of software they happen to be running. I've created a Java library that performs many of the tasks I regularly require in a normal project. This is a Maven project that I deploy to our local Artifactory and pull down into other Maven projects when required. I can't decide the best way to support the range of software versions used by our customers. Typically, we have about three versions in use at any one time. They are normally backwards compatible with one another, but that cannot be guaranteed. I have considered the following options for managing this issue: Separate editions for each library version I make a separate release of my library for each version of my company software. Using some Maven cunningness I could automatically produce a tested version linked to each of the then-current company software versions. This is feasible, but not without its technical challenges. The advantage is that this would be fairly automatic and my unit tests have definitely executed against the correct software version. However, I would have to keep updating the versions supported and may end up maintaining a large collection of libraries. One supported version, but others tested I support the oldest software version and make a release against that. I then perform tests with the newer software versions to ensure it still works. I could try and make this testing automatic by having some non-deployed Maven projects that import the software library, the associated test JAR and override the company software version used. If those projects build, then the library is compatible. I could ensure these meta-projects are included in our CI server builds. I welcome comments on which approach is better or a suggestion for a different approach entirely. I'm leaning towards the second option.

    Read the article

  • Extract all related class type aliasing and enum into one file or not

    - by Chen OT
    I have many models in my project, and some other classes just need the class declaration and pointer type aliasing. It does not need to know the class definition, so I don't want to include the model header file. I extract all the model's declaration into one file to let every classes reference one file. model_forward.h class Cat; typedef std::shared_ptr<Cat> CatPointerType; typedef std::shared_ptr<const Cat> CatConstPointerType; class Dog; typedef std::shared_ptr<Dog> DogPointerType; typedef std::shared_ptr<const Dog> DogConstPointerType; class Fish; typedef std::shared_ptr<Fish> FishPointerType; typedef std::shared_ptr<const Fish> FishConstPointerType; enum CatType{RED_CAT, YELLOW_CAT, GREEN_CAT, PURPLE_CAT} enum DogType{HATE_CAT_DOG, HUSKY, GOLDEN_RETRIEVER} enum FishType{SHARK, OCTOPUS, SALMON} Is it acceptable practice? Should I make every unit, which needs a class declaration, depends on one file? Does it cause high coupling? Or I should put these pointer type aliasing and enum definition inside the class back? cat.h class Cat { typedef std::shared_ptr<Cat> PointerType; typedef std::shared_ptr<const Cat> ConstPointerType; enum Type{RED_CAT, YELLOW_CAT, GREEN_CAT, PURPLE_CAT} ... }; dog.h class Dog { typedef std::shared_ptr<Dog> PointerType; typedef std::shared_ptr<const Dog> ConstPointerType; enum Type{HATE_CAT_DOG, HUSKY, GOLDEN_RETRIEVER} ... } fish.h class Fish { ... }; Any suggestion will be helpful.

    Read the article

  • Testing a codebase with sequential cohesion

    - by iveqy
    I've this really simple program written in C with ncurses that's basically a front-end to sqlite3. I would like to implement TDD to continue the development and have found a nice C unit framework for this. However I'm totally stuck on how to implement it. Take this case for example: A user types a letter 'l' that is captured by ncurses getch(), and then an sqlite3 query is run that for every row calls a callback function. This callback function prints stuff to the screen via ncurses. So the obvious way to fully test this is to simulate a keyboard and a terminal and make sure that the output is the expected. However this sounds too complicated. I was thinking about adding an abstraction layer between the database and the UI so that the callback function will populate a list of entries and that list will later be printed. In that case I would be able to check if that list contains the expected values. However, why would I struggle with a data structure and lists in my program when sqlite3 already does this? For example, if the user wants to see the list sorted in some other way, it would be expensive to throw away the list and repopulate it. I would need to sort the list, but why should I implement sorting when sqlite3 already has that? Using my orginal design I could just do an other query sorted differently. Previously I've only done TDD with command line applications, and there it's really easy to just compare the output with what I'm expected. An other way would be to add CLI interface to the program and wrap a test program around the CLI to test everything. (The way git.git does with it's test-framework). So the question is, how to add testing to a tightly integrated database/UI.

    Read the article

  • How to model an address type in DDD?

