Search Results

Search found 1461 results on 59 pages for 'equipment recommendation'.

Page 53/59 | < Previous Page | 49 50 51 52 53 54 55 56 57 58 59  | Next Page >

  • Creating typed WSDL’s for generic WCF services of the ESB Toolkit

    - by charlie.mott
    source: http://geekswithblogs.net/charliemott Question How do you make it easy for client systems to consume the generic WCF services exposed by the ESB Toolkit using messages that conform to agreed schemas\contracts?  Usually the developer of a system consuming a web service adds a service reference using a WSDL. However, the WSDL’s for the generic services exposed by the ESB Toolkit do not make it easy to develop clients that conform to agreed schemas\contracts. Recommendation Take a copy of the generic WSDL’s and modify it to use the proper contracts. This is very easy.  It will work with the generic on ramps so long as the <part>?</part> wrapping is removed from the WCF adapter configuration in the BizTalk receive locations.  Attempting to create a WSDL where the input and output messages are sent/returned with a <part> wrapper is a nightmare.  I have not managed it.  Consequences I can only see the following consequences of removing the <part> wrapper: ESB Test Client – I needed to modify the out-of-the-box ESB Test Client source code to make it send non-wrapped messages.  Flat file formatted messages – the endpoint will no longer support flat file message formats.  However, even if you needed to support this integration pattern through WCF, you would most-likely want to create a separate receive location anyway with its’ own independently configured XML disassembler pipeline component. Instructions These steps show how to implement a request-response implementation of this. WCF Receive Locations In BizTalk, for the WCF receive location for the ESB on-ramp, set the adapter Message settings\bindings to “UseBodyPath”: Inbound BizTalk message body  = Body Outbound WCF message body = Body Create a WSDL’s for each supported integration use-case Save a copy of the WSDL for the WCF generic receive location above that you intend the client system to use. Give it a name that mirrors the interface agreement (e.g. Esb_SuppliersSearchCommand_wsHttpBinding.wsdl).   Add any xsd schemas files imported below to this same folder.   Edit the WSDL to import schemas For example, this: <xsd:schema targetNamespace=http://microsoft.practices.esb/Imports /> … would become something like: <xsd:schema targetNamespace="http://microsoft.practices.esb/Imports">     <xsd:import schemaLocation="SupplierSearchCommand_V1.xsd"                            namespace="http://schemas.acme.co.uk/suppliersearchcommand/1.0"/>     <xsd:import  schemaLocation="SuppliersDocument_V1.xsd"                              namespace="http://schemas.acme.co.uk/suppliersdocument/1.0"/>     <xsd:import schemaLocation="Types\Supplier_V1.xsd"                              namespace="http://schemas.acme.co.uk/types/supplier/1.0"/>     <xsd:import  schemaLocation="GovTalk\bs7666-v2-0.xsd"                               namespace="http://www.govtalk.gov.uk/people/bs7666"/>     <xsd:import  schemaLocation="GovTalk\CommonSimpleTypes-v1-3.xsd"                             namespace="http://www.govtalk.gov.uk/core"/>     <xsd:import  schemaLocation="GovTalk\AddressTypes-v2-0.xsd"                              namespace="http://www.govtalk.gov.uk/people/AddressAndPersonalDetails"/> </xsd:schema> Modify the Input and Output message For example, this: <wsdl:message name="ProcessRequestResponse_SubmitRequestResponse_InputMessage">   <wsdl:part name="part" type="xsd:anyType"/> </wsdl:message> <wsdl:message name="ProcessRequestResponse_SubmitRequestResponse_OutputMessage">   <wsdl:part name="part" type="xsd:anyType"/> </wsdl:message> … would become something like: <wsdl:message name="ProcessRequestResponse_SubmitRequestResponse_InputMessage">   <wsdl:part name="part"                       element="ssc:SupplierSearchEvent"                         xmlns:ssc="http://schemas.acme.co.uk/suppliersearchcommand/1.0" /> </wsdl:message> <wsdl:message name="ProcessRequestResponse_SubmitRequestResponse_OutputMessage">   <wsdl:part name="part"                       element="sd:SuppliersDocument"                       xmlns:sd="http://schemas.acme.co.uk/suppliersdocument/1.0"/> </wsdl:message> This WSDL can now be added as a service reference in client solutions.

    Read the article

  • Pet Store Loyalty Programs: I'm Not Loyal Yet!

    - by ruth.donohue
    After two years of constantly being asked (aka "pestered) by my now eight-year-old daughter for a dog (or any pet that is more interactive than a goldfish), I've finally compromised with a hamster purely by chance. Friends of ours had recently brought home a female hamster, and (surprise, surprise) two weeks later, they were looking for homes for 11 baby hamster pups. Since the pups were not yet ready to be weaned from their mother, my daughter and I had several weeks to get ready -- and we spent that extra time visiting a number of local pet stores and purchasing an assortment of hamster books, toys, exercise equipment, food, bedding, and cage -- not cheap! Now, I'm usually an online shopper (i.e. I love reading user reviews and comparing prices), but for kids, there is absolutely no online substitute for actually walking into a store and physically picking out something you want. We have two competing pet shops within close proximity to where we live, and I signed up for their rewards programs to get discounts on select items. I'm sure it takes a while to get my data into the system (after all, I did fill out a form the old-fashioned way), but as it has been more than two weeks for one store and over a week for the other, the window of opportunity is getting smaller as we by now pretty much have most of what we think we need. Everything I've purchased has been purely hamster or small animal related, so in an ideal world, the stores would have me easily figured out as a hamster owner. Here is what I would be expecting of a loyalty rewards program: Point me to some useful links, either information provied by the company or external websites where I can learn more. Any value-add a business can provide to make my life easier makes me a much more loyal customer. What things can I expect as a new pet owner? Any hamster communities? Any hamster-related events? Any vets that specialize in small animals in the vicinity? Send me an email with other related products I may be interested in. Upsell and cross-sell to me. We've go the basics and a couple of luxuries, but at this point, I'm pretty excited (surprisingly) about the hamster, and my daughter is footing the bill with her birthday and Christmas money. She and I would be more than happy to spend her money! Get this information to me faster. As I mentioned, my window of opportunity is getting smaller, as eithe rmy daughter's money will run out on other things or we'll start losing the thrill of buying new hamster toys and treats. I realize this is easier said than done, and undoubtedly, the stores are getting value knowing my basic customer information and purchase history. Buth, they could really benefit by delivering a loyalty program that really earned my loyalty. "Goldeen" needs a new water bottle, yogurt chips, and chew toys as he doesn't seem to like the ones we bought. So for now, I'll just go to whichever store is the most convenient. Oh, and just for fun (not related to this post), here are a couple of videos my daughter really got a kick out of watching: Hamster on a Piano Tic in a Spin-Dryer

    Read the article

  • Want a headless build server for SSDT without installing Visual Studio? You’re out of luck!

    - by jamiet
    An issue that regularly seems to rear its head on my travels is that of headless build servers for SSDT. What does that mean exactly? Let me give you my interpretation of it. A SQL Server Data Tools (SSDT) project incorporates a build process that will basically parse all of the files within the project and spit out a .dacpac file. Where an organisation employs a Continuous Integration process they will likely want to automate the building of that dacpac whenever someone commits a change to the source control repository. In order to do that the organisation will use a build server (e.g. TFS, TeamCity, Jenkins) and hence that build server requires all the pre-requisite software that understands how to build an SSDT project. The simplest way to install all of those pre-requisites is to install SSDT itself however a lot of folks don’t like that approach because it installs a lot unnecessary components on there, not least Visual Studio itself. Those folks (of which i am one) are of the opinion that it should be unnecessary to install a heavyweight GUI in order to simply get a few software components required to do something that inherently doesn’t even need a GUI. The phrase “headless build server” is often used to describe a build server that doesn’t contain any heavyweight GUI tools such as Visual Studio and is a desirable state for a build server. In his blog post Headless MSBuild Support for SSDT (*.sqlproj) Projects Gert Drapers outlines the steps necessary to obtain a headless build server for SSDT: This article describes how to install the required components to build and publish SQL Server Data Tools projects (*.sqlproj) using MSBuild without installing the full SQL Server Data Tool hosted inside the Visual Studio IDE. http://sqlproj.com/index.php/2012/03/headless-msbuild-support-for-ssdt-sqlproj-projects/ Frankly however going through these steps is a royal PITA and folks like myself have longed for Microsoft to support headless build support for SSDT by providing a distributable installer that installs only the pre-requisites for building SSDT projects. Yesterday in MSDN forum thread Building a VS2013 headless build server - it's sooo hard Mike Hingley complained about this very thing and it prompted a response from Kevin Cunnane from the SSDT product team: The official recommendation from the TFS / Visual Studio team is to install the version of Visual Studio you use on the build machine. I, like many others, would rather not have to install full blown Visual Studio and so I asked: Is there any chance you'll ever support any of these scenarios: Installation of all build/deploy pre-requisites without installing the VS shell? TFS shipping with all of the pre-requisites for doing SSDT project build/deploys 3rd party build servers (e.g. TeamCity) shipping with all of the requisites for doing SSDT project build/deploys I have to say that the lack of a single installer containing all the pre-requisites for SSDT build/deploy puzzles me. Surely the DacFX installer would be a perfect vehicle for that? Kevin replied again: The answer is no for all 3 scenarios. We looked into this issue, discussed it with the Visual Studio / TFS team, and in the end agreed to go with their latest guidance which is to install Visual Studio (e.g. VS2013 Express for Web) on the build machine. This is how Visual Studio Online is doing it and it's the approach recommended for customers setting up their own TFS build servers. I would hope this is compatible with 3rd party build servers but have not verified whether this works with TeamCity etc. Note that DacFx MSI isn't a suitable release vehicle for this as we don't want to include Visual Studio/MSBuild dependencies in that package. It's meant to just include the core DacFx DLLs used by SSMS, SqlPackage.exe on the command line, etc. What this means is we won't be providing a separate MSI installer or nuget package with just the necessary build DLLs you need to run your build and tests. If someone wanted to create a script that generated a nuget package based on our DLLs and targets files, then release that somewhere on the web for easier integration with 3rd party build servers we've no problem with that. Again, here’s the link to the thread and its worth reading in its entirety if this is something that interests you. So there you have it. Microsoft will not be be providing support for headless build servers for SSDT but if someone in the community wants to go ahead and roll their own, go right ahead. @Jamiet

