Search Results

Search found 83878 results on 3356 pages for 'google data api'.

Page 531/3356 | < Previous Page | 527 528 529 530 531 532 533 534 535 536 537 538  | Next Page >

  • Recover snap server data

    - by Ugg
    Hi I have a snap server 110 the machine powers on ok and the healthcheck passes but unable to connect no responce on the assigned ip or any ability to reach the device via the snap server manager. Believe the device is powering on but not loading the OS. Tried pulling the disk running and hooking up to a windows PC via USB, and using disk internals linux reader I am unable to access two of the partitions. ( one of which is the large data partition). There are three partitions on the the drice only one is accessible via Linux reader. I am looking to recover the data of the drive can anyone suggest a DIY option please?

    Read the article

  • Slow data transfer using SSH

    - by Floste
    The server is an ubuntu server 11.04 with sshd. SSH works fine for console programs. But data transfer is slow, which is very annoying when transferring large files. I tried two different client programs and changed the port, but the speed is always the same. I know the server can transfer data a lot faster over SSL, which afaik uses AES. I configured my SSH client to use AES, too, but no effect. Why is using SSH multiple times slower than SSL and is there a way to improve transfer speed of SSH?

    Read the article

  • How is WPF Data Binding using Object Data Source in Visual Studio 2010 done?

    - by Rob Perkins
    This is probably mostly a question about how to use the VS 2010 IDE tools in a way the Microsofties didn't specifically intend. But since this is something I immediately tried without success. I have defined a .NET 4.0 WPF Application project with a simple class that looks like this: Public Class Class1 Public Property One As String = "OneString" Public Property Two As String = "TwoString" End Class I then defined it as an "Object Data Source" in VS2010, using the IDE's "Add New Data Source..." feature. This exposes the class members in a GUI element in the IDE as given in this image: Dragging "Class1" from that tool to the surface of "Window1.xaml" in a default "WPF Application" results in the design view looking like this: And generated XAML like this: <Window x:Class="Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="Window1" Height="133" Width="170" xmlns:my="clr-namespace:WpfApplication1" mc:Ignorable="d" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" > <Window.Resources> <CollectionViewSource x:Key="Class1ViewSource" d:DesignSource="{d:DesignInstance my:Class1, CreateList=True}" /> </Window.Resources> <Grid DataContext="{StaticResource Class1ViewSource}" HorizontalAlignment="Left" Name="Grid1" VerticalAlignment="Top"> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" /> <ColumnDefinition Width="Auto" /> </Grid.ColumnDefinitions> <Grid.RowDefinitions> <RowDefinition Height="Auto" /> <RowDefinition Height="Auto" /> </Grid.RowDefinitions> <Label Content="One:" Grid.Column="0" Grid.Row="0" HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" /> <TextBlock Grid.Column="1" Grid.Row="0" Height="23" HorizontalAlignment="Left" Margin="3" Name="OneTextBlock" Text="{Binding Path=One}" VerticalAlignment="Center" /> <Label Content="Two:" Grid.Column="0" Grid.Row="1" HorizontalAlignment="Left" Margin="3" VerticalAlignment="Center" /> <TextBlock Grid.Column="1" Grid.Row="1" Height="23" HorizontalAlignment="Left" Margin="3" Name="TwoTextBlock" Text="{Binding Path=Two}" VerticalAlignment="Center" /> </Grid> Note the data bindings Text="{Binding Path=One}" and Text="{Binding Path=Two}" in the TextBlock elements. Code-behind for Window1.xaml has this in Window_Loaded: Class Window1 Private m_c1 As New Class1 Private Sub Window1_Loaded(ByVal sender As Object, ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded Dim Class1ViewSource As System.Windows.Data.CollectionViewSource = CType(Me.FindResource("Class1ViewSource"), System.Windows.Data.CollectionViewSource) 'Load data by setting the CollectionViewSource.Source property: 'Class1ViewSource.Source = [generic data source] Me.DataContext = m_c1 End Sub End Class Running the application produces this output: The expected result was that "OneString" would appear next to "One" and "TwoString" next to "Two" in the running window. The question is: Why didn't this work? What will work instead? If I put bindings in a DataTemplate, it works. Blend, with its sample data stuff, implied that this should work, but it doesn't. I know I'm missing something pretty fundamental here; what is it?

