Search Results

Search found 37966 results on 1519 pages for 'string compare'.

Page 520/1519 | < Previous Page | 516 517 518 519 520 521 522 523 524 525 526 527  | Next Page >

  • Flash and Google Maps - Only Last Icon showing

    - by Peter
    I have a simple Map and geocoding sample in Flash using CS4 The problem is simple - I can retrieve a short list from the google search api, but when I try to generate the icons on the map using a loop, only the last icon is displayed. (ignore the house icon, it is generated earlier) I feel I am missing something or made a stupid AS3 mistake (like treating it as if it was c#) - or even a stupid wood-for-the-trees mistake. The problem is in the last line of the code. I have added all my code just in case somebody else can find a use for it - lord knows it took me a great while to figure this out :) It runs here (also, if anybody has an idea why the icon is slightly in the wrong place on render, but corrects if you move the map - please let me know) Any help would be great. Thanks. P import com.google.maps.services.ClientGeocoder; import com.google.maps.services.GeocodingEvent; import com.google.maps.LatLng; import com.google.maps.Map; import com.google.maps.MapEvent; import com.google.maps.MapType; import com.google.maps.overlays.Marker; import com.google.maps.overlays.MarkerOptions; import com.google.maps.styles.FillStyle; import com.google.maps.styles.StrokeStyle; import com.google.maps.controls.* import com.google.maps.overlays.* import flash.display.Bitmap; import flash.display.BitmapData; import com.adobe.utils.StringUtil; import be.boulevart.google.ajaxapi.search.GoogleSearchResult; import be.boulevart.google.events.GoogleApiEvent; import be.boulevart.google.ajaxapi.search.local.GoogleLocalSearch; import be.boulevart.google.ajaxapi.search.local.data.GoogleLocalSearchItem; var strZip:String = new String(); strZip="60661"; var strAddress:String = new String(); strAddress ="100 W. Jackson Blvd, chicago, IL 60661"; var IconArray:Array = new Array; var SearchArray:Array = new Array; /*-------------------------------------------------------------- // The returned search data gets placed into this array ---------------------------------------------------------------*/ var LocalInfo:Array = new Array(); var intCount:int = new int; var intMapReady:int=0; /*=================================================================================== We load the map first and then get the search criteria - this will keep the order of operation clean. The ====================================================================================*/ var map:Map = new Map(); map.key = "ABQIAAAAHwSPp7Lhew456ffD6qa2WmxT_VwdLJEfmcCgytxKjcH1jLKkiihQtfC- TbcwryvBQYhRwHWa8F_Gp9Q"; map.setSize(new Point(600, 550)); map.addEventListener(MapEvent.MAP_READY, onMapReady); //Places the map on the page this.addChild(map); map.x=5; map.y=5; function onMapReady(event:Event):void { //Center the map and place the house marker doGeocode(); } /*========================================================================== Goecode to return the LAT and LONG for the specific address, center the map and add the house icon ===========================================================================*/ function doGeocode() { var geocoder:ClientGeocoder = new ClientGeocoder(); geocoder.addEventListener(GeocodingEvent.GEOCODING_SUCCESS, function(event:GeocodingEvent):void { var objPlacemarks:Array = event.response.placemarks; if (objPlacemarks.length > 0) { map.setCenter(objPlacemarks[0].point, 14, MapType.NORMAL_MAP_TYPE); var request:URLRequest = new URLRequest("house.png"); var imageLoader:Loader = new Loader(); imageLoader.load(request); var objMarkerOptions:MarkerOptions = new MarkerOptions(); objMarkerOptions.icon=imageLoader; objMarkerOptions.icon.scaleX=.15; objMarkerOptions.icon.scaleY=.15; objMarkerOptions.iconAlignment = MarkerOptions.ALIGN_HORIZONTAL_CENTER + MarkerOptions.ALIGN_VERTICAL_CENTER; var objMarker:Marker = new Marker(objPlacemarks[0].point, objMarkerOptions); map.addOverlay(objMarker); doLoadSearch() } }); //Failure code - good practice, really geocoder.addEventListener(GeocodingEvent.GEOCODING_FAILURE, function(event:GeocodingEvent):void { txtResult.appendText("Geocoding failed"); }); // generate geocode geocoder.geocode(strAddress); } /*=============================================================== XML Loader - loads icon file and search text pair from xml file =================================================================*/ function doLoadSearch() { var xmlLoader:URLLoader = new URLLoader(); var xmlData:XML = new XML(); xmlLoader.addEventListener(Event.COMPLETE, LoadXML); xmlLoader.load(new URLRequest("config.xml")); function LoadXML(e:Event):void { xmlData = new XML(e.target.data); RetrieveSearch(); } function RetrieveSearch() { //extract the MapData subset var xmlSearch = xmlData.MapData; // push this to an xml list object var xmlChildren:XMLList = xmlSearch.children(); //loop the list and extract the data into an //array of formatted search criteria for each (var Search:XML in xmlChildren) { txtResult.appendText("Searching For: "+Search.Criteria+" Icon=" + Search.Icon+ "Zip=" + strZip +"\r\n\r\n"); //retrieve search criteria loadLocalInfo(Search.Criteria,Search.Icon,strZip); } } } /*================================================================================== Search Functionality - does a google API search and loads the lats and longs required to place the icons on the map - THIS WILL NOT RUN LOCALLY ===================================================================================*/ function loadLocalInfo(strSearch,strIcon,strZip) { var objLocal:GoogleLocalSearch=new GoogleLocalSearch() objLocal.search(strSearch+" "+strZip,0,"0,0","","") objLocal.addEventListener(GoogleApiEvent.LOCAL_SEARCH_RESULT,onSearchComplete) function onSearchComplete(e:GoogleApiEvent):void { var resulta:GoogleSearchResult=e.data as GoogleSearchResult; //------------------------------------------------ // Load the icon for this particular search //------------------------------------------------ var request:URLRequest = new URLRequest(strIcon); var imageLoader:Loader = new Loader(); imageLoader.load(request); //------------------------------------------------------------- // For test purposes txtResult.appendText("Result Count for "+strSearch+" = "+e.data.results.length+"\r\n\r\n"); for each (var result:GoogleLocalSearchItem in e.data.results as Array) { LocalInfo[intCount]=[String(result.title),strIcon,String(result.latitude),String(result.longitude)]; //--------------------------------------- // Pop the icon onto the map //--------------------------------------- var objLatLng:LatLng = new LatLng(parseFloat(result.latitude), parseFloat(result.longitude)); var objMarkerOptions:MarkerOptions = new MarkerOptions(); objMarkerOptions.icon=imageLoader; objMarkerOptions.hasShadow=false; objMarkerOptions.iconAlignment = MarkerOptions.ALIGN_HORIZONTAL_CENTER + MarkerOptions.ALIGN_VERTICAL_CENTER; var objMarker:Marker = new Marker(objLatLng, objMarkerOptions); /********************************************************** *Everything* works to here - I have traced out execution and all variables. It only works on the last item in the array :( ***********************************************************/ map.addOverlay(objMarker); } } }

    Read the article

  • How do I get the PreviewDialog of Apache FOP to actually display my document?

    - by JRSofty
    Search as I may I have not found a solution to my problem here and I'm hoping the combined minds of StackOverflow will push me in the right direction. My problem is as follows, I'm developing a print and print preview portion of a messaging system's user agent. I was given specific XSLT templates that after transforming XML will produce a Formatting Objects document. With Apache FOP I've been able to render the FO document into PDF which is all fine and good, but I would also like to display it in a print preview dialog. Apache FOP contains such a class called PreviewDialog which requires in its constructor a FOUserAgent, which I can generate, and an object implementing the Renderable Interface. The Renderable Interface has one implementing class in the FOP package which is called InputHandler which takes in its constructor a standard io File object. Now here is where the trouble begins. I'm currently storing the FO document as a temp file and pass this as a File object to an InputHandler instance which is then passed to the PreviewDialog. I see the dialog appear on my screen and along the bottom in a status bar it says that it is generating the document, and that is all it does. Here is the code I'm trying to use. It isn't production code so it's not pretty: import java.io.BufferedOutputStream; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.Random; import javax.xml.transform.Result; import javax.xml.transform.Source; import javax.xml.transform.Transformer; import javax.xml.transform.TransformerConfigurationException; import javax.xml.transform.TransformerException; import javax.xml.transform.TransformerFactory; import javax.xml.transform.sax.SAXResult; import javax.xml.transform.stream.StreamResult; import javax.xml.transform.stream.StreamSource; import org.apache.fop.apps.FOPException; import org.apache.fop.apps.FOUserAgent; import org.apache.fop.apps.Fop; import org.apache.fop.apps.FopFactory; import org.apache.fop.cli.InputHandler; import org.apache.fop.render.awt.viewer.PreviewDialog; public class PrintPreview { public void showPreview(final File xslt, final File xmlSource) { boolean err = false; OutputStream out = null; Transformer transformer = null; final String tempFileName = this.getTempDir() + this.generateTempFileName(); final String tempFoFile = tempFileName + ".fo"; final String tempPdfFile = tempFileName + ".pdf"; System.out.println(tempFileName); final TransformerFactory transformFactory = TransformerFactory .newInstance(); final FopFactory fopFactory = FopFactory.newInstance(); try { transformer = transformFactory .newTransformer(new StreamSource(xslt)); final Source src = new StreamSource(xmlSource); out = new FileOutputStream(tempFoFile); final Result res = new StreamResult(out); transformer.transform(src, res); System.out.println("XSLT Transform Completed"); } catch (final TransformerConfigurationException e) { err = true; e.printStackTrace(); } catch (final FileNotFoundException e) { err = true; e.printStackTrace(); } catch (final TransformerException e) { err = true; e.printStackTrace(); } finally { if (out != null) { try { out.close(); } catch (final IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } System.out.println("Initializing Preview"); transformer = null; out = null; final File fo = new File(tempFoFile); final File pdf = new File(tempPdfFile); if (!err) { final FOUserAgent ua = fopFactory.newFOUserAgent(); try { transformer = transformFactory.newTransformer(); out = new FileOutputStream(pdf); out = new BufferedOutputStream(out); final Fop fop = fopFactory.newFop( MimeConstants.MIME_PDF, ua, out); final Source foSrc = new StreamSource(fo); final Result foRes = new SAXResult(fop.getDefaultHandler()); transformer.transform(foSrc, foRes); System.out.println("Transformation Complete"); } catch (final FOPException e) { err = true; e.printStackTrace(); } catch (final FileNotFoundException e) { err = true; e.printStackTrace(); } catch (final TransformerException e) { err = true; e.printStackTrace(); } finally { if (out != null) { try { out.close(); } catch (final IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } if (!err) { System.out.println("Attempting to Preview"); final InputHandler inputHandler = new InputHandler(fo); PreviewDialog.createPreviewDialog(ua, inputHandler, true); } } // perform the clean up // f.delete(); } private String getTempDir() { final String p = "java.io.tmpdir"; return System.getProperty(p); } private String generateTempFileName() { final String charset = "abcdefghijklmnopqrstuvwxyz1234567890abcdefghijklmnopqrstuvwxyz1234567890"; final StringBuffer sb = new StringBuffer(); Random r = new Random(); int seed = r.nextInt(); r = new Random(seed); for (int i = 0; i < 8; i++) { final int n = r.nextInt(71); seed = r.nextInt(); sb.append(charset.charAt(n)); r = new Random(seed); } return sb.toString(); } } Any help on this would be appreciated.

    Read the article

  • Form File Upload with other TextBox Inputs + Creating Custom Form Action attribute

    - by Jonathan Stowell
    Hi All, I am attempting to create a form where a user is able to enter your typical form values textboxes etc, but also upload a file as part of the form submission. This is my View code it can be seen that the File upload is identified by the MCF id: <% using (Html.BeginForm("Create", "Problem", FormMethod.Post, new { id = "ProblemForm", enctype = "multipart/form-data" })) {%> <p> <label for="StudentEmail">Student Email (*)</label> <br /> <%= Html.TextBox("StudentEmail", Model.Problem.StudentEmail, new { size = "30", maxlength=26 })%> <%= Html.ValidationMessage("StudentEmail", "*") %> </p> <p> <label for="Type">Communication Type (*)</label> <br /> <%= Html.DropDownList("Type") %> <%= Html.ValidationMessage("Type", "*") %> </p> <p> <label for="ProblemDateTime">Problem Date (*)</label> <br /> <%= Html.TextBox("ProblemDateTime", String.Format("{0:d}", Model.Problem.ProblemDateTime), new { maxlength = 10 })%> <%= Html.ValidationMessage("ProblemDateTime", "*") %> </p> <p> <label for="ProblemCategory">Problem Category (* OR Problem Outline)</label> <br /> <%= Html.DropDownList("ProblemCategory", null, "Please Select...")%> <%= Html.ValidationMessage("ProblemCategory", "*")%> </p> <p> <label for="ProblemOutline">Problem Outline (* OR Problem Category)</label> <br /> <%= Html.TextArea("ProblemOutline", Model.Problem.ProblemOutline, 6, 75, new { maxlength = 255 })%> <%= Html.ValidationMessage("ProblemOutline", "*") %> </p> <p> <label for="MCF">Mitigating Circumstance Form</label> <br /> <input id="MCF" type="file" /> <%= Html.ValidationMessage("MCF", "*") %> </p> <p> <label for="MCL">Mitigating Circumstance Level</label> <br /> <%= Html.DropDownList("MCL") %> <%= Html.ValidationMessage("MCL", "*") %> </p> <p> <label for="AbsentFrom">Date Absent From</label> <br /> <%= Html.TextBox("AbsentFrom", String.Format("{0:d}", Model.Problem.AbsentFrom), new { maxlength = 10 })%> <%= Html.ValidationMessage("AbsentFrom", "*") %> </p> <p> <label for="AbsentUntil">Date Absent Until</label> <br /> <%= Html.TextBox("AbsentUntil", String.Format("{0:d}", Model.Problem.AbsentUntil), new { maxlength = 10 })%> <%= Html.ValidationMessage("AbsentUntil", "*") %> </p> <p> <label for="AssessmentID">Assessment Extension</label> <br /> <%= Html.DropDownList("AssessmentID") %> <%= Html.ValidationMessage("AssessmentID", "*") %> <%= Html.TextBox("DateUntil", String.Format("{0:d}", Model.AssessmentExtension.DateUntil), new { maxlength = 16 })%> <%= Html.ValidationMessage("DateUntil", "*") %> </p> <p> <label for="Details">Assessment Extension Details</label> <br /> <%= Html.TextArea("Details", Model.AssessmentExtension.Details, 6, 75, new { maxlength = 255 })%> <%= Html.ValidationMessage("Details", "*") %> </p> <p> <label for="RequestedFollowUp">Requested Follow Up</label> <br /> <%= Html.TextBox("RequestedFollowUp", String.Format("{0:d}", Model.Problem.RequestedFollowUp), new { maxlength = 16 })%> <%= Html.ValidationMessage("RequestedFollowUp", "*") %> </p> <p> <label for="StaffEmail">Staff</label> <br /> <%= Html.ListBox("StaffEmail", Model.StaffEmail, new { @class = "multiselect" })%> <%= Html.ValidationMessage("StaffEmail", "*")%> </p> <p> <input class="button" type="submit" value="Create Problem" /> </p> This is my controller code: [AcceptVerbs(HttpVerbs.Post)] public ActionResult Create(Problem problem, AssessmentExtension assessmentExtension, Staff staffMember, HttpPostedFileBase file, string[] StaffEmail) { if (ModelState.IsValid) { try { Student student = studentRepository.GetStudent(problem.StudentEmail); Staff currentUserStaffMember = staffRepository.GetStaffWindowsLogon(User.Identity.Name); var fileName = Path.Combine(Request.MapPath("~/App_Data"), Path.GetFileName(file.FileName)); file.SaveAs(@"C:\Temp\" + fileName); if (problem.RequestedFollowUp.HasValue) { String meetingName = student.FirstName + " " + student.LastName + " " + "Mitigating Circumstance Meeting"; OutlookAppointment outlookAppointment = new OutlookAppointment(currentUserStaffMember.Email, meetingName, (DateTime)problem.RequestedFollowUp, (DateTime)problem.RequestedFollowUp.Value.AddMinutes(30)); } problemRepository.Add(problem); problemRepository.Save(); if (assessmentExtension.DateUntil != null) { assessmentExtension.ProblemID = problem.ProblemID; assessmentExtensionRepository.Add(assessmentExtension); assessmentExtensionRepository.Save(); } ProblemPrivacy problemPrivacy = new ProblemPrivacy(); problemPrivacy.ProblemID = problem.ProblemID; problemPrivacy.StaffEmail = currentUserStaffMember.Email; problemPrivacyRepository.Add(problemPrivacy); if (StaffEmail != null) { for (int i = 0; i < StaffEmail.Length; i++) { ProblemPrivacy probPrivacy = new ProblemPrivacy(); probPrivacy.ProblemID = problem.ProblemID; probPrivacy.StaffEmail = StaffEmail[i]; problemPrivacyRepository.Add(probPrivacy); } } problemPrivacyRepository.Save(); return RedirectToAction("Details", "Student", new { id = student.Email }); } catch { ModelState.AddRuleViolations(problem.GetRuleViolations()); } } return View(new ProblemFormViewModel(problem, assessmentExtension, staffMember)); } This form was working correctly before I had to switch to using a non-AJAX file upload, this was due to an issue with Flash when enabling Windows Authentication which I need to use. It appears that when I submit the form the file is not sent and I am unsure as to why? I have also been unsuccessful in finding an example online where a file upload is used in conjunction with other input types. Another query I have is that for Create, and Edit operations I have used a PartialView for my forms to make my application have higher code reuse. The form action is normally generated by just using: Html.BeginForm() And this populates the action depending on which Url is being used Edit or Create. However when populating HTML attributes you have to provide a action and controller value to pass HTML attributes. using (Html.BeginForm("Create", "Problem", FormMethod.Post, new { id = "ProblemForm", enctype = "multipart/form-data" })) Is it possible to somehow populate the action and controller value depending on the URL to maintain code reuse? Thinking about it whilst typing this I could set two values in the original controller action request view data and then just populate the value using the viewdata values? Any help on these two issues would be appreciated, I'm new to asp.net mvc :-) Thanks, Jon