    Read the article

  • A Letter for Your CEO About Social Marketing’s Future

    - by Mike Stiles
    We’ll leave it to you to decide if or how to sneak this in front of them. Dear Chief: This social marketing thing looks serious. It’s gone beyond having a Facebook page and putting our info and a few promotions on it. It’s seriously disrupting how we’ve always done marketing. And its implications reach well beyond marketing. My concern is that we stay positioned ahead of these changes and are prepared to embrace, adapt and capitalize on these new capabilities as opposed to spending valuable time and money trying to shoehorn social into “the way we’ve always done things.” I’m also concerned about what happens if our competition executes on this before we do. The days of being able to impose our ad messaging on the masses to great effect are numbered. The public now has the tech tools and ability to filter out things that are irrelevant to them. And frankly, spending ad dollars to reach unlikely prospects isn’t the most efficient path for us either. Today, our customers have to genuinely love what we do. That starts with a renewed, customer-centric focus on the quality and usability of our product. If their experience with it is bad, they now have very connected, loud voices that will testify against us. We can’t afford that. Next, their customer service experience, before and after the sale, has to be a pleasant surprise. That requires truly knowing our customers and listening to them. Lip service won’t cut it. We have to get and use as much data on the customer as possible, interact with them wherever they want to interact with us, and commit to impressing them. If we do, they’ll get out there and advertise for us. Since peer-to-peer recommendation is the most effective marketing, that’s money in the bank. Social marketing is about forming relationships, same as how individuals use social. We want them to know us, trust us, and get real value from knowing us. That requires honesty and transparency that before now might have been uncomfortable. I propose that if we clearly make everything we do about our customers’ wants and needs, we’ll have nothing to hide. It will solidify customer loyalty, retention, and thus, revenue. These things can’t happen without certain tools and structural changes in the organization. There are social cloud platforms that integrate social management into all of the necessary areas: CRM, customer service, sales, marketing automation, content marketing, ecommerce, etc. This is will give us a real-time, complete view of the customer so their every interaction with us is attentive, personalized, accurate, relevant, and satisfying. Without it, we’re just a collage of disjointed systems, each gathering data that informs only its own departmental silo. The customer is voluntarily giving us everything we need to know about them to win them over, but we have to start listening and putting the pieces together. There’s still time. Brands are coming to terms with this transition to the socially enabled enterprise, but so far they aren’t moving very fast. Like us, they’re dealing with long-entrenched technologies and processes. CMO’s and CIO’s have to form new partnerships. Content operations have to be initiated and properly staffed and funded. Various departments must be able to utilize interconnected big data. What will separate the winners from the losers? Well chief, that’s why I’m writing you. It’s in your hands. These initiatives won’t get the kind of priority and seriousness that inspire actual deadlines & action unless they come from your desk. You have to be the champion of customer centricity. You have to be our change agent. You have to be our innovator. Otherwise, it’s going to be business as usual, and that puts us in a very vulnerable place. Sincerely, Your Team @mikestilesPhoto: Gary Scott, stock.xchng

    Read the article

  • OSI Model

    - by kaleidoscope
    The Open System Interconnection Reference Model (OSI Reference Model or OSI Model) is an abstract description for layered communications and computer network protocol design. In its most basic form, it divides network architecture into seven layers which, from top to bottom, are the Application, Presentation, Session, Transport, Network, Data Link, and Physical Layers. It is therefore often referred to as the OSI Seven Layer Model. A layer is a collection of conceptually similar functions that provide services to the layer above it and receives service from the layer below it. Description of OSI layers: Layer 1: Physical Layer ·         Defines the electrical and physical specifications for devices. In particular, it defines the relationship between a device and a physical medium. ·         Establishment and termination of a connection to a communications medium. ·         Participation in the process whereby the communication resources are effectively shared among multiple users. ·         Modulation or conversion between the representation of digital data in user equipment and the corresponding signals transmitted over a communications channel. Layer 2: Data Link Layer ·         Provides the functional and procedural means to transfer data between network entities. ·         Detect and possibly correct errors that may occur in the Physical Layer. The error check is performed using Frame Check Sequence (FCS). ·         Addresses is then sought to see if it needs to process the rest of the frame itself or whether to pass it on to another host. ·         The Layer is divided into two sub layers: The Media Access Control (MAC) layer and the Logical Link Control (LLC) layer. ·         MAC sub layer controls how a computer on the network gains access to the data and permission to transmit it. ·         LLC layer controls frame synchronization, flow control and error checking.   Layer 3: Network Layer ·         Provides the functional and procedural means of transferring variable length data sequences from a source to a destination via one or more networks. ·         Performs network routing functions, and might also perform fragmentation and reassembly, and report delivery errors. ·         Network Layer Routers operate at this layer—sending data throughout the extended network and making the Internet possible.   Layer 4: Transport Layer ·         Provides transparent transfer of data between end users, providing reliable data transfer services to the upper layers. ·         Controls the reliability of a given link through flow control, segmentation/de-segmentation, and error control. ·         Transport Layer can keep track of the segments and retransmit those that fail. Layer 5: Session Layer ·         Controls the dialogues (connections) between computers. ·         Establishes, manages and terminates the connections between the local and remote application. ·         Provides for full-duplex, half-duplex, or simplex operation, and establishes checkpointing, adjournment, termination, and restart procedures. ·         Implemented explicitly in application environments that use remote procedure calls. Layer 6: Presentation Layer ·         Establishes a context between Application Layer entities, in which the higher-layer entities can use different syntax and semantics, as long as the presentation service understands both and the mapping between them. The presentation service data units are then encapsulated into Session Protocol data units, and moved down the stack. ·         Provides independence from differences in data representation (e.g., encryption) by translating from application to network format, and vice versa. The presentation layer works to transform data into the form that the application layer can accept. This layer formats and encrypts data to be sent across a network, providing freedom from compatibility problems. It is sometimes called the syntax layer. Layer 7: Application Layer ·         This layer interacts with software applications that implement a communicating component. ·         Identifies communication partners, determines resource availability, and synchronizes communication. o       When identifying communication partners, the application layer determines the identity and availability of communication partners for an application with data to transmit. o       When determining resource availability, the application layer must decide whether sufficient network or the requested communication exists. o       In synchronizing communication, all communication between applications requires cooperation that is managed by the application layer. Technorati Tags: Kunal,OSI,Networking

    Read the article

  • A temporary disagreement

    - by Tony Davis
    Last month, Phil Factor caused a furore amongst some MVPs with an article that attempted to offer simple advice to developers regarding the use of table variables, versus local and global temporary tables, in their code. Phil makes clear that the table variables do come with some fairly major limitations.no distribution statistics, no parallel query plans for queries that modify table variables.but goes on to suggest that for reasonably small-scale strategic uses, and with a bit of due care and testing, table variables are a "good thing". Not everyone shares his opinion; in fact, I imagine he was rather aghast to learn that there were those felt his article was akin to pulling the pin out of a grenade and tossing it into the database; table variables should be avoided in almost all cases, according to their advice, in favour of temp tables. In other words, a fairly major feature of SQL Server should be more-or-less 'off limits' to developers. The problem with temp tables is that, because they are scoped either in the procedure or the connection, it is easy to allow them to hang around for too long, eating up precious memory and bulking up the shared tempdb database. Unless they are explicitly dropped, global temporary tables, and local temporary tables created within a connection rather than within a stored procedure, will persist until the connection is closed or, with connection pooling, until the connection is reused. It's also quite common with ASP.NET applications to have connection leaks, as Bill Vaughn explains in his chapter in the "SQL Server Deep Dives" book, meaning that the web page exits without closing the connection object, maybe due to an error condition. This will then hang around in the heap for what might be hours before picked up by the garbage collector. Table variables are much safer in this regard, since they are batch-scoped and so are cleaned up automatically once the batch is complete, which also means that they are intuitive to use for the developer because they conform to scoping rules that are closer to those in procedural code. On the surface then, an ideal way to deal with issues related to tempdb memory hogging. So why did Phil qualify his recommendation to use Table Variables? This is another of those cases where, like scalar UDFs and table-valued multi-statement UDFs, developers can sometimes get into trouble with a relatively benign-looking feature, due to way it's been implemented in SQL Server. Once again the biggest problem is how they are handled internally, by the SQL Server query optimizer, which can make very poor choices for JOIN orders and so on, in the absence of statistics, especially when joining to tables with highly-skewed data. The resulting execution plans can be horrible, as will be the resulting performance. If the JOIN is to a large table, that will hurt. Ideally, Microsoft would simply fix this issue so that developers can't get burned in this way; they've been around since SQL Server 2000, so Microsoft has had a bit of time to get it right. As I commented in regard to UDFs, when developers discover issues like with such standard features, the database becomes an alien planet to them, where death lurks around each corner, and they continue to avoid these "killer" features years after the problems have been eventually resolved. In the meantime, what is the right approach? Is it to say "hammers can kill, don't ever use hammers", or is it to try to explain, as Phil's article and follow-up blog post have tried to do, what the feature was intended for, why care must be applied in its use, and so enable developers to make properly-informed decisions, without requiring them to delve deep into the inner workings of SQL Server? Cheers, Tony.