    - by Songo
    I have an User entity that has a Set of Address where Address is a value object: class User{ ... private Set<Address> addresses; ... public setAddresses(Set<Address> addresses){ //set all addresses as a batch } ... } A User can have a home address and a work address, so I should have something that acts as a look up in the database: tbl_address_type ------------------------------------------------ | address_type_id | address_type | ------------------------------------------------ | 1 | work | ------------------------------------------------ | 2 | home | ------------------------------------------------ and correspondingly tbl_address ------------------------------------------------------------------------------------- | address_id | address_description |address_type_id| user_id | ------------------------------------------------------------------------------------- | 1 | 123 main street | 1 | 100 | ------------------------------------------------------------------------------------- | 2 | 456 another street | 1 | 100 | ------------------------------------------------------------------------------------- | 3 | 789 long street | 2 | 200 | ------------------------------------------------------------------------------------- | 4 | 023 short street | 2 | 200 | ------------------------------------------------------------------------------------- Should the address type be modeled as an Entity or Value type? and Why? Is it OK for the Address Value object to hold a reference to the Entity AdressType (in case it was modeled as an entity)? Is this something feasible using Hibernate/NHibernate? If a user can change his home address, should I expose a User.updateHomeAddress(Address homeAddress) function on the User entity itself? How can I enforce that the client passes a Home address and not a work address in this case? (a sample implementation is most welcomed) If I want to get the User's home address via User.getHomeAddress() function, must I load the whole addresses array then loop it and check each for its type till I found the correct type then return it? Is there a more efficient way than this?

    Read the article

  • Am I just not understanding TDD unit testing (Asp.Net MVC project)?

    - by KallDrexx
    I am trying to figure out how to correctly and efficiently unit test my Asp.net MVC project. When I started on this project I bought the Pro ASP.Net MVC, and with that book I learned about TDD and unit testing. After seeing the examples, and the fact that I work as a software engineer in QA in my current company, I was amazed at how awesome TDD seemed to be. So I started working on my project and went gun-ho writing unit tests for my database layer, business layer, and controllers. Everything got a unit test prior to implementation. At first I thought it was awesome, but then things started to go downhill. Here are the issues I started encountering: I ended up writing application code in order to make it possible for unit tests to be performed. I don't mean this in a good way as in my code was broken and I had to fix it so the unit test pass. I mean that abstracting out the database to a mock database is impossible due to the use of linq for data retrieval (using the generic repository pattern). The reason is that with linq-sql or linq-entities you can do joins just by doing: var objs = select p from _container.Projects select p.Objects; However, if you mock the database layer out, in order to have that linq pass the unit test you must change the linq to be var objs = select p from _container.Projects join o in _container.Objects on o.ProjectId equals p.Id select o; Not only does this mean you are changing your application logic just so you can unit test it, but you are making your code less efficient for the sole purpose of testability, and getting rid of a lot of advantages using an ORM has in the first place. Furthermore, since a lot of the IDs for my models are database generated, I proved to have to write additional code to handle the non-database tests since IDs were never generated and I had to still handle those cases for the unit tests to pass, yet they would never occur in real scenarios. Thus I ended up throwing out my database unit testing. Writing unit tests for controllers was easy as long as I was returning views. However, the major part of my application (and the one that would benefit most from unit testing) is a complicated ajax web application. For various reasons I decided to change the app from returning views to returning JSON with the data I needed. After this occurred my unit tests became extremely painful to write, as I have not found any good way to write unit tests for non-trivial json. After pounding my head and wasting a ton of time trying to find a good way to unit test the JSON, I gave up and deleted all of my controller unit tests (all controller actions are focused on this part of the app so far). So finally I was left with testing the Service layer (BLL). Right now I am using EF4, however I had this issue with linq-sql as well. I chose to do the EF4 model-first approach because to me, it makes sense to do it that way (define my business objects and let the framework figure out how to translate it into the sql backend). This was fine at the beginning but now it is becoming cumbersome due to relationships. For example say I have Project, User, and Object entities. One Object must be associated to a project, and a project must be associated to a user. This is not only a database specific rule, these are my business rules as well. However, say I want to do a unit test that I am able to save an object (for a simple example). I now have to do the following code just to make sure the save worked: User usr = new User { Name = "Me" }; _userService.SaveUser(usr); Project prj = new Project { Name = "Test Project", Owner = usr }; _projectService.SaveProject(prj); Object obj = new Object { Name = "Test Object" }; _objectService.SaveObject(obj); // Perform verifications There are many issues with having to do all this just to perform one unit test. There are several issues with this. For starters, if I add a new dependency, such as all projects must belong to a category, I must go into EVERY single unit test that references a project, add code to save the category then add code to add the category to the project. This can be a HUGE effort down the road for a very simple business logic change, and yet almost none of the unit tests I will be modifying for this requirement are actually meant to test that feature/requirement. If I then add verifications to my SaveProject method, so that projects cannot be saved unless they have a name with at least 5 characters, I then have to go through every Object and Project unit test to make sure that the new requirement doesn't make any unrelated unit tests fail. If there is an issue in the UserService.SaveUser() method it will cause all project, and object unit tests to fail and it the cause won't be immediately noticeable without having to dig through the exceptions. Thus I have removed all service layer unit tests from my project. I could go on and on, but so far I have not seen any way for unit testing to actually help me and not get in my way. I can see specific cases where I can, and probably will, implement unit tests, such as making sure my data verification methods work correctly, but those cases are few and far between. Some of my issues can probably be mitigated but not without adding extra layers to my application, and thus making more points of failure just so I can unit test. Thus I have no unit tests left in my code. Luckily I heavily use source control so I can get them back if I need but I just don't see the point. Everywhere on the internet I see people talking about how great TDD unit tests are, and I'm not just talking about the fanatical people. The few people who dismiss TDD/Unit tests give bad arguments claiming they are more efficient debugging by hand through the IDE, or that their coding skills are amazing that they don't need it. I recognize that both of those arguments are utter bullocks, especially for a project that needs to be maintainable by multiple developers, but any valid rebuttals to TDD seem to be few and far between. So the point of this post is to ask, am I just not understanding how to use TDD and automatic unit tests?