    Read the article

  • OpenCL: Strange buffer or image bahaviour with NVidia but not Amd

    - by Alex R.
    I have a big problem (on Linux): I create a buffer with defined data, then an OpenCL kernel takes this data and puts it into an image2d_t. When working on an AMD C50 (Fusion CPU/GPU) the program works as desired, but on my GeForce 9500 GT the given kernel computes the correct result very rarely. Sometimes the result is correct, but very often it is incorrect. Sometimes it depends on very strange changes like removing unused variable declarations or adding a newline. I realized that disabling the optimization will increase the probability to fail. I have the most actual display driver in both systems. Here is my reduced code: #include <CL/cl.h> #include <string> #include <iostream> #include <sstream> #include <cmath> void checkOpenCLErr(cl_int err, std::string name){ const char* errorString[] = { "CL_SUCCESS", "CL_DEVICE_NOT_FOUND", "CL_DEVICE_NOT_AVAILABLE", "CL_COMPILER_NOT_AVAILABLE", "CL_MEM_OBJECT_ALLOCATION_FAILURE", "CL_OUT_OF_RESOURCES", "CL_OUT_OF_HOST_MEMORY", "CL_PROFILING_INFO_NOT_AVAILABLE", "CL_MEM_COPY_OVERLAP", "CL_IMAGE_FORMAT_MISMATCH", "CL_IMAGE_FORMAT_NOT_SUPPORTED", "CL_BUILD_PROGRAM_FAILURE", "CL_MAP_FAILURE", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "CL_INVALID_VALUE", "CL_INVALID_DEVICE_TYPE", "CL_INVALID_PLATFORM", "CL_INVALID_DEVICE", "CL_INVALID_CONTEXT", "CL_INVALID_QUEUE_PROPERTIES", "CL_INVALID_COMMAND_QUEUE", "CL_INVALID_HOST_PTR", "CL_INVALID_MEM_OBJECT", "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR", "CL_INVALID_IMAGE_SIZE", "CL_INVALID_SAMPLER", "CL_INVALID_BINARY", "CL_INVALID_BUILD_OPTIONS", "CL_INVALID_PROGRAM", "CL_INVALID_PROGRAM_EXECUTABLE", "CL_INVALID_KERNEL_NAME", "CL_INVALID_KERNEL_DEFINITION", "CL_INVALID_KERNEL", "CL_INVALID_ARG_INDEX", "CL_INVALID_ARG_VALUE", "CL_INVALID_ARG_SIZE", "CL_INVALID_KERNEL_ARGS", "CL_INVALID_WORK_DIMENSION", "CL_INVALID_WORK_GROUP_SIZE", "CL_INVALID_WORK_ITEM_SIZE", "CL_INVALID_GLOBAL_OFFSET", "CL_INVALID_EVENT_WAIT_LIST", "CL_INVALID_EVENT", "CL_INVALID_OPERATION", "CL_INVALID_GL_OBJECT", "CL_INVALID_BUFFER_SIZE", "CL_INVALID_MIP_LEVEL", "CL_INVALID_GLOBAL_WORK_SIZE", }; if (err != CL_SUCCESS) { std::stringstream str; str << errorString[-err] << " (" << err << ")"; throw std::string(name)+(str.str()); } } int main(){ try{ cl_context m_context; cl_platform_id* m_platforms; unsigned int m_numPlatforms; cl_command_queue m_queue; cl_device_id m_device; cl_int error = 0; // Used to handle error codes clGetPlatformIDs(0,NULL,&m_numPlatforms); m_platforms = new cl_platform_id[m_numPlatforms]; error = clGetPlatformIDs(m_numPlatforms,m_platforms,&m_numPlatforms); checkOpenCLErr(error, "getPlatformIDs"); // Device error = clGetDeviceIDs(m_platforms[0], CL_DEVICE_TYPE_GPU, 1, &m_device, NULL); checkOpenCLErr(error, "getDeviceIDs"); // Context cl_context_properties properties[] = { CL_CONTEXT_PLATFORM, (cl_context_properties)(m_platforms[0]), 0}; m_context = clCreateContextFromType(properties, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); // m_private->m_context = clCreateContext(properties, 1, &m_private->m_device, NULL, NULL, &error); checkOpenCLErr(error, "Create context"); // Command-queue m_queue = clCreateCommandQueue(m_context, m_device, 0, &error); checkOpenCLErr(error, "Create command queue"); //Build program and kernel const char* source = "#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable\n" "\n" "__kernel void bufToImage(__global unsigned char* in, __write_only image2d_t out, const unsigned int offset_x, const unsigned int image_width , const unsigned int maxval ){\n" "\tint i = get_global_id(0);\n" "\tint j = get_global_id(1);\n" "\tint width = get_global_size(0);\n" "\tint height = get_global_size(1);\n" "\n" "\tint pos = j*image_width*3+(offset_x+i)*3;\n" "\tif( maxval < 256 ){\n" "\t\tfloat4 c = (float4)(in[pos],in[pos+1],in[pos+2],1.0f);\n" "\t\tc.x /= maxval;\n" "\t\tc.y /= maxval;\n" "\t\tc.z /= maxval;\n" "\t\twrite_imagef(out, (int2)(i,j), c);\n" "\t}else{\n" "\t\tfloat4 c = (float4)(255.0f*in[2*pos]+in[2*pos+1],255.0f*in[2*pos+2]+in[2*pos+3],255.0f*in[2*pos+4]+in[2*pos+5],1.0f);\n" "\t\tc.x /= maxval;\n" "\t\tc.y /= maxval;\n" "\t\tc.z /= maxval;\n" "\t\twrite_imagef(out, (int2)(i,j), c);\n" "\t}\n" "}\n" "\n" "__constant sampler_t imageSampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;\n" "\n" "__kernel void imageToBuf(__read_only image2d_t in, __global unsigned char* out, const unsigned int offset_x, const unsigned int image_width ){\n" "\tint i = get_global_id(0);\n" "\tint j = get_global_id(1);\n" "\tint pos = j*image_width*3+(offset_x+i)*3;\n" "\tfloat4 c = read_imagef(in, imageSampler, (int2)(i,j));\n" "\tif( c.x <= 1.0f && c.y <= 1.0f && c.z <= 1.0f ){\n" "\t\tout[pos] = c.x*255.0f;\n" "\t\tout[pos+1] = c.y*255.0f;\n" "\t\tout[pos+2] = c.z*255.0f;\n" "\t}else{\n" "\t\tout[pos] = 200.0f;\n" "\t\tout[pos+1] = 0.0f;\n" "\t\tout[pos+2] = 255.0f;\n" "\t}\n" "}\n"; cl_int err; cl_program prog = clCreateProgramWithSource(m_context,1,&source,NULL,&err); if( -err != CL_SUCCESS ) throw std::string("clCreateProgramWithSources"); err = clBuildProgram(prog,0,NULL,"-cl-opt-disable",NULL,NULL); if( -err != CL_SUCCESS ) throw std::string("clBuildProgram(fromSources)"); cl_kernel kernel = clCreateKernel(prog,"bufToImage",&err); checkOpenCLErr(err,"CreateKernel"); cl_uint imageWidth = 8; cl_uint imageHeight = 9; //Initialize datas cl_uint maxVal = 255; cl_uint offsetX = 0; int size = imageWidth*imageHeight*3; int resSize = imageWidth*imageHeight*4; cl_uchar* data = new cl_uchar[size]; cl_float* expectedData = new cl_float[resSize]; for( int i = 0,j=0; i < size; i++,j++ ){ data[i] = (cl_uchar)i; expectedData[j] = (cl_float)i/255.0f; if ( i%3 == 2 ){ j++; expectedData[j] = 1.0f; } } cl_mem inBuffer = clCreateBuffer(m_context,CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,size*sizeof(cl_uchar),data,&err); checkOpenCLErr(err, "clCreateBuffer()"); clFinish(m_queue); cl_image_format imgFormat; imgFormat.image_channel_order = CL_RGBA; imgFormat.image_channel_data_type = CL_FLOAT; cl_mem outImg = clCreateImage2D( m_context, CL_MEM_READ_WRITE, &imgFormat, imageWidth, imageHeight, 0, NULL, &err ); checkOpenCLErr(err,"get2DImage()"); clFinish(m_queue); size_t kernelRegion[]={imageWidth,imageHeight}; size_t kernelWorkgroup[]={1,1}; //Fill kernel with data clSetKernelArg(kernel,0,sizeof(cl_mem),&inBuffer); clSetKernelArg(kernel,1,sizeof(cl_mem),&outImg); clSetKernelArg(kernel,2,sizeof(cl_uint),&offsetX); clSetKernelArg(kernel,3,sizeof(cl_uint),&imageWidth); clSetKernelArg(kernel,4,sizeof(cl_uint),&maxVal); //Run kernel err = clEnqueueNDRangeKernel(m_queue,kernel,2,NULL,kernelRegion,kernelWorkgroup,0,NULL,NULL); checkOpenCLErr(err,"RunKernel"); clFinish(m_queue); //Check resulting data for validty cl_float* computedData = new cl_float[resSize];; size_t region[]={imageWidth,imageHeight,1}; const size_t offset[] = {0,0,0}; err = clEnqueueReadImage(m_queue,outImg,CL_TRUE,offset,region,0,0,computedData,0,NULL,NULL); checkOpenCLErr(err, "readDataFromImage()"); clFinish(m_queue); for( int i = 0; i < resSize; i++ ){ if( fabs(expectedData[i]-computedData[i])>0.1 ){ std::cout << "Expected: \n"; for( int j = 0; j < resSize; j++ ){ std::cout << expectedData[j] << " "; } std::cout << "\nComputed: \n"; std::cout << "\n"; for( int j = 0; j < resSize; j++ ){ std::cout << computedData[j] << " "; } std::cout << "\n"; throw std::string("Error, computed and expected data are not the same!\n"); } } }catch(std::string& e){ std::cout << "\nCaught an exception: " << e << "\n"; return 1; } std::cout << "Works fine\n"; return 0; } I also uploaded the source code for you to make it easier to test it: http://www.file-upload.net/download-3513797/strangeOpenCLError.cpp.html Please can you tell me if I've done wrong anything? Is there any mistake in the code or is this a bug in my driver? Best reagards, Alex

    Read the article

  • login form with java/sqlite

    - by tuxou
    hi I would like to create a login form for my application with the possibility to add or remove users for an sqlite database, i have created the table users(nam, pass) but i can't unclud it in my login form, it someone could help me this is my login code: import java.awt.*; import java.awt.event.*; import javax.swing.*; public class login extends JFrame{ // Variables declaration private JLabel jLabel1; private JLabel jLabel2; private JTextField jTextField1; private JPasswordField jPasswordField1; private JButton jButton1; private JPanel contentPane; // End of variables declaration public login(){ super(); create(); this.setVisible(true); } private void create(){ jLabel1 = new JLabel(); jLabel2 = new JLabel(); jTextField1 = new JTextField(); jPasswordField1 = new JPasswordField(); jButton1 = new JButton(); contentPane = (JPanel)this.getContentPane(); // // jLabel1 // jLabel1.setHorizontalAlignment(SwingConstants.LEFT); jLabel1.setForeground(new Color(0, 0, 255)); jLabel1.setText("username:"); // // jLabel2 // jLabel2.setHorizontalAlignment(SwingConstants.LEFT); jLabel2.setForeground(new Color(0, 0, 255)); jLabel2.setText("password:"); // // jTextField1 // jTextField1.setForeground(new Color(0, 0, 255)); jTextField1.setSelectedTextColor(new Color(0, 0, 255)); jTextField1.setToolTipText("Enter your username"); jTextField1.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e){ jTextField1_actionPerformed(e); } }); // // jPasswordField1 // jPasswordField1.setForeground(new Color(0, 0, 255)); jPasswordField1.setToolTipText("Enter your password"); jPasswordField1.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e){ jPasswordField1_actionPerformed(e); } }); // // jButton1 // jButton1.setBackground(new Color(204, 204, 204)); jButton1.setForeground(new Color(0, 0, 255)); jButton1.setText("Login"); jButton1.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e){ jButton1_actionPerformed(e); } }); // // contentPane // contentPane.setLayout(null); contentPane.setBorder(BorderFactory.createEtchedBorder()); contentPane.setBackground(new Color(204, 204, 204)); addComponent(contentPane, jLabel1, 5,10,106,18); addComponent(contentPane, jLabel2, 5,47,97,18); addComponent(contentPane, jTextField1, 110,10,183,22); addComponent(contentPane, jPasswordField1, 110,45,183,22); addComponent(contentPane, jButton1, 150,75,83,28); // // login // this.setTitle("Login To Members Area"); this.setLocation(new Point(76, 182)); this.setSize(new Dimension(335, 141)); this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE); this.setResizable(false); } /** Add Component Without a Layout Manager (Absolute Positioning) */ private void addComponent(Container container,Component c,int x,int y,int width,int height){ c.setBounds(x,y,width,height); container.add(c); } private void jTextField1_actionPerformed(ActionEvent e){ } private void jPasswordField1_actionPerformed(ActionEvent e){ } private void jButton1_actionPerformed(ActionEvent e){ System.out.println("\njButton1_actionPerformed(ActionEvent e) called."); String username = new String(jTextField1.getText()); String password = new String(jPasswordField1.getText()); if(username.equals("") || password.equals("")){// If password and username is empty > Do this >>> jButton1.setEnabled(false); JLabel errorFields = new JLabel("<HTML><FONT COLOR = Blue>You must enter a username and password to login.</FONT></HTML>"); JOptionPane.showMessageDialog(null,errorFields); jTextField1.setText(""); jPasswordField1.setText(""); jButton1.setEnabled(true); this.setVisible(true); } else{ JLabel optionLabel = new JLabel("<HTML><FONT COLOR = Blue>You entered</FONT><FONT COLOR = RED> <B>"+username+"</B></FONT> <FONT COLOR = Blue>as your username.<BR> Is this correct?</FONT></HTML>"); int confirm =JOptionPane.showConfirmDialog(null,optionLabel); switch(confirm){ // Switch > Case case JOptionPane.YES_OPTION: // Attempt to Login user jButton1.setEnabled(false); // Set button enable to false to prevent 2 login attempts break; case JOptionPane.NO_OPTION: // No Case.(Go back. Set text to 0) jButton1.setEnabled(false); jTextField1.setText(""); jPasswordField1.setText(""); jButton1.setEnabled(true); break; case JOptionPane.CANCEL_OPTION: // Cancel Case.(Go back. Set text to 0) jButton1.setEnabled(false); jTextField1.setText(""); jPasswordField1.setText(""); jButton1.setEnabled(true); break; } // End Switch > Case } } public static void main(String[] args){ JFrame.setDefaultLookAndFeelDecorated(true); JDialog.setDefaultLookAndFeelDecorated(true); try{ UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel"); }catch (Exception ex){ System.out.println("Failed loading L&F: "); System.out.println(ex); } new login(); }; } my connectDb class : public class Connectdb { private static Connection connect; private static String url ="jdbc:sqlite:data.db"; private static Statement st; private static ResultSet rs; /** * Constructeur privé d'une connection à la bd unique */ private ConnectionBd(){ try { Class.forName("org.sqlite.JDBC"); connect = DriverManager.getConnection(url); } catch (ClassNotFoundException ex) { Logger.getLogger(ex.getName()).log(Level.SEVERE, null, ex); } catch (SQLException e) { System.exit(e.getErrorCode()); } } public static Connection getInstance(){ if(connect == null){ new Connectdb(); }else{ } return connect; } /** * @return */ public static void initTable(String query){ try { Statement state = getInstance().createStatement(ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY); ResultSet res = state.executeQuery(query); res.close(); state.close(); } catch (SQLException e) { JOptionPane.showMessageDialog(null, e.getMessage(), "ERROR ! ", JOptionPane.ERROR_MESSAGE); } }

    Read the article

  • File using .net sockets, transferring problem

    - by Sergei
    I have a client and server, client sending file to server. When i transfer files on my computer(in local) everything is ok(try to sen file over 700mb). When i try to sent file use Internet to my friend in the end of sending appears error on server "Input string is not in correct format".This error appears in this expression fSize = Convert::ToUInt64(tokenes[0]); - and i don't mind wht it's appear. File should be transfered and wait other transferring ps: sorry for too much code, but i want to find solution private: void CreateServer() { try{ IPAddress ^ipAddres = IPAddress::Parse(ipAdress); listener = gcnew System::Net::Sockets::TcpListener(ipAddres, port); listener->Start(); clientsocket =listener->AcceptSocket(); bool keepalive = true; array<wchar_t,1> ^split = gcnew array<wchar_t>(1){ '\0' }; array<wchar_t,1> ^split2 = gcnew array<wchar_t>(1){ '|' }; statusBar1->Text = "Connected" ; // while (keepalive) { array<Byte>^ size1 = gcnew array<Byte>(1024); clientsocket->Receive(size1); System::String ^notSplited = System::Text::Encoding::GetEncoding(1251)->GetString(size1); array<String^> ^ tokenes = notSplited->Split(split2); System::String ^fileName = tokenes[1]->ToString(); statusBar1->Text = "Receiving file" ; unsigned long fSize = 0; //IN THIS EXPRESSIN APPEARS ERROR fSize = Convert::ToUInt64(tokenes[0]); if (!Directory::Exists("Received")) Directory::CreateDirectory("Received"); System::String ^path = "Received\\"+ fileName; while (File::Exists(path)) { int dotPos = path->LastIndexOf('.'); if (dotPos == -1) { path += "[1]"; } else { path = path->Insert(dotPos, "[1]"); } } FileStream ^fs = gcnew FileStream(path, FileMode::CreateNew, FileAccess::Write); BinaryWriter ^f = gcnew BinaryWriter(fs); //bytes received unsigned long processed = 0; pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; // Set the initial value of the ProgressBar. pBarFilesTr->Value = 0; pBarFilesTr->Step = 1024; //loop for receive file array<Byte>^ buffer = gcnew array<Byte>(1024); while (processed < fSize) { if ((fSize - processed) < 1024) { int bytes ; array<Byte>^ buf = gcnew array<Byte>(1024); bytes = clientsocket->Receive(buf); if (bytes != 0) { f->Write(buf, 0, bytes); processed = processed + (unsigned long)bytes; pBarFilesTr->PerformStep(); } break; } else { int bytes = clientsocket->Receive(buffer); if (bytes != 0) { f->Write(buffer, 0, 1024); processed = processed + 1024; pBarFilesTr->PerformStep(); } else break; } } statusBar1->Text = "File was received" ; array<Byte>^ buf = gcnew array<Byte>(1); clientsocket->Send(buf,buf->Length,SocketFlags::None); f->Close(); fs->Close(); SystemSounds::Beep->Play(); } }catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } catch(System::Exception ^es) { MessageBox::Show(es->ToString()); } } private: void CreateClient() { clientsock = gcnew System::Net::Sockets::TcpClient(ipAdress, port); ns = clientsock->GetStream(); sr = gcnew StreamReader(ns); statusBar1->Text = "Connected" ; } private:void Send() { try{ OpenFileDialog ^openFileDialog1 = gcnew OpenFileDialog(); System::String ^filePath = ""; System::String ^fileName = ""; //file choose dialog if (openFileDialog1->ShowDialog() == System::Windows::Forms::DialogResult::OK) { filePath = openFileDialog1->FileName; fileName = openFileDialog1->SafeFileName; } else { MessageBox::Show("You must select a file", "Error", MessageBoxButtons::OK, MessageBoxIcon::Exclamation); return; } statusBar1->Text = "Sending file" ; NetworkStream ^writerStream = clientsock->GetStream(); System::Runtime::Serialization::Formatters::Binary::BinaryFormatter ^format = gcnew System::Runtime::Serialization::Formatters::Binary::BinaryFormatter(); array<Byte>^ buffer = gcnew array<Byte>(1024); FileStream ^fs = gcnew FileStream(filePath, FileMode::Open); BinaryReader ^br = gcnew BinaryReader(fs); //file size unsigned long fSize = (unsigned long)fs->Length; //transfer file size + name bFSize = Encoding::GetEncoding(1251)->GetBytes(Convert::ToString(fs->Length+"|"+fileName+"|")); writerStream->Write(bFSize, 0, bFSize->Length); //status bar pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; pBarFilesTr->Value = 0; // Set the initial value of the ProgressBar. pBarFilesTr->Step = 1024; //bytes transfered unsigned long processed = 0; int bytes = 1024; //loop for transfer while (processed < fSize) { if ((fSize - processed) < 1024) { bytes = (int)(fSize - processed); array<Byte>^ buf = gcnew array<Byte>(bytes); br->Read(buf, 0, bytes); writerStream->Write(buf, 0, buf->Length); pBarFilesTr->PerformStep(); processed = processed + (unsigned long)bytes; break; } else { br->Read(buffer, 0, 1024); writerStream->Write(buffer, 0, buffer->Length); pBarFilesTr->PerformStep(); processed = processed + 1024; } } array<Byte>^ bufsss = gcnew array<Byte>(100); writerStream->Read(bufsss,0,bufsss->Length); statusBar1->Text = "File was sent" ; btnSend->Enabled = true; fs->Close(); br->Close(); SystemSounds::Beep->Play(); newThread->Abort(); } catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } } UPDATE: ok, i can add checking if clientsocket->Receive(size1); equal zero, but why he begin receiving data again , in the ending of receiving. UPDATE:After adding this checking problem remains. AND WIN RAR SAY TO OPENING ARCHIVE - unexpected end of file! UPDATE:http://img153.imageshack.us/img153/3760/erorr.gif I think it continue receiving some bytes from client(that remains in the stream), but why existes cicle while (processed < fSize)

    Read the article

  • substrings and multiple textfields, AS3

    - by VideoDnd
    How do I get my text fields to populate correctly and show single digits? Description Each textfield receives a substring. This doesn't limit it's input, because the text fields shows extra numbers. The counters are set to 2,200,000.00, just to see if the numbers are populating. Ex A is the one I'm trying to fix. Ex A the one I want to fix //Tweening method 'could substitute code with Tweener' import fl.transitions.Tween; import fl.transitions.easing.*; //Timer that will run a sec and repeat var timer:Timer = new Timer(1000); //Integer values var count:int = +220000000; var fcount:int = 0; //Events and starting timer timer.addEventListener(TimerEvent.TIMER, incrementCounter); addEventListener(Event.ENTER_FRAME, checkOdometerPosition); timer.start(); //Tween Variables var smoothLoop:int = 0; var originalYPosition:Number = 0; var upwardYPosition:Number = -99; //Formatting String function formatCount(i:int):String { var fraction:int = i % 100; var whole:int = i / 100; return ("0000000" + whole).substr(-7, 7) + "." + (fraction < 10 ? "0" + fraction : fraction); } //First Digit function checkOdometerPosition(event:Event):void{ if (seconds9.y <= upwardYPosition){ var toText:String = formatCount(fcount); //seconds9.firstDigit.text = formatCount(fcount); seconds9.firstDigit.text = toText.substr(9, 9); seconds9.y = originalYPosition; seconds8.firstDigit.text = toText.substr(8, 8); seconds8.y = originalYPosition; seconds7dec.firstDigit.text = toText.substr(7, 7); seconds7dec.y = originalYPosition; seconds6.firstDigit.text = toText.substr(6, 6); seconds6.y = originalYPosition; seconds5.firstDigit.text = toText.substr(5, 5); seconds5.y = originalYPosition; seconds5.firstDigit.text = toText.substr(4, 4); seconds5.y = originalYPosition; seconds3.firstDigit.text = toText.substr(3, 3); seconds3.y = originalYPosition; seconds2.firstDigit.text = toText.substr(2, 2); seconds2.y = originalYPosition; seconds1.firstDigit.text = toText.substr(1, 1); seconds1.y = originalYPosition; seconds1.firstDigit.text = toText.substr(1, 1); seconds1.y = originalYPosition; seconds0.firstDigit.text = toText.substr(0, 1); seconds0.y = originalYPosition; } } //Second Digit function incrementCounter(event:TimerEvent):void{ count++; fcount=int(count) if (smoothLoop < 9){ smoothLoop++; } else { smoothLoop = 0; } var lolly:String = formatCount(fcount-1); //seconds9.secondDigit.text = formatCount(fcount); seconds9.secondDigit.text = lolly.substr(9, 9); var addTween9:Tween = new Tween(seconds9, "y", Strong.easeOut,0,-222, .7, true); seconds8.secondDigit.text = lolly.substr(8, 8); var addTween8:Tween = new Tween(seconds8, "y", Strong.easeOut,0,-222, .7, true); seconds7dec.secondDigit.text = lolly.substr(7, 7); var addTween7dec:Tween = new Tween(seconds7dec, "y", Strong.easeOut,0,-222, .7, true); seconds6.secondDigit.text = lolly.substr(6, 6); var addTween6:Tween = new Tween(seconds6, "y", Strong.easeOut,0,-222, .7, true); seconds5.secondDigit.text = lolly.substr(5, 5); var addTween5:Tween = new Tween(seconds5, "y", Strong.easeOut,0,-222, .7, true); seconds4.secondDigit.text = lolly.substr(4, 4); var addTween4:Tween = new Tween(seconds4, "y", Strong.easeOut,0,-222, .7, true); seconds3.secondDigit.text = lolly.substr(3, 3); var addTween3:Tween = new Tween(seconds3, "y", Strong.easeOut,0,-222, .7, true); seconds2.secondDigit.text = lolly.substr(2, 2); var addTween2:Tween = new Tween(seconds2, "y", Strong.easeOut,0,-222, .7, true); seconds1.secondDigit.text = lolly.substr(1, 1); var addTween1:Tween = new Tween(seconds1, "y", Strong.easeOut,0,-222, .7, true); seconds0.secondDigit.text = lolly.substr(0, 1); var addTween0:Tween = new Tween(seconds0, "y", Strong.easeOut,0,-222, .7, true); } Ex A has 10 text objects, each with a pair of text fields. It’s move complex than Ex B, because it has a Y animation and pairs of numbers. The text objects are animated to create a scrolling effect. It moves vertically, and has a lead number and a catch up number contained in each symbol. See illustration for more description. Ex B work fine! for example only //STRING SPLITTER COUNTER with nine individual text fields //Timer settings var delay:uint = 1000/100; var repeat:uint = 0; var timer:Timer; timer = new Timer(delay,repeat); timer.addEventListener(TimerEvent.TIMER, incrementCounter); timer.start(); //Integer values var count:int = 0; var fcount:int = 0; //Format Count function formatCount(i:int):String { var fraction:int = i % 100; var whole:int = i / 100; return ("0000000" + whole).substr(-7, 7) + "." + (fraction < 10 ? "0" + fraction : fraction); } //Split strings off to individual text fields function incrementCounter(event:TimerEvent) { count++; fcount=int(count+220000000) var toText:String = formatCount(fcount); mytext9.text = toText.substr(9, 9); mytext8.text = toText.substr(8, 8); mytext7dec.text = toText.substr(7, 7); mytext6.text = toText.substr(6, 6); mytext5.text = toText.substr(5, 5); mytext4.text = toText.substr(4, 4); mytext3.text = toText.substr(3, 3); mytext2.text = toText.substr(2, 2); mytext1.text = toText.substr(1, 1); mytext0.text = toText.substr(0, 1); }