    Read the article

  • BizTalk 2009 - Architecture Decisions

    - by StuartBrierley
    In the first step towards implementing a BizTalk 2009 environment, from development through to live, I put forward a proposal that detailed the options available, as well as the costs and benefits associated with these options, to allow an informed discusion to take place with the business drivers and budget holders of the project.  This ultimately lead to a decision being made to implement an initial BizTalk Server 2009 environment using the Standard Edition of the product. It is my hope that in the long term, as projects require it and allow, we will be looking to implement my ideal recommendation of a multi-server enterprise level environment, but given the differences in cost and the likely initial work load for the environment this was not something that I could fully recommend at this time.  However, it must be noted that this decision was made in full awareness of the limits of the standard edition, and the business drivers of this project were made fully aware of the risks associated with running without the failover capabilities of the enterprise edition. When considering the creation of this new BizTalk Server 2009 environment, I have also recommended the creation of the following pre-production environments:   Usage Environment Development Development of solutions; Unit testing against technical specifications; Initial load testing; Testing of deployment packages;  Visual Studio; BizTalk; SQL; Client PCs/Laptops; Server environment similar to Live implementation; Test Testing of Solutions against business and technical requirements;  BizTalk; SQL; Server environment similar to Live implementation; Pseudo-Live As Live environment to allow testing against Live implementation; Acts as back-up hardware in case of failure of Live environment; BizTalk; SQL; Server environment identical to Live implementation; The creation of these differing environments allows for the separation of the various stages of the development cycle.  The development environment is for use when actively developing a solution, it is a potentially volatile environment whose state at any given time can not be guaranteed.  It allows developers to carry out initial tests in an environment that is similar to the live environment and also provides an area for the testing of deployment packages prior to any release to the test environment. The test environment is intended to be a semi-volatile environment that is similar to the live environment.  It will change periodically through the development of a solution (or solutions) but should be otherwise stable.  It allows for the continued testing of a solution against requirements without the worry that the environment is being actively changed by any ongoing development.  This separation of development and test is crucial in ensuring the quality and control of the tested solution. The pseudo-live environment should be considered to be an almost static environment.  It should mimic the live environment and can act as back up hardware in the case of live failure.  This environment acts as an area to allow for “as live” testing, where the performance and behaviour of the live solutions can be replicated.  There should be relatively few changes to this environment, with software releases limited to “release candidate” level releases prior to going live. Whereas the pseudo-live environment should always mimic the live environment, to save on costs the development and test servers could be implemented on lower specification hardware.  Consideration can also be given to the use of a virtual server environment to further reduce hardware costs in the development and test environments, indeed this virtual approach can also be extended to pseudo-live and live assuming the underlying technology is in place. Although there is no requirement for the development and test server environments to be identical to live, the overriding architecture implemented should be the same as in live and an understanding must be gained of the performance differences to be expected across the different environments.

    Read the article

  • Editor's Notebook - Social Aura: Insights from the Oracle Social Media Summit

    - by user462779
    Panelists talk social marketing at the Oracle Social Media Summit On November 14, I traveled to Las Vegas for the first-ever Oracle Social Media Summit. The two day event featured an impressive collection of social media luminaries including: David Kirkpatrick (founder and CEO of Techonomy Media and author of The Facebook Effect), John Yi (Head of Marketing Partnerships, Facebook), Matt Dickman (EVP of Social Business Innovation, Weber Shandwick), and Lyndsay Iorio (Social Media & Communications Manager, NBC Sports Group) among others. It was also a great opportunity to talk shop with some of our new Vitrue and Involver colleagues who have been returning great social media results even before their companies were acquired by Oracle. I was live tweeting the event from @OracleProfit which was great for those who wanted to follow along with the proceedings from the comfort of their office or blackjack table. But I've also found over the years that live tweeting an event is a handy way to take notes: I can sift back through my record of what people said or thoughts I had at the time and organize the Twitter messages into some kind of summary account of the proceedings. I've had nearly a month to reflect on the presentations and conversations at the event and a few key topics have emerged: David Kirkpatrick's comment during the opening presentation really set the stage for the conversations that followed. Especially if you are a marketer or publisher, the idea that you are in a one-way broadcast relationship with your audience is a thing of the past. "Rising above the noise" does not mean reaching for a megaphone, ALL CAPS, or exclamation marks. Hype will not motivate social media denizens to do anything but unfollow and tune you out. But knowing your audience, creating quality content and/or offers for them, treating them with respect, and making an authentic effort to please them: that's what I believe is now necessary. And Kirkpatrick's comment early in the day really made the point. Later in the day, our friends @Vitrue demonstrated this point by elaborating on a comment by Facebook's John Yi. If a social strategy is comprised of nothing more than cutting/pasting the same message into different social media properties, you're missing the opportunity to have an actual conversation. That's not shouting at your audience, but it does feel like an empty gesture. Walter Benjamin, perplexed by auraless Twitter messages Not to get too far afield, but 20th century cultural critic Walter Benjamin has a concept that is useful for understanding the dynamics of the empty social media gesture: Aura. In his work The Work of Art in the Age of Mechanical Reproduction, Benjamin struggled to understand the difference he percieved between the value of a hand-made art object (a painting, wood cutting, sculpture, etc.) and a photograph. For Benjamin, aura is similar to the "soul" of an artwork--the intangible essence that is created when an artist picks up a tool and puts creative energy and effort into a work. I'll defer to Wikipedia: "He argues that the "sphere of authenticity is outside the technical" so that the original artwork is independent of the copy, yet through the act of reproduction something is taken from the original by changing its context. He also introduces the idea of the "aura" of a work and its absence in a reproduction." So make sure you put aura into your social interactions. Don't just mechanically reproduce them. Keeping aura in your interactions requires the intervention of an actual human being. That's why @NoahHorton's comment about content curation struck me as incredibly important. Maybe it's just my own prejudice, being in the content curation business myself. And it's not to totally discount machine-aided content management systems, content recommendation engines, and other tech-driven tools for building an exceptional content experience. It's just that without that human interaction--that editor who reviews the analytics and responds to user feedback--interactions over social media feel a bit empty. It is SOCIAL media, right? (We'll leave the conversation about social machines for another day). At the end of the day, experimentation is key. Just like trying to find that right joke to tell at the beginning of your presentation or that good opening like at a cocktail party, social media messages and interactions can take some trial and error. Don't be afraid to try things, tinker with incomplete ideas, abandon things that don't work, and engage in the conversation. And make sure your heart is in it, otherwise your audience can tell. And finally:

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • How to develop RPG Damage Formulas?

    - by user127817
    I'm developing a classical 2d RPG (in a similar vein to final fantasy) and I was wondering if anyone had some advice on how to do damage formulas/links to resources/examples? I'll explain my current setup. Hopefully I'm not overdoing it with this question, and I apologize if my questions is too large/broad My Characters stats are composed of the following: enum Stat { HP = 0, MP = 1, SP = 2, Strength = 3, Vitality = 4, Magic = 5, Spirit = 6, Skill = 7, Speed = 8, //Speed/Agility are the same thing Agility = 8, Evasion = 9, MgEvasion = 10, Accuracy = 11, Luck = 12, }; Vitality is basically defense to physical attacks and spirit is defense to magic attacks. All stats have fixed maximums (9999 for HP, 999 for MP/SP and 255 for the rest). With abilities, the maximums can be increased (99999 for HP, 9999 for HP/SP, 999 for the rest) with typical values (at level 100) before/after abilities+equipment+etc will be 8000/20,000 for HP, 800/2000 for SP/MP, 180/350 for other stats Late game Enemy HP will typically be in the lower millions (with a super boss having the maximum of ~12 million). I was wondering how do people actually develop proper damage formulas that scale correctly? For instance, based on this data, using the damage formulas for Final Fantasy X as a base looked very promising. A full reference here http://www.gamefaqs.com/ps2/197344-final-fantasy-x/faqs/31381 but as a quick example: Str = 127, 'Attack' command used, enemy Def = 34. 1. Physical Damage Calculation: Step 1 ------------------------------------- [{(Stat^3 ÷ 32) + 32} x DmCon ÷16] Step 2 ---------------------------------------- [{(127^3 ÷ 32) + 32} x 16 ÷ 16] Step 3 -------------------------------------- [{(2048383 ÷ 32) + 32} x 16 ÷ 16] Step 4 --------------------------------------------------- [{(64011) + 32} x 1] Step 5 -------------------------------------------------------- [{(64043 x 1)}] Step 6 ---------------------------------------------------- Base Damage = 64043 Step 7 ----------------------------------------- [{(Def - 280.4)^2} ÷ 110] + 16 Step 8 ------------------------------------------ [{(34 - 280.4)^2} ÷ 110] + 16 Step 9 ------------------------------------------------- [(-246)^2) ÷ 110] + 16 Step 10 ---------------------------------------------------- [60516 ÷ 110] + 16 Step 11 ------------------------------------------------------------ [550] + 16 Step 12 ---------------------------------------------------------- DefNum = 566 Step 13 ---------------------------------------------- [BaseDmg * DefNum ÷ 730] Step 14 --------------------------------------------------- [64043 * 566 ÷ 730] Step 15 ------------------------------------------------------ [36248338 ÷ 730] Step 16 ------------------------------------------------- Base Damage 2 = 49655 Step 17 ------------ Base Damage 2 * {730 - (Def * 51 - Def^2 ÷ 11) ÷ 10} ÷ 730 Step 18 ---------------------- 49655 * {730 - (34 * 51 - 34^2 ÷ 11) ÷ 10} ÷ 730 Step 19 ------------------------- 49655 * {730 - (1734 - 1156 ÷ 11) ÷ 10} ÷ 730 Step 20 ------------------------------- 49655 * {730 - (1734 - 105) ÷ 10} ÷ 730 Step 21 ------------------------------------- 49655 * {730 - (1629) ÷ 10} ÷ 730 Step 22 --------------------------------------------- 49655 * {730 - 162} ÷ 730 Step 23 ----------------------------------------------------- 49655 * 568 ÷ 730 Step 24 -------------------------------------------------- Final Damage = 38635 I simply modified the dividers to include the attack rating of weapons and the armor rating of armor. Magic Damage is calculated as follows: Mag = 255, Ultima is used, enemy MDef = 1 Step 1 ----------------------------------- [DmCon * ([Stat^2 ÷ 6] + DmCon) ÷ 4] Step 2 ------------------------------------------ [70 * ([255^2 ÷ 6] + 70) ÷ 4] Step 3 ------------------------------------------ [70 * ([65025 ÷ 6] + 70) ÷ 4] Step 4 ------------------------------------------------ [70 * (10837 + 70) ÷ 4] Step 5 ----------------------------------------------------- [70 * (10907) ÷ 4] Step 6 ------------------------------------ Base Damage = 190872 [cut to 99999] Step 7 ---------------------------------------- [{(MDef - 280.4)^2} ÷ 110] + 16 Step 8 ------------------------------------------- [{(1 - 280.4)^2} ÷ 110] + 16 Step 9 ---------------------------------------------- [{(-279.4)^2} ÷ 110] + 16 Step 10 -------------------------------------------------- [(78064) ÷ 110] + 16 Step 11 ------------------------------------------------------------ [709] + 16 Step 12 --------------------------------------------------------- MDefNum = 725 Step 13 --------------------------------------------- [BaseDmg * MDefNum ÷ 730] Step 14 --------------------------------------------------- [99999 * 725 ÷ 730] Step 15 ------------------------------------------------- Base Damage 2 = 99314 Step 16 ---------- Base Damage 2 * {730 - (MDef * 51 - MDef^2 ÷ 11) ÷ 10} ÷ 730 Step 17 ------------------------ 99314 * {730 - (1 * 51 - 1^2 ÷ 11) ÷ 10} ÷ 730 Step 18 ------------------------------ 99314 * {730 - (51 - 1 ÷ 11) ÷ 10} ÷ 730 Step 19 --------------------------------------- 99314 * {730 - (49) ÷ 10} ÷ 730 Step 20 ----------------------------------------------------- 99314 * 725 ÷ 730 Step 21 -------------------------------------------------- Final Damage = 98633 The problem is that the formulas completely fall apart once stats start going above 255. In particular Defense values over 300 or so start generating really strange behavior. High Strength + Defense stats lead to massive negative values for instance. While I might be able to modify the formulas to work correctly for my use case, it'd probably be easier just to use a completely new formula. How do people actually develop damage formulas? I was considering opening excel and trying to build the formula that way (mapping Attack Stats vs. Defense Stats for instance) but I was wondering if there's an easier way? While I can't convey the full game mechanics of my game here, might someone be able to suggest a good starting place for building a damage formula? Thanks