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 2 – Table per Type (TPT)

    - by mortezam
    In the previous blog post you saw that there are three different approaches to representing an inheritance hierarchy and I explained Table per Hierarchy (TPH) as the default mapping strategy in EF Code First. We argued that the disadvantages of TPH may be too serious for our design since it results in denormalized schemas that can become a major burden in the long run. In today’s blog post we are going to learn about Table per Type (TPT) as another inheritance mapping strategy and we'll see that TPT doesn’t expose us to this problem. Table per Type (TPT)Table per Type is about representing inheritance relationships as relational foreign key associations. Every class/subclass that declares persistent properties—including abstract classes—has its own table. The table for subclasses contains columns only for each noninherited property (each property declared by the subclass itself) along with a primary key that is also a foreign key of the base class table. This approach is shown in the following figure: For example, if an instance of the CreditCard subclass is made persistent, the values of properties declared by the BillingDetail base class are persisted to a new row of the BillingDetails table. Only the values of properties declared by the subclass (i.e. CreditCard) are persisted to a new row of the CreditCards table. The two rows are linked together by their shared primary key value. Later, the subclass instance may be retrieved from the database by joining the subclass table with the base class table. TPT Advantages The primary advantage of this strategy is that the SQL schema is normalized. In addition, schema evolution is straightforward (modifying the base class or adding a new subclass is just a matter of modify/add one table). Integrity constraint definition are also straightforward (note how CardType in CreditCards table is now a non-nullable column). Another much more important advantage is the ability to handle polymorphic associations (a polymorphic association is an association to a base class, hence to all classes in the hierarchy with dynamic resolution of the concrete class at runtime). A polymorphic association to a particular subclass may be represented as a foreign key referencing the table of that particular subclass. Implement TPT in EF Code First We can create a TPT mapping simply by placing Table attribute on the subclasses to specify the mapped table name (Table attribute is a new data annotation and has been added to System.ComponentModel.DataAnnotations namespace in CTP5): public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } [Table("BankAccounts")] public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } [Table("CreditCards")] public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } If you prefer fluent API, then you can create a TPT mapping by using ToTable() method: protected override void OnModelCreating(ModelBuilder modelBuilder) {     modelBuilder.Entity<BankAccount>().ToTable("BankAccounts");     modelBuilder.Entity<CreditCard>().ToTable("CreditCards"); } Generated SQL For QueriesLet’s take an example of a simple non-polymorphic query that returns a list of all the BankAccounts: var query = from b in context.BillingDetails.OfType<BankAccount>() select b; Executing this query (by invoking ToList() method) results in the following SQL statements being sent to the database (on the bottom, you can also see the result of executing the generated query in SQL Server Management Studio): Now, let’s take an example of a very simple polymorphic query that requests all the BillingDetails which includes both BankAccount and CreditCard types: projects some properties out of the base class BillingDetail, without querying for anything from any of the subclasses: var query = from b in context.BillingDetails             select new { b.BillingDetailId, b.Number, b.Owner }; -- var query = from b in context.BillingDetails select b; This LINQ query seems even more simple than the previous one but the resulting SQL query is not as simple as you might expect: -- As you can see, EF Code First relies on an INNER JOIN to detect the existence (or absence) of rows in the subclass tables CreditCards and BankAccounts so it can determine the concrete subclass for a particular row of the BillingDetails table. Also the SQL CASE statements that you see in the beginning of the query is just to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type) TPT ConsiderationsEven though this mapping strategy is deceptively simple, the experience shows that performance can be unacceptable for complex class hierarchies because queries always require a join across many tables. In addition, this mapping strategy is more difficult to implement by hand— even ad-hoc reporting is more complex. This is an important consideration if you plan to use handwritten SQL in your application (For ad hoc reporting, database views provide a way to offset the complexity of the TPT strategy. A view may be used to transform the table-per-type model into the much simpler table-per-hierarchy model.) SummaryIn this post we learned about Table per Type as the second inheritance mapping in our series. So far, the strategies we’ve discussed require extra consideration with regard to the SQL schema (e.g. in TPT, foreign keys are needed). This situation changes with the Table per Concrete Type (TPC) that we will discuss in the next post. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • How to determine the data type of a CvMat