    Read the article

  • JSF 2.0: java based custom component + html table + facelets = data model not updated

    - by mikic
    Hi, I'm having problems getting the data model of a HtmlDataTable to be correctly updated by JSF 2.0 and Facelets. I have created a custom Java-based component that extends HtmlDataTable and dynamically adds columns in the encodeBegin method. @Override public void encodeBegin(FacesContext context) throws IOException { if (this.findComponent("c0") == null) { for (int i = 0; i < 3; i++) { HtmlColumn myNewCol = new HtmlColumn(); myNewCol.setId("c" + i); HtmlInputText myNewText = new HtmlInputText(); myNewText.setId("t" + i); myNewText.setValue("#{row[" + i + "]}"); myNewCol.getChildren().add(myNewText); this.getChildren().add(myNewCol); } } super.encodeBegin(context); } My test page contains the following <h:form id="fromtb"> <test:MatrixTest id="tb" var="row" value="#{MyManagedBean.model}"> </test:MatrixTest> <h:commandButton id="btn" value="Set" action="#{MyManagedBean.mergeInput}"/> </h:form> <h:outputText id="mergedInput" value="#{MyManagedBean.mergedInput}"/> My managed bean class contains the following @ManagedBean(name="MyManagedBean") @SessionScoped public class MyManagedBean { private List model = null; private String mergedInput = null; public MyManagedBean() { model = new ArrayList(); List myFirst = new ArrayList(); myFirst.add(""); myFirst.add(""); myFirst.add(""); model.add(myFirst); List mySecond = new ArrayList(); mySecond.add(""); mySecond.add(""); mySecond.add(""); model.add(mySecond); } public String mergeInput() { StringBuffer myMergedInput = new StringBuffer(); for (Object object : model) { myMergedInput.append(object); } setMergedInput(myMergedInput.toString()); return null; } public List getModel() { return model; } public void setModel(List model) { this.model = model; } public String getMergedInput() { return mergedInput; } public void setMergedInput(String mergedInput) { this.mergedInput = mergedInput; } When invoked, the page is correctly rendered with a table made of 3 columns (added at runtime) and 2 rows (as my data model has 2 rows). However when the user enter some data in the input fields and then click the submit button, the model is not correctly updated and therefore the mergeInput() method creates a sequence of empty strings which is rendered on the same page. I have added some logging to the decode() method of my custom component and I can see that the parameters entered by the user are being posted back with the request, however these parameters are not used to update the data model. If I update the encodeBegin() method of my custom component as follow @Override public void encodeBegin(FacesContext context) throws IOException { super.encodeBegin(context); } and I update the test page as follow <test:MatrixTest id="tb" var="row" value="#{MyManagedBean.model}"> <h:column id="c0"><h:inputText id="t0" value="#{row[0]}"/></h:column> <h:column id="c1"><h:inputText id="t1" value="#{row[1]}"/></h:column> <h:column id="c2"><h:inputText id="t2" value="#{row[2]}"/></h:column> </test:MatrixTest> the page is correctly rendered and this time when the user enters data and submits the form, the underlying data model is correctly updated and the mergeInput() method creates a sequence of strings with the user data. Why does the test case with columns declared in the facelet page works correctly (ie the data model is correctly updated by JSF) where the same does not happen when the columns are created at runtime using the encodeBegin() method? Is there any method I need to invoke or interface I need to extend in order to ensure the data model is correctly updated? I am using this test case to address the issue that is appearing in a much more complex component, therefore I can't achieve the same functionality using a facelet composite component. Please note that this has been done using NetBeans 6.8, JRE 1.6.0u18, GlassFish 3.0. Thanks for your help.