    Read the article

  • HP and Microsoft: That&rsquo;s What Friends Are For ?

    - by andrewbrust
    Today, HP pre-announced the second coming out for its recently acquired Palm webOS mobile operating system.  I happen to think webOS is quite good, and when the Palm Pre first came out, I thought it a worthwhile phone.  I was worried though that the platform would never attract the developer mindshare it needed to be competitive, and that turned out to be the case.  But then HP acquired Palm and announced it would be revamping the webOS offering, not only on phones, but also on tablets.  It later announced that it would also use webOS as an embedded solution on HP printers. The timing of this came shortly after HP had announced it would be producing a “Slate” product running Windows 7. After the Palm deal, HP became vague about whether the Windows-powered slate would actually come out.  They did, in fact, bring the Slate 500 to market, but by some accounts, they only built 5000 units. Another recent awkward moment between HP and Microsoft: HP withdrew itself from the Windows Home Server ecosystem.  That one hurt, as they were the dominant OEM there.  But Microsoft’s decision to kill Drive Extender had driven away many parties, not just HP. On Wednesday, HP came out with their TouchPad, and new phone models.  Not a nice thing for Windows Phone 7, but other OEMs are taking a wait and see attitude there too, I suppose.  There was one more zinger though, and it was bigger: HP announced they’d be porting webOS to PCs. No Windows Phone 7? OK. No Windows Home Server?  Whatcha gonna do?  But no Windows 7 either?  From HP?  What comes after that, no ink and toner? Some people think Microsoft’s been around too long to be relevant.  But HP started out making oscilloscopes!  The notion that HP is too cool for Windows school is a it far-fetched.  This is the company that bought EDS. This is the company that bought Compaq.  And Compaq was the company that bought Digital Equipment Corporation.  Somehow, I don’t think the VT 220 outclasses Windows PCs. What could possibly be going on?  My sense is that HP wants to put webOS on PCs that also have Windows, and that people will buy because they have Windows.  And for every one of those sold, HP gets to count, technically speaking, another webOS unit in the install base.  webOS is really nice, as I said.  But being good isn’t good enough when you are trying to get market share.  Number of units shipped matters.  The question is whether counting PCs with webOS installed, but dormant, is helpful to HP’s cause.  Seems like a funny way to account for market share, and a strange way to treat a big partner in Redmond.

    Read the article

  • Customizing UPK outputs (Part 1)

    - by [email protected]
    If you are familiar with Oracle's User Productivity Kit, you are aware that UPK is a great product for rapidly developing application training. Did you know that you can also customize the UPK outputs to incorporate your company's logo, colors, and preferred styles? There are several areas that support customization: Logo - Within the developer, you can change the logo for all outputs at one time. Player - The player output uses a style sheet that can be updated to change colors, graphics and other visual branding. Documentation - The print documentation uses a Word-based template that can be modified to match your corporate standards. I'll discuss the first one today, and we'll cover the others in subsequent blogs. Before you begin: If you are working in a multi-user environment, ensure that you have "Modify" permissions for the Styles directory under the Publishing folder. Make a copy of the current styles. This recommendation is for backup purposes. If something goes wrong, you will have a way to recover. Consider creating your own category by creating a new folder under the Styles directory, and then copying the styles into your new folder. When you upgrade to future versions, the system will overwrite the standard styles with any new feature additions and updates that have been made. With your own category, all of your customizations will remain intact. To update the logos in all outputs: From the Tools Menu, choose Customize Logo. Select the category if necessary. Browse to select your logo. You can use any size logo, in any graphic format (*.bmp, *.gif, *.jpeg, *.jpg, *.png, or *.tif). The system will make a copy of your logo and add it to each of the publishing styles. Choose OK, and the update process begins. It may take a few minutes. Helpful hints: The logo you select is used "as is" - no resizing or cropping occurs during this process. The Customize Logo process automates replacing all the logo graphics for online deployment (small_logo.gif and large_logo.gif) and the headers in the documentation outputs. You can manually replace these graphics on an individual style basis if you prefer. The recommended logo size is 230 pixels wide x 44 pixels high. Prior to updating the logos, the system will display the size of the selected logo. If you use a logo that is much larger than the recommended size, the heading area will resize to fit the new logo, but that will impact the space available for your training material. If you are using a multi-user environment, the system will check out the publishing styles to you for the logo updates. After you review the styles, remember to check them in so the rest of your team can access the new changes. I'd be interested in hearing (or seeing) how you brand your UPK. Feel free to share in the comments! --Maria Cozzolino, Manager of Requirements & UI for UPK Product Development PS. For those of you who want to customize the player and documentation NOW, check out the detailed instructions in the Publishing Content chapter of the Content Development Guide.

    Read the article

  • The Latest News About SAP

    - by jmorourke
    Like many professionals, I get a lot of my news from Google e-mail alerts that I’ve set up to keep track of key industry trends and competitive news.  In the past few weeks, I’ve been getting a number of news alerts about SAP.  Below are a few recent examples: Warm weather cuts short US maple sugaring season – by Toby Talbot, AP MILWAUKEE – Temperatures in Wisconsin had already hit the high 60s when Gretchen Grape and her family began tapping their 850 maple trees. They had waited for the state's ceremonial tapping to kick off the maple sugaring season. It was moved up five days, but that didn't make much difference. For Grape, the typically month-long season ended nine days later. The SAP had stopped flowing in a record-setting heat wave, and the 5-quart collection bags that in a good year fill in a day were still half-empty. Instead of their usual 300 gallons of syrup, her family had about 40. Maple syrup producers across the North have had their season cut short by unusually warm weather. While those with expensive, modern vacuum systems say they've been able to suck a decent amount of sap from their trees, producers like Grape, who still rely on traditional taps and buckets, have seen their year ruined. "It's frustrating," said the 69-year-old retiree from Holcombe, Wis. "You put in the same amount of work, equipment, investment, and then all of a sudden, boom, you have no SAP." Home & Garden: Too-Early Spring Means Sugaring Woes  - by Georgeanne Davis for The Free Press Over this past weekend, forsythia and daffodils were blooming in the southern parts of the state as temperatures climbed to 85 degrees, and trees began budding out, putting an end to this year's maple syrup production even as the state celebrated Maine Maple Sunday. Maple sugaring needs cold nights and warm days to induce SAP flows. Once the trees begin budding, SAP can still flow, but the SAP is bitter and has an off taste. Many farmers and dairymen count on sugaring for extra income, so the abbreviated season is a real financial loss for them, akin to the shortened shrimping season's effect on Maine lobstermen. SAP season comes to a sugary Sunday finale – Kennebec Journal, March 26th, 2012 Rebecca Manthey stood out in the rain at the entrance of Old Fort Western keeping watch over a cast iron kettle of boiling SAP hooked to a tripod over a wood fire.  Manthey and the rest of the Old Fort Western staff -- decked out in 18th-century attire -- joined sugar houses across the state in observance of Maine Maple Sunday. The annual event is sponsored by the Department of Agriculture and the Maine Maple Producers Association.  She said the rain hadn't kept people from coming to enjoy all the events at the fort surrounding the production of Maple syrup.  "In the 18th century, you would be boiling SAP in the woods, so I would be in the woods," Manthey explained to the families who circled around her. "People spent weeks and weeks in the woods. You don't want to cook it to fast or it would burn. When it looks like the right consistency then you send it (into the kitchen) to be made into sugar." Manthey said she enjoyed portraying an 18th-century woman, even in the rain, which didn't seem to bother visitors either. There was a steady stream of families touring the fort and enjoying the maple syrup demonstrations. I hope you enjoy these updates on SAP – Happy April Fool’s Day!