    - by Chris
    When using the CvMat type, the type of data is crucial to keeping your program running. For example, depending on whether your data is type float or unsigned char, you would choose one of these two commands: cvmGet(mat, row, col); cvGetReal2D(mat, row, col); Is there a universal approach to this? If the wrong data type matrix is passed to these calls, they crash at runtime. This is becoming an issue, since a function I have defined is getting passed several different types of matrices. How do you determine the data type of a matrix so you can always access its data? I tried using the "type()" function as such. CvMat* tmp_ptr = cvCreateMat(t_height,t_width,CV_8U); std::cout << "type = " << tmp_ptr->type() << std::endl; This does not compile, saying "term does not evaluate to a function taking 0 arguments". If I remove the brackets after the word type, I get a type of 1111638032 EDIT minimal application that reproduces this... int main( int argc, char** argv ) { CvMat *tmp2 = cvCreateMat(10,10, CV_32FC1); std::cout << "tmp2 type = " << tmp2->type << " and CV_32FC1 = " << CV_32FC1 << " and " << (tmp2->type == CV_32FC1) << std::endl; } Output: tmp2 type = 1111638021 and CV_32FC1 = 5 and 0

    Read the article

  • Type errors when using same name

    - by lykimq
    I have 3 files: 1) cpf0.ml type string = char list type url = string type var = string type name = string type symbol = | Symbol_name of name 2) problem.ml: type symbol = | Ident of string 3) test.ml open Problem;; open Cpf0;; let symbol b = function | Symbol_name n -> Ident n When I combine test.ml: ocamlc -c test.ml. I received an error: This expression has type Cpf0.name = char list but an expression was expected of type string Could you please help me to correct it? Thank you very much EDIT: Thank you for your answer. I want to explain more about these 3 files: Because I am working with extraction in Coq to Ocaml type: cpf0.ml is generated from cpf.v : Require Import String. Definition string := string. Definition name := string. Inductive symbol := | Symbol_name : name -> symbol. The code extraction.v: Set Extraction Optimize. Extraction Language Ocaml. Require ExtrOcamlBasic ExtrOcamlString. Extraction Blacklist cpf list. where ExtrOcamlString I opened: open Cpf0;; in problem.ml, and I got a new problem because in problem.ml they have another definition for type string This expression has type Cpf0.string = char list but an expression was expected of type Util.StrSet.elt = string Here is a definition in util.ml defined type string: module Str = struct type t = string end;; module StrOrd = Ord.Make (Str);; module StrSet = Set.Make (StrOrd);; module StrMap = Map.Make (StrOrd);; let set_add_chk x s = if StrSet.mem x s then failwith (x ^ " already declared") else StrSet.add x s;; I was trying to change t = string to t = char list, but if I do that I have to change a lot of function it depend on (for example: set_add_chk above). Could you please give me a good idea? how I would do in this case.