    Read the article

  • Scope quandary with namespaces, function templates, and static data

    - by Adrian McCarthy
    This scoping problem seems like the type of C++ quandary that Scott Meyers would have addressed in one of his Effective C++ books. I have a function, Analyze, that does some analysis on a range of data. The function is called from a few places with different types of iterators, so I have made it a template (and thus implemented it in a header file). The function depends on a static table of data, AnalysisTable, that I don't want to expose to the rest of the code. My first approach was to make the table a static const inside Analysis. namespace MyNamespace { template <typename InputIterator> int Analyze(InputIterator begin, InputIterator end) { static const int AnalysisTable[] = { /* data */ }; ... // implementation uses AnalysisTable return result; } } // namespace MyNamespace It appears that the compiler creates a copy of AnalysisTable for each instantiation of Analyze, which is wasteful of space (and, to a small degree, time). So I moved the table outside the function like this: namespace MyNamespace { const int AnalysisTable[] = { /* data */ }; template <typename InputIterator> int Analyze(InputIterator begin, InputIterator end) { ... // implementation uses AnalysisTable return result; } } // namespace MyNamespace There's only one copy of the table now, but it's exposed to the rest of the code. I'd rather keep this implementation detail hidden, so I introduced an unnamed namespace: namespace MyNamespace { namespace { // unnamed to hide AnalysisTable const int AnalysisTable[] = { /* data */ }; } // unnamed namespace template <typename InputIterator> int Analyze(InputIterator begin, InputIterator end) { ... // implementation uses AnalysisTable return result; } } // namespace MyNamespace But now I again have multiple copies of the table, because each compilation unit that includes this header file gets its own. If Analyze weren't a template, I could move all the implementation detail out of the header file. But it is a template, so I seem stuck. My next attempt was to put the table in the implementation file and to make an extern declaration within Analyze. // foo.h ------ namespace MyNamespace { template <typename InputIterator> int Analyze(InputIterator begin, InputIterator end) { extern const int AnalysisTable[]; ... // implementation uses AnalysisTable return result; } } // namespace MyNamespace // foo.cpp ------ #include "foo.h" namespace MyNamespace { const int AnalysisTable[] = { /* data */ }; } This looks like it should work, and--indeed--the compiler is satisfied. The linker, however, complains, "unresolved external symbol AnalysisTable." Drat! (Can someone explain what I'm missing here?) The only thing I could think of was to give the inner namespace a name, declare the table in the header, and provide the actual data in an implementation file: // foo.h ----- namespace MyNamespace { namespace PrivateStuff { extern const int AnalysisTable[]; } // unnamed namespace template <typename InputIterator> int Analyze(InputIterator begin, InputIterator end) { ... // implementation uses PrivateStuff::AnalysisTable return result; } } // namespace MyNamespace // foo.cpp ----- #include "foo.h" namespace MyNamespace { namespace PrivateStuff { const int AnalysisTable[] = { /* data */ }; } } Once again, I have exactly one instance of AnalysisTable (yay!), but other parts of the program can access it (boo!). The inner namespace makes it a little clearer that they shouldn't, but it's still possible. Is it possible to have one instance of the table and to move the table beyond the reach of everything but Analyze?

    Read the article

  • being able to solve google code jam problem sets

    - by JPro
    This is not a homework question, but rather my intention to know if this is what it takes to learn programming. I keep loggin into TopCoder not to actually participate but to get the basic understand of how the problems are solved. But to my knowledge I don't understand what the problem is and how to translate the problem into an algorithm that can solve it. Just now I happen to look at ACM ICPC 2010 World Finals which is being held in china. The teams were given problem sets and one of them is this: Given at most 100 points on a plan with distinct x-coordinates, find the shortest cycle that passes through each point exactly once, goes from the leftmost point always to the right until it reaches the rightmost point, then goes always to the left until it gets back to the leftmost point. Additionally, two points are given such that the the path from left to right contains the first point, and the path from right to left contains the second point. This seems to be a very simple DP: after processing the last k points, and with the first path ending in point a and the second path ending in point b, what is the smallest total length to achieve that? This is O(n^2) states, transitions in O(n). We deal with the two special points by forcing the first path to contain the first one, and the second path contain the second one. Now I have no idea what I am supposed to solve after reading the problem set. and there's an other one from google code jam: Problem In a big, square room there are two point light sources: one is red and the other is green. There are also n circular pillars. Light travels in straight lines and is absorbed by walls and pillars. The pillars therefore cast shadows: they do not let light through. There are places in the room where no light reaches (black), where only one of the two light sources reaches (red or green), and places where both lights reach (yellow). Compute the total area of each of the four colors in the room. Do not include the area of the pillars. Input * One line containing the number of test cases, T. Each test case contains, in order: * One line containing the coordinates x, y of the red light source. * One line containing the coordinates x, y of the green light source. * One line containing the number of pillars n. * n lines describing the pillars. Each contains 3 numbers x, y, r. The pillar is a disk with the center (x, y) and radius r. The room is the square described by 0 = x, y = 100. Pillars, room walls and light sources are all disjoint, they do not overlap or touch. Output For each test case, output: Case #X: black area red area green area yellow area Is it required that people who program should be should be able to solve these type of problems? I would apprecite if anyone can help me interpret the google code jam problem set as I wish to participate in this years Code Jam to see if I can do anthing or not. Thanks.