    Read the article

  • File using sockets .net, tranfering problem

    - by Sergei
    I have a client and server, client sending file to server. When i transfer files on my computer(in local) everything is ok(try to sen file over 700mb). When i try to sent file use Internet to my friend in the end of sending appears error on server "Input string is not in correct format".This error appears in this expression fSize = Convert::ToUInt64(tokenes[0]); - and i don't mind wht it's appear. File should be transfered and wait other transferring ps: sorry for too much code, but i want to find solution private: void CreateServer() { try{ IPAddress ^ipAddres = IPAddress::Parse(ipAdress); listener = gcnew System::Net::Sockets::TcpListener(ipAddres, port); listener->Start(); clientsocket =listener->AcceptSocket(); bool keepalive = true; array<wchar_t,1> ^split = gcnew array<wchar_t>(1){ '\0' }; array<wchar_t,1> ^split2 = gcnew array<wchar_t>(1){ '|' }; statusBar1->Text = "Connected" ; // while (keepalive) { array<Byte>^ size1 = gcnew array<Byte>(1024); clientsocket->Receive(size1); System::String ^notSplited = System::Text::Encoding::GetEncoding(1251)->GetString(size1); array<String^> ^ tokenes = notSplited->Split(split2); System::String ^fileName = tokenes[1]->ToString(); statusBar1->Text = "Receiving file" ; unsigned long fSize = 0; //IN THIS EXPRESSIN APPEARS ERROR fSize = Convert::ToUInt64(tokenes[0]); if (!Directory::Exists("Received")) Directory::CreateDirectory("Received"); System::String ^path = "Received\\"+ fileName; while (File::Exists(path)) { int dotPos = path->LastIndexOf('.'); if (dotPos == -1) { path += "[1]"; } else { path = path->Insert(dotPos, "[1]"); } } FileStream ^fs = gcnew FileStream(path, FileMode::CreateNew, FileAccess::Write); BinaryWriter ^f = gcnew BinaryWriter(fs); //bytes received unsigned long processed = 0; pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; // Set the initial value of the ProgressBar. pBarFilesTr->Value = 0; pBarFilesTr->Step = 1024; //loop for receive file array<Byte>^ buffer = gcnew array<Byte>(1024); while (processed < fSize) { if ((fSize - processed) < 1024) { int bytes ; array<Byte>^ buf = gcnew array<Byte>(1024); bytes = clientsocket->Receive(buf); if (bytes != 0) { f->Write(buf, 0, bytes); processed = processed + (unsigned long)bytes; pBarFilesTr->PerformStep(); } break; } else { int bytes = clientsocket->Receive(buffer); if (bytes != 0) { f->Write(buffer, 0, 1024); processed = processed + 1024; pBarFilesTr->PerformStep(); } else break; } } statusBar1->Text = "File was received" ; array<Byte>^ buf = gcnew array<Byte>(1); clientsocket->Send(buf,buf->Length,SocketFlags::None); f->Close(); fs->Close(); SystemSounds::Beep->Play(); } }catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } catch(System::Exception ^es) { MessageBox::Show(es->ToString()); } } private: void CreateClient() { clientsock = gcnew System::Net::Sockets::TcpClient(ipAdress, port); ns = clientsock->GetStream(); sr = gcnew StreamReader(ns); statusBar1->Text = "Connected" ; } private:void Send() { try{ OpenFileDialog ^openFileDialog1 = gcnew OpenFileDialog(); System::String ^filePath = ""; System::String ^fileName = ""; //file choose dialog if (openFileDialog1->ShowDialog() == System::Windows::Forms::DialogResult::OK) { filePath = openFileDialog1->FileName; fileName = openFileDialog1->SafeFileName; } else { MessageBox::Show("You must select a file", "Error", MessageBoxButtons::OK, MessageBoxIcon::Exclamation); return; } statusBar1->Text = "Sending file" ; NetworkStream ^writerStream = clientsock->GetStream(); System::Runtime::Serialization::Formatters::Binary::BinaryFormatter ^format = gcnew System::Runtime::Serialization::Formatters::Binary::BinaryFormatter(); array<Byte>^ buffer = gcnew array<Byte>(1024); FileStream ^fs = gcnew FileStream(filePath, FileMode::Open); BinaryReader ^br = gcnew BinaryReader(fs); //file size unsigned long fSize = (unsigned long)fs->Length; //transfer file size + name bFSize = Encoding::GetEncoding(1251)->GetBytes(Convert::ToString(fs->Length+"|"+fileName+"|")); writerStream->Write(bFSize, 0, bFSize->Length); //status bar pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; pBarFilesTr->Value = 0; // Set the initial value of the ProgressBar. pBarFilesTr->Step = 1024; //bytes transfered unsigned long processed = 0; int bytes = 1024; //loop for transfer while (processed < fSize) { if ((fSize - processed) < 1024) { bytes = (int)(fSize - processed); array<Byte>^ buf = gcnew array<Byte>(bytes); br->Read(buf, 0, bytes); writerStream->Write(buf, 0, buf->Length); pBarFilesTr->PerformStep(); processed = processed + (unsigned long)bytes; break; } else { br->Read(buffer, 0, 1024); writerStream->Write(buffer, 0, buffer->Length); pBarFilesTr->PerformStep(); processed = processed + 1024; } } array<Byte>^ bufsss = gcnew array<Byte>(100); writerStream->Read(bufsss,0,bufsss->Length); statusBar1->Text = "File was sent" ; btnSend->Enabled = true; fs->Close(); br->Close(); SystemSounds::Beep->Play(); newThread->Abort(); } catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } }

    Read the article

  • C++ function not found during compilation

    - by forthewinwin
    For a homework assignment: I'm supposed to create randomized alphabetial keys, print them to a file, and then hash each of them into a hash table using the function "goodHash", found in my below code. When I try to run the below code, it says my "goodHash" "identifier isn't found". What's wrong with my code? #include <iostream> #include <vector> #include <cstdlib> #include "math.h" #include <fstream> #include <time.h> using namespace std; // "makeKey" function to create an alphabetical key // based on 8 randomized numbers 0 - 25. string makeKey() { int k; string key = ""; for (k = 0; k < 8; k++) { int keyNumber = (rand() % 25); if (keyNumber == 0) key.append("A"); if (keyNumber == 1) key.append("B"); if (keyNumber == 2) key.append("C"); if (keyNumber == 3) key.append("D"); if (keyNumber == 4) key.append("E"); if (keyNumber == 5) key.append("F"); if (keyNumber == 6) key.append("G"); if (keyNumber == 7) key.append("H"); if (keyNumber == 8) key.append("I"); if (keyNumber == 9) key.append("J"); if (keyNumber == 10) key.append("K"); if (keyNumber == 11) key.append("L"); if (keyNumber == 12) key.append("M"); if (keyNumber == 13) key.append("N"); if (keyNumber == 14) key.append("O"); if (keyNumber == 15) key.append("P"); if (keyNumber == 16) key.append("Q"); if (keyNumber == 17) key.append("R"); if (keyNumber == 18) key.append("S"); if (keyNumber == 19) key.append("T"); if (keyNumber == 20) key.append("U"); if (keyNumber == 21) key.append("V"); if (keyNumber == 22) key.append("W"); if (keyNumber == 23) key.append("X"); if (keyNumber == 24) key.append("Y"); if (keyNumber == 25) key.append("Z"); } return key; } // "makeFile" function to produce the desired text file. // Note this only works as intended if you include the ".txt" extension, // and that a file of the same name doesn't already exist. void makeFile(string fileName, int n) { ofstream ourFile; ourFile.open(fileName); int k; // For use in below loop to compare with n. int l; // For use in the loop inside the below loop. string keyToPassTogoodHash = ""; for (k = 1; k <= n; k++) { for (l = 0; l < 8; l++) { // For-loop to write to the file ONE key ourFile << makeKey()[l]; keyToPassTogoodHash += (makeKey()[l]); } ourFile << " " << k << "\n";// Writes two spaces and the data value goodHash(keyToPassTogoodHash); // I think this has to do with the problem makeKey(); // Call again to make a new key. } } // Primary function to create our desired file! void mainFunction(string fileName, int n) { makeKey(); makeFile(fileName, n); } // Hash Table for Part 2 struct Node { int key; string value; Node* next; }; const int hashTableSize = 10; Node* hashTable[hashTableSize]; // "goodHash" function for Part 2 void goodHash(string key) { int x = 0; int y; int keyConvertedToNumber = 0; // For-loop to produce a numeric value based on the alphabetic key, // which is then hashed into hashTable using the hash function // declared below the loop (hashFunction). for (y = 0; y < 8; y++) { if (key[y] == 'A' || 'B' || 'C') x = 0; if (key[y] == 'D' || 'E' || 'F') x = 1; if (key[y] == 'G' || 'H' || 'I') x = 2; if (key[y] == 'J' || 'K' || 'L') x = 3; if (key[y] == 'M' || 'N' || 'O') x = 4; if (key[y] == 'P' || 'Q' || 'R') x = 5; if (key[y] == 'S' || 'T') x = 6; if (key[y] == 'U' || 'V') x = 7; if (key[y] == 'W' || 'X') x = 8; if (key[y] == 'Y' || 'Z') x = 9; keyConvertedToNumber = x + keyConvertedToNumber; } int hashFunction = keyConvertedToNumber % hashTableSize; Node *temp; temp = new Node; temp->value = key; temp->next = hashTable[hashFunction]; hashTable[hashFunction] = temp; } // First two lines are for Part 1, to call the functions key to Part 1. int main() { srand ( time(NULL) ); // To make sure our randomization works. mainFunction("sandwich.txt", 5); // To test program cin.get(); return 0; } I realize my code is cumbersome in some sections, but I'm a noob at C++ and don't know much to do it better. I'm guessing another way I could do it is to AFTER writing the alphabetical keys to the file, read them from the file and hash each key as I do that, but I wouldn't know how to go about coding that.

    Read the article

  • User controls Stopped working after Migration from 3.7 to 5.2

    - by user1400290
    I recently Migrated my 3.7 sp4 project to 5.2, but I had issues while doing so. Currently, my user controls are not working after migration in 5.2 project. Below is the code: User Control Code: <%@ Control Language="C#" AutoEventWireup="true" CodeFile="SiteMenu.ascx.cs" Inherits="UserControls_Nav_SiteMenu" %> <%@ Register TagPrefix="telerik" Assembly="Telerik.Web.UI" Namespace="Telerik.Web.UI" %> <asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" ShowStartingNode="false" /> <telerik:RadMenu ID="RadMenu1" runat="server" DataSourceID="SitemapDataSource1" OnItemDataBound="RadMenu1_ItemDataBound"> </telerik:RadMenu> User Control's Class code: using System; using System.Data; using System.Configuration; using System.Collections; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; using System.ComponentModel; using System.Drawing; using Telerik; using Telerik.Cms; using Telerik.Cms.Web; using Telerik.Web.UI; using Telerik.Caching; using Telerik.Cms.Web.UI; [DefaultProperty("StartingNodeOffset")] public partial class UserControls_Nav_SiteMenu : System.Web.UI.UserControl, ICacheableObject { protected void Page_Load(object sender, EventArgs e) { } protected override void Render(HtmlTextWriter writer) { // Checks if this is called by the Search Indexer and does not render anything if so. // Navigation controls are present in every page and should NOT be indexed multiple times. if (!CmsContext.IsRequestCrawler(this.Context)) base.Render(writer); } #region Data Fields private bool hideUrlForGroupPages = false; private string selectedItemCssClass = "selectedItem"; #endregion #region Properties [Browsable(true)] [Category("Behavior")] public int LastExpandLevel { get { if (this.RadMenu1.MaxDataBindDepth < 0) return 0; return this.RadMenu1.MaxDataBindDepth; } set { if (value == 0) this.RadMenu1.MaxDataBindDepth = -1; else this.RadMenu1.MaxDataBindDepth = value; } } [Browsable(true)] [Category("Behavior")] public int ExpandDelay { get { return this.RadMenu1.ExpandDelay; } set { this.RadMenu1.ExpandDelay = value; } } [Browsable(true)] [Category("Behavior")] public bool ClickToOpen { get { return this.RadMenu1.ClickToOpen; } set { this.RadMenu1.ClickToOpen = value; } } [Browsable(true)] [Category("Behavior")] [DefaultValue(false)] public bool HideUrlForGroupPages { get { return this.hideUrlForGroupPages; } set { this.hideUrlForGroupPages = value; } } [Browsable(true)] [Category("Appearance")] public string SelectedItemCssClass { get { return this.selectedItemCssClass; } set { this.selectedItemCssClass = value; } } [Browsable(true)] [Category("Appearance")] public string CssClass { get { return this.RadMenu1.CssClass; } set { this.RadMenu1.CssClass = value; } } [Browsable(true)] public RadMenu Menu { get { return this.RadMenu1; } set { this.RadMenu1 = value; } } [Browsable(true)] [Category("Navigation")] public int StartingNodeOffset { get { return this.SiteMapDataSource1.StartingNodeOffset; } set { this.SiteMapDataSource1.StartingNodeOffset = value; } } [WebEditor("Telerik.Cms.Web.UI.UrlEditorWrapper, Telerik.Cms")] [Browsable(true)] [Category("Navigation")] public string StartingNodeUrl { get { return this.SiteMapDataSource1.StartingNodeUrl; } set { this.SiteMapDataSource1.StartingNodeUrl = value; } } [Browsable(true)] [Category("Navigation")] public bool StartFromCurrentNode { get { return this.SiteMapDataSource1.StartFromCurrentNode; } set { this.SiteMapDataSource1.StartFromCurrentNode = value; } } [Browsable(true)] [Category("Navigation")] public bool ShowStartingNode { get { return this.SiteMapDataSource1.ShowStartingNode; } set { this.SiteMapDataSource1.ShowStartingNode = value; } } /// <summary>(Exposed from contained RadMenu.)</summary> [Browsable(true)] [Category("Appearance")] public string SkinID { get { return this.RadMenu1.SkinID; } set { this.RadMenu1.SkinID = value; } } [Browsable(true)] [Category("Appearance")] public string Skin { get { return this.RadMenu1.Skin; } set { this.RadMenu1.Skin = value; } } #endregion #region Methods public void RadMenu1_ItemDataBound(object sender, RadMenuEventArgs e) { CmsSiteMapNode node = e.Item.DataItem as CmsSiteMapNode; if (this.hideUrlForGroupPages) { if (node != null) { // save the PageID in the attributes of the menu item e.Item.Attributes.Add("PageID", node.Key); if (node.PageType == CmsPageType.Group) { e.Item.NavigateUrl = ""; } } } if (node.CmsPage != null) { if (node.CmsPage.PageType == CmsPageType.External) { e.Item.Target = "_blank"; } } } #endregion #region ICacheableObject Members public System.Web.Caching.CacheDependency[] GetDependencies() { CmsSiteMapProvider provider = null; if (!String.IsNullOrEmpty(this.SiteMapDataSource1.SiteMapProvider)) provider = SiteMap.Providers[this.SiteMapDataSource1.SiteMapProvider] as CmsSiteMapProvider; else provider = SiteMap.Provider as CmsSiteMapProvider; if (provider != null) { return new System.Web.Caching.CacheDependency[]{ provider.CloneCacheDependency()}; } return null; } #endregion } When I edit the Template(in Admin mode), the following error is displayed in control location: Both DataSource and DataSourceID are defined on 'RadMenu1'. Remove one definition. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.InvalidOperationException: Both DataSource and DataSourceID are defined on 'RadMenu1'. Remove one definition. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [InvalidOperationException: Both DataSource and DataSourceID are defined on 'RadMenu1'. Remove one definition.] System.Web.UI.WebControls.DataBoundControl.ConnectToDataSourceView() +3234866 System.Web.UI.WebControls.DataBoundControl.OnLoad(EventArgs e) +28 System.Web.UI.Control.LoadRecursive() +71 System.Web.UI.Control.LoadRecursive() +190 System.Web.UI.Control.LoadRecursive() +190 System.Web.UI.Control.AddedControl(Control control, Int32 index) +11422584 System.Web.UI.Control.EnsureChildControls() +182 System.Web.UI.Control.PreRenderRecursiveInternal() +60 System.Web.UI.Control.PreRenderRecursiveInternal() +222 System.Web.UI.Control.PreRenderRecursiveInternal() +222 System.Web.UI.Control.PreRenderRecursiveInternal() +222 System.Web.UI.Control.PreRenderRecursiveInternal() +222 System.Web.UI.Control.PreRenderRecursiveInternal() +222 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) +4201 Version Information: Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.272 but I searched in my code as you can see above there's only DataSourceID is defined. What should I do? Thanks

    Read the article

  • Databinding, using formulas for unusual binding possible?

    - by Rattenmann
    Edit: added Info for WPF being used I am trying to bind a list of custom objects to a DataGrid. Straight binding seems easy enough, but i need to specify some complex formulas for some extra fields that do not directly show up in my class. Also i want to be able to EDIT the data in the Grid and get updates on related fields. Let me show you an example, because it is really hard to explain. I will simplify it to rooms with items. Each item can be red and blue. My Class looks like this: public class room { public string strRoomName { set; get; } public string strItemname { set; get; } public int intRedItem { set; get; } public int intBlueItem { set; get; } } Now if i use dataTable.ItemSource = myList; i get something like this: nr. | room | name | red | blue 1. living room, ball, 2, 1 2. sleeping room, bunny, 4, 1 3. living room, chair, 3, 2 4. kitchen, ball, 4, 7 5. garage, chair, 1, 4 Now for the complex part i need help with. I want every item to be the same number, red and blue. And because this does not hold true i want to see the "inbalance" per room AND globally like this: nr. | room | name | red | blue | missing | global red | global blue | global missing 1. living room, ball, 2, 1, 1 blue, 6, 7, 1 red 2. sleeping room, bunny, 4, 1, 3 blue, 4, 1, 3 blue 3. living room, chair, 3, 2, 1 blue, 4, 6, 2 red 4. kitchen, ball, 4, 7, 3 red, 6, 7, 1 red 5. garage, chair, 1, 4, 3 red, 4, 6, 2 red As you can see this smeels like excel formulas, i am unsure how to handle this in c# code however. You can also see i need to use data in the same row, but also get data from other rows that match one propertiy (the items name). Also if i change the blue value=1 in line 1 to value=2, i want line 1 to read like this: 1. living room, ball, 2, 2, even, 6, 8, 2 red and of corse line 4 needs to change to: 4. kitchen, ball, 4, 7, 3 red, 6, 8, 2 red As i said, this smells like excel, that's why i am really upset about myself not finding an easy solution. Surely enough c# offers some way to handle this stuff, right? Disclaimer: It is totally possible that i need a complete differend approach, pointing that out ot me is perfectly fine. Be it other ways to handle this, or a better way to structure my class. I am ok with every way to handle this as it is for learning purposes. I am simply doing programms for fun next to my college and just so happen to hit these kinda things that bug me out because i don't find a clean solution. And then i neglect my studies because i want to solve my (unreleated to studys,...) issue. Just can't stand having unsolved coding stuff around, don't judge me! ;-) And big thanks in advance if you have gotten this far in my post. It sure must be confusing with all those reds and blues. Edit: After reading trough your answers and testing my skills to implement your hints, i now have the following code as my class: public class RoomList : ObservableCollection<room> { public RoomList() : base() { Add(new room() { strRoomName = "living room", strItemname = "ball", intRedItem = 2, intBlueItem = 1 }); Add(new room() { strRoomName = "sleeping room", strItemname = "bunny", intRedItem = 4, intBlueItem = 1 }); Add(new room() { strRoomName = "living room", strItemname = "chair", intRedItem = 3, intBlueItem = 2 }); Add(new room() { strRoomName = "kitchen", strItemname = "ball", intRedItem = 4, intBlueItem = 7 }); Add(new room() { strRoomName = "garage", strItemname = "chair", intRedItem = 1, intBlueItem = 4 }); } } //rooms public class room : INotifyPropertyChanged { public string strRoomName { set; get; } public string strItemname { set; get; } public int intRedItem { get { return intRedItem; } set { intRedItem = value; NotifyPropertyChanged("intRedItem", "strMissing"); } } public int intBlueItem { get { return intBlueItem; } set { intBlueItem = value; NotifyPropertyChanged("intBlueItem", "strMissing"); } } public string strMissing { get { int missingCount = intRedItem - intBlueItem; return missingCount == 0 ? "Even" : missingCount.ToString(); } } public event PropertyChangedEventHandler PropertyChanged; public void NotifyPropertyChanged(params string[] propertyNames) { if (PropertyChanged != null) { foreach (string propertyName in propertyNames) { PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } } } I got the "missing" field working right away, thanks alot for that tip. It really was as easy as i imagined and will be of great use for future projects. Still two (three maybe....) things i am missing tho. The above code terminates with a "System.StackOverflowException" in the setter of intRedItem and intBlueItem. I fail to see the error, that could be due to being 4:30am here, or my lack of understanding. Second issue: I followed the link to ObservableCollections as you can see from my code above. Yet i am unsure how to actually use that collection. Putting it as DataContent like suggested on that page shows a missing ressource. Adding it as a ressource like listed there crashes my VSExpress designer and leads to the programm not starting. So for now i am still using my old approach of a list like this: listRooms.Add(new room() { strRoomName = "living room", strItemname = "ball", intRedItem = 2, intBlueItem = 1 }); listRooms.Add(new room() { strRoomName = "sleeping room", strItemname = "bunny", intRedItem = 4, intBlueItem = 1 }); listRooms.Add(new room() { strRoomName = "living room", strItemname = "chair", intRedItem = 3, intBlueItem = 2 }); listRooms.Add(new room() { strRoomName = "kitchen", strItemname = "ball", intRedItem = 4, intBlueItem = 7 }); listRooms.Add(new room() { strRoomName = "garage", strItemname = "chair", intRedItem = 1, intBlueItem = 4 }); datagridRooms.ItemsSource = listRooms; And lastly: When testing before adding the notifyevents i tried to implement a proterty that looped trough the other objects, without any luck. The "missingItem" property worked so easy, yet it only tries to access "it's own" properties kind of. I need to access other objects, like "all objects that have the same room value". The idea behind this is that i am trying to calculate a value from other objects without even having those objects yet, at least in my logic. Where is the flaw in my thinking? Those 5 objects are added and created (?) one after another. So if the first tries to set it's "all red balls in my room AND all other rooms" value,.. how could it know about the balls in the kitchen, that get added as 4th object? So far so good tho, got on the right track i think. Just need some sleep first.