    Read the article

  • A Case for Oracle Fusion Middleware by Lucas Jellema

    - by JuergenKress
    An in-depth look at the interaction of people, processes, and technologies in the transition to a service-oriented architecture. Author's Note This article presents a profile of a fictitious organization, NOPERU. The story of NOPERU as told in this article is actually a collage of the events at some dozen organizations that I have been involved with over the past few years. None of these organizations sport all the characteristics of NOPERU - but all of them have gone through or are going through a similar transition as described here and all aspects of this article were taken from real life at one or usually many of these organizations. Background NOPERU (National Organization for Permits for Emissions and Resource Usage) is a public organization that continues to transform in terms of its business, organization and technology. Changing business requirements; new interaction channels; and increasing demands for more flexibility, faster throughput and lower costs drive these transformations, while technological evolution and new architecture patterns enable the change. NOPERU chose Oracle Fusion Middleware as the technology platform to implement the new architecture and required applications. This article takes a close look at NOPERU's journey from its origins in the early 1990s as a largely paper-based entity with regional databases and client-server Oracle Forms applications. Its upcoming business objectives are introduced: what is required of the organization and what the higher goals behind these requirements are. The architecture roadmap is described at a high level as well as drilled down to a service oriented design. Based on the architecture roadmap and the business requirements and NOPERU went through a technology selection to determine the technology stack with which the future would be realized in terms of IT. The article discusses that selection and details the projects subsequently planned (and executed to date). The new architecture and technology as well as the introduction of an Agile development method have had substantial consequences for the IT organization, the processes and individual staff members. The approach NOPERU has adopted with regard to the people and the organization is portrayed. Finally, the article discusses many conclusions that NOPERU has drawn that may benefit itself and other organizations. Introducing NOPERU NOPERU is a national organization charged with issuing permits for excessive emissions (i.e., carbon dioxide) and disproportionate usage of such resources as energy or water. Anyone-whether a commercial enterprise, government agency or private person--who emits or consumes more than what is considered "fair usage" requires such a permit. When someone builds an outdoor heated swimming pool, for example, or open-air terrace heating, such a permit needs to be obtained. When a company installs new, energy-intensive equipment, such as water boilers or deep freezers, it too needs to get a NOPERU permit. Government-sponsored projects at every level that involve consumption of large quantities of fresh water or production of high volumes of emissions must turn to NOPERU for a permit. Without the required license, any interested party can get a court to immediately put a stop to the disputed activity. Read the full article here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: Lucas Jellema,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Java 6 Certified with Forms and Reports 10g for EBS 12

    - by John Abraham
    Java 6 is now certified with Oracle Application Server 10g Forms and Reports with Oracle E-Business Suite Release 12 (12.0.6, 12.1.1 and higher). What? Wasn't this already certified? No, but a little background might be useful in understanding why this is a new announcement. We previously certified the use of Java 6 with E-Business Suite Release 12 -- with the sole exception of Oracle Application Server 10g components in the E-Business Suite technology stack. Oracle Application Server 10g originally included Java 1.4.2 as part of its distribution.  E-Business Suite 12 uses, amongst other things, the Oracle Forms and Reports 10g components running on Java 1.4. Java 1.4 in the Oracle Application Server 10g ORACLE_HOME is used exclusively by AS 10g Forms and Reports' for Java functionality.  This version of Java is separate from the Java distribution used by other parts of EBS such as Oracle Containers for Java (OC4J). What's new about this certification? You can now upgrade the older Java 1.4 libraries used by Oracle Forms & Reports 10g to Java 6. This allows you to upgrade the Java releases within the Oracle Application Server 10g ORACLE_HOME to the the same level as the rest of your E-Business Suite technology stack components. Why upgrade? This becomes particularly important for customers as individual vendors' support lifecycle for Java 1.4 reaches End of Life: Oracle's Sun JDK Release 1.4.2's End of Extended Support: February 2013 (Sustaining Support indefinitely after) IBM SDK and JRE 1.4.2's End of Service: September 2013 HP-UX Java 1.4.2's End-of-Life : May 2012 Along with Oracle Forms, Java lies at the heart of the Oracle E-Business Suite.  Small improvements in Java can have significant effects on the performance and stability of the E-Business Suite.  As a notable side-benefit, later versions of Java have improved built-in and third-party tools for JVM performance monitoring and tuning.Our standing recommendation is that you always stay current with the latest available Java update provided by your operating system vendor.  Don't forget to upgrade Forms & Reports to 10.1.2.3 E-Business Suite 12 originally shipped with Oracle Application Server 10g Forms & Reports 10.1.2.0.2.  That version is no longer eligible for Error Correction Support. New Forms and Reports 10g patches are now being released with Forms and Reports 10.1.2.3 as the prerequisite. Forms and Reports 10.1.2.3 was certified for EBS 12 environments in November 2008. If you haven't upgraded your EBS 12 environment to Forms & Reports 10.1.2.3, this is a good opportunity to do so. References Using Latest Update of Java 6.0 with Oracle E-Business Suite Release 12 (My Oracle Support Document 455492.1) Overview of Using Java with Oracle E-Business Suite Release 12 (My Oracle Support Document 418664.1) Oracle Lifetime Support Policy (Oracle Fusion Middleware) IBM Developer Kit Lifecycle Dates HP-UX Java - End of Life Policy & Release Naming Terminology Related Articles OracleAS 10g Forms and Reports 10.1.2.3 Certified With EBS R12 Java 6 Certified with E-Business Suite Release 12

    Read the article

  • How to develop RPG Damage Formulas?

    - by user127817
    I'm developing a classical 2d RPG (in a similar vein to final fantasy) and I was wondering if anyone had some advice on how to do damage formulas/links to resources/examples? I'll explain my current setup. Hopefully I'm not overdoing it with this question, and I apologize if my questions is too large/broad My Characters stats are composed of the following: enum Stat { HP = 0, MP = 1, SP = 2, Strength = 3, Vitality = 4, Magic = 5, Spirit = 6, Skill = 7, Speed = 8, //Speed/Agility are the same thing Agility = 8, Evasion = 9, MgEvasion = 10, Accuracy = 11, Luck = 12, }; Vitality is basically defense to physical attacks and spirit is defense to magic attacks. All stats have fixed maximums (9999 for HP, 999 for MP/SP and 255 for the rest). With abilities, the maximums can be increased (99999 for HP, 9999 for HP/SP, 999 for the rest) with typical values (at level 100) before/after abilities+equipment+etc will be 8000/20,000 for HP, 800/2000 for SP/MP, 180/350 for other stats Late game Enemy HP will typically be in the lower millions (with a super boss having the maximum of ~12 million). I was wondering how do people actually develop proper damage formulas that scale correctly? For instance, based on this data, using the damage formulas for Final Fantasy X as a base looked very promising. A full reference here http://www.gamefaqs.com/ps2/197344-final-fantasy-x/faqs/31381 but as a quick example: Str = 127, 'Attack' command used, enemy Def = 34. 1. Physical Damage Calculation: Step 1 ------------------------------------- [{(Stat^3 ÷ 32) + 32} x DmCon ÷16] Step 2 ---------------------------------------- [{(127^3 ÷ 32) + 32} x 16 ÷ 16] Step 3 -------------------------------------- [{(2048383 ÷ 32) + 32} x 16 ÷ 16] Step 4 --------------------------------------------------- [{(64011) + 32} x 1] Step 5 -------------------------------------------------------- [{(64043 x 1)}] Step 6 ---------------------------------------------------- Base Damage = 64043 Step 7 ----------------------------------------- [{(Def - 280.4)^2} ÷ 110] + 16 Step 8 ------------------------------------------ [{(34 - 280.4)^2} ÷ 110] + 16 Step 9 ------------------------------------------------- [(-246)^2) ÷ 110] + 16 Step 10 ---------------------------------------------------- [60516 ÷ 110] + 16 Step 11 ------------------------------------------------------------ [550] + 16 Step 12 ---------------------------------------------------------- DefNum = 566 Step 13 ---------------------------------------------- [BaseDmg * DefNum ÷ 730] Step 14 --------------------------------------------------- [64043 * 566 ÷ 730] Step 15 ------------------------------------------------------ [36248338 ÷ 730] Step 16 ------------------------------------------------- Base Damage 2 = 49655 Step 17 ------------ Base Damage 2 * {730 - (Def * 51 - Def^2 ÷ 11) ÷ 10} ÷ 730 Step 18 ---------------------- 49655 * {730 - (34 * 51 - 34^2 ÷ 11) ÷ 10} ÷ 730 Step 19 ------------------------- 49655 * {730 - (1734 - 1156 ÷ 11) ÷ 10} ÷ 730 Step 20 ------------------------------- 49655 * {730 - (1734 - 105) ÷ 10} ÷ 730 Step 21 ------------------------------------- 49655 * {730 - (1629) ÷ 10} ÷ 730 Step 22 --------------------------------------------- 49655 * {730 - 162} ÷ 730 Step 23 ----------------------------------------------------- 49655 * 568 ÷ 730 Step 24 -------------------------------------------------- Final Damage = 38635 I simply modified the dividers to include the attack rating of weapons and the armor rating of armor. Magic Damage is calculated as follows: Mag = 255, Ultima is used, enemy MDef = 1 Step 1 ----------------------------------- [DmCon * ([Stat^2 ÷ 6] + DmCon) ÷ 4] Step 2 ------------------------------------------ [70 * ([255^2 ÷ 6] + 70) ÷ 4] Step 3 ------------------------------------------ [70 * ([65025 ÷ 6] + 70) ÷ 4] Step 4 ------------------------------------------------ [70 * (10837 + 70) ÷ 4] Step 5 ----------------------------------------------------- [70 * (10907) ÷ 4] Step 6 ------------------------------------ Base Damage = 190872 [cut to 99999] Step 7 ---------------------------------------- [{(MDef - 280.4)^2} ÷ 110] + 16 Step 8 ------------------------------------------- [{(1 - 280.4)^2} ÷ 110] + 16 Step 9 ---------------------------------------------- [{(-279.4)^2} ÷ 110] + 16 Step 10 -------------------------------------------------- [(78064) ÷ 110] + 16 Step 11 ------------------------------------------------------------ [709] + 16 Step 12 --------------------------------------------------------- MDefNum = 725 Step 13 --------------------------------------------- [BaseDmg * MDefNum ÷ 730] Step 14 --------------------------------------------------- [99999 * 725 ÷ 730] Step 15 ------------------------------------------------- Base Damage 2 = 99314 Step 16 ---------- Base Damage 2 * {730 - (MDef * 51 - MDef^2 ÷ 11) ÷ 10} ÷ 730 Step 17 ------------------------ 99314 * {730 - (1 * 51 - 1^2 ÷ 11) ÷ 10} ÷ 730 Step 18 ------------------------------ 99314 * {730 - (51 - 1 ÷ 11) ÷ 10} ÷ 730 Step 19 --------------------------------------- 99314 * {730 - (49) ÷ 10} ÷ 730 Step 20 ----------------------------------------------------- 99314 * 725 ÷ 730 Step 21 -------------------------------------------------- Final Damage = 98633 The problem is that the formulas completely fall apart once stats start going above 255. In particular Defense values over 300 or so start generating really strange behavior. High Strength + Defense stats lead to massive negative values for instance. While I might be able to modify the formulas to work correctly for my use case, it'd probably be easier just to use a completely new formula. How do people actually develop damage formulas? I was considering opening excel and trying to build the formula that way (mapping Attack Stats vs. Defense Stats for instance) but I was wondering if there's an easier way? While I can't convey the full game mechanics of my game here, might someone be able to suggest a good starting place for building a damage formula? Thanks