    Read the article

  • CoreData: Same predicate (IN) returns different fetched results after a Save operation

    - by Jason Lee
    I have code below: NSArray *existedTasks = [[TaskBizDB sharedInstance] fetchTasksWatchedByMeOfProject:projectId]; [context save:&error]; existedTasks = [[TaskBizDB sharedInstance] fetchTasksWatchedByMeOfProject:projectId]; NSArray *allTasks = [[TaskBizDB sharedInstance] fetchTasksOfProject:projectId]; First line returns two objects; Second line save the context; Third line returns just one object, which is contained in the 'two objects' above; And the last line returns 6 objects, containing the 'two objects' returned at the first line. The fetch interface works like below: WXModel *model = [WXModel modelWithEntity:NSStringFromClass([WQPKTeamTask class])]; NSPredicate *predicate = [NSPredicate predicateWithFormat:@"(%@ IN personWatchers) AND (projectId == %d)", currentLoginUser, projectId]; [model setPredicate:predicate]; NSArray *fetchedTasks = [model fetch]; if (fetchedTasks.count == 0) return nil; return fetchedTasks; What confused me is that, with the same fetch request, why return different results just after a save? Here comes more detail: The 'two objects' returned at the first line are: <WQPKTeamTask: 0x1b92fcc0> (entity: WQPKTeamTask; id: 0x1b9300f0 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p9> ; data: { projectId = 372004; taskId = 338001; personWatchers = ( "0xf0bf440 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WWPerson/p1>" ); } <WQPKTeamTask: 0xf3f6130> (entity: WQPKTeamTask; id: 0xf3cb8d0 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p11> ; data: { projectId = 372004; taskId = 340006; personWatchers = ( "0xf0bf440 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WWPerson/p1>" ); } And the only one object returned at third line is: <WQPKTeamTask: 0x1b92fcc0> (entity: WQPKTeamTask; id: 0x1b9300f0 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p9> ; data: { projectId = 372004; taskId = 338001; personWatchers = ( "0xf0bf440 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WWPerson/p1>" ); } Printing description of allTasks: <_PFArray 0xf30b9a0>( <WQPKTeamTask: 0xf3ab9d0> (entity: WQPKTeamTask; id: 0xf3cda40 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p6> ; data: <fault>), <WQPKTeamTask: 0xf315720> (entity: WQPKTeamTask; id: 0xf3c23a0 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p7> ; data: <fault>), <WQPKTeamTask: 0xf3a1ed0> (entity: WQPKTeamTask; id: 0xf3cda30 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p8> ; data: <fault>), <WQPKTeamTask: 0x1b92fcc0> (entity: WQPKTeamTask; id: 0x1b9300f0 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p9> ; data: { projectId = 372004; taskId = 338001; personWatchers = ( "0xf0bf440 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WWPerson/p1>" ); }), <WQPKTeamTask: 0xf325e50> (entity: WQPKTeamTask; id: 0xf343820 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p10> ; data: <fault>), <WQPKTeamTask: 0xf3f6130> (entity: WQPKTeamTask; id: 0xf3cb8d0 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WQPKTeamTask/p11> ; data: { projectId = 372004; taskId = 340006; personWatchers = ( "0xf0bf440 <x-coredata://CFFD3F8B-E613-4DE8-85AA-4D6DD08E88C5/WWPerson/p1>" ); }) ) UPDATE 1 If I call the same interface fetchTasksWatchedByMeOfProject: in: #pragma mark - NSFetchedResultsController Delegate - (void)controllerDidChangeContent:(NSFetchedResultsController *)controller { I will get 'two objects' as well. UPDATE 2 I've tried: NSPredicate *predicate = [NSPredicate predicateWithFormat:@"(ANY personWatchers == %@) AND (projectId == %d)", currentLoginUser, projectId]; NSPredicate *predicate = [NSPredicate predicateWithFormat:@"(ANY personWatchers.personId == %@) AND (projectId == %d)", currentLoginUserId, projectId]; Still the same result. UPDATE 3 I've checked the save:&error, error is nil.