    Read the article

  • Gridview Datasource Server error

    - by salvationishere
    I am developing a C# VS 2008 and SQL Server 2008 website. However, I get the below error now when I first run this: The DataSourceID of 'GridView1' must be the ID of a control of type IDataSource. A control with ID 'AdventureWorks3.mdf' could not be found What is causing this error? Here is my default.aspx file. I have configured GridView1 to use my AdventureWorks3.mdf file, stored in my App_Data folder. Do I need to add this folder name to this ASPX file? <%@ Page Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" Title="Untitled Page" %> <asp:Content ID="Content1" ContentPlaceHolderID="MainContent" Runat="Server"> <asp:Panel runat="server" ID="AuthenticatedMessagePanel"> <asp:Label runat="server" ID="WelcomeBackMessage"></asp:Label> <table> <tr > <td> <asp:Label ID="tableLabel" runat="server" Font-Bold="True" Text="Select target table:"></asp:Label> </td> <td> <asp:Label ID="inputLabel" runat="server" Font-Bold="True" Text="Select input file:"></asp:Label> </td></tr> <tr><td valign="top"> <asp:Label ID="feedbackLabel" runat="server"></asp:Label> <asp:GridView ID="GridView1" runat="server" style="WIDTH: 400px;" CellPadding="4" ForeColor="#333333" GridLines="None" onselectedindexchanged="GridView1_SelectedIndexChanged" AutoGenerateSelectButton="True" DataSourceID="AdventureWorks3.mdf" > <RowStyle BackColor="#F7F6F3" ForeColor="#333333" /> <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" /> <PagerStyle BackColor="#284775" ForeColor="White" HorizontalAlign="Center" /> <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True" ForeColor="#333333" /> <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" /> <EditRowStyle BackColor="#999999" /> <AlternatingRowStyle BackColor="White" ForeColor="#284775" /> </asp:GridView> </td> <td valign="top"> <input id="uploadFile" type="file" size="26" runat="server" name="uploadFile" title="UploadFile" class="greybar" enableviewstate="True" /> </td></tr> </table> </asp:Panel> <asp:Panel runat="Server" ID="AnonymousMessagePanel"> <asp:HyperLink runat="server" ID="lnkLogin" Text="Log In" NavigateUrl="~/Login.aspx"> </asp:HyperLink> </asp:Panel> </asp:Content> Or what about my ASPX.CS file? Is this the problem? using System; using System.Collections; using System.Configuration; using System.Data; using System.Linq; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.HtmlControls; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Xml.Linq; using System.Collections.Generic; using System.IO; using System.Drawing; using System.ComponentModel; using System.Data.SqlClient; using ADONET_namespace; using System.Security.Principal; //using System.Windows; public partial class _Default : System.Web.UI.Page //namespace AddFileToSQL { //protected System.Web.UI.HtmlControls.HtmlInputFile uploadFile; protected System.Web.UI.HtmlControls.HtmlInputButton btnOWrite; protected System.Web.UI.HtmlControls.HtmlInputButton btnAppend; protected System.Web.UI.WebControls.Label Label1; protected static string inputfile = ""; public static string targettable; public static string selection; // Number of controls added to view state protected int default_NumberOfControls { get { if (ViewState["default_NumberOfControls"] != null) { return (int)ViewState["default_NumberOfControls"]; } else { return 0; } } set { ViewState["default_NumberOfControls"] = value; } } protected void uploadFile_onclick(object sender, EventArgs e) { } protected void Load_GridData() { GridView1.DataSource = ADONET_methods.DisplaySchemaTables(); GridView1.DataBind(); } protected void btnOWrite_Click(object sender, EventArgs e) { if (uploadFile.PostedFile.ContentLength > 0) { feedbackLabel.Text = "You do not have sufficient access to overwrite table records."; } else { feedbackLabel.Text = "This file does not contain any data."; } } protected void btnAppend_Click(object sender, EventArgs e) { string fullpath = Page.Request.PhysicalApplicationPath; string path = uploadFile.PostedFile.FileName; if (File.Exists(path)) { // Create a file to write to. try { StreamReader sr = new StreamReader(path); string s = ""; while (sr.Peek() > 0) s = sr.ReadLine(); sr.Close(); } catch (IOException exc) { Console.WriteLine(exc.Message + "Cannot open file."); return; } } if (uploadFile.PostedFile.ContentLength > 0) { inputfile = System.IO.File.ReadAllText(path); Session["Message"] = inputfile; Response.Redirect("DataMatch.aspx"); } else { feedbackLabel.Text = "This file does not contain any data."; } } protected void Page_Load(object sender, EventArgs e) { if (Request.IsAuthenticated) { WelcomeBackMessage.Text = "Welcome back, " + User.Identity.Name + "!"; // Reference the CustomPrincipal / CustomIdentity CustomIdentity ident = User.Identity as CustomIdentity; if (ident != null) WelcomeBackMessage.Text += string.Format(" You are the {0} of {1}.", ident.Title, ident.CompanyName); AuthenticatedMessagePanel.Visible = true; AnonymousMessagePanel.Visible = false; //if (!Page.IsPostBack) //{ // Load_GridData(); //} } else { AuthenticatedMessagePanel.Visible = false; AnonymousMessagePanel.Visible = true; } } protected void GridView1_SelectedIndexChanged(object sender, EventArgs e) { GridViewRow row = GridView1.SelectedRow; targettable = row.Cells[2].Text; } }

    Read the article

  • log in and send sms with java

    - by noobed
    I'm trying to log into a site and afterwards to send a SMS (you can do that for free by the site - it's nothing more than just enter some text into some fields and 'submit'). I've used wireshark to track some of the post/get requests that my machine has been exchanging with the server - when using the browser. I'd like to paste some of my Java code: URL url; String urlP = "maccount=myRawUserName7&" + "mpassword=myRawPassword&" + "redirect_http=http&" + "submit=........"; String urlParameters = URLEncoder.encode(urlP, "CP1251"); HttpURLConnection connection = null; // Create connection url = new URL("http://www.mtel.bg/1/mm/smscenter/mc/sendsms/ma/index/mo/1"); connection = (HttpURLConnection) url.openConnection(); connection.setRequestMethod("POST"); //I'm not really sure if these RequestProperties are necessary //so I'll leave them as a comment // connection.setRequestProperty("Content-Type", // "application/x-www-form-urlencoded"); // connection.setRequestProperty("Accept-Charset", "CP1251"); // connection.setRequestProperty("Content-Length", // "" + Integer.toString(urlParameters.getBytes().length)); // connection.setRequestProperty("Content-Language", "en-US"); connection.setUseCaches(false); connection.setDoInput(true); connection.setDoOutput(true); // Send request DataOutputStream wr = new DataOutputStream( connection.getOutputStream()); wr.writeBytes(urlParameters); wr.flush(); wr.close(); String headerName[] = new String[10]; int count = 0; for (int i = 1; (headerName[count] = connection.getHeaderFieldKey(i)) != null; i++) { if (headerName[count].equals("Set-Cookie")) { headerName[count++] = connection.getHeaderField(i); } } //I'm not sure if I have to close the connection here or not if (connection != null) { connection.disconnect(); } //the code above should be the login part //----------------------------------------- //this is copy-pasted from wireshark's info. String smsParam="from=men&" + "sender=0&" + "msisdn=359886737498&" + "tophone=0&" + "smstext=tova+e+proba%21+1.&" + "id=&" + "sendaction=&" + "direction=&" + "msgLen=84"; url = new URL("http://www.mtel.bg/moyat-profil-sms-tsentar_3004/" + "mm/smscenter/mc/sendsms/ma/index"); connection = (HttpURLConnection) url.openConnection(); connection.setRequestMethod("POST"); connection.setRequestProperty("Cookie", headerName[0]); connection.setRequestProperty("Cookie", headerName[1]); //conn urlParameters = URLEncoder.encode(urlP, "CP1251"); connection.setUseCaches(false); connection.setDoInput(true); connection.setDoOutput(true); wr = new DataOutputStream( connection.getOutputStream()); wr.writeBytes(urlParameters); wr.flush(); wr.close(); //I'm not rly sure what exactly to do with this response. // Get Response InputStream is = connection.getInputStream(); BufferedReader rd = new BufferedReader(new InputStreamReader(is, "CP1251")); String line; StringBuffer response = new StringBuffer(); while ((line = rd.readLine()) != null) { response.append(line); response.append('\r'); } rd.close(); System.out.println(response.toString()); if (connection != null) { connection.disconnect(); } so that's my code so far. When I execute it ... I don't receive any text on my phone - so it clearly doesn't work as supposed to. I would appreciate any guidance or remarks. Is my cookie handling wrong? Is my login method wrong? Do I pass the right URLs. Do I encode and send the parameter string correctly? Is there any addition valuable data from these POSTs I should take? P.S. just in any case let me tell you that the username and password is not real. For security reasons I don't want to give valid ones. (I think this is appropriate approach) Here are the POST requests: POST /1/mm/auth/mc/auth/ma/index/mo/1 HTTP/1.1 Host: www.mtel.bg User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:15.0) Gecko/20100101 Firefox/15.0.1 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en-us,en;q=0.5 Accept-Encoding: gzip, deflate Connection: keep-alive Referer: http://www.mtel.bg/1/mm/smscenter/mc/sendsms/ma/index/mo/1 Cookie: __utma=209782857.541729286.1349267381.1349270269.1349274374.3; __utmc=209782857; __utmz=209782857.1349267381.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __atuvc=28%7C40; PHPSESSID=q0mage2usmv34slcv3dmd6t057; __utmb=209782857.3.10.1349274374 Content-Type: multipart/form-data; boundary=---------------------------151901450223722 Content-Length: 475 -----------------------------151901450223722 Content-Disposition: form-data; name="maccount" myRawUserName -----------------------------151901450223722 Content-Disposition: form-data; name="mpassword" myRawPassword -----------------------------151901450223722 Content-Disposition: form-data; name="redirect_https" http -----------------------------151901450223722 Content-Disposition: form-data; name="submit" ........ -----------------------------151901450223722-- HTTP/1.1 302 Found Server: nginx Date: Wed, 03 Oct 2012 14:26:40 GMT Content-Type: text/html; charset=Utf-8 Connection: close Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Location: /moyat-profil-sms-tsentar_3004/mm/smscenter/mc/sendsms/ma/index Content-Length: 0 The above text is vied with wireshark's follow tcp stream when pressing the log in button. POST /moyat-profil-sms-tsentar_3004/mm/smscenter/mc/sendsms/ma/index HTTP/1.1 *same as the above ones* Referer: http://www.mtel.bg/moyat-profil-sms-tsentar_3004/mm/smscenter/mc/sendsms/ma/index Cookie: __utma=209782857.541729286.1349267381.1349270269.1349274374.3; __utmc=209782857; __utmz=209782857.1349267381.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __atuvc=29%7C40; PHPSESSID=q0mage2usmv34slcv3dmd6t057; __utmb=209782857.4.10.1349274374 Content-Type: application/x-www-form-urlencoded Content-Length: 147 from=men&sender=0&msisdn=35988888888&tophone=0&smstext=this+is+some+FREE+SMS+text%21+100+char+per+sms+only%21&id=&sendaction=&direction=&msgLen=50 HTTP/1.1 302 Found Server: nginx Date: Wed, 03 Oct 2012 14:31:38 GMT Content-Type: text/html; charset=Utf-8 Connection: close Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Location: /moyat-profil-sms-tsentar_3004/mm/smscenter/mc/sendsms/ma/success/s/1 Content-Length: 0 The above text is when you press the send button.

    Read the article

  • How do I search the MediaStore for a specific directory instead of entire external storage?

    - by Nick Lopez
    In my app I have an option that allows users to browse for audio files on their phone to add to the app. I am having trouble however with creating a faster way of processing the query code. Currently it searches the entire external storage and causes the phone to prompt a force close/wait warning. I would like to take the code I have posted below and make it more efficient by either searching in a specific folder on the phone or by streamlining the process to make the file search quicker. I am not sure how to do this however. Thanks! public class BrowseActivity extends DashboardActivity implements OnClickListener, OnItemClickListener { private List<Sound> soundsInDevice = new ArrayList<Sound>(); private List<Sound> checkedList; private ListView browsedList; private BrowserSoundAdapter adapter; private long categoryId; private Category category; private String currentCategoryName; private String description; // private Category newCategory ; private Button doneButton; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); requestWindowFeature(Window.FEATURE_NO_TITLE); setContentView(R.layout.activity_browse); checkedList = new ArrayList<Sound>(); browsedList = (ListView) findViewById(android.R.id.list); doneButton = (Button) findViewById(R.id.doneButton); soundsInDevice = getMediaSounds(); if (soundsInDevice.size() > 0) { adapter = new BrowserSoundAdapter(this, R.id.browseSoundName, soundsInDevice); } else { Toast.makeText(getApplicationContext(), getString(R.string.no_sounds_available), Toast.LENGTH_SHORT) .show(); } browsedList.setAdapter(adapter); browsedList.setOnItemClickListener(this); doneButton.setOnClickListener(this); } private List<Sound> getMediaSounds() { List<Sound> mediaSoundList = new ArrayList<Sound>(); ContentResolver cr = getContentResolver(); String[] projection = {MediaStore.Audio.Media._ID, MediaStore.Audio.Media.DISPLAY_NAME, MediaStore.Audio.Media.TITLE, MediaStore.Audio.Media.DATA, MediaStore.Audio.Media.DURATION}; final Uri uri = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI; Log.v("MediaStore.Audio.Media.EXTERNAL_CONTENT_URI", "" + uri); final Cursor cursor = cr.query(uri, projection, null, null, null); int n = cursor.getCount(); Log.v("count", "" + n); if (cursor.moveToFirst()) { do { String soundName = cursor .getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.DISPLAY_NAME)); Log.v("soundName", "" + soundName); String title = cursor .getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.TITLE)); Log.v("title", "" + title); String path = cursor.getString(cursor .getColumnIndexOrThrow(MediaStore.Audio.Media.DATA)); Log.v("path", "" + path); Sound browsedSound = new Sound(title, path, false, false, false, false, 0); Log.v("browsedSound", "" + browsedSound); mediaSoundList.add(browsedSound); Log.v("mediaSoundList", "" + mediaSoundList.toString()); } while (cursor.moveToNext()); } return mediaSoundList; } public class BrowserSoundAdapter extends ArrayAdapter<Sound> { public BrowserSoundAdapter(Context context, int textViewResourceId, List<Sound> objects) { super(context, textViewResourceId, objects); } @Override public View getView(final int position, View convertView, ViewGroup parent) { ViewHolder viewHolder; View view = convertView; LayoutInflater inflater = getLayoutInflater(); if (view == null) { view = inflater.inflate(R.layout.list_item_browse, null); viewHolder = new ViewHolder(); viewHolder.soundNameTextView = (TextView) view .findViewById(R.id.browseSoundName); viewHolder.pathTextView = (TextView) view .findViewById(R.id.browseSoundPath); viewHolder.checkToAddSound = (CheckBox) view .findViewById(R.id.browse_checkbox); view.setTag(viewHolder); } else { viewHolder = (ViewHolder) view.getTag(); } final Sound sound = soundsInDevice.get(position); if (sound.isCheckedState()) { viewHolder.checkToAddSound.setChecked(true); } else { viewHolder.checkToAddSound.setChecked(false); } viewHolder.soundNameTextView.setText(sound.getName()); viewHolder.pathTextView.setText(sound.getUri()); viewHolder.checkToAddSound .setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { CheckBox cb = (CheckBox) v .findViewById(R.id.browse_checkbox); boolean checked = cb.isChecked(); boolean newValue = checked; updateView(position, newValue); doneButtonStatus(checkedList.size()); } }); return view; } } // Adapter view holder class private class ViewHolder { private TextView soundNameTextView; private TextView pathTextView; private CheckBox checkToAddSound; } // done button On Click @Override public void onClick(View view) { boolean status = getIntent().getBooleanExtra("FromAddCat", false); Log.v("for add category","enters in if"); if(status){ Log.v("for add category","enters in if1"); currentCategoryName = getIntent().getStringExtra("categoryName"); description = getIntent().getStringExtra("description"); boolean existCategory = SQLiteHelper.getCategoryStatus(currentCategoryName); if (!existCategory) { category = new Category(currentCategoryName, description, false); category.insert(); category.update(); Log.v("for add category","enters in if2"); } }else{ categoryId = getIntent().getLongExtra("categoryId",-1); category = SQLiteHelper.getCategory(categoryId); } for (Sound checkedsound : checkedList) { checkedsound.setCheckedState(false); checkedsound.insert(); category.getSounds().add(checkedsound); final Intent intent = new Intent(this, CategoriesActivity.class); finish(); startActivity(intent); } } @Override public void onItemClick(AdapterView<?> arg0, View view, int position, long arg3) { boolean checked = true; boolean newValue = false; CheckBox cb = (CheckBox) view.findViewById(R.id.browse_checkbox); if (cb.isChecked()) { cb.setChecked(!checked); newValue = !checked; } else { cb.setChecked(checked); newValue = checked; } updateView(position, newValue); doneButtonStatus(checkedList.size()); } private void doneButtonStatus(int size) { if (size > 0) { doneButton.setEnabled(true); doneButton.setBackgroundResource(R.drawable.done_button_drawable); } else { doneButton.setEnabled(false); doneButton.setBackgroundResource(R.drawable.done_btn_disabled); } } private void updateView(int index, boolean newValue) { System.out.println(newValue); Sound sound = soundsInDevice.get(index); if (newValue == true) { checkedList.add(sound); sound.setCheckedState(newValue); } else { checkedList.remove(sound); sound.setCheckedState(newValue); } } }

    Read the article

  • Announcing Entity Framework Code-First (CTP5 release)