    Read the article

  • What Counts For a DBA: Imagination

    - by drsql
    "Imagination…One little spark, of inspiration… is at the heart, of all creation." – From the song "One Little Spark", by the Sherman Brothers I have a confession to make. Despite my great enthusiasm for databases and programming, it occurs to me that every database system I've ever worked on has been, in terms of its inputs and outputs, downright dull. Most have been glorified e-spreadsheets, many replacing manual systems built on actual spreadsheets. I've created a lot of database-driven software whose main job was to "count stuff"; phone calls, web visitors, payments, donations, pieces of equipment and so on. Sometimes, instead of counting stuff, the database recorded values from other stuff, such as data from sensors or networking devices. Yee hah! So how do we, as DBAs, maintain high standards and high spirits when we realize that so much of our work would fail to raise the pulse of even the most easily excitable soul? The answer lies in our imagination. To understand what I mean by this, consider a role that, in terms of its output, offers an extreme counterpoint to that of the DBA: the Disney Imagineer. Their job is to design Disney's Theme Parks, of which I'm a huge fan. To me this has always seemed like a fascinating and exciting job. What must an Imagineer do, every day, to inspire the feats of creativity that are so clearly evident in those spectacular rides and shows? Here, if ever there was one, is a role where "dull moments" must be rare indeed, surely? I wanted to find out, and so parted with a considerable sum of money for my wife and I to have lunch with one; I reasoned that if I found one small way to apply their secrets to my own career, it would be money well spent. Early in the conversation with our Imagineer (Cindy Cote), the job did indeed sound magical. However, as talk turned to management meetings, budget-wrangling and insane deadlines, I came to the strange realization that, in fact, her job was a lot more like mine than I would ever have guessed. Much like databases, all those spectacular Disney rides bring with them a vast array of complex plumbing, lighting, safety features, and all manner of other "boring bits", kept well out of sight of the end user, but vital for creating the desired experience; and, of course, it is these "boring bits" that take up much of the Imagineer's time. Naturally, there is still a vital part of their job that is spent testing out new ideas, putting themselves in the place of a park visitor, from a 9-year-old boy to a 90-year-old grandmother, and trying to imagine what experiences they'd like to have. It is these small, but vital, sparks of imagination and creativity that have the biggest impact. The real feat of a successful Imagineer is clearly to never to lose sight of this fact, in among all the rote tasks. It is the same for a DBA. Not matter how seemingly dull is the task at hand, try to put yourself in the shoes of the end user, and imagine how your input will affect the experience he or she will have with the database you're building, and how that may affect the world beyond the bits stored in your database. Then, despite the inevitable rush to be "done", find time to go the extra mile and hone the design so that it delivers something as close to that imagined experience as you can get. OK, our output still can't and won't reach the same spectacular heights as the "Journey into The Imagination" ride at EPCOT Theme Park in Orlando, where I first heard "One Little Spark". However, our imaginative sparks and efforts can, and will, make a difference to the user who now feels slightly more at home with a database application, or to the manager holding a report presented with enough clarity to drive an interesting decision or two. They are small victories, but worth having, and appreciated, or at least that's how I imagine it.

    Read the article

  • Using Oracle Linux iSCSI targets with Oracle VM

    - by wim.coekaerts
    A few days ago I had written a blog entry on how to use Oracle Solaris 10 (in my case), ZFS and the iSCSI target feature in Oracle Solaris to create a set of devices exported to my Oracle VM server. Oracle Linux can do this as well and I wanted to make sure I also tried out how to do this on Oracle Linux and here are the results. When you install Oracle Linux 5 update 5 (anything newer than update 3), it comes with an rpm called scsi-target-utils. To begin your quest, should you choose to accept it :) make sure this is installed. rpm -qa |grep scsi-target If it is not installed : up2date scsi-target-utils The target utils come with a tool tgtadm which is similar to iscsitadm on Oracle Solaris. There are 2 components again on the iSCSI server side. (1) create volumes - we will use lvm with lvcreate (2) expose a target using tgtadm. My server has a simple setup. All the disks are part of a single volume group called vgroot. To export a 50Gb volume I just create a new volume : lvcreate -L 50G -nmytest1 vgroot This will show up as a new volume in /dev/mapper as /dev/mapper/vgroot-mytest1. Create as many as you want for your environment. Since I already have my blog entry about the 5 volumes, I am not going to repeat the whole thing. You can just go look at the previous blog entry. Now that we have created the volume, we need to use tgtadm to set it up : make sure the service is running : /etc/init.d/tgtd start or service tgtd start (if you want to keep it running you can do chkconfig tgtd on to start it automatically at boottime) Next you need a targetname to set everything up. My recommendation would be to install iscsi-initiator-utils . This will create an iscsi id and put it in /etc/iscsi/initiatorname.iscsi. For convenience you can do : source /etc/iscsi/initiatorname.iscsi echo $InitiatorName and from here on use $InitiatorName instead of the long complex iqn. create your target : tgtadm --lld iscsi --op new --mode target --tid 1 -T $InitiatorName to show the status : tgtadm --lld iscsi --op show --mode target add the volume previously created : tgtadm --lld iscsi --op new --mode logicalunit --tid 1 --lun 1 -b /dev/mapper/vgroot-mytest1 re-run status to see it's there : tgtadm --lld iscsi --op show --mode target and just like on Oracle Solaris you now have to export (bind) it : tgtadm --lld iscsi --op bind --mode target --tid 1 -I iqn.1986-03.com.sun:01:2a7526f0ffff If you want to export the lun to every iscsi initiator then replace the iqn with ALL. Of course you have to add the iqn of each iscsi initiator or client you want to connect. In the case of my 2 node Oracle VM server setup, both Oracle VM server's initiator names would have to be added. use status again to see that it has this iqn under ACL tgtadm --lld iscsi --op show --mode target You can drop the --lld iscsi if you want, or alias it. It just makes the command line more obvious as to what you are doing. Oracle VM side : Refer back to the previous blog entry for the detailed setup of my Oracle VM server volumes but the exact same commands will be used there. discover : iscsiadm --mode discovery --type sendtargets --portal login : iscsiadm --mode node --targetname iscsi targetname --portal --login get devices : /etc/init.d/iscsi restart and voila you should be in business. have fun.