    Read the article

  • Losing data after reading them correct from file

    - by user1388172
    i have the fallowing class of object with a class a data structure which i use in main combined. The ADT(abstract data type) is a linked list. After i read from file the input data and create and object which at print looks just fine after a print. after i push_back() the 3-rd int variable get initializated to 0. So example and code: Example: ex.in: 1 7 31 2 2 2 3 3 3 now i create objects from each line, which at print look as they suppose, but after push_back(): 1 7 0 2 2 0 3 3 0 Class.h: class RAngle { private: int x,y,l,b; public: int solution,prec; RAngle(){ x = y = solution = prec = b = l =0; } RAngle(int i,int j,int k){ x = i; y = j; l = k; solution = 0; prec=0; b=0; } friend ostream& operator << (ostream& out, const RAngle& ra){ out << ra.x << " " << ra.y << " " << ra.l <<endl; return out; } friend istream& operator >>( istream& is, RAngle& ra){ is >> ra.x; is >> ra.y; is >> ra.l; return is ; } }; ADT.h: template <class T> class List { private: struct Elem { T data; Elem* next; }; Elem* first; T pop_front(){ if (first!=NULL) { T aux = first->data; first = first->next; return aux; } T a; return a; } void push_back(T data){ Elem *n = new Elem; n->data = data; n->next = NULL; if (first == NULL) { first = n; return ; } Elem *current; for(current=first;current->next != NULL;current=current->next); current->next = n; } Main.cpp(after i call this function in main which prints object as they suppose to be the x var(from RAngle class) changes to 0 in all cases.) void readData(List <RAngle> &l){ RAngle r; ifstream f_in; f_in.open("ex.in",ios::in); for(int i=0;i<10;++i){ f_in >> r; cout << r; l.push_back(r); }

    Read the article

  • Integrating Twitter Into An ASP.NET Website

    Twitter is a popular social networking web service for writing and sharing short messages. These tidy text messages are referred to as tweets and are limited to 140 characters. Users can leave tweets and follow other users directly from Twitter's website or by using the Twitter API. Twitter's API makes it possible to integrate Twitter with external applications. For example, you can use the Twitter API to display your latest tweets on your blog. A mom and pop online store could integrate Twitter such that a new tweet was added each time a customer completed an order. And ELMAH, a popular open-source error logging library, can be configured to send error notifications to Twitter. Twitter's API is implemented over HTTP using the design principles of Representational State Transfer (REST). In a nutshell, inter-operating with the Twitter API involves a client - your application - sending an XML-formatted message over HTTP to the server - Twitter's website. The server responds with an XML-formatted message that contains status information and data. While you can certainly interface with this API by writing your own code to communicate with the Twitter API over HTTP along with the code that creates and parses the XML payloads exchanged between the client and server, such work is unnecessary since there are many community-created Twitter API libraries for a variety of programming frameworks. This article shows how to integrate Twitter with an ASP.NET website using the Twitterizer library, which is a free, open-source .NET library for working with the Twitter API. Specifically, this article shows how to retrieve your latest tweets and how to post a tweet using Twitterizer. Read on to learn more! Read More >

    Read the article

  • Google libère le système de build utilisé pour Chrome, « Ninja » serait dix fois plus rapide que GNU Make

    Google libère le système de build utilisé pour Chrome « Ninja » serait dix fois plus rapide que GNU Make Evan Martin, l'un des développeurs de Google Chrome, vient de passer sous licence open-source son système de Build baptisé « Ninja », actuellement utilisé pour porter le navigateur de Google sur plusieurs plateformes. Ninja serait considérablement plus rapide que les autres moteurs de production existants, d'où son nom. Martin affirme sur son site personnel que Ninja finit le Build de Chrome (environ 30 000 fichiers source, Webkit compris) en seulement une seconde après la modification d'un seul fichier (contre 10 pour GNU Make et 40 secondes préalables mêmes au ...