    - by ScottGu
    This week the data team released the CTP5 build of the new Entity Framework Code-First library.  EF Code-First enables a pretty sweet code-centric development workflow for working with data.  It enables you to: Develop without ever having to open a designer or define an XML mapping file Define model objects by simply writing “plain old classes” with no base classes required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping I’m a big fan of the EF Code-First approach, and wrote several blog posts about it this summer: Code-First Development with Entity Framework 4 (July 16th) EF Code-First: Custom Database Schema Mapping (July 23rd) Using EF Code-First with an Existing Database (August 3rd) Today’s new CTP5 release delivers several nice improvements over the CTP4 build, and will be the last preview build of Code First before the final release of it.  We will ship the final EF Code First release in the first quarter of next year (Q1 of 2011).  It works with all .NET application types (including both ASP.NET Web Forms and ASP.NET MVC projects). Installing EF Code First You can install and use EF Code First CTP5 using one of two ways: Approach 1) By downloading and running a setup program.  Once installed you can reference the EntityFramework.dll assembly it provides within your projects.      or: Approach 2) By using the NuGet Package Manager within Visual Studio to download and install EF Code First within a project.  To do this, simply bring up the NuGet Package Manager Console within Visual Studio (View->Other Windows->Package Manager Console) and type “Install-Package EFCodeFirst”: Typing “Install-Package EFCodeFirst” within the Package Manager Console will cause NuGet to download the EF Code First package, and add it to your current project: Doing this will automatically add a reference to the EntityFramework.dll assembly to your project:   NuGet enables you to have EF Code First setup and ready to use within seconds.  When the final release of EF Code First ships you’ll also be able to just type “Update-Package EFCodeFirst” to update your existing projects to use the final release. EF Code First Assembly and Namespace The CTP5 release of EF Code First has an updated assembly name, and new .NET namespace: Assembly Name: EntityFramework.dll Namespace: System.Data.Entity These names match what we plan to use for the final release of the library. Nice New CTP5 Improvements The new CTP5 release of EF Code First contains a bunch of nice improvements and refinements. Some of the highlights include: Better support for Existing Databases Built-in Model-Level Validation and DataAnnotation Support Fluent API Improvements Pluggable Conventions Support New Change Tracking API Improved Concurrency Conflict Resolution Raw SQL Query/Command Support The rest of this blog post contains some more details about a few of the above changes. Better Support for Existing Databases EF Code First makes it really easy to create model layers that work against existing databases.  CTP5 includes some refinements that further streamline the developer workflow for this scenario. Below are the steps to use EF Code First to create a model layer for the Northwind sample database: Step 1: Create Model Classes and a DbContext class Below is all of the code necessary to implement a simple model layer using EF Code First that goes against the Northwind database: EF Code First enables you to use “POCO” – Plain Old CLR Objects – to represent entities within a database.  This means that you do not need to derive model classes from a base class, nor implement any interfaces or data persistence attributes on them.  This enables the model classes to be kept clean, easily testable, and “persistence ignorant”.  The Product and Category classes above are examples of POCO model classes. EF Code First enables you to easily connect your POCO model classes to a database by creating a “DbContext” class that exposes public properties that map to the tables within a database.  The Northwind class above illustrates how this can be done.  It is mapping our Product and Category classes to the “Products” and “Categories” tables within the database.  The properties within the Product and Category classes in turn map to the columns within the Products and Categories tables – and each instance of a Product/Category object maps to a row within the tables. The above code is all of the code required to create our model and data access layer!  Previous CTPs of EF Code First required an additional step to work against existing databases (a call to Database.Initializer<Northwind>(null) to tell EF Code First to not create the database) – this step is no longer required with the CTP5 release.  Step 2: Configure the Database Connection String We’ve written all of the code we need to write to define our model layer.  Our last step before we use it will be to setup a connection-string that connects it with our database.  To do this we’ll add a “Northwind” connection-string to our web.config file (or App.Config for client apps) like so:   <connectionStrings>          <add name="Northwind"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|\northwind.mdf;User Instance=true"          providerName="System.Data.SqlClient" />   </connectionStrings> EF “code first” uses a convention where DbContext classes by default look for a connection-string that has the same name as the context class.  Because our DbContext class is called “Northwind” it by default looks for a “Northwind” connection-string to use.  Above our Northwind connection-string is configured to use a local SQL Express database (stored within the \App_Data directory of our project).  You can alternatively point it at a remote SQL Server. Step 3: Using our Northwind Model Layer We can now easily query and update our database using the strongly-typed model layer we just built with EF Code First. The code example below demonstrates how to use LINQ to query for products within a specific product category.  This query returns back a sequence of strongly-typed Product objects that match the search criteria: The code example below demonstrates how we can retrieve a specific Product object, update two of its properties, and then save the changes back to the database: EF Code First handles all of the change-tracking and data persistence work for us, and allows us to focus on our application and business logic as opposed to having to worry about data access plumbing. Built-in Model Validation EF Code First allows you to use any validation approach you want when implementing business rules with your model layer.  This enables a great deal of flexibility and power. Starting with this week’s CTP5 release, EF Code First also now includes built-in support for both the DataAnnotation and IValidatorObject validation support built-into .NET 4.  This enables you to easily implement validation rules on your models, and have these rules automatically be enforced by EF Code First whenever you save your model layer.  It provides a very convenient “out of the box” way to enable validation within your applications. Applying DataAnnotations to our Northwind Model The code example below demonstrates how we could add some declarative validation rules to two of the properties of our “Product” model: We are using the [Required] and [Range] attributes above.  These validation attributes live within the System.ComponentModel.DataAnnotations namespace that is built-into .NET 4, and can be used independently of EF.  The error messages specified on them can either be explicitly defined (like above) – or retrieved from resource files (which makes localizing applications easy). Validation Enforcement on SaveChanges() EF Code-First (starting with CTP5) now automatically applies and enforces DataAnnotation rules when a model object is updated or saved.  You do not need to write any code to enforce this – this support is now enabled by default.  This new support means that the below code – which violates our above rules – will automatically throw an exception when we call the “SaveChanges()” method on our Northwind DbContext: The DbEntityValidationException that is raised when the SaveChanges() method is invoked contains a “EntityValidationErrors” property that you can use to retrieve the list of all validation errors that occurred when the model was trying to save.  This enables you to easily guide the user on how to fix them.  Note that EF Code-First will abort the entire transaction of changes if a validation rule is violated – ensuring that our database is always kept in a valid, consistent state. EF Code First’s validation enforcement works both for the built-in .NET DataAnnotation attributes (like Required, Range, RegularExpression, StringLength, etc), as well as for any custom validation rule you create by sub-classing the System.ComponentModel.DataAnnotations.ValidationAttribute base class. UI Validation Support A lot of our UI frameworks in .NET also provide support for DataAnnotation-based validation rules. For example, ASP.NET MVC, ASP.NET Dynamic Data, and Silverlight (via WCF RIA Services) all provide support for displaying client-side validation UI that honor the DataAnnotation rules applied to model objects. The screen-shot below demonstrates how using the default “Add-View” scaffold template within an ASP.NET MVC 3 application will cause appropriate validation error messages to be displayed if appropriate values are not provided: ASP.NET MVC 3 supports both client-side and server-side enforcement of these validation rules.  The error messages displayed are automatically picked up from the declarative validation attributes – eliminating the need for you to write any custom code to display them. Keeping things DRY The “DRY Principle” stands for “Do Not Repeat Yourself”, and is a best practice that recommends that you avoid duplicating logic/configuration/code in multiple places across your application, and instead specify it only once and have it apply everywhere. EF Code First CTP5 now enables you to apply declarative DataAnnotation validations on your model classes (and specify them only once) and then have the validation logic be enforced (and corresponding error messages displayed) across all applications scenarios – including within controllers, views, client-side scripts, and for any custom code that updates and manipulates model classes. This makes it much easier to build good applications with clean code, and to build applications that can rapidly iterate and evolve. Other EF Code First Improvements New to CTP5 EF Code First CTP5 includes a bunch of other improvements as well.  Below are a few short descriptions of some of them: Fluent API Improvements EF Code First allows you to override an “OnModelCreating()” method on the DbContext class to further refine/override the schema mapping rules used to map model classes to underlying database schema.  CTP5 includes some refinements to the ModelBuilder class that is passed to this method which can make defining mapping rules cleaner and more concise.  The ADO.NET Team blogged some samples of how to do this here. Pluggable Conventions Support EF Code First CTP5 provides new support that allows you to override the “default conventions” that EF Code First honors, and optionally replace them with your own set of conventions. New Change Tracking API EF Code First CTP5 exposes a new set of change tracking information that enables you to access Original, Current & Stored values, and State (e.g. Added, Unchanged, Modified, Deleted).  This support is useful in a variety of scenarios. Improved Concurrency Conflict Resolution EF Code First CTP5 provides better exception messages that allow access to the affected object instance and the ability to resolve conflicts using current, original and database values.  Raw SQL Query/Command Support EF Code First CTP5 now allows raw SQL queries and commands (including SPROCs) to be executed via the SqlQuery and SqlCommand methods exposed off of the DbContext.Database property.  The results of these method calls can be materialized into object instances that can be optionally change-tracked by the DbContext.  This is useful for a variety of advanced scenarios. Full Data Annotations Support EF Code First CTP5 now supports all standard DataAnnotations within .NET, and can use them both to perform validation as well as to automatically create the appropriate database schema when EF Code First is used in a database creation scenario.  Summary EF Code First provides an elegant and powerful way to work with data.  I really like it because it is extremely clean and supports best practices, while also enabling solutions to be implemented very, very rapidly.  The code-only approach of the library means that model layers end up being flexible and easy to customize. This week’s CTP5 release further refines EF Code First and helps ensure that it will be really sweet when it ships early next year.  I recommend using NuGet to install and give it a try today.  I think you’ll be pleasantly surprised by how awesome it is. Hope this helps, Scott

    Read the article

  • Load and Web Performance Testing using Visual Studio Ultimate 2010-Part 3

    - by Tarun Arora
    Welcome back once again, in Part 1 of Load and Web Performance Testing using Visual Studio 2010 I talked about why Performance Testing the application is important, the test tools available in Visual Studio Ultimate 2010 and various test rig topologies, in Part 2 of Load and Web Performance Testing using Visual Studio 2010 I discussed the details of web performance & load tests as well as why it’s important to follow a goal based pattern while performance testing your application. In part 3 I’ll be discussing Test Result Analysis, Test Result Drill through, Test Report Generation, Test Run Comparison, Asp.net Profiler and some closing thoughts. Test Results – I see some creepy worms! In Part 2 we put together a web performance test and a load test, lets run the test to see load test to see how the Web site responds to the load simulation. While the load test is running you will be able to see close to real time analysis in the Load Test Analyser window. You can use the Load Test Analyser to conduct load test analysis in three ways: Monitor a running load test - A condensed set of the performance counter data is maintained in memory. To prevent the results memory requirements from growing unbounded, up to 200 samples for each performance counter are maintained. This includes 100 evenly spaced samples that span the current elapsed time of the run and the most recent 100 samples.         After the load test run is completed - The test controller spools all collected performance counter data to a database while the test is running. Additional data, such as timing details and error details, is loaded into the database when the test completes. The performance data for a completed test is loaded from the database and analysed by the Load Test Analyser. Below you can see a screen shot of the summary view, this provides key results in a format that is compact and easy to read. You can also print the load test summary, this is generated after the test has completed or been stopped.         Analyse the load test results of a previously run load test – We’ll see this in the section where i discuss comparison between two test runs. The performance counters can be plotted on the graphs. You also have the option to highlight a selected part of the test and view details, drill down to the user activity chart where you can hover over to see more details of the test run.   Generate Report => Test Run Comparisons The level of reports you can generate using the Load Test Analyser is astonishing. You have the option to create excel reports and conduct side by side analysis of two test results or to track trend analysis. The tools also allows you to export the graph data either to MS Excel or to a CSV file. You can view the ASP.NET profiler report to conduct further analysis as well. View Data and Diagnostic Attachments opens the Choose Diagnostic Data Adapter Attachment dialog box to select an adapter to analyse the result type. For example, you can select an IntelliTrace adapter, click OK and open the IntelliTrace summary for the test agent that was used in the load test.   Compare results This creates a set of reports that compares the data from two load test results using tables and bar charts. I have taken these screen shots from the MSDN documentation, I would highly recommend exploring the wealth of knowledge available on MSDN. Leaving Thoughts While load testing the application with an excessive load for a longer duration of time, i managed to bring the IIS to its knees by piling up a huge queue of requests waiting to be processed. This clearly means that the IIS had run out of threads as all the threads were busy processing existing request, one easy way of fixing this is by increasing the default number of allocated threads, but this might escalate the problem. The better suggestion is to try and drill down to the actual root cause of the problem. When ever the garbage collection runs it stops processing any pages so all requests that come in during that period are queued up, but realistically the garbage collection completes in fraction of a a second. To understand this better lets look at the .net heap, it is divided into large heap and small heap, anything greater than 85kB in size will be allocated to the Large object heap, the Large object heap is non compacting and remember large objects are expensive to move around, so if you are allocating something in the large object heap, make sure that you really need it! The small object heap on the other hand is divided into generations, so all objects that are supposed to be short-lived are suppose to live in Gen-0 and the long living objects eventually move to Gen-2 as garbage collection goes through.  As you can see in the picture below all < 85 KB size objects are first assigned to Gen-0, when Gen-0 fills up and a new object comes in and finds Gen-0 full, the garbage collection process is started, the process checks for all the dead objects and assigns them as the valid candidate for deletion to free up memory and promotes all the remaining objects in Gen-0 to Gen-1. So in the future when ever you clean up Gen-1 you have to clean up Gen-0 as well. When you fill up Gen – 0 again, all of Gen – 1 dead objects are drenched and rest are moved to Gen-2 and Gen-0 objects are moved to Gen-1 to free up Gen-0, but by this time your Garbage collection process has started to take much more time than it usually takes. Now as I mentioned earlier when garbage collection is being run all page requests that come in during that period are queued up. Does this explain why possibly page requests are getting queued up, apart from this it could also be the case that you are waiting for a long running database process to complete.      Lets explore the heap a bit more… What is really a case of crisis is when the objects are living long enough to make it to Gen-2 and then dying, this is definitely a high cost operation. But sometimes you need objects in memory, for example when you cache data you hold on to the objects because you need to use them right across the user session, which is acceptable. But if you wanted to see what extreme caching can do to your server then write a simple application that chucks in a lot of data in cache, run a load test over it for about 10-15 minutes, forcing a lot of data in memory causing the heap to run out of memory. If you get to such a state where you start running out of memory the IIS as a mode of recovery restarts the worker process. It is great way to free up all your memory in the heap but this would clear the cache. The problem with this is if the customer had 10 items in their shopping basket and that data was stored in the application cache, the user basket will now be empty forcing them either to get frustrated and go to a competitor website or if the customer is really patient, give it another try! How can you address this, well two ways of addressing this; 1. Workaround – A x86 bit processor only allows a maximum of 4GB of RAM, this means the machine effectively has around 3.4 GB of RAM available, the OS needs about 1.5 GB of RAM to run efficiently, the IIS and .net framework also need their share of memory, leaving you a heap of around 800 MB to play with. Because Team builds by default build your application in ‘Compile as any mode’ it means the application is build such that it will run in x86 bit mode if run on a x86 bit processor and run in a x64 bit mode if run on a x64 but processor. The problem with this is not all applications are really x64 bit compatible specially if you are using com objects or external libraries. So, as a quick win if you compiled your application in x86 bit mode by changing the compile as any selection to compile as x86 in the team build, you will be able to run your application on a x64 bit machine in x86 bit mode (WOW – By running Windows on Windows) and what that means is, you could use 8GB+ worth of RAM, if you take away everything else your application will roughly get a heap size of at least 4 GB to play with, which is immense. If you need a heap size of more than 4 GB you have either build a software for NASA or there is something fundamentally wrong in your application. 2. Solution – Now that you have put a workaround in place the IIS will not restart the worker process that regularly, which means you can take a breather and start working to get to the root cause of this memory leak. But this begs a question “How do I Identify possible memory leaks in my application?” Well i won’t say that there is one single tool that can tell you where the memory leak is, but trust me, ‘Performance Profiling’ is a great start point, it definitely gets you started in the right direction, let’s have a look at how. Performance Wizard - Start the Performance Wizard and select Instrumentation, this lets you measure function call counts and timings. Before running the performance session right click the performance session settings and chose properties from the context menu to bring up the Performance session properties page and as shown in the screen shot below, check the check boxes in the group ‘.NET memory profiling collection’ namely ‘Collect .NET object allocation information’ and ‘Also collect the .NET Object lifetime information’.    Now if you fire off the profiling session on your pages you will notice that the results allows you to view ‘Object Lifetime’ which shows you the number of objects that made it to Gen-0, Gen-1, Gen-2, Large heap, etc. Another great feature about the profile is that if your application has > 5% cases where objects die right after making to the Gen-2 storage a threshold alert is generated to alert you. Since you have the option to also view the most expensive methods and by capturing the IntelliTrace data you can drill in to narrow down to the line of code that is the root cause of the problem. Well now that we have seen how crucial memory management is and how easy Visual Studio Ultimate 2010 makes it for us to identify and reproduce the problem with the best of breed tools in the product. Caching One of the main ways to improve performance is Caching. Which basically means you tell the web server that instead of going to the database for each request you keep the data in the webserver and when the user asks for it you serve it from the webserver itself. BUT that can have consequences! Let’s look at some code, trust me caching code is not very intuitive, I define a cache key for almost all searches made through the common search page and cache the results. The approach works fine, first time i get the data from the database and second time data is served from the cache, significant performance improvement, EXCEPT when two users try to do the same operation and run into each other. But it is easy to handle this by adding the lock as you can see in the snippet below. So, as long as a user comes in and finds that the cache is empty, the user locks and starts to get the cache no more concurrency issues. But lets say you are processing 10 requests per second, by the time i have locked the operation to get the results from the database, 9 other users came in and found that the cache key is null so after i have come out and populated the cache they will still go in to get the results again. The application will still be faster because the next set of 10 users and so on would continue to get data from the cache. BUT if we added another null check after locking to build the cache and before actual call to the db then the 9 users who follow me would not make the extra trip to the database at all and that would really increase the performance, but didn’t i say that the code won’t be very intuitive, may be you should leave a comment you don’t want another developer to come in and think what a fresher why is he checking for the cache key null twice !!! The downside of caching is, you are storing the data outside of the database and the data could be wrong because the updates applied to the database would make the data cached at the web server out of sync. So, how do you invalidate the cache? Well if you only had one way of updating the data lets say only one entry point to the data update you can write some logic to say that every time new data is entered set the cache object to null. But this approach will not work as soon as you have several ways of feeding data to the system or your system is scaled out across a farm of web servers. The perfect solution to this is Micro Caching which means you cache the query for a set time duration and invalidate the cache after that set duration. The advantage is every time the user queries for that data with in the time span for which you have cached the results there are no calls made to the database and the data is served right from the server which makes the response immensely quick. Now figuring out the appropriate time span for which you micro cache the query results really depends on the application. Lets say your website gets 10 requests per second, if you retain the cache results for even 1 minute you will have immense performance gains. You would reduce 90% hits to the database for searching. Ever wondered why when you go to e-bookers.com or xpedia.com or yatra.com to book a flight and you click on the book button because the fare seems too exciting and you get an error message telling you that the fare is not valid any more. Yes, exactly => That is a cache failure! These travel sites or price compare engines are not going to hit the database every time you hit the compare button instead the results will be served from the cache, because the query results are micro cached, its a perfect trade-off, by micro caching the results the site gains 100% performance benefits but every once in a while annoys a customer because the fare has expired. But the trade off works in the favour of these sites as they are still able to process up to 30+ page requests per second which means cater to the site traffic by may be losing 1 customer every once in a while to a competitor who is also using a similar caching technique what are the odds that the user will not come back to their site sooner or later? Recap   Resources Below are some Key resource you might like to review. I would highly recommend the documentation, walkthroughs and videos available on MSDN. You can always make use of Fiddler to debug Web Performance Tests. Some community test extensions and plug ins available on Codeplex might also be of interest to you. The Road Ahead Thank you for taking the time out and reading this blog post, you may also want to read Part I and Part II if you haven’t so far. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Questions/Feedback/Suggestions, etc please leave a comment. Next ‘Load Testing in the cloud’, I’ll be working on exploring the possibilities of running Test controller/Agents in the Cloud. See you on the other side! Thank You!   Share this post : CodeProject

    Read the article

  • Silverlight Tree View with Multiple Levels

    - by psheriff
    There are many examples of the Silverlight Tree View that you will find on the web, however, most of them only show you how to go to two levels. What if you have more than two levels? This is where understanding exactly how the Hierarchical Data Templates works is vital. In this blog post, I am going to break down how these templates work so you can really understand what is going on underneath the hood. To start, let’s look at the typical two-level Silverlight Tree View that has been hard coded with the values shown below: <sdk:TreeView>  <sdk:TreeViewItem Header="Managers">    <TextBlock Text="Michael" />    <TextBlock Text="Paul" />  </sdk:TreeViewItem>  <sdk:TreeViewItem Header="Supervisors">    <TextBlock Text="John" />    <TextBlock Text="Tim" />    <TextBlock Text="David" />  </sdk:TreeViewItem></sdk:TreeView> Figure 1 shows you how this tree view looks when you run the Silverlight application. Figure 1: A hard-coded, two level Tree View. Next, let’s create three classes to mimic the hard-coded Tree View shown above. First, you need an Employee class and an EmployeeType class. The Employee class simply has one property called Name. The constructor is created to accept a “name” argument that you can use to set the Name property when you create an Employee object. public class Employee{  public Employee(string name)  {    Name = name;  }   public string Name { get; set; }} Finally you create an EmployeeType class. This class has one property called EmpType and contains a generic List<> collection of Employee objects. The property that holds the collection is called Employees. public class EmployeeType{  public EmployeeType(string empType)  {    EmpType = empType;    Employees = new List<Employee>();  }   public string EmpType { get; set; }  public List<Employee> Employees { get; set; }} Finally we have a collection class called EmployeeTypes created using the generic List<> class. It is in the constructor for this class where you will build the collection of EmployeeTypes and fill it with Employee objects: public class EmployeeTypes : List<EmployeeType>{  public EmployeeTypes()  {    EmployeeType type;            type = new EmployeeType("Manager");    type.Employees.Add(new Employee("Michael"));    type.Employees.Add(new Employee("Paul"));    this.Add(type);     type = new EmployeeType("Project Managers");    type.Employees.Add(new Employee("Tim"));    type.Employees.Add(new Employee("John"));    type.Employees.Add(new Employee("David"));    this.Add(type);  }} You now have a data hierarchy in memory (Figure 2) which is what the Tree View control expects to receive as its data source. Figure 2: A hierachial data structure of Employee Types containing a collection of Employee objects. To connect up this hierarchy of data to your Tree View you create an instance of the EmployeeTypes class in XAML as shown in line 13 of Figure 3. The key assigned to this object is “empTypes”. This key is used as the source of data to the entire Tree View by setting the ItemsSource property as shown in Figure 3, Callout #1. Figure 3: You need to start from the bottom up when laying out your templates for a Tree View. The ItemsSource property of the Tree View control is used as the data source in the Hierarchical Data Template with the key of employeeTypeTemplate. In this case there is only one Hierarchical Data Template, so any data you wish to display within that template comes from the collection of Employee Types. The TextBlock control in line 20 uses the EmpType property of the EmployeeType class. You specify the name of the Hierarchical Data Template to use in the ItemTemplate property of the Tree View (Callout #2). For the second (and last) level of the Tree View control you use a normal <DataTemplate> with the name of employeeTemplate (line 14). The Hierarchical Data Template in lines 17-21 sets its ItemTemplate property to the key name of employeeTemplate (Line 19 connects to Line 14). The source of the data for the <DataTemplate> needs to be a property of the EmployeeTypes collection used in the Hierarchical Data Template. In this case that is the Employees property. In the Employees property there is a “Name” property of the Employee class that is used to display the employee name in the second level of the Tree View (Line 15). What is important here is that your lowest level in your Tree View is expressed in a <DataTemplate> and should be listed first in your Resources section. The next level up in your Tree View should be a <HierarchicalDataTemplate> which has its ItemTemplate property set to the key name of the <DataTemplate> and the ItemsSource property set to the data you wish to display in the <DataTemplate>. The Tree View control should have its ItemsSource property set to the data you wish to display in the <HierarchicalDataTemplate> and its ItemTemplate property set to the key name of the <HierarchicalDataTemplate> object. It is in this way that you get the Tree View to display all levels of your hierarchical data structure. Three Levels in a Tree View Now let’s expand upon this concept and use three levels in our Tree View (Figure 4). This Tree View shows that you now have EmployeeTypes at the top of the tree, followed by a small set of employees that themselves manage employees. This means that the EmployeeType class has a collection of Employee objects. Each Employee class has a collection of Employee objects as well. Figure 4: When using 3 levels in your TreeView you will have 2 Hierarchical Data Templates and 1 Data Template. The EmployeeType class has not changed at all from our previous example. However, the Employee class now has one additional property as shown below: public class Employee{  public Employee(string name)  {    Name = name;    ManagedEmployees = new List<Employee>();  }   public string Name { get; set; }  public List<Employee> ManagedEmployees { get; set; }} The next thing that changes in our code is the EmployeeTypes class. The constructor now needs additional code to create a list of managed employees. Below is the new code. public class EmployeeTypes : List<EmployeeType>{  public EmployeeTypes()  {    EmployeeType type;    Employee emp;    Employee managed;     type = new EmployeeType("Manager");    emp = new Employee("Michael");    managed = new Employee("John");    emp.ManagedEmployees.Add(managed);    managed = new Employee("Tim");    emp.ManagedEmployees.Add(managed);    type.Employees.Add(emp);     emp = new Employee("Paul");    managed = new Employee("Michael");    emp.ManagedEmployees.Add(managed);    managed = new Employee("Sara");    emp.ManagedEmployees.Add(managed);    type.Employees.Add(emp);    this.Add(type);     type = new EmployeeType("Project Managers");    type.Employees.Add(new Employee("Tim"));    type.Employees.Add(new Employee("John"));    type.Employees.Add(new Employee("David"));    this.Add(type);  }} Now that you have all of the data built in your classes, you are now ready to hook up this three-level structure to your Tree View. Figure 5 shows the complete XAML needed to hook up your three-level Tree View. You can see in the XAML that there are now two Hierarchical Data Templates and one Data Template. Again you list the Data Template first since that is the lowest level in your Tree View. The next Hierarchical Data Template listed is the next level up from the lowest level, and finally you have a Hierarchical Data Template for the first level in your tree. You need to work your way from the bottom up when creating your Tree View hierarchy. XAML is processed from the top down, so if you attempt to reference a XAML key name that is below where you are referencing it from, you will get a runtime error. Figure 5: For three levels in a Tree View you will need two Hierarchical Data Templates and one Data Template. Each Hierarchical Data Template uses the previous template as its ItemTemplate. The ItemsSource of each Hierarchical Data Template is used to feed the data to the previous template. This is probably the most confusing part about working with the Tree View control. You are expecting the content of the current Hierarchical Data Template to use the properties set in the ItemsSource property of that template. But you need to look to the template lower down in the XAML to see the source of the data as shown in Figure 6. Figure 6: The properties you use within the Content of a template come from the ItemsSource of the next template in the resources section. Summary Understanding how to put together your hierarchy in a Tree View is simple once you understand that you need to work from the bottom up. Start with the bottom node in your Tree View and determine what that will look like and where the data will come from. You then build the next Hierarchical Data Template to feed the data to the previous template you created. You keep doing this for each level in your Tree View until you get to the last level. The data for that last Hierarchical Data Template comes from the ItemsSource in the Tree View itself. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “Silverlight TreeView with Multiple Levels” from the drop down list.