    Read the article

  • SQL SERVER – LCK_M_XXX – Wait Type – Day 15 of 28

    - by pinaldave
    Locking is a mechanism used by the SQL Server Database Engine to synchronize access by multiple users to the same piece of data, at the same time. In simpler words, it maintains the integrity of data by protecting (or preventing) access to the database object. From Book On-Line: LCK_M_BU Occurs when a task is waiting to acquire a Bulk Update (BU) lock. LCK_M_IS Occurs when a task is waiting to acquire an Intent Shared (IS) lock. LCK_M_IU Occurs when a task is waiting to acquire an Intent Update (IU) lock. LCK_M_IX Occurs when a task is waiting to acquire an Intent Exclusive (IX) lock. LCK_M_S Occurs when a task is waiting to acquire a Shared lock. LCK_M_SCH_M Occurs when a task is waiting to acquire a Schema Modify lock. LCK_M_SCH_S Occurs when a task is waiting to acquire a Schema Share lock. LCK_M_SIU Occurs when a task is waiting to acquire a Shared With Intent Update lock. LCK_M_SIX Occurs when a task is waiting to acquire a Shared With Intent Exclusive lock. LCK_M_U Occurs when a task is waiting to acquire an Update lock. LCK_M_UIX Occurs when a task is waiting to acquire an Update With Intent Exclusive lock. LCK_M_X Occurs when a task is waiting to acquire an Exclusive lock. LCK_M_XXX Explanation: I think the explanation of this wait type is the simplest. When any task is waiting to acquire lock on any resource, this particular wait type occurs. The common reason for the task to be waiting to put lock on the resource is that the resource is already locked and some other operations may be going on within it. This wait also indicates that resources are not available or are occupied at the moment due to some reasons. There is a good chance that the waiting queries start to time out if this wait type is very high. Client application may degrade the performance as well. You can use various methods to find blocking queries: EXEC sp_who2 SQL SERVER – Quickest Way to Identify Blocking Query and Resolution – Dirty Solution DMV – sys.dm_tran_locks DMV – sys.dm_os_waiting_tasks Reducing LCK_M_XXX wait: Check the Explicit Transactions. If transactions are very long, this wait type can start building up because of other waiting transactions. Keep the transactions small. Serialization Isolation can build up this wait type. If that is an acceptable isolation for your business, this wait type may be natural. The default isolation of SQL Server is ‘Read Committed’. One of my clients has changed their isolation to “Read Uncommitted”. I strongly discourage the use of this because this will probably lead to having lots of dirty data in the database. Identify blocking queries mentioned using various methods described above, and then optimize them. Partition can be one of the options to consider because this will allow transactions to execute concurrently on different partitions. If there are runaway queries, use timeout. (Please discuss this solution with your database architect first as timeout can work against you). Check if there is no memory and IO-related issue using the following counters: Checking Memory Related Perfmon Counters SQLServer: Memory Manager\Memory Grants Pending (Consistent higher value than 0-2) SQLServer: Memory Manager\Memory Grants Outstanding (Consistent higher value, Benchmark) SQLServer: Buffer Manager\Buffer Hit Cache Ratio (Higher is better, greater than 90% for usually smooth running system) SQLServer: Buffer Manager\Page Life Expectancy (Consistent lower value than 300 seconds) Memory: Available Mbytes (Information only) Memory: Page Faults/sec (Benchmark only) Memory: Pages/sec (Benchmark only) Checking Disk Related Perfmon Counters Average Disk sec/Read (Consistent higher value than 4-8 millisecond is not good) Average Disk sec/Write (Consistent higher value than 4-8 millisecond is not good) Average Disk Read/Write Queue Length (Consistent higher value than benchmark is not good) Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Announcing SO-Aware Test Workbench

    - by gsusx
    Yesterday was a big day for Tellago Studios . After a few months hands down working, we announced the release of the SO-Aware Test Workbench tool which brings sophisticated performance testing and test visualization capabilities to theWCF world. This work has been the result of the feedback received by many of our SO-Aware and Tellago customers in terms of how to improve the WCF testing. More importantly, with the SO-Aware Test Workbench we are trying to address what has been one of the biggest challenges...(read more)

    Read the article

  • Keyboard "type ahead" in CRUD web apps?

    - by user61852
    In some data entry contexts, I've seen data typists, type really fast and know so well the app they use, and have a mechanic quality in their work so that they can "type ahead", ie continue typing and "tab-bing" and "enter-ing" faster than the display updates, so that in many occasions they are typing in the data for the next form before it draws itself. Then when this next entry form appears, their keystrokes fill the text boxes and they continue typing, selecting etc. In contexts like this, this speed is desirable, since this persons are really productive. I think this "type ahead of time" is only possible in desktop apps, but I may be wrong. My question is whether this way of handling the keyboard buffer (which in desktop apps require no extra programming) is achievable in web apps, or is this impossible because of the way web apps work, handle sessions, etc (network latency and the overhead of generating new web pages ) ?