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Google sort « Bali », un nouveau SDK pour le VP8 : le codec vidéo open-source gagne en vitesse d'encodage et en qualité

    Google sort « Bali », un nouveau SDK pour le VP8 Le codec vidéo open-source gagne en vitesse d'encodage et en qualité Mise à jour du 10/03/11 Google vient de mettre à jour son environnement de développement autour du VP8, le codec vidéo open-source derrière WebM. Selon Google, ce nouveau SDK permet d'encoder une fois et demi plus vite des vidéos qu'avec la précédente version (Aylesbury, lire ci-avant) sur les plate-formes x86. Autre nouveauté majeure de « Bali » (nom de code de cette version), l'amélioration du multithreading et de la prise en charge du multi-coeur. Ici aussi, l'objectif était d'augmenter les vitesses d'en...

    Read the article

  • Le bataille du chiffrement fait rage pour Google en Inde, les autorités locales demandent à accéder aux données privées de Gmail

    Le bataille du chiffrement fait rage pour Google en Inde, les autorités locales demandent à accéder aux données privées de Gmail Google est en train de passer un mauvais quart d'heure en Inde. Les autorités locales y sont plutôt irritées et cherchent à mettre leur nez partout. Au cours de l'année, elles ont déjà fortement agacé RIM (en tentant d'avoir accès aux données des utilisateurs de BlackBerry avec une deadline au 31 janvier). Le gouvernement du pays demande à obtenir des informations techniques sur le chiffrement mis en oeuvre. Désormais, le Ministère de l'Intérieur local veut étendre ses prérogatives à l'Internet, et demande expressément à Google de lui livrer les informations de chiffrement relatives à son client Gmail ; e...

    Read the article

  • Chrome OS : déjà un échec pour le créateur de Gmail et de la devise de Google, l'OS accumule les critiques négatives

    Chrome OS : déjà un échec pour le créateur de Gmail et de la devise de Google L'OS accumule les critiques négatives Les premières critiques sur Chrome OS ne sont pas bonnes. Parmi ces testeurs des premiers laptops équipés de l'OS de Google orienté Cloud, deux voix portent un peu plus que les autres. Celle de Paul Buchheit, créateur de Gmail, et celle de Richard Stallman, le père du GNU. La première constatation polémique, bien qu'elle aille dans le sens de la vision de Google d'un OS totalement intégré dans le Web, a choqué plus d'un testeur de la première heure. Chrome OS n'a tout simplement pas d'explorateur de disques durs. En tout cas rien d'équivalent à Windows...

    Read the article

  • Google veut favoriser les sites « de qualité » et modifie son algorithme de recherche pour évaluer cette « qualité »

    Google veut favoriser les sites « de qualité » Et modifie son algorithme de recherche en conséquence Google vient d'annoncer officiellement une mise à jour de son algorithme de recherche. Cette mise à jour vise à mieux référencer les sites produisant du contenu de bonne qualité au détriment de ceux de qualité médiocre (fermes de contenus, Spams). D'après Google « cette mise à jour vise à faire baisser le classement des sites de qualité médiocre, sans valeur ajoutée ou sans utilité véritable. [...]Dans le même temps, il fournira un meilleur classement pour les sites de haute qualité avec un contenu original ». Sans préciser plus avant ce qu'il entend par « qualité...