    Read the article

  • Using HTML 5 SessionState to save rendered Page Content

    - by Rick Strahl
    HTML 5 SessionState and LocalStorage are very useful and super easy to use to manage client side state. For building rich client side or SPA style applications it's a vital feature to be able to cache user data as well as HTML content in order to swap pages in and out of the browser's DOM. What might not be so obvious is that you can also use the sessionState and localStorage objects even in classic server rendered HTML applications to provide caching features between pages. These APIs have been around for a long time and are supported by most relatively modern browsers and even all the way back to IE8, so you can use them safely in your Web applications. SessionState and LocalStorage are easy The APIs that make up sessionState and localStorage are very simple. Both object feature the same API interface which  is a simple, string based key value store that has getItem, setItem, removeitem, clear and  key methods. The objects are also pseudo array objects and so can be iterated like an array with  a length property and you have array indexers to set and get values with. Basic usage  for storing and retrieval looks like this (using sessionStorage, but the syntax is the same for localStorage - just switch the objects):// set var lastAccess = new Date().getTime(); if (sessionStorage) sessionStorage.setItem("myapp_time", lastAccess.toString()); // retrieve in another page or on a refresh var time = null; if (sessionStorage) time = sessionStorage.getItem("myapp_time"); if (time) time = new Date(time * 1); else time = new Date(); sessionState stores data that is browser session specific and that has a liftetime of the active browser session or window. Shut down the browser or tab and the storage goes away. localStorage uses the same API interface, but the lifetime of the data is permanently stored in the browsers storage area until deleted via code or by clearing out browser cookies (not the cache). Both sessionStorage and localStorage space is limited. The spec is ambiguous about this - supposedly sessionStorage should allow for unlimited size, but it appears that most WebKit browsers support only 2.5mb for either object. This means you have to be careful what you store especially since other applications might be running on the same domain and also use the storage mechanisms. That said 2.5mb worth of character data is quite a bit and would go a long way. The easiest way to get a feel for how sessionState and localStorage work is to look at a simple example. You can go check out the following example online in Plunker: http://plnkr.co/edit/0ICotzkoPjHaWa70GlRZ?p=preview which looks like this: Plunker is an online HTML/JavaScript editor that lets you write and run Javascript code and similar to JsFiddle, but a bit cleaner to work in IMHO (thanks to John Papa for turning me on to it). The sample has two text boxes with counts that update session/local storage every time you click the related button. The counts are 'cached' in Session and Local storage. The point of these examples is that both counters survive full page reloads, and the LocalStorage counter survives a complete browser shutdown and restart. Go ahead and try it out by clicking the Reload button after updating both counters and then shutting down the browser completely and going back to the same URL (with the same browser). What you should see is that reloads leave both counters intact at the counted values, while a browser restart will leave only the local storage counter intact. The code to deal with the SessionStorage (and LocalStorage not shown here) in the example is isolated into a couple of wrapper methods to simplify the code: function getSessionCount() { var count = 0; if (sessionStorage) { var count = sessionStorage.getItem("ss_count"); count = !count ? 0 : count * 1; } $("#txtSession").val(count); return count; } function setSessionCount(count) { if (sessionStorage) sessionStorage.setItem("ss_count", count.toString()); } These two functions essentially load and store a session counter value. The two key methods used here are: sessionStorage.getItem(key); sessionStorage.setItem(key,stringVal); Note that the value given to setItem and return by getItem has to be a string. If you pass another type you get an error. Don't let that limit you though - you can easily enough store JSON data in a variable so it's quite possible to pass complex objects and store them into a single sessionStorage value:var user = { name: "Rick", id="ricks", level=8 } sessionStorage.setItem("app_user",JSON.stringify(user)); to retrieve it:var user = sessionStorage.getItem("app_user"); if (user) user = JSON.parse(user); Simple! If you're using the Chrome Developer Tools (F12) you can also check out the session and local storage state on the Resource tab:   You can also use this tool to refresh or remove entries from storage. What we just looked at is a purely client side implementation where a couple of counters are stored. For rich client centric AJAX applications sessionStorage and localStorage provide a very nice and simple API to store application state while the application is running. But you can also use these storage mechanisms to manage server centric HTML applications when you combine server rendering with some JavaScript to perform client side data caching. You can both store some state information and data on the client (ie. store a JSON object and carry it forth between server rendered HTML requests) or you can use it for good old HTTP based caching where some rendered HTML is saved and then restored later. Let's look at the latter with a real life example. Why do I need Client-side Page Caching for Server Rendered HTML? I don't know about you, but in a lot of my existing server driven applications I have lists that display a fair amount of data. Typically these lists contain links to then drill down into more specific data either for viewing or editing. You can then click on a link and go off to a detail page that provides more concise content. So far so good. But now you're done with the detail page and need to get back to the list, so you click on a 'bread crumbs trail' or an application level 'back to list' button and… …you end up back at the top of the list - the scroll position, the current selection in some cases even filters conditions - all gone with the wind. You've left behind the state of the list and are starting from scratch in your browsing of the list from the top. Not cool! Sound familiar? This a pretty common scenario with server rendered HTML content where it's so common to display lists to drill into, only to lose state in the process of returning back to the original list. Look at just about any traditional forums application, or even StackOverFlow to see what I mean here. Scroll down a bit to look at a post or entry, drill in then use the bread crumbs or tab to go back… In some cases returning to the top of a list is not a big deal. On StackOverFlow that sort of works because content is turning around so quickly you probably want to actually look at the top posts. Not always though - if you're browsing through a list of search topics you're interested in and drill in there's no way back to that position. Essentially anytime you're actively browsing the items in the list, that's when state becomes important and if it's not handled the user experience can be really disrupting. Content Caching If you're building client centric SPA style applications this is a fairly easy to solve problem - you tend to render the list once and then update the page content to overlay the detail content, only hiding the list temporarily until it's used again later. It's relatively easy to accomplish this simply by hiding content on the page and later making it visible again. But if you use server rendered content, hanging on to all the detail like filters, selections and scroll position is not quite as easy. Or is it??? This is where sessionStorage comes in handy. What if we just save the rendered content of a previous page, and then restore it when we return to this page based on a special flag that tells us to use the cached version? Let's see how we can do this. A real World Use Case Recently my local ISP asked me to help out with updating an ancient classifieds application. They had a very busy, local classifieds app that was originally an ASP classic application. The old app was - wait for it: frames based - and even though I lobbied against it, the decision was made to keep the frames based layout to allow rapid browsing of the hundreds of posts that are made on a daily basis. The primary reason they wanted this was precisely for the ability to quickly browse content item by item. While I personally hate working with Frames, I have to admit that the UI actually works well with the frames layout as long as you're running on a large desktop screen. You can check out the frames based desktop site here: http://classifieds.gorge.net/ However when I rebuilt the app I also added a secondary view that doesn't use frames. The main reason for this of course was for mobile displays which work horribly with frames. So there's a somewhat mobile friendly interface to the interface, which ditches the frames and uses some responsive design tweaking for mobile capable operation: http://classifeds.gorge.net/mobile  (or browse the base url with your browser width under 800px)   Here's what the mobile, non-frames view looks like:   As you can see this means that the list of classifieds posts now is a list and there's a separate page for drilling down into the item. And of course… originally we ran into that usability issue I mentioned earlier where the browse, view detail, go back to the list cycle resulted in lost list state. Originally in mobile mode you scrolled through the list, found an item to look at and drilled in to display the item detail. Then you clicked back to the list and BAM - you've lost your place. Because there are so many items added on a daily basis the full list is never fully loaded, but rather there's a "Load Additional Listings"  entry at the button. Not only did we originally lose our place when coming back to the list, but any 'additionally loaded' items are no longer there because the list was now rendering  as if it was the first page hit. The additional listings, and any filters, the selection of an item all were lost. Major Suckage! Using Client SessionStorage to cache Server Rendered Content To work around this problem I decided to cache the rendered page content from the list in SessionStorage. Anytime the list renders or is updated with Load Additional Listings, the page HTML is cached and stored in Session Storage. Any back links from the detail page or the login or write entry forms then point back to the list page with a back=true query string parameter. If the server side sees this parameter it doesn't render the part of the page that is cached. Instead the client side code retrieves the data from the sessionState cache and simply inserts it into the page. It sounds pretty simple, and the overall the process is really easy, but there are a few gotchas that I'll discuss in a minute. But first let's look at the implementation. Let's start with the server side here because that'll give a quick idea of the doc structure. As I mentioned the server renders data from an ASP.NET MVC view. On the list page when returning to the list page from the display page (or a host of other pages) looks like this: https://classifieds.gorge.net/list?back=True The query string value is a flag, that indicates whether the server should render the HTML. Here's what the top level MVC Razor view for the list page looks like:@model MessageListViewModel @{ ViewBag.Title = "Classified Listing"; bool isBack = !string.IsNullOrEmpty(Request.QueryString["back"]); } <form method="post" action="@Url.Action("list")"> <div id="SizingContainer"> @if (!isBack) { @Html.Partial("List_CommandBar_Partial", Model) <div id="PostItemContainer" class="scrollbox" xstyle="-webkit-overflow-scrolling: touch;"> @Html.Partial("List_Items_Partial", Model) @if (Model.RequireLoadEntry) { <div class="postitem loadpostitems" style="padding: 15px;"> <div id="LoadProgress" class="smallprogressright"></div> <div class="control-progress"> Load additional listings... </div> </div> } </div> } </div> </form> As you can see the query string triggers a conditional block that if set is simply not rendered. The content inside of #SizingContainer basically holds  the entire page's HTML sans the headers and scripts, but including the filter options and menu at the top. In this case this makes good sense - in other situations the fact that the menu or filter options might be dynamically updated might make you only cache the list rather than essentially the entire page. In this particular instance all of the content works and produces the proper result as both the list along with any filter conditions in the form inputs are restored. Ok, let's move on to the client. On the client there are two page level functions that deal with saving and restoring state. Like the counter example I showed earlier, I like to wrap the logic to save and restore values from sessionState into a separate function because they are almost always used in several places.page.saveData = function(id) { if (!sessionStorage) return; var data = { id: id, scroll: $("#PostItemContainer").scrollTop(), html: $("#SizingContainer").html() }; sessionStorage.setItem("list_html",JSON.stringify(data)); }; page.restoreData = function() { if (!sessionStorage) return; var data = sessionStorage.getItem("list_html"); if (!data) return null; return JSON.parse(data); }; The data that is saved is an object which contains an ID which is the selected element when the user clicks and a scroll position. These two values are used to reset the scroll position when the data is used from the cache. Finally the html from the #SizingContainer element is stored, which makes for the bulk of the document's HTML. In this application the HTML captured could be a substantial bit of data. If you recall, I mentioned that the server side code renders a small chunk of data initially and then gets more data if the user reads through the first 50 or so items. The rest of the items retrieved can be rather sizable. Other than the JSON deserialization that's Ok. Since I'm using SessionStorage the storage space has no immediate limits. Next is the core logic to handle saving and restoring the page state. At first though this would seem pretty simple, and in some cases it might be, but as the following code demonstrates there are a few gotchas to watch out for. Here's the relevant code I use to save and restore:$( function() { … var isBack = getUrlEncodedKey("back", location.href); if (isBack) { // remove the back key from URL setUrlEncodedKey("back", "", location.href); var data = page.restoreData(); // restore from sessionState if (!data) { // no data - force redisplay of the server side default list window.location = "list"; return; } $("#SizingContainer").html(data.html); var el = $(".postitem[data-id=" + data.id + "]"); $(".postitem").removeClass("highlight"); el.addClass("highlight"); $("#PostItemContainer").scrollTop(data.scroll); setTimeout(function() { el.removeClass("highlight"); }, 2500); } else if (window.noFrames) page.saveData(null); // save when page loads $("#SizingContainer").on("click", ".postitem", function() { var id = $(this).attr("data-id"); if (!id) return true; if (window.noFrames) page.saveData(id); var contentFrame = window.parent.frames["Content"]; if (contentFrame) contentFrame.location.href = "show/" + id; else window.location.href = "show/" + id; return false; }); … The code starts out by checking for the back query string flag which triggers restoring from the client cache. If cached the cached data structure is read from sessionStorage. It's important here to check if data was returned. If the user had back=true on the querystring but there is no cached data, he likely bookmarked this page or otherwise shut down the browser and came back to this URL. In that case the server didn't render any detail and we have no cached data, so all we can do is redirect to the original default list view using window.location. If we continued the page would render no data - so make sure to always check the cache retrieval result. Always! If there is data the it's loaded and the data.html data is restored back into the document by simply injecting the HTML back into the document's #SizingContainer element:$("#SizingContainer").html(data.html); It's that simple and it's quite quick even with a fully loaded list of additional items and on a phone. The actual HTML data is stored to the cache on every page load initially and then again when the user clicks on an element to navigate to a particular listing. The former ensures that the client cache always has something in it, and the latter updates with additional information for the selected element. For the click handling I use a data-id attribute on the list item (.postitem) in the list and retrieve the id from that. That id is then used to navigate to the actual entry as well as storing that Id value in the saved cached data. The id is used to reset the selection by searching for the data-id value in the restored elements. The overall process of this save/restore process is pretty straight forward and it doesn't require a bunch of code, yet it yields a huge improvement in the usability of the site on mobile devices (or anybody who uses the non-frames view). Some things to watch out for As easy as it conceptually seems to simply store and retrieve cached content, you have to be quite aware what type of content you are caching. The code above is all that's specific to cache/restore cycle and it works, but it took a few tweaks to the rest of the script code and server code to make it all work. There were a few gotchas that weren't immediately obvious. Here are a few things to pay attention to: Event Handling Logic Timing of manipulating DOM events Inline Script Code Bookmarking to the Cache Url when no cache exists Do you have inline script code in your HTML? That script code isn't going to run if you restore from cache and simply assign or it may not run at the time you think it would normally in the DOM rendering cycle. JavaScript Event Hookups The biggest issue I ran into with this approach almost immediately is that originally I had various static event handlers hooked up to various UI elements that are now cached. If you have an event handler like:$("#btnSearch").click( function() {…}); that works fine when the page loads with server rendered HTML, but that code breaks when you now load the HTML from cache. Why? Because the elements you're trying to hook those events to may not actually be there - yet. Luckily there's an easy workaround for this by using deferred events. With jQuery you can use the .on() event handler instead:$("#SelectionContainer").on("click","#btnSearch", function() {…}); which monitors a parent element for the events and checks for the inner selector elements to handle events on. This effectively defers to runtime event binding, so as more items are added to the document bindings still work. For any cached content use deferred events. Timing of manipulating DOM Elements Along the same lines make sure that your DOM manipulation code follows the code that loads the cached content into the page so that you don't manipulate DOM elements that don't exist just yet. Ideally you'll want to check for the condition to restore cached content towards the top of your script code, but that can be tricky if you have components or other logic that might not all run in a straight line. Inline Script Code Here's another small problem I ran into: I use a DateTime Picker widget I built a while back that relies on the jQuery date time picker. I also created a helper function that allows keyboard date navigation into it that uses JavaScript logic. Because MVC's limited 'object model' the only way to embed widget content into the page is through inline script. This code broken when I inserted the cached HTML into the page because the script code was not available when the component actually got injected into the page. As the last bullet - it's a matter of timing. There's no good work around for this - in my case I pulled out the jQuery date picker and relied on native <input type="date" /> logic instead - a better choice these days anyway, especially since this view is meant to be primarily to serve mobile devices which actually support date input through the browser (unlike desktop browsers of which only WebKit seems to support it). Bookmarking Cached Urls When you cache HTML content you have to make a decision whether you cache on the client and also not render that same content on the server. In the Classifieds app I didn't render server side content so if the user comes to the page with back=True and there is no cached content I have to a have a Plan B. Typically this happens when somebody ends up bookmarking the back URL. The easiest and safest solution for this scenario is to ALWAYS check the cache result to make sure it exists and if not have a safe URL to go back to - in this case to the plain uncached list URL which amounts to effectively redirecting. This seems really obvious in hindsight, but it's easy to overlook and not see a problem until much later, when it's not obvious at all why the page is not rendering anything. Don't use <body> to replace Content Since we're practically replacing all the HTML in the page it may seem tempting to simply replace the HTML content of the <body> tag. Don't. The body tag usually contains key things that should stay in the page and be there when it loads. Specifically script tags and elements and possibly other embedded content. It's best to create a top level DOM element specifically as a placeholder container for your cached content and wrap just around the actual content you want to replace. In the app above the #SizingContainer is that container. Other Approaches The approach I've used for this application is kind of specific to the existing server rendered application we're running and so it's just one approach you can take with caching. However for server rendered content caching this is a pattern I've used in a few apps to retrofit some client caching into list displays. In this application I took the path of least resistance to the existing server rendering logic. Here are a few other ways that come to mind: Using Partial HTML Rendering via AJAXInstead of rendering the page initially on the server, the page would load empty and the client would render the UI by retrieving the respective HTML and embedding it into the page from a Partial View. This effectively makes the initial rendering and the cached rendering logic identical and removes the server having to decide whether this request needs to be rendered or not (ie. not checking for a back=true switch). All the logic related to caching is made on the client in this case. Using JSON Data and Client RenderingThe hardcore client option is to do the whole UI SPA style and pull data from the server and then use client rendering or databinding to pull the data down and render using templates or client side databinding with knockout/angular et al. As with the Partial Rendering approach the advantage is that there's no difference in the logic between pulling the data from cache or rendering from scratch other than the initial check for the cache request. Of course if the app is a  full on SPA app, then caching may not be required even - the list could just stay in memory and be hidden and reactivated. I'm sure there are a number of other ways this can be handled as well especially using  AJAX. AJAX rendering might simplify the logic, but it also complicates search engine optimization since there's no content loaded initially. So there are always tradeoffs and it's important to look at all angles before deciding on any sort of caching solution in general. State of the Session SessionState and LocalStorage are easy to use in client code and can be integrated even with server centric applications to provide nice caching features of content and data. In this post I've shown a very specific scenario of storing HTML content for the purpose of remembering list view data and state and making the browsing experience for lists a bit more friendly, especially if there's dynamically loaded content involved. If you haven't played with sessionStorage or localStorage I encourage you to give it a try. There's a lot of cool stuff that you can do with this beyond the specific scenario I've covered here… Resources Overview of localStorage (also applies to sessionStorage) Web Storage Compatibility Modernizr Test Suite© Rick Strahl, West Wind Technologies, 2005-2013Posted in JavaScript  HTML5  ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • Code Contracts: Unit testing contracted code