    Read the article

  • Testing Reference Data Mappings

    - by Michael Stephenson
    Background Mapping reference data is one of the common scenarios in BizTalk development and its usually a bit of a pain when you need to manage a lot of reference data whether it be through the BizTalk Cross Referencing features or some kind of custom solution. I have seen many cases where only a couple of the mapping conditions are ever tested. Approach As usual I like to see these things tested in isolation before you start using them in your BizTalk maps so you know your mapping functions are working as expected. This approach can be used for almost all of your reference data type mapping functions where you can take advantage of MSTests data driven tests to test lots of conditions without having to write millions of tests. Walk Through Rather than go into the details of this here, I'm going to call out to one of my colleagues who wrote a nice little walk through about using data driven tests a while back. Check out Callum's blog: http://callumhibbert.blogspot.com/2009/07/data-driven-tests-with-mstest.html

    Read the article

  • SQL Server and the XML Data Type : Data Manipulation

    The introduction of the xml data type, with its own set of methods for processing xml data, made it possible for SQL Server developers to create columns and variables of the type xml. Deanna Dicken examines the modify() method, which provides for data manipulation of the XML data stored in the xml data type via XML DML statements. Too many SQL Servers to keep up with?Download a free trial of SQL Response to monitor your SQL Servers in just one intuitive interface."The monitoringin SQL Response is excellent." Mike Towery.

    Read the article

  • What arguments can I use to "sell" the BDD concept to a team reluctant to adopt it?

    - by S.Robins
    I am a bit of a vocal proponent of the BDD methodology. I've been applying BDD for a couple of years now, and have adopted StoryQ as my framework of choice when developing DotNet applications. Even though I have been unit testing for many years, and had previously shifted to a test-first approach, I've found that I get much more value out of using a BDD framework, because my tests capture the intent of the requirements in relatively clear English within my code, and because my tests can execute multiple assertions without ending the test halfway through - meaning I can see which specific assertions pass/fail at a glance without debugging to prove it. This has really been the tip of the iceberg for me, as I've also noticed that I am able to debug both test and implementation code in a more targeted manner, with the result that my productivity has grown significantly, and that I can more easily determine where a failure occurs if a problem happens to make it all the way to the integration build due to the output that makes its way into the build logs. Further, the StoryQ api has a lovely fluent syntax that is easy to learn and which can be applied in an extraordinary number of ways, requiring no external dependencies in order to use it. So with all of these benefits, you would think it an easy to introduce the concept to the rest of the team. Unfortunately, the other team members are reluctant to even look at StoryQ to evaluate it properly (let alone entertain the idea of applying BDD), and have convinced each other to try and remove a number of StoryQ elements from our own core testing framework, even though they originally supported the use of StoryQ, and that it doesn't impact on any other part of our testing system. Doing so would end up increasing my workload significantly overall and really goes against the grain, as I am convinced through practical experience that it is a better way to work in a test-first manner in our particular working environment, and can only lead to greater improvements in the quality of our software, given I've found it easier to stick with test first using BDD. So the question really comes down to the following: What arguments can I use to really drive the point home that it would be better to use StoryQ, or at the very least apply the BDD methodology? Can you point me to any anecdotal evidence that I can use to support my argument to adopt BDD as our standard method of choice? What counter arguments can you think of that could suggest that my wish to convert the team efforts to BDD might be in error? Yes, I'm happy to be proven wrong provided the argument is a sound one. NOTE: I am not advocating that we rewrite our tests in their entirety, but rather to simply start working in a different manner for all future testing work.

    Read the article

  • input type="email"

    - by Charles
    I have a form where I ask for email addresses. Usually I'd use <input type="email" ...> but I want to allow a user to type foo rather than [email protected] in the (likely) case that they are using an @mycompany.com email address. Is there a way to get around the validation (if format matches this regex, accept; otherwise, validate normally), or should I just use <input type="text" ...> and ignore the semantics and so forth?

    Read the article

  • Which devices is my app working on

    - by Woojah
    My team is developing an app that will work on about 100 (or more) different android devices. We are having trouble testing it since we are not sure how to verify if it works on all the different devices. Can anybody suggest some best practices, a testing framework, or some sort of way to give us feedback on how to test our app and/or get feedback from our users so they can tell us the problems they are having?

    Read the article

< Previous Page | 48 49 50 51 52 53 54 55 56 57 58 59  | Next Page >