    Read the article

  • Le mode off-line revient en force dans les Google Docs, via le HTML5 pour un accès simplifié aux documents

    Le mode off-line revient en force dans les Google Docs, via le HTML5 pour un accès simplifié aux documents Mise à jour du 08.12.2010 par Katleen Hier, lors de sa keynote évènement, Google ne s'est pas contenté de parler du très attendu netbook tournant sous Chrome OS. La firme a également fait le point sur plusieurs de ses produits, dont les Google Docs. Ces derniers voient le retour de leur mode "hors-ligne". Une fonctionnalité dont la suppression, en mai 2010, avait fait nombre de mécontents. "Ceux qui l'utilisaient seront ravis : la revoici, avec de belles améliorations rendues possibles par les derniers progrès technologiques, notamment le déploiement du HTML...

    Read the article

  • Integrating Twitter Into An ASP.NET Website

    Twitter is a popular social networking web service for writing and sharing short messages. These tidy text messages are referred to as tweets and are limited to 140 characters. Users can leave tweets and follow other users directly from Twitter's website or by using the Twitter API. Twitter's API makes it possible to integrate Twitter with external applications. For example, you can use the Twitter API to display your latest tweets on your blog. A mom and pop online store could integrate Twitter such that a new tweet was added each time a customer completed an order. And ELMAH, a popular open-source error logging library, can be configured to send error notifications to Twitter. Twitter's API is implemented over HTTP using the design principles of Representational State Transfer (REST). In a nutshell, inter-operating with the Twitter API involves a client - your application - sending an XML-formatted message over HTTP to the server - Twitter's website. The server responds with an XML-formatted message that contains status information and data. While you can certainly interface with this API by writing your own code to communicate with the Twitter API over HTTP along with the code that creates and parses the XML payloads exchanged between the client and server, such work is unnecessary since there are many community-created Twitter API libraries for a variety of programming frameworks. This article shows how to integrate Twitter with an ASP.NET website using the Twitterizer library, which is a free, open-source .NET library for working with the Twitter API. Specifically, this article shows how to retrieve your latest tweets and how to post a tweet using Twitterizer. Read on to learn more! Read More >

    Read the article

  • Chrome intègre Google Instant grâce à des performances améliorées et passe la barre des 120 millions d'utilisateurs

    Chrome intègre Google Instant et passe la barre des 120 millions d'utilisateurs Mise à jour du 08.12.2010 par Katleen Lors de sa keynote évènement d'hier soir, Google a fait quelques annonces concernant son navigateur. Il est désormais utilisé quotidiennement par 120 millions de personnes. C'est encore "peu" au regard de certains, et du marché, mais cela représente tout de même une sacrée évolution par rapport aux 70 millions d'internautes qui l'utilisaient chaque jour en mai 2010. Ceci alloue au logiciel la troisième place mondiale (9.26% de part de marché), derrière Internet Explorer et Firefox. Chrome intégrera également Google Instant dans l'omnibox et dans...

    Read the article

  • Les résultats de Google sont-ils réellement plus pertinents que ceux de Bing ? La campagne « Bing It On » tente d'y répondre

    Les résultats de Google sont-ils réellement plus pertinents que ceux de Bing ? La campagne « Bing It On » tente d'y répondre La guerre des moteurs de recherche est relancée. Entre Bing et Google, lequel est le plus pertinent ? Fini le temps des idées reçues et de « l'habitude Google », Microsoft veut prouver que c'est Bing qui l'emporterait. L'entreprise lance la campagne « Bing It On » afin de laisser les utilisateurs en juger par eux-mêmes. Pour cela la société a chargé un cabinet d'études indépendant d'effectuer un sondage sur les préférences des moteurs de recherche. Le sondage est accessible via un site dédié bingiton.com. L'internaute y vote selon...

    Read the article

  • Google lance Message Continuity pour attirer les utilisateur d'Exchange sur Gmail, dans sa stratégie de promotion des Web Apps

    Google lance Message Continuity pour attirer les utilisateur d'Exchange sur Gmail, dans sa stratégie de promotion des Web Apps Les utilisateurs d'Exchange vont avoir l'embarras du choix. Et ce, à l'initiative de la concurrence. Google Message Continuity va être lancé dans quelques heures, ce vendredi. Il consiste en une réplique de toutes les activités liées au courrier électronique fournies par Exchange, à la différence que le produit hébergera toutes les données sur le cloud de Google (et non pas les serveurs de Microsoft) via Gmail. Sa force : il permettra aux utilisateurs de s'identifier sous Gmail avec leurs identifiants Exchange, pour pouvoir continuer à utiliser leurs données du service, lorsque les serveurs E...