    - by DigiMortal
    Code contracts and unit tests are not replacements for each other. They both have different purpose and different nature. It does not matter if you are using code contracts or not – you still have to write tests for your code. In this posting I will show you how to unit test code with contracts. In my previous posting about code contracts I showed how to avoid ContractExceptions that are defined in code contracts runtime and that are not accessible for us in design time. This was one step further to make my randomizer testable. In this posting I will complete the mission. Problems with current code This is my current code. public class Randomizer {     public static int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(             min < max,             "Min must be less than max"         );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           var rnd = new Random();         return rnd.Next(min, max);     } } As you can see this code has some problems: randomizer class is static and cannot be instantiated. We cannot move this class between components if we need to, GetRandomFromRangeContracted() is not fully testable because we cannot currently affect random number generator output and therefore we cannot test post-contract. Now let’s solve these problems. Making randomizer testable As a first thing I made Randomizer to be class that must be instantiated. This is simple thing to do. Now let’s solve the problem with Random class. To make Randomizer testable I define IRandomGenerator interface and RandomGenerator class. The public constructor of Randomizer accepts IRandomGenerator as argument. public interface IRandomGenerator {     int Next(int min, int max); }   public class RandomGenerator : IRandomGenerator {     private Random _random = new Random();       public int Next(int min, int max)     {         return _random.Next(min, max);     } } And here is our Randomizer after total make-over. public class Randomizer {     private IRandomGenerator _generator;       private Randomizer()     {         _generator = new RandomGenerator();     }       public Randomizer(IRandomGenerator generator)     {         _generator = generator;     }       public int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(             min < max,             "Min must be less than max"         );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           return _generator.Next(min, max);     } } It seems to be inconvenient to instantiate Randomizer now but you can always use DI/IoC containers and break compiled dependencies between the components of your system. Writing tests for randomizer IRandomGenerator solved problem with testing post-condition. Now it is time to write tests for Randomizer class. Writing tests for contracted code is not easy. The main problem is still ContractException that we are not able to access. Still it is the main exception we get as soon as contracts fail. Although pre-conditions are able to throw exceptions with type we want we cannot do much when post-conditions will fail. We have to use Contract.ContractFailed event and this event is called for every contract failure. This way we find ourselves in situation where supporting well input interface makes it impossible to support output interface well and vice versa. ContractFailed is nasty hack and it works pretty weird way. Although documentation sais that ContractFailed is good choice for testing contracts it is still pretty painful. As a last chance I got tests working almost normally when I wrapped them up. Can you remember similar solution from the times of Visual Studio 2008 unit tests? Cannot understand how Microsoft was able to mess up testing again. [TestClass] public class RandomizerTest {     private Mock<IRandomGenerator> _randomMock;     private Randomizer _randomizer;     private string _lastContractError;       public TestContext TestContext { get; set; }       public RandomizerTest()     {         Contract.ContractFailed += (sender, e) =>         {             e.SetHandled();             e.SetUnwind();               throw new Exception(e.FailureKind + ": " + e.Message);         };     }       [TestInitialize()]     public void RandomizerTestInitialize()     {         _randomMock = new Mock<IRandomGenerator>();         _randomizer = new Randomizer(_randomMock.Object);         _lastContractError = string.Empty;     }       #region InputInterfaceTests     [TestMethod]     [ExpectedException(typeof(Exception))]     public void GetRandomFromRangeContracted_should_throw_exception_when_min_is_not_less_than_max()     {         try         {             _randomizer.GetRandomFromRangeContracted(100, 10);         }         catch (Exception ex)         {             throw new Exception(string.Empty, ex);         }     }       [TestMethod]     [ExpectedException(typeof(Exception))]     public void GetRandomFromRangeContracted_should_throw_exception_when_min_is_equal_to_max()     {         try         {             _randomizer.GetRandomFromRangeContracted(10, 10);         }         catch (Exception ex)         {             throw new Exception(string.Empty, ex);         }     }       [TestMethod]     public void GetRandomFromRangeContracted_should_work_when_min_is_less_than_max()     {         int minValue = 10;         int maxValue = 100;         int returnValue = 50;           _randomMock.Setup(r => r.Next(minValue, maxValue))             .Returns(returnValue)             .Verifiable();           var result = _randomizer.GetRandomFromRangeContracted(minValue, maxValue);           _randomMock.Verify();         Assert.AreEqual<int>(returnValue, result);     }     #endregion       #region OutputInterfaceTests     [TestMethod]     [ExpectedException(typeof(Exception))]     public void GetRandomFromRangeContracted_should_throw_exception_when_return_value_is_less_than_min()     {         int minValue = 10;         int maxValue = 100;         int returnValue = 7;           _randomMock.Setup(r => r.Next(10, 100))             .Returns(returnValue)             .Verifiable();           try         {             _randomizer.GetRandomFromRangeContracted(minValue, maxValue);         }         catch (Exception ex)         {             throw new Exception(string.Empty, ex);         }           _randomMock.Verify();     }       [TestMethod]     [ExpectedException(typeof(Exception))]     public void GetRandomFromRangeContracted_should_throw_exception_when_return_value_is_more_than_max()     {         int minValue = 10;         int maxValue = 100;         int returnValue = 102;           _randomMock.Setup(r => r.Next(10, 100))             .Returns(returnValue)             .Verifiable();           try         {             _randomizer.GetRandomFromRangeContracted(minValue, maxValue);         }         catch (Exception ex)         {             throw new Exception(string.Empty, ex);         }           _randomMock.Verify();     }     #endregion        } Although these tests are pretty awful and contain hacks we are at least able now to make sure that our code works as expected. Here is the test list after running these tests. Conclusion Code contracts are very new stuff in Visual Studio world and as young technology it has some problems – like all other new bits and bytes in the world. As you saw then making our contracted code testable is easy only to the point when pre-conditions are considered. When we start dealing with post-conditions we will end up with hacked tests. I hope that future versions of code contracts will solve error handling issues the way that testing of contracted code will be easier than it is right now.

    Read the article

  • Synchronize Data between a Silverlight ListBox and a User Control

    - by psheriff
    One of the great things about XAML is the powerful data-binding capabilities. If you load up a list box with a collection of objects, you can display detail data about each object without writing any C# or VB.NET code. Take a look at Figure 1 that shows a collection of Product objects in a list box. When you click on a list box you bind the current Product object selected in the list box to a set of controls in a user control with just a very simple Binding statement in XAML.  Figure 1: Synchronizing a ListBox to a User Control is easy with Data Binding Product and Products Classes To illustrate this data binding feature I am going to just create some local data instead of using a WCF service. The code below shows a Product class that has three properties, namely, ProductId, ProductName and Price. This class also has a constructor that takes 3 parameters and allows us to set the 3 properties in an instance of our Product class. C#public class Product{  public Product(int productId, string productName, decimal price)  {    ProductId = productId;    ProductName = productName;    Price = price;  }   public int ProductId { get; set; }  public string ProductName { get; set; }  public decimal Price { get; set; }} VBPublic Class Product  Public Sub New(ByVal _productId As Integer, _                 ByVal _productName As String, _                 ByVal _price As Decimal)    ProductId = _productId    ProductName = _productName    Price = _price  End Sub   Private mProductId As Integer  Private mProductName As String  Private mPrice As Decimal   Public Property ProductId() As Integer    Get      Return mProductId    End Get    Set(ByVal value As Integer)      mProductId = value    End Set  End Property   Public Property ProductName() As String    Get      Return mProductName    End Get    Set(ByVal value As String)      mProductName = value    End Set  End Property   Public Property Price() As Decimal    Get      Return mPrice    End Get    Set(ByVal value As Decimal)      mPrice = value    End Set  End PropertyEnd Class To fill up a list box you need a collection class of Product objects. The code below creates a generic collection class of Product objects. In the constructor of the Products class I have hard-coded five product objects and added them to the collection. In a real-world application you would get your data through a call to service to fill the list box, but for simplicity and just to illustrate the data binding, I am going to just hard code the data. C#public class Products : List<Product>{  public Products()  {    this.Add(new Product(1, "Microsoft VS.NET 2008", 1000));    this.Add(new Product(2, "Microsoft VS.NET 2010", 1000));    this.Add(new Product(3, "Microsoft Silverlight 4", 1000));    this.Add(new Product(4, "Fundamentals of N-Tier eBook", 20));    this.Add(new Product(5, "ASP.NET Security eBook", 20));  }} VBPublic Class Products  Inherits List(Of Product)   Public Sub New()    Me.Add(New Product(1, "Microsoft VS.NET 2008", 1000))    Me.Add(New Product(2, "Microsoft VS.NET 2010", 1000))    Me.Add(New Product(3, "Microsoft Silverlight 4", 1000))    Me.Add(New Product(4, "Fundamentals of N-Tier eBook", 20))    Me.Add(New Product(5, "ASP.NET Security eBook", 20))  End SubEnd Class The Product Detail User Control Below is a user control (named ucProduct) that is used to display the product detail information seen in the bottom portion of Figure 1. This is very basic XAML that just creates a text block and a text box control for each of the three properties in the Product class. Notice the {Binding Path=[PropertyName]} on each of the text box controls. This means that if the DataContext property of this user control is set to an instance of a Product class, then the data in the properties of that Product object will be displayed in each of the text boxes. <UserControl x:Class="SL_SyncListBoxAndUserControl_CS.ucProduct"  xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  HorizontalAlignment="Left"  VerticalAlignment="Top">  <Grid Margin="4">    <Grid.RowDefinitions>      <RowDefinition Height="Auto" />      <RowDefinition Height="Auto" />      <RowDefinition Height="Auto" />    </Grid.RowDefinitions>    <Grid.ColumnDefinitions>      <ColumnDefinition MinWidth="120" />      <ColumnDefinition />    </Grid.ColumnDefinitions>    <TextBlock Grid.Row="0"               Grid.Column="0"               Text="Product Id" />    <TextBox Grid.Row="0"             Grid.Column="1"             Text="{Binding Path=ProductId}" />    <TextBlock Grid.Row="1"               Grid.Column="0"               Text="Product Name" />    <TextBox Grid.Row="1"             Grid.Column="1"             Text="{Binding Path=ProductName}" />    <TextBlock Grid.Row="2"               Grid.Column="0"               Text="Price" />    <TextBox Grid.Row="2"             Grid.Column="1"             Text="{Binding Path=Price}" />  </Grid></UserControl> Synchronize ListBox with User Control You are now ready to fill the list box with the collection class of Product objects and then bind the SelectedItem of the list box to the Product detail user control. The XAML below is the complete code for Figure 1. <UserControl x:Class="SL_SyncListBoxAndUserControl_CS.MainPage"  xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  xmlns:src="clr-namespace:SL_SyncListBoxAndUserControl_CS"  VerticalAlignment="Top"  HorizontalAlignment="Left">  <UserControl.Resources>    <src:Products x:Key="productCollection" />  </UserControl.Resources>  <Grid x:Name="LayoutRoot"        Margin="4"        Background="White">    <Grid.RowDefinitions>      <RowDefinition Height="Auto" />      <RowDefinition Height="*" />    </Grid.RowDefinitions>    <ListBox x:Name="lstData"             Grid.Row="0"             BorderBrush="Black"             BorderThickness="1"             ItemsSource="{Binding                   Source={StaticResource productCollection}}"             DisplayMemberPath="ProductName" />    <src:ucProduct x:Name="prodDetail"                   Grid.Row="1"                   DataContext="{Binding ElementName=lstData,                                          Path=SelectedItem}" />  </Grid></UserControl> The first step to making this happen is to reference the Silverlight project (SL_SyncListBoxAndUserControl_CS) where the Product and Products classes are located. I added this namespace and assigned it a namespace prefix of “src” as shown in the line below: xmlns:src="clr-namespace:SL_SyncListBoxAndUserControl_CS" Next, to use the data from an instance of the Products collection, you create a UserControl.Resources section in the XAML and add a tag that creates an instance of the Products class and assigns it a key of “productCollection”.   <UserControl.Resources>    <src:Products x:Key="productCollection" />  </UserControl.Resources> Next, you bind the list box to this productCollection object using the ItemsSource property. You bind the ItemsSource of the list box to the static resource named productCollection. You can then set the DisplayMemberPath attribute of the list box to any property of the Product class that you want. In the XAML below I used the ProductName property. <ListBox x:Name="lstData"         ItemsSource="{Binding             Source={StaticResource productCollection}}"         DisplayMemberPath="ProductName" /> You now need to create an instance of the ucProduct user contol below the list box. You do this by once again referencing the “src” namespace and typing in the name of the user control. You then set the DataContext property on this user control to a binding. The binding uses the ElementName attribute to bind to the list box name, in this case “lstData”. The Path of the data is SelectedItem. These two attributes together tell Silverlight to bind the DataContext to the selected item of the list box. That selected item is a Product object. So, once this is bound, the bindings on each text box in the user control are updated and display the current product information. <src:ucProduct x:Name="prodDetail"               DataContext="{Binding ElementName=lstData,                                      Path=SelectedItem}" /> Summary Once you understand the basics of data binding in XAML, you eliminate a lot code that is otherwise needed to move data into controls and out of controls back into an object. Connecting two controls together is easy by just binding using the ElementName and Path properties of the Binding markup extension. Another good tip out of this blog is use user controls and set the DataContext of the user control to have all of the data on the user control update through the bindings. NOTE: You can download the complete sample code (in both VB and C#) at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "SL – Synchronize List Box Data with User Control" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".

    Read the article

  • OData to the rescue. Exposing the eventlog as a data feed

    - by cibrax
    In one of the project where I was working one, we used the Microsoft Enterprise Library Exception Application Block integration with WCF for logging all the technical issues on the services/backend in Windows Event Log. This application block worked like a charm, all the errors were correctly logged on the Event Log without even needing to modify the service code. However, we also needed to provide a quick way to expose all those events to the different system users so they could get access to all the them remotely. In just a couple of minutes I came up with a simple solution based on ADO.NET Data Services. ADO.NET data services is very powerful in this sense, you only need to provide a IQueryable implementation, and that’s all. You get a RESTful service with rich query support for free. In this sample, I used Linq to Objects to get the latest entries from the Event Log, and I also filter the entries by the category used by the Application Block to avoid loading unnecessary entries in memory. public class LogDataSource     {         string source;         public LogDataSource(string source)         {             this.source = source;         }         public LogDataSource()         {         }         public IQueryable<LogEntry> LogEntries         {             get { return GetEntries().AsQueryable().OrderBy(e => e.TimeGenerated); }         }         private IEnumerable<LogEntry> GetEntries()         {             var applicationLog = System.Diagnostics.EventLog.GetEventLogs().Where(e => e.Log == "Application")                 .FirstOrDefault();             var entries = new List<LogEntry>();             if (applicationLog != null)             {                 foreach (EventLogEntry entry in applicationLog.Entries)                 {                     if (source == null || entry.Source.Equals(source, StringComparison.InvariantCultureIgnoreCase))                     {                         entries.Add(new LogEntry                         {                             Category = entry.Category,                             EventID = entry.InstanceId,                             Message = entry.Message,                             TimeGenerated = entry.TimeGenerated,                             Source = entry.Source,                         });                     }                 }             }             return entries.OrderByDescending(e => e.TimeGenerated)                         .Take(200);         }     } LogEntry is class I created for this service to expose an Event Log Entry.     [EntityPropertyMappingAttribute("Source",         SyndicationItemProperty.Title,         SyndicationTextContentKind.Plaintext, true)]     [EntityPropertyMapping("Message",         SyndicationItemProperty.Summary,         SyndicationTextContentKind.Plaintext, true)]     [EntityPropertyMapping("TimeGenerated",         SyndicationItemProperty.Updated,         SyndicationTextContentKind.Plaintext, true)]     [DataServiceKey("EventID")]     public class LogEntry     {         public long EventID         {             get;             set;         }         public string Category         {             get;             set;         }         public string Message         {             get;             set;         }         public DateTime TimeGenerated         {             get;             set;         }         public string Source         {             get;             set;         }     } As you can see, I used the new feature “Friendly feeds” to map several properties in the entries with standard ATOM elements. The “DataServiceKey” is only necessary because I am using the Reflection Provider (the exposed IQueryable implementation is just Linq to Objects) rather than the default Entity Framework Provider. The data service implementation is also quite simple, just a couple of lines were needed to expose the data source created previously. public class LogDataService : DataService<LogDataSource>     {         public static void InitializeService(IDataServiceConfiguration config)         {             config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);         }         protected override LogDataSource CreateDataSource()         {             string source = ConfigurationManager.AppSettings["EventLogSource"];             if (source == null)             {                 throw new ApplicationException("The EventLogSource appsetting is missing in the configuration file");             }             return new LogDataSource(source);         }     } With this implementation in place, the final users not only get a feed with all the latest errors in the event log, but also support for performing queries against that data. This is one of the great things about ADO.NET Data services.

    Read the article

  • Unobtrusive Client Side Validation with Dynamic Contents in ASP.NET MVC 3

    - by imran_ku07
        Introduction:          A while ago, I blogged about how to perform client side validation for dynamic contents in ASP.NET MVC 2 at here. Using the approach given in that blog, you can easily validate your dynamic ajax contents at client side. ASP.NET MVC 3 also supports unobtrusive client side validation in addition to ASP.NET MVC 2 client side validation for backward compatibility. I feel it is worth to rewrite that blog post for ASP.NET MVC 3 unobtrusive client side validation. In this article I will show you how to do this.       Description:           I am going to use the same example presented at here. Create a new ASP.NET MVC 3 application. Then just open HomeController.cs and add the following code,   public ActionResult CreateUser() { return View(); } [HttpPost] public ActionResult CreateUserPrevious(UserInformation u) { return View("CreateUserInformation", u); } [HttpPost] public ActionResult CreateUserInformation(UserInformation u) { if(ModelState.IsValid) return View("CreateUserCompanyInformation"); return View("CreateUserInformation"); } [HttpPost] public ActionResult CreateUserCompanyInformation(UserCompanyInformation uc, UserInformation ui) { if (ModelState.IsValid) return Content("Thank you for submitting your information"); return View("CreateUserCompanyInformation"); }             Next create a CreateUser view and add the following lines,   <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<UnobtrusiveValidationWithDynamicContents.Models.UserInformation>" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> CreateUser </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <div id="dynamicData"> <%Html.RenderPartial("CreateUserInformation"); %> </div> </asp:Content>             Next create a CreateUserInformation partial view and add the following lines,   <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<UnobtrusiveValidationWithDynamicContents.Models.UserInformation>" %> <% Html.EnableClientValidation(); %> <%using (Html.BeginForm("CreateUserInformation", "Home")) { %> <table id="table1"> <tr style="background-color:#E8EEF4;font-weight:bold"> <td colspan="3" align="center"> User Information </td> </tr> <tr> <td> First Name </td> <td> <%=Html.TextBoxFor(a => a.FirstName)%> </td> <td> <%=Html.ValidationMessageFor(a => a.FirstName)%> </td> </tr> <tr> <td> Last Name </td> <td> <%=Html.TextBoxFor(a => a.LastName)%> </td> <td> <%=Html.ValidationMessageFor(a => a.LastName)%> </td> </tr> <tr> <td> Email </td> <td> <%=Html.TextBoxFor(a => a.Email)%> </td> <td> <%=Html.ValidationMessageFor(a => a.Email)%> </td> </tr> <tr> <td colspan="3" align="center"> <input type="submit" name="userInformation" value="Next"/> </td> </tr> </table> <%} %> <script type="text/javascript"> $("form").submit(function (e) { if ($(this).valid()) { $.post('<%= Url.Action("CreateUserInformation")%>', $(this).serialize(), function (data) { $("#dynamicData").html(data); $.validator.unobtrusive.parse($("#dynamicData")); }); } e.preventDefault(); }); </script>             Next create a CreateUserCompanyInformation partial view and add the following lines,   <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<UnobtrusiveValidationWithDynamicContents.Models.UserCompanyInformation>" %> <% Html.EnableClientValidation(); %> <%using (Html.BeginForm("CreateUserCompanyInformation", "Home")) { %> <table id="table1"> <tr style="background-color:#E8EEF4;font-weight:bold"> <td colspan="3" align="center"> User Company Information </td> </tr> <tr> <td> Company Name </td> <td> <%=Html.TextBoxFor(a => a.CompanyName)%> </td> <td> <%=Html.ValidationMessageFor(a => a.CompanyName)%> </td> </tr> <tr> <td> Company Address </td> <td> <%=Html.TextBoxFor(a => a.CompanyAddress)%> </td> <td> <%=Html.ValidationMessageFor(a => a.CompanyAddress)%> </td> </tr> <tr> <td> Designation </td> <td> <%=Html.TextBoxFor(a => a.Designation)%> </td> <td> <%=Html.ValidationMessageFor(a => a.Designation)%> </td> </tr> <tr> <td colspan="3" align="center"> <input type="button" id="prevButton" value="Previous"/>   <input type="submit" name="userCompanyInformation" value="Next"/> <%=Html.Hidden("FirstName")%> <%=Html.Hidden("LastName")%> <%=Html.Hidden("Email")%> </td> </tr> </table> <%} %> <script type="text/javascript"> $("#prevButton").click(function () { $.post('<%= Url.Action("CreateUserPrevious")%>', $($("form")[0]).serialize(), function (data) { $("#dynamicData").html(data); $.validator.unobtrusive.parse($("#dynamicData")); }); }); $("form").submit(function (e) { if ($(this).valid()) { $.post('<%= Url.Action("CreateUserCompanyInformation")%>', $(this).serialize(), function (data) { $("#dynamicData").html(data); $.validator.unobtrusive.parse($("#dynamicData")); }); } e.preventDefault(); }); </script>             Next create a new class file UserInformation.cs inside Model folder and add the following code,   public class UserInformation { public int Id { get; set; } [Required(ErrorMessage = "First Name is required")] [StringLength(10, ErrorMessage = "First Name max length is 10")] public string FirstName { get; set; } [Required(ErrorMessage = "Last Name is required")] [StringLength(10, ErrorMessage = "Last Name max length is 10")] public string LastName { get; set; } [Required(ErrorMessage = "Email is required")] [RegularExpression(@"^\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*$", ErrorMessage = "Email Format is wrong")] public string Email { get; set; } }             Next create a new class file UserCompanyInformation.cs inside Model folder and add the following code,    public class UserCompanyInformation { public int UserId { get; set; } [Required(ErrorMessage = "Company Name is required")] [StringLength(10, ErrorMessage = "Company Name max length is 10")] public string CompanyName { get; set; } [Required(ErrorMessage = "CompanyAddress is required")] [StringLength(50, ErrorMessage = "Company Address max length is 50")] public string CompanyAddress { get; set; } [Required(ErrorMessage = "Designation is required")] [StringLength(50, ErrorMessage = "Designation max length is 10")] public string Designation { get; set; } }            Next add the necessary script files in Site.Master,   <script src="<%= Url.Content("~/Scripts/jquery-1.4.4.min.js")%>" type="text/javascript"></script> <script src="<%= Url.Content("~/Scripts/jquery.validate.min.js")%>" type="text/javascript"></script> <script src="<%= Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")%>" type="text/javascript"></script>            Now run this application. You will get the same behavior as described in this article. The key important feature to note here is the $.validator.unobtrusive.parse method, which is used by ASP.NET MVC 3 unobtrusive client side validation to initialize jQuery validation plug-in to start the client side validation process. Another important method to note here is the jQuery.valid method which return true if the form is valid and return false if the form is not valid .       Summary:          There may be several occasions when you need to load your HTML contents dynamically. These dynamic HTML contents may also include some input elements and you need to perform some client side validation for these input elements before posting thier values to server. In this article I shows you how you can enable client side validation for dynamic input elements in ASP.NET MVC 3. I am also attaching a sample application. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • The case of the phantom ADF developer (and other yarns)