    Read the article

  • Master Data Management for Location Data - Oracle Site Hub

    - by david.butler(at)oracle.com
    Most MDM discussions cover key domains such as customer, supplier, product, service, and reference data. It is usually understood that these domains have complex structures and hundreds if not thousands of attributes that need governing. Location, on the other hand, strikes most people as address data. How hard can that be? But for many industries, locations are complex, and site information is critical to efficient operations and relevant analytics. Retail stores and malls, bank branches, construction sites come to mind. But one of the best industries for illustrating the power of a site mastering application is Oil & Gas.   Oracle's Master Data Management solution for location data is the Oracle Site Hub. It is a location mastering solution that enables organizations to centralize site and location specific information from heterogeneous systems, creating a single view of site information that can be leveraged across all functional departments and analytical systems.   Let's take a look at the location entities the Oracle Site Hub can manage for the Oil & Gas industry: organizations, property, land, buildings, roads, oilfield, service center, inventory site, real estate, facilities, refineries, storage tanks, vendor locations, businesses, assets; project site, area, well, basin, pipelines, critical infrastructure, offshore platform, compressor station, gas station, etc. Any site can be classified into multiple hierarchies, like organizational hierarchy, operational hierarchy, geographic hierarchy, divisional hierarchies and so on. Any site can also be associated to multiple clusters, i.e. collections of sites, and these can be used as a foundation for driving reporting, analysis, organize daily work, etc. Hierarchies can also be used to model entities which are structured or non-structured collections of nodes, like for example routes, pipelines and more. The User Defined Attribute Framework provides the needed infrastructure to add single row attributes groups like well base attributes (well IDs, well type, well structure and key characterizing measures, and more) and well geometry, and multi row attribute groups like well applications, permits, production data, activities, operations, logs, treatments, tests, drills, treatments, and KPIs. Site Hub can also model areas, lands, fields, basins, pools, platforms, eco-zones, and stratigraphic layers as specific sites, tracking their base attributes, aliases, descriptions, subcomponents and more. Midstream entities (pipelines, logistic sites, pump stations) and downstream entities (cylinders, tanks, inventories, meters, partner's sites, routes, facilities, gas stations, and competitor sites) can also be easily modeled, together with their specific attributes and relationships. Site Hub can store any type of unstructured data associated to a site. This could be stored directly or on an external content management solution, like Oracle Universal Content Management. Considering a well, for example, Site Hub can store any relevant associated multimedia file such as: CAD drawings of the well profile, structure and/or parts, engineering documents, contracts, applications, permits, logs, pictures, photos, videos and more. For any site entity, Site Hub can associate all the related assets and equipments at the site, as well as all relationships between sites, between a site and multiple parties, and between a site and any purchasable or sellable item, over time. Items can be equipment, instruments, facilities, services, products, production entities, production facilities (pipelines, batteries, compressor stations, gas plants, meters, separators, etc.), support facilities (rigs, roads, transmission or radio towers, airstrips, etc.), supplier products and services, catalogs, and more. Items can just be associated to sites using standard Site Hub features, or they can be fully mastered by implementing Oracle Product Hub. Site locations (addresses or geographical coordinates) are also managed with out-of-the-box address geo-coding capabilities coupled with Google Maps integration to deliver powerful mapping capabilities and spatial data analysis. Locations can be shared between different sites. Centered on the site location, any site can also have associated areas. Site Hub can master any site location specific information, like for example cadastral, ownership, jurisdictional, geological, seismic and more, and any site-centric area specific information, like for example economical, political, risk, weather, logistic, traffic information and more. Now if anyone ever asks you why locations need MDM, think about how all these Oil & Gas entities and attributes would translate into your business locations. To learn more about Oracle's full MDM solution for the digital oil field, here is a link to Roberto Negro's outstanding whitepaper: Oracle Site Master Data Management for mastering wells and other PPDM entities in a digital oilfield context  

    Read the article

  • Professional Developers, may I join you?

    - by Ben
    I currently work in technical support for a software/hardware company and for the most part it's a good job, but it's feeling more and more like I'm getting 'stuck' here. No raises in the 5 years I've been here, and lately there seems to be more hiring from the outside than promotion from within. The work I do is more technical than end-user support, as we deal primarily with our field technicians who have a little more technical skill than the general user base. As a result I get into much more technical support issues... often tracking down bugs in our software, finding performance bottlenecks in our database schema, etc. The work I'm most proud of are the development projects I've come up with on my own, and worked on during lunch breaks and slow periods in Support. Over the years I've written a number of useful utilities for the company. Diagnostic type applications that several departments use and appreciate. These include apps that simulate our various hardware devices, log file analysis, time-saving utilities for our work processes, etc. My best projects have been the hardware simulation programs, which are the type of thing we probably wouldn't have put a full-time developer on had anyone thought to do it, but they've ended up being popular and useful enough to be used by development, QA, R&D, and Support. They allow us to interface our software with simulated hardware, rather than clutter up our work areas with bulky, hard to acquire equipment. Since starting here my life has moved forward (married, kid, one more on the way), but it feels like my career has not. I still earn what I earned walking in the door my first day. Company budget is tight, bonuses have gone down, and no raises or cost of living / inflation adjustments either. As the sole source of income for my family I feel I need to do more, and I'd like to have a more active role in creating something at work, not just cleaning up other people's mistakes. I enjoy technical work, and I think development is the next logical step in my career. I'd like to bring some "legitimacy" to my part-time development work, and make myself a more skilled and valuable employee. Ultimately if this can help me better support my family, that would be ideal. Can I make the jump to professional developer? I have an engineering degree, but no formal education in computer science. I write WinForms apps using the .NET framework, do some freelance web development, have volunteered to write software for a nonprofit, and have started experimenting with programming microcontrollers. I enjoy learning new things in the limited free time I have available. I think I have the aptitude to take on a development role, even in an 'apprentice' capacity if such an option is possible. Have any of you moved into development like this? Do any of you developers have any advice or cautionary tales? Are there better career options I haven't thought of? I welcome any and all related comments and thank you in advance for posting them.

    Read the article

  • 45 minutes to talk about C# [closed]

    - by Philip
    I have the opportunity to give a 45 minute talk on C# in the theory of programming languages class I'm taking. The college teaches Java almost exclusively, so that's what all the students are most familiar with. (There's a little C, assembly, Prolog and LISP as well.) I decide what to talk about. It seems to me the best approach is to focus on a few of the big, obvious differences between C# and Java. I don't intend it to be a recommendation to use C# -- there are reasons to use each, mostly because of their ecosystems. So I want to focus on C# as a language. I don't want to go too fast and end up listing a whole bunch of features without showing their usefulness. My current plan is this: Functions as first class objects. This is, in my opinion, one of the biggest differences between C# and Java. The professor briefly mentioned this notion and showed a LISP example, but many of the students have probably never used it. I can show real world examples where it's made my code more readable. Lambda expressions as concise syntax for anonymous functions. Obviously with examples to show how this is useful. The real hit-home examples will be at the end when it's combined with the rest. I don't see an advantage to first showing the old delegate syntax and then replacing it with lambdas -- most of us won't have ever seen delegates anyway so it would just be confusing. The yield keyword and how it's different from returning an array. I have the impression that a lot of C# developers aren't familiar with how to use this. It will likely be very foreign to Java developers. I have some examples from my own work where it was really useful, such as iterating over a tree traversal, or iterating over neighbors in a graph where the neighbors aren't stored in memory. In both cases, doing it in Java would likely mean returning a complete list -- with yield I can stop iterating if I find what I want early on, without using memory for superfluous lists or arrays. Extension methods as a way to write implementation on interfaces. We'll all be familiar with how interfaces don't allow method implementation, and how this leads to code duplication. I'll show a specific example of this and how the extension method can solve the problem. Demonstrate how the above can be combined by implementing some simple Linq methods and using them. Where, Select, First, maybe more depending on how much time is left. Ideas on which ones might 'hit home' the best? There are other things I could talk about such as generics, value types, properties and more. I haven't yet though of good ways to incorporate these. In the case of generics and value types, the advantages might not be obvious or as relevant. Properties are obviously useful, particularly since we're taught strict JavaBeans here, but I don't know if I could integrate it with the "path to Linq" discussion above without it feeling tacked on. So I'm looking for thoughts on how to talk about C#, and what to talk about. Even minor details. I'm sure there are more experienced C# developers than me here who have good insight about what's really important in the language, and what would miss the point.

    Read the article

  • OTN ArchBeat Top 10 for September 2012

    - by Bob Rhubart
    The results are in... Listed below are the Top 10 most popular items shared via the OTN ArchBeat Facebook Page for the month of September 2012. The Real Architects of Los Angeles - OTN Architect Day - Oct 25 No gossip. No drama. No hair pulling. Just a full day of technical sessions and peer interaction focused on using Oracle technologies in today's cloud and SOA architectures. The event is free, but seating is limited, so register now. Thursday October 25, 2012. 8:00 a.m. – 5:00 p.m. Sofitel Los Angeles, 8555 Beverly Boulevard, Los Angeles, CA 90048. Oracle Fusion Middleware Security: Attaching OWSM policies to JRF-based web services clients "OWSM (Oracle Web Services Manager) is Oracle's recommended method for securing SOAP web services," says Oracle Fusion Middleware A-Team member Andre Correa. "It provides agents that encapsulate the necessary logic to interact with the underlying software stack on both service and client sides. Such agents have their behavior driven by policies. OWSM ships with a bunch of policies that are adequate to most common real world scenarios." His detailed post shows how to make it happen. Oracle 11gR2 RAC on Software Defined Network (SDN) (OpenvSwitch, Floodlight, Beacon) | Gilbert Stan "The SDN [software defined network] idea is to separate the control plane and the data plane in networking and to virtualize networking the same way we have virtualized servers," explains Gil Standen. "This is an idea whose time has come because VMs and vmotion have created all kinds of problems with how to tell networking equipment that a VM has moved and to preserve connectivity to VPN end points, preserve IP, etc." H/T to Oracle ACE Director Tim Hall for the recommendation. Process Oracle OER Events using a simple Web Service | Bob Webster Bob Webster's post "provides an example of a simple web service that processes Oracle Enterprise Repository (OER) Events. The service receives events from OER and utilizes the OER REX API to implement simple OER automations for selected event types." Understanding Oracle BI 11g Security vs Legacy Oracle BI 10g | Christian Screen "After conducting a large amount of Oracle BI 10g to Oracle BI 11g upgrades and after writing the Oracle BI 11g book,"says Oracle ACE Christian Screen, "I still continually get asked one of the most basic questions regarding security in Oracle BI 11g; How does it compare to Oracle BI 10g? The trail of questions typically goes on to what are the differences? And, how do we leverage our current Oracle BI 10g security table schema in Oracle BI 11g?" OIM-OAM-OAAM integration using TAP – Request Flow you must understand!! | Atul Kumar Atul Kumar's post addresses "key points and request flow that you must understand" when integrating three Oracle Identity Management product Oracle Identity Management, Oracle Access Management, and Oracle Adaptive Access Manager. Adding a runtime LOV for a taskflow parameter in WebCenter | Yannick Ongena Oracle ACE Yannick Ongena illustrates how to customize the parameters tab for a taskflow in WebCenter. Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET | Scott Nelson "It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings," says Scott Nelson. "Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there." 15 Lessons from 15 Years as a Software Architect | Ingo Rammer In this presentation from the GOTO Conference in Copenhagen, Ingo Rammer shares 15 tips regarding people, complexity and technology that he learned doing software architecture for 15 years. WebCenter Content (WCC) Trace Sections | ECM Architect ECM Architect Kevin Smith shares a detailed technical post covering WebCenter Content (WCC) Trace Sections. Thought for the Day "Eventually everything connects - people, ideas, objects. The quality of the connections is the key to quality per se." — Charles Eames (June 17, 1907 – August 21, 1978) Source: SoftwareQuotes.com