    Read the article

  • DuckDuckGo : « il n'y a plus de résultats standards sur Google », l'équipe du moteur diffuse les résultats d'une enquête

    DuckDuckGo : Il n'y a plus de résultats standards sur Google à présent L'équipe du moteur de recherche diffuse les résultats d'une enquête dans une publicité « There are no "regular results" on Google anymore. », voici le titre de la vidéo postée par l'équipe de DuckDuckGo sur Vimeo (voir ci-dessous). L'équipe derrière le moteur de recherche respectueux de la vie privée a fait une enquête, et les résultats sont pour le moins effrayants. [IMG]https://duckduckgo.com/assets/logo_homepage.normal.v102.png[/IMG] Depuis 2009, Google a ajouté la recherche personnalisée à tous ses utilisateurs. Cela signifie que pour la même recherche, deux personnes diffé...

    Read the article

  • La qualité de la recherche en ligne est-elle subjective ? Bing serait meilleur que Google d'après Search Engine Land

    La qualité de la recherche en ligne est-elle subjective ? Bing serait meilleur que Google d'après Search Engine Land Un manager marketing travaillant pour Search Engine Land, Conrad Saam, a lancé vingt recherches sur Bing et sur Google. A chaque fois, il envoyait des requêtes évitant les demandes les plus simples (comme trouver le site Internet d'une grosse société par exemple) et mélangeant plusieurs mots. Il a ainsi demandé aux deux moteurs de recherche de lui trouver des occurrences pour "l'avocat Tom Brady". Google s'est trompé sur l'un des résultats en proposant une page sur un célèbre quarterback du même nom. Suite à cela, l'homme a personnellement jugé de la qualité des réponses obtenues. Pour lui, Bing était meill...

    Read the article

  • L'empire Google est-il « Evil » ? le géant se développe-t-il trop ?

    L'empire Google est-il "Evil" ? le géant se développe-t-il trop ? Une vidéo (pas très objective) publiée récemment sur le Net tend à raviver la psychose qui tourne autour de Google et du contrôle quasi-mondial que la firme pourrait opèrer sur les êtres humains. En reprenant certains chiffres liés aux activités de l'entreprise, la dimension tentaculaire de l'énorme empire Google est montrée avec force. Même si le groupe de Moutain View n'a pas encore dépassé les bornes, pourrait-il le faire ?

    Read the article

  • "Google a raté le coche avec Chrome OS" affirment certains experts qui s'inquiètent des retards pris par le système d'exploitation

    "Google a raté le coche avec Chrome OS", affirment certains experts qui s'inquiètent des retards pris par système d'exploitation de Google Chrome OS aurait du voir le jour en 2010. Et pourtant, personne encore ne l'a vu pointer le bout de son nez. Du coup, certains experts s'inquiètent. Pour eux, le marché change vite, trop vite. Chrome OS est destiné a équiper les appareils de puissance moindre, comme les netbooks et les ordinateurs lowcost. Seulement : "il y a un an, personne n'aurait pu prédire les grands changements qui sont survenus". Ce que les analystes veulent dire, c'est qu'au moment où Google à annoncé son produit, les netbooks avaient le vent en poupe. Aujourd'hui, ils so...

    Read the article

  • Can I migrate a clone of Google Code repository into Github?

    - by David Conde
    I want to create a clone of a Google Code repository, which I cannot download due to Country restrictions and I want to migrate that clone into Github, which I can use without any problem. The thing is I have a Github account and I can browse through GoogleCode but I cannot take my TortoiseHg and clone a repo just like that because I'm from Cuba and I get a lovely Google page saying that I cannot go into Google code. I'm guessing you know how I manage to browse :) I would like to import a mercurial repository into my Github repo, my questions: Is it possible? How can I do it?

    Read the article

< Previous Page | 527 528 529 530 531 532 533 534 535 536 537 538  | Next Page >