    - by Chris Muir
    A few years of ADF experience means I see common mistakes made by different developers, some I regularly make myself.  This post is designed to assist beginners to Oracle JDeveloper Application Development Framework (ADF) avoid a common ADF pitfall, the case of the phantom ADF developer [add Scooby-Doo music here]. ADF Business Components - triggers, default table values and instead of views. Oracle's JDeveloper tutorials help with the A-B-Cs of ADF development, typically built on the nice 'n safe demo schema provided by with the Oracle database such as the HR demo schema. However it's not too long until ADF beginners, having built up some confidence from learning with the tutorials and vanilla demo schemas, start building ADF Business Components based upon their own existing database schema objects.  This is where unexpected problems can sneak in. The crime Developers may encounter a surprising error at runtime when editing a record they just created or updated and committed to the database, based on their own existing tables, namely the error: JBO-25014: Another user has changed the row with primary key oracle.jbo.Key[x] ...where X is the primary key value of the row at hand.  In a production environment with multiple users this error may be legit, one of the other users has updated the row since you queried it.  Yet in a development environment this error is just plain confusing.  If developers are isolated in their own database, creating and editing records they know other users can't possibly be working with, or all the other developers have gone home for the day, how is this error possible? There are no other users?  It must be the phantom ADF developer! [insert dramatic music here] The following picture is what you'll see in the Business Component Browser, and you'll receive a similar error message via an ADF Faces page: A false conclusion What can possibly cause this issue if it isn't our phantom ADF developer?  Doesn't ADF BC implement record locking, locking database records when the row is modified in the ADF middle-tier by a user?  How can our phantom ADF developer even take out a lock if this is the case?  Maybe ADF has a bug, maybe ADF isn't implementing record locking at all?  Shouldn't we see the error "JBO-26030: Failed to lock the record, another user holds the lock" as we attempt to modify the record, why do we see JBO-25014? : Let's verify that ADF is in fact issuing the correct SQL LOCK-FOR-UPDATE statement to the database. First we need to verify ADF's locking strategy.  It is determined by the Application Module's jbo.locking.mode property.  The default (as of JDev 11.1.1.4.0 if memory serves me correct) and recommended value is optimistic, and the other valid value is pessimistic. Next we need a mechanism to check that ADF is issuing the LOCK statements to the database.  We could ask DBAs to monitor locks with OEM, but optimally we'd rather not involve overworked DBAs in this process, so instead we can use the ADF runtime setting –Djbo.debugoutput=console.  At runtime this options turns on instrumentation within the ADF BC layer, which among a lot of extra detail displayed in the log window, will show the actual SQL statement issued to the database, including the LOCK statement we're looking to confirm. Setting our locking mode to pessimistic, opening the Business Components Browser of a JSF page allowing us to edit a record, say the CHARGEABLE field within a BOOKINGS record where BOOKING_NO = 1206, upon editing the record see among others the following log entries: [421] Built select: 'SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings'[422] Executing LOCK...SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings WHERE BOOKING_NO=:1 FOR UPDATE NOWAIT[423] Where binding param 1: 1206  As can be seen on line 422, in fact a LOCK-FOR-UPDATE is indeed issued to the database.  Later when we commit the record we see: [441] OracleSQLBuilder: SAVEPOINT 'BO_SP'[442] OracleSQLBuilder Executing, Lock 1 DML on: BOOKINGS (Update)[443] UPDATE buf Bookings>#u SQLStmtBufLen: 210, actual=62[444] UPDATE BOOKINGS Bookings SET CHARGEABLE=:1 WHERE BOOKING_NO=:2[445] Update binding param 1: N[446] Where binding param 2: 1206[447] BookingsView1 notify COMMIT ... [448] _LOCAL_VIEW_USAGE_model_Bookings_ResourceTypesView1 notify COMMIT ... [449] EntityCache close prepared statement ....and as a result the changes are saved to the database, and the lock is released. Let's see what happens when we use the optimistic locking mode, this time to change the same BOOKINGS record CHARGEABLE column again.  As soon as we edit the record we see little activity in the logs, nothing to indicate any SQL statement, let alone a LOCK has been taken out on the row. However when we save our records by issuing a commit, the following is recorded in the logs: [509] OracleSQLBuilder: SAVEPOINT 'BO_SP'[510] OracleSQLBuilder Executing doEntitySelect on: BOOKINGS (true)[511] Built select: 'SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings'[512] Executing LOCK...SELECT BOOKING_NO, EVENT_NO, RESOURCE_CODE, CHARGEABLE, MADE_BY, QUANTITY, COST, STATUS, COMMENTS FROM BOOKINGS Bookings WHERE BOOKING_NO=:1 FOR UPDATE NOWAIT[513] Where binding param 1: 1205[514] OracleSQLBuilder Executing, Lock 2 DML on: BOOKINGS (Update)[515] UPDATE buf Bookings>#u SQLStmtBufLen: 210, actual=62[516] UPDATE BOOKINGS Bookings SET CHARGEABLE=:1 WHERE BOOKING_NO=:2[517] Update binding param 1: Y[518] Where binding param 2: 1205[519] BookingsView1 notify COMMIT ... [520] _LOCAL_VIEW_USAGE_model_Bookings_ResourceTypesView1 notify COMMIT ... [521] EntityCache close prepared statement Again even though we're seeing the midtier delay the LOCK statement until commit time, it is in fact occurring on line 412, and released as part of the commit issued on line 419.  Therefore with either optimistic or pessimistic locking a lock is indeed issued. Our conclusion at this point must be, unless there's the unlikely cause the LOCK statement is never really hitting the database, or the even less likely cause the database has a bug, then ADF does in fact take out a lock on the record before allowing the current user to update it.  So there's no way our phantom ADF developer could even modify the record if he tried without at least someone receiving a lock error. Hmm, we can only conclude the locking mode is a red herring and not the true cause of our problem.  Who is the phantom? At this point we'll need to conclude that the error message "JBO-25014: Another user has changed" is somehow legit, even though we don't understand yet what's causing it. This leads onto two further questions, how does ADF know another user has changed the row, and what's been changed anyway? To answer the first question, how does ADF know another user has changed the row, the Fusion Guide's section 4.10.11 How to Protect Against Losing Simultaneous Updated Data , that details the Entity Object Change-Indicator property, gives us the answer: At runtime the framework provides automatic "lost update" detection for entity objects to ensure that a user cannot unknowingly modify data that another user has updated and committed in the meantime. Typically, this check is performed by comparing the original values of each persistent entity attribute against the corresponding current column values in the database at the time the underlying row is locked. Before updating a row, the entity object verifies that the row to be updated is still consistent with the current state of the database.  The guide further suggests to make this solution more efficient: You can make the lost update detection more efficient by identifying any attributes of your entity whose values you know will be updated whenever the entity is modified. Typical candidates include a version number column or an updated date column in the row.....To detect whether the row has been modified since the user queried it in the most efficient way, select the Change Indicator option to compare only the change-indicator attribute values. We now know that ADF BC doesn't use the locking mechanism at all to protect the current user against updates, but rather it keeps a copy of the original record fetched, separate to the user changed version of the record, and it compares the original record against the one in the database when the lock is taken out.  If values don't match, be it the default compare-all-columns behaviour, or the more efficient Change Indicator mechanism, ADF BC will throw the JBO-25014 error. This leaves one last question.  Now we know the mechanism under which ADF identifies a changed row, what we don't know is what's changed and who changed it? The real culprit What's changed?  We know the record in the mid-tier has been changed by the user, however ADF doesn't use the changed record in the mid-tier to compare to the database record, but rather a copy of the original record before it was changed.  This leaves us to conclude the database record has changed, but how and by who? There are three potential causes: Database triggers The database trigger among other uses, can be configured to fire PLSQL code on a database table insert, update or delete.  In particular in an insert or update the trigger can override the value assigned to a particular column.  The trigger execution is actioned by the database on behalf of the user initiating the insert or update action. Why this causes the issue specific to our ADF use, is when we insert or update a record in the database via ADF, ADF keeps a copy of the record written to the database.  However the cached record is instantly out of date as the database triggers have modified the record that was actually written to the database.  Thus when we update the record we just inserted or updated for a second time to the database, ADF compares its original copy of the record to that in the database, and it detects the record has been changed – giving us JBO-25014. This is probably the most common cause of this problem. Default values A second reason this issue can occur is another database feature, default column values.  When creating a database table the schema designer can define default values for specific columns.  For example a CREATED_BY column could be set to SYSDATE, or a flag column to Y or N.  Default values are only used by the database when a user inserts a new record and the specific column is assigned NULL.  The database in this case will overwrite the column with the default value. As per the database trigger section, it then becomes apparent why ADF chokes on this feature, though it can only specifically occur in an insert-commit-update-commit scenario, not the update-commit-update-commit scenario. Instead of trigger views I must admit I haven't double checked this scenario but it seems plausible, that of the Oracle database's instead of trigger view (sometimes referred to as instead of views).  A view in the database is based on a query, and dependent on the queries complexity, may support insert, update and delete functionality to a limited degree.  In order to support fully insertable, updateable and deletable views, Oracle introduced the instead of view, that gives the view designer the ability to not only define the view query, but a set of programmatic PLSQL triggers where the developer can define their own logic for inserts, updates and deletes. While this provides the database programmer a very powerful feature, it can cause issues for our ADF application.  On inserting or updating a record in the instead of view, the record and it's data that goes in is not necessarily the data that comes out when ADF compares the records, as the view developer has the option to practically do anything with the incoming data, including throwing it away or pushing it to tables which aren't used by the view underlying query for fetching the data. Readers are at this point reminded that this article is specifically about how the JBO-25014 error occurs in the context of 1 developer on an isolated database.  The article is not considering how the error occurs in a production environment where there are multiple users who can cause this error in a legitimate fashion.  Assuming none of the above features are the cause of the problem, and optimistic locking is turned on (this error is not possible if pessimistic locking is the default mode *and* none of the previous causes are possible), JBO-25014 is quite feasible in a production ADF application if 2 users modify the same record. At this point under project timelines pressure, the obvious fix for developers is to drop both database triggers and default values from the underlying tables.  However we must be careful that these legacy constructs aren't used and assumed to be in place by other legacy systems.  Dropping the database triggers or default value that the existing Oracle Forms  applications assumes and requires to be in place could cause unexpected behaviour and bugs in the Forms application.  Proficient software engineers would recognize such a change may require a partial or full regression test of the existing legacy system, a potentially costly and timely exercise, not ideal. Solving the mystery once and for all Luckily ADF has built in functionality to deal with this issue, though it's not a surprise, as Oracle as the author of ADF also built the database, and are fully aware of the Oracle database's feature set.  At the Entity Object attribute level, the Refresh After Insert and Refresh After Update properties.  Simply selecting these instructs ADF BC after inserting or updating a record to the database, to expect the database to modify the said attributes, and read a copy of the changed attributes back into its cached mid-tier record.  Thus next time the developer modifies the current record, the comparison between the mid-tier record and the database record match, and JBO-25014: Another user has changed" is no longer an issue. [Post edit - as per the comment from Oracle's Steven Davelaar below, as he correctly points out the above solution will not work for instead-of-triggers views as it relies on SQL RETURNING clause which is incompatible with this type of view] Alternatively you can set the Change Indicator on one of the attributes.  This will work as long as the relating column for the attribute in the database itself isn't inadvertently updated.  In turn you're possibly just masking the issue rather than solving it, because if another developer turns the Change Indicator back on the original issue will return.

    Read the article

  • Windows Azure Service Bus Splitter and Aggregator

    - by Alan Smith
    This article will cover basic implementations of the Splitter and Aggregator patterns using the Windows Azure Service Bus. The content will be included in the next release of the “Windows Azure Service Bus Developer Guide”, along with some other patterns I am working on. I’ve taken the pattern descriptions from the book “Enterprise Integration Patterns” by Gregor Hohpe. I bought a copy of the book in 2004, and recently dusted it off when I started to look at implementing the patterns on the Windows Azure Service Bus. Gregor has also presented an session in 2011 “Enterprise Integration Patterns: Past, Present and Future” which is well worth a look. I’ll be covering more patterns in the coming weeks, I’m currently working on Wire-Tap and Scatter-Gather. There will no doubt be a section on implementing these patterns in my “SOA, Connectivity and Integration using the Windows Azure Service Bus” course. There are a number of scenarios where a message needs to be divided into a number of sub messages, and also where a number of sub messages need to be combined to form one message. The splitter and aggregator patterns provide a definition of how this can be achieved. This section will focus on the implementation of basic splitter and aggregator patens using the Windows Azure Service Bus direct programming model. In BizTalk Server receive pipelines are typically used to implement the splitter patterns, with sequential convoy orchestrations often used to aggregate messages. In the current release of the Service Bus, there is no functionality in the direct programming model that implements these patterns, so it is up to the developer to implement them in the applications that send and receive messages. Splitter A message splitter takes a message and spits the message into a number of sub messages. As there are different scenarios for how a message can be split into sub messages, message splitters are implemented using different algorithms. The Enterprise Integration Patterns book describes the splatter pattern as follows: How can we process a message if it contains multiple elements, each of which may have to be processed in a different way? Use a Splitter to break out the composite message into a series of individual messages, each containing data related to one item. The Enterprise Integration Patterns website provides a description of the Splitter pattern here. In some scenarios a batch message could be split into the sub messages that are contained in the batch. The splitting of a message could be based on the message type of sub-message, or the trading partner that the sub message is to be sent to. Aggregator An aggregator takes a stream or related messages and combines them together to form one message. The Enterprise Integration Patterns book describes the aggregator pattern as follows: How do we combine the results of individual, but related messages so that they can be processed as a whole? Use a stateful filter, an Aggregator, to collect and store individual messages until a complete set of related messages has been received. Then, the Aggregator publishes a single message distilled from the individual messages. The Enterprise Integration Patterns website provides a description of the Aggregator pattern here. A common example of the need for an aggregator is in scenarios where a stream of messages needs to be combined into a daily batch to be sent to a legacy line-of-business application. The BizTalk Server EDI functionality provides support for batching messages in this way using a sequential convoy orchestration. Scenario The scenario for this implementation of the splitter and aggregator patterns is the sending and receiving of large messages using a Service Bus queue. In the current release, the Windows Azure Service Bus currently supports a maximum message size of 256 KB, with a maximum header size of 64 KB. This leaves a safe maximum body size of 192 KB. The BrokeredMessage class will support messages larger than 256 KB; in fact the Size property is of type long, implying that very large messages may be supported at some point in the future. The 256 KB size restriction is set in the service bus components that are deployed in the Windows Azure data centers. One of the ways of working around this size restriction is to split large messages into a sequence of smaller sub messages in the sending application, send them via a queue, and then reassemble them in the receiving application. This scenario will be used to demonstrate the pattern implementations. Implementation The splitter and aggregator will be used to provide functionality to send and receive large messages over the Windows Azure Service Bus. In order to make the implementations generic and reusable they will be implemented as a class library. The splitter will be implemented in the LargeMessageSender class and the aggregator in the LargeMessageReceiver class. A class diagram showing the two classes is shown below. Implementing the Splitter The splitter will take a large brokered message, and split the messages into a sequence of smaller sub-messages that can be transmitted over the service bus messaging entities. The LargeMessageSender class provides a Send method that takes a large brokered message as a parameter. The implementation of the class is shown below; console output has been added to provide details of the splitting operation. public class LargeMessageSender {     private static int SubMessageBodySize = 192 * 1024;     private QueueClient m_QueueClient;       public LargeMessageSender(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public void Send(BrokeredMessage message)     {         // Calculate the number of sub messages required.         long messageBodySize = message.Size;         int nrSubMessages = (int)(messageBodySize / SubMessageBodySize);         if (messageBodySize % SubMessageBodySize != 0)         {             nrSubMessages++;         }           // Create a unique session Id.         string sessionId = Guid.NewGuid().ToString();         Console.WriteLine("Message session Id: " + sessionId);         Console.Write("Sending {0} sub-messages", nrSubMessages);           Stream bodyStream = message.GetBody<Stream>();         for (int streamOffest = 0; streamOffest < messageBodySize;             streamOffest += SubMessageBodySize)         {                                     // Get the stream chunk from the large message             long arraySize = (messageBodySize - streamOffest) > SubMessageBodySize                 ? SubMessageBodySize : messageBodySize - streamOffest;             byte[] subMessageBytes = new byte[arraySize];             int result = bodyStream.Read(subMessageBytes, 0, (int)arraySize);             MemoryStream subMessageStream = new MemoryStream(subMessageBytes);               // Create a new message             BrokeredMessage subMessage = new BrokeredMessage(subMessageStream, true);             subMessage.SessionId = sessionId;               // Send the message             m_QueueClient.Send(subMessage);             Console.Write(".");         }         Console.WriteLine("Done!");     }} The LargeMessageSender class is initialized with a QueueClient that is created by the sending application. When the large message is sent, the number of sub messages is calculated based on the size of the body of the large message. A unique session Id is created to allow the sub messages to be sent as a message session, this session Id will be used for correlation in the aggregator. A for loop in then used to create the sequence of sub messages by creating chunks of data from the stream of the large message. The sub messages are then sent to the queue using the QueueClient. As sessions are used to correlate the messages, the queue used for message exchange must be created with the RequiresSession property set to true. Implementing the Aggregator The aggregator will receive the sub messages in the message session that was created by the splitter, and combine them to form a single, large message. The aggregator is implemented in the LargeMessageReceiver class, with a Receive method that returns a BrokeredMessage. The implementation of the class is shown below; console output has been added to provide details of the splitting operation.   public class LargeMessageReceiver {     private QueueClient m_QueueClient;       public LargeMessageReceiver(QueueClient queueClient)     {         m_QueueClient = queueClient;     }       public BrokeredMessage Receive()     {         // Create a memory stream to store the large message body.         MemoryStream largeMessageStream = new MemoryStream();           // Accept a message session from the queue.         MessageSession session = m_QueueClient.AcceptMessageSession();         Console.WriteLine("Message session Id: " + session.SessionId);         Console.Write("Receiving sub messages");           while (true)         {             // Receive a sub message             BrokeredMessage subMessage = session.Receive(TimeSpan.FromSeconds(5));               if (subMessage != null)             {                 // Copy the sub message body to the large message stream.                 Stream subMessageStream = subMessage.GetBody<Stream>();                 subMessageStream.CopyTo(largeMessageStream);                   // Mark the message as complete.                 subMessage.Complete();                 Console.Write(".");             }             else             {                 // The last message in the sequence is our completeness criteria.                 Console.WriteLine("Done!");                 break;             }         }                     // Create an aggregated message from the large message stream.         BrokeredMessage largeMessage = new BrokeredMessage(largeMessageStream, true);         return largeMessage;     } }   The LargeMessageReceiver initialized using a QueueClient that is created by the receiving application. The receive method creates a memory stream that will be used to aggregate the large message body. The AcceptMessageSession method on the QueueClient is then called, which will wait for the first message in a message session to become available on the queue. As the AcceptMessageSession can throw a timeout exception if no message is available on the queue after 60 seconds, a real-world implementation should handle this accordingly. Once the message session as accepted, the sub messages in the session are received, and their message body streams copied to the memory stream. Once all the messages have been received, the memory stream is used to create a large message, that is then returned to the receiving application. Testing the Implementation The splitter and aggregator are tested by creating a message sender and message receiver application. The payload for the large message will be one of the webcast video files from http://www.cloudcasts.net/, the file size is 9,697 KB, well over the 256 KB threshold imposed by the Service Bus. As the splitter and aggregator are implemented in a separate class library, the code used in the sender and receiver console is fairly basic. The implementation of the main method of the sending application is shown below.   static void Main(string[] args) {     // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Open the input file.     FileStream fileStream = new FileStream(AccountDetails.TestFile, FileMode.Open);       // Create a BrokeredMessage for the file.     BrokeredMessage largeMessage = new BrokeredMessage(fileStream, true);       Console.WriteLine("Sending: " + AccountDetails.TestFile);     Console.WriteLine("Message body size: " + largeMessage.Size);     Console.WriteLine();         // Send the message with a LargeMessageSender     LargeMessageSender sender = new LargeMessageSender(queueClient);     sender.Send(largeMessage);       // Close the messaging facory.     factory.Close();  } The implementation of the main method of the receiving application is shown below. static void Main(string[] args) {       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Use the MessagingFactory to create a queue client     QueueClient queueClient = factory.CreateQueueClient(AccountDetails.QueueName);       // Create a LargeMessageReceiver and receive the message.     LargeMessageReceiver receiver = new LargeMessageReceiver(queueClient);     BrokeredMessage largeMessage = receiver.Receive();       Console.WriteLine("Received message");     Console.WriteLine("Message body size: " + largeMessage.Size);       string testFile = AccountDetails.TestFile.Replace(@"\In\", @"\Out\");     Console.WriteLine("Saving file: " + testFile);       // Save the message body as a file.     Stream largeMessageStream = largeMessage.GetBody<Stream>();     largeMessageStream.Seek(0, SeekOrigin.Begin);     FileStream fileOut = new FileStream(testFile, FileMode.Create);     largeMessageStream.CopyTo(fileOut);     fileOut.Close();       Console.WriteLine("Done!"); } In order to test the application, the sending application is executed, which will use the LargeMessageSender class to split the message and place it on the queue. The output of the sender console is shown below. The console shows that the body size of the large message was 9,929,365 bytes, and the message was sent as a sequence of 51 sub messages. When the receiving application is executed the results are shown below. The console application shows that the aggregator has received the 51 messages from the message sequence that was creating in the sending application. The messages have been aggregated to form a massage with a body of 9,929,365 bytes, which is the same as the original large message. The message body is then saved as a file. Improvements to the Implementation The splitter and aggregator patterns in this implementation were created in order to show the usage of the patterns in a demo, which they do quite well. When implementing these patterns in a real-world scenario there are a number of improvements that could be made to the design. Copying Message Header Properties When sending a large message using these classes, it would be great if the message header properties in the message that was received were copied from the message that was sent. The sending application may well add information to the message context that will be required in the receiving application. When the sub messages are created in the splitter, the header properties in the first message could be set to the values in the original large message. The aggregator could then used the values from this first sub message to set the properties in the message header of the large message during the aggregation process. Using Asynchronous Methods The current implementation uses the synchronous send and receive methods of the QueueClient class. It would be much more performant to use the asynchronous methods, however doing so may well affect the sequence in which the sub messages are enqueued, which would require the implementation of a resequencer in the aggregator to restore the correct message sequence. Handling Exceptions In order to keep the code readable no exception handling was added to the implementations. In a real-world scenario exceptions should be handled accordingly.

    Read the article

< Previous Page | 516 517 518 519 520 521 522 523 524 525 526 527  | Next Page >