    Read the article

  • Exalytics and Oracle Business Intelligence Enterprise Edition (OBIEE) Partner Workshop

    - by mseika
    Workshop Description Oracle Fusion Middleware 11g is the #1 application infrastructure foundation. It enables enterprises to create and run agile and intelligent business applications and maximize IT efficiency by exploiting modern hardware and software architectures. Oracle Exalytics Business Intelligence Machine is the world’s first engineered system specifically designed to deliver high performance analysis, modeling and planning. Built using industry-standard hardware, market-leading business intelligence software and in-memory database technology, Oracle Exalytics is an optimized system that delivers unmatched speed, visualizations and scalability for Business Intelligence and Enterprise Performance Management applications. This FREE hands-on, partner workshop highlights both the hardware and software components that are engineered to work together to deliver Oracle Exalytics - an optimized version of the industry-leading Oracle TimesTen In-Memory Database with analytic extensions, a highly scalable Oracle server designed specifically for in-memory business intelligence, and Oracle’s proven Business Intelligence Foundation with enhanced visualization capabilities and performance optimizations. This workshop will provide hands-on experience with Oracle's latest engineered system. Topics covered will include TimesTen In-Memory Database and the new Summary Advisor for Exalytics, the technical details (including mobile features) of the latest release of visualization enhancements for OBI-EE, and technical updates on Essbase. After taking this course, you will be well prepared to architect, build, demo, and implement an end-to-end Exalytics solution. You will also be able to extend your current analytical and enterprise performance management application implementations with numerous Oracle technologies specifically enhanced to take advantage of the compute capacity and in-memory capabilities of Oracle Exalytics.If you are a BI or Data Warehouse Architect, developer or consultant, you don’t want to miss this 3-day workshop. Register Now! Presentations Exalytics Architectural Overview Upgrade and Lifecycle Management Times Ten for Exalytics Summary Advisor Utility Essbase and EPM System on Exalytics Dashboard and Analysis Interactions OBIEE 11.1.1.6 Features and Advanced Topics Lab OutlineThe labs showcase Oracle Exalytics core components and functionality and provide expertise of Oracle Business Intelligence 11.1.1.6 new features and updates from prior releases. The hands-on activities are based on an Oracle VirtualBox image with software and training samples pre-installed. Lab Environment Setup Creating and Working with Oracle TimesTen In-Memory Database Running Summary Advisor Utility Working with Exalytics Visualization Features – Dashboard and Analysis Interactions Audience Oracle Partners BI and EPM Application Developers and Implementers System Integrators and Solution Consultants Data Warehouse Developers Enterprise Architects Prerequisites Experience and understanding of OBIEE 11g is required Previous attendance of Oracle Business Intelligence Foundation Suite Workshop or BIEE 11gIntroduction Workshop is highly recommended Good understanding of data warehousing and data modeling for reporting and analysis purpose Strong experience with database technologies preferred Equipment RequirementsThis workshop requires attendees to provide their own laptops for this class.Attendee laptops must meet the following minimum hardware/software requirements: Hardware Minimum 8GB RAM 60 GB free space (includes staging) USB 2.0 port (at least one available) It is strongly recommended that you bring a mouse. You will be working in a development environment and using the mouse heavily. Software One of the following operating systems: 64-bit Windows host/laptop OS 64-bit host/laptop OS with a Windows VM (XP, Server, or Win 7, BIC2g, etc.) Internet Explorer 7.x/8.x or Firefox 3.5.x WINRAR or 7ziputility to unzip workshop files: Download-able from http://www.win-rar.com/download.html Download-able from http://www.7zip.com/ Oracle VirtualBox 4.0.2 or higher Downloadable from http://www.virtualbox.org/wiki/Downloads CPU virtualization mode needs to be enabled. We will provide guidance on the day of the workshop. Attendees will be given a VirtualBox image containing a pre-installed Oracle Exalytics environment. Schedule This workshop is 3 days. - Times vary by country!9:00am: Sign-in and technical setup 9:30am: Workshop starts 5:00pm: Workshop ends Oracle Exalytics and Business Intelligence (OBIEE) Workshop December 11-13, 2012: Oracle BVP, Birmingham, UK Register Here. Questions? Send email to: [email protected] Oracle Platform Technologies Enablement Services

    Read the article

  • SQL SERVER – Solution – User Not Able to See Any User Created Object in Tables – Security and Permissions Issue

    - by pinaldave
    There is an old quote “A Picture is Worth a Thousand Words”. I believe this quote immensely. Quite often I get phone calls that something is not working if I can help. My reaction is in most of the cases, I need to know more, send me exact error or a screenshot. Until and unless I see the error or reproduce the scenario myself I prefer not to comment. Yesterday I got a similar phone call from an old friend, where he was not sure what is going on. Here is what he said. “When I try to connect to SQL Server, it lets me connect just fine as well let me open and explore the database. I noticed that I do not see any user created instances but when my colleague attempts to connect to the server, he is able to explore the database as well see all the user created tables and other objects. Can you help me fix it? “ My immediate reaction was he was facing security and permission issue. However, to make the same recommendation I suggested that he send me a screenshot of his own SSMS and his friend’s SSMS. After carefully looking at both the screenshots, I was very confident about the issue and we were able to resolve the issue. Let us reproduce the same scenario and many there is some learning for us. Issue: User not able to see user created objects First let us see the image of my friend’s SSMS screen. (Recreated on my machine) Now let us see my friend’s colleague SSMS screen. (Recreated on my machine) You can see that my friend could not see the user tables but his colleague was able to do the same for sure. Now I believed it was a permissions issue. Further to this I asked him to send me another image where I can see the various permissions of the user in the database. My friends screen My friends colleagues screen This indeed proved that my friend did not have access to the AdventureWorks database and because of the same he was not able to access the database. He did have public access which means he will have similar rights as guest access. However, their SQL Server had followed my earlier advise on having limited access for guest access, which means he was not able to see any user created objects. My next question was to validate what kind of access my friend’s colleague had. He replied that the colleague is the admin of the server. I suggested that if my friend was suppose to have admin access to the database, he should request of having admin access to his colleague. My friend promptly asked for the same to his colleague and on following screen he added him as an admin. You can do the same using following T-SQL script as well. USE [AdventureWorks2012] GO ALTER ROLE [db_owner] ADD MEMBER [testguest] GO Once my friend was admin he was able to access all the user objects just like he was expecting. Please note, this complete exercise was done on a development server. One should not play around with security on live or production server. Security is such an issue, which should be left with only senior administrator of the server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Security, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Detect Unicode Usage in SQL Column

    One optimization you can make to a SQL table that is overly large is to change from nvarchar (or nchar) to varchar (or char).  Doing so will cut the size used by the data in half, from 2 bytes per character (+ 2 bytes of overhead for varchar) to only 1 byte per character.  However, you will lose the ability to store Unicode characters, such as those used by many non-English alphabets.  If the tables are storing user-input, and your application is or might one day be used internationally, its likely that using Unicode for your characters is a good thing.  However, if instead the data is being generated by your application itself or your development team (such as lookup data), and you can be certain that Unicode character sets are not required, then switching such columns to varchar/char can be an easy improvement to make. Avoid Premature Optimization If you are working with a lookup table that has a small number of rows, and is only ever referenced in the application by its numeric ID column, then you wont see any benefit to using varchar vs. nvarchar.  More generally, for small tables, you wont see any significant benefit.  Thus, if you have a general policy in place to use nvarchar/nchar because it offers more flexibility, do not take this post as a recommendation to go against this policy anywhere you can.  You really only want to act on measurable evidence that suggests that using Unicode is resulting in a problem, and that you wont lose anything by switching to varchar/char. Obviously the main reason to make this change is to reduce the amount of space required by each row.  This in turn affects how many rows SQL Server can page through at a time, and can also impact index size and how much disk I/O is required to respond to queries, etc.  If for example you have a table with 100 million records in it and this table has a column of type nchar(5), this column will use 5 * 2 = 10 bytes per row, and with 100M rows that works out to 10 bytes * 100 million = 1000 MBytes or 1GB.  If it turns out that this column only ever stores ASCII characters, then changing it to char(5) would reduce this to 5*1 = 5 bytes per row, and only 500MB.  Of course, if it turns out that it only ever stores the values true and false then you could go further and replace it with a bit data type which uses only 1 byte per row (100MB  total). Detecting Whether Unicode Is In Use So by now you think that you have a problem and that it might be alleviated by switching some columns from nvarchar/nchar to varchar/char but youre not sure whether youre currently using Unicode in these columns.  By definition, you should only be thinking about this for a column that has a lot of rows in it, since the benefits just arent there for a small table, so you cant just eyeball it and look for any non-ASCII characters.  Instead, you need a query.  Its actually very simple: SELECT DISTINCT(CategoryName)FROM CategoriesWHERE CategoryName <> CONVERT(varchar, CategoryName) Summary Gregg Stark for the tip. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 49 50 51 52 53 54 55 56 57 58 59  | Next Page >