Search Results

Search found 16135 results on 646 pages for 'tom caldecott oracle'.

Page 534/646 | < Previous Page | 530 531 532 533 534 535 536 537 538 539 540 541  | Next Page >

  • Project Nashorn Slides & Talks

    - by $utils.escapeXML($entry.author)
    At the Eclipse Demo Camp in Hamburg last week I got asked about resources on Project Nashorn. So, I compiled a quick list:slides from Jim Laskey's JavaOne 2011 talk titled "The Future of JavaScript in the JDK".slides from Bernard Traversat's JavaOne 2011 talk titled "HTLM5 and Java: The Facts and the Myths".slides and video from Jim Laskey's JVM Language Simmit talk titled "Adventures in JSR 292 (Nashorn)".

    Read the article

  • Undeploying Apps Running JDev 11g WLS

    - by Christian David Straub
    Guest post from Jeanne Waldman:I was running my application in JDeveloper when I noticed log messages in the console for a different application, let's call it OldApp. I stopped and started the my application server, the WLS server, re-ran my application, and still I'd see messages for OldApp. I shut down JDeveloper, restarted, and still when I ran my application, I'd see the OldApp's messages   Well, it turns out that at some point in time the OldApp was not properly undeployed. To really stop OldApp, I had to:   Go to http://127.0.0.1:7101/console.   This deployed the console app where you configure WLS. By default the login credentials are:   username: weblogic password: weblogic1 I clicked on Deployments and I saw that OldApp was still running. I selected the checkbox next to OldApp and clicked on the Stop -> Force Stop Now.  Now when I run my application, I do not see the OldApp log messages.

    Read the article

  • Java Developer Days India Trip Report

    - by reza_rahman
    October 21st through October 25th I spoke at Java Developer Days India. This was three separate but identical one-day events in the cities of Pune (October 21st), Chennai (October 24th) and Bangalore (October 25th). For those with some familiarity with India, other than Hyderabad these cities are India's IT powerhouses. The events were focused on Java EE. I delivered five sessions on Java EE 7, WebSocket, JAX-RS 2, JMS 2 and EclipeLink/NoSQL. The events went extremely well and was packed in all three cities. More details on the sessions and Java Developer Days India, including the slide decks, posted on my personal blog.

    Read the article

  • Solving Null Entity Problems with JPA Data Controls in PS1

    - by shay.shmeltzer
    Turns out there is a slight bug that seems to prevent you from doing interactions (update, scroll) with the results of a JPA named query that you dropped on a page using ADF Binding. People are running into this when they are doing the EJB tutorial on OTN for example. The problem is that the way the binding is set up for you automatically doesn't allow you to actually access the iterator set of records to do follow up operations. When I last checked this was solved in the next release of JDeveloper, but in the meantime there is a quick simple way to resolve the issue by changing the refresh condition of the oiterator in your page binding. Here is a little demo that shows the problem and the solution:

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • O modelo diamante para gerenciamento de projetos

    - by fernando.galdino
    Este ano comecei a fazer o mestrado em Gestão de Projetos. No decorrer deste período estudamos vários assuntos envolvendo abordagens de gerenciamento de projetos. Uma dessas abordagens é o Modelo Diamante. Elaborada por Aaron Shenhar e Dov Dvir, e explicada em detalhes no livro “Reinventando Gerenciamento de Projetos”, trata-se de uma estrutura que permite avaliar um projeto, e com base nos resultados, permite que o gerente de projetos possa usar uma abordagem como o descrito no PMBOK (PMI), de modo a aproveitar da melhor forma possível, as boas práticas listadas. A apresentação abaixo foi realizada por mim, numa das aulas do curso. Explica com alguns detalhes, e ao mesmo tempo fornece uma visão geral, sobre o modelo NTCP, que é uma estrutura que permite avaliar um projeto em termos de novidade, incerteza tecnológica, complexidade e ritmo.   Modelo NTCP View more presentations from Fernando Galdino.

    Read the article

  • JavaOne pictures and Community Commentary on JCP Awards

    - by heathervc
    We posted some pictures from JCP related events at JavaOne 2012 on the JCP Facebook page today.  The 2012 JCP Program Award winners and some of the nominees responded to the community recognition of their achievements during some of the JCP events last week.     “Our job on the EC is to balance the need of innovation – so we don’t standardize too early, or too late. We try to find that sweet spot that makes innovation and standardization work together, and not against each other.”- Ben Evans, CEO of jClarity and Executive Committee (EC) representative of the London Java Community, 2012 JCP Member/Participant of the Year Winner“SouJava has been evangelizing the Java platform, promoting the Java ecosystem in Brazil, and contributing to JSRs for several years. It’s very gratifying to have our work recognized, on behalf of many developers and Java User Groups around the world. This really is the work of a large group of people, represented by the few that can be here tonight.”- Michael Santos, representative of SouJava, 2012 JCP Member/Participant of the Year Winner "In the last years Credit Suisse has contributed to the development of Java EE specifications through participation in many customer advisory boards, through statements of requirements for extensions to the core Java related products in use, and active participation in JSRs. Winning the JCP Outstanding Spec Lead Award 2012 is very encouraging for our engagement and also demonstrates the level of expertise and commitment to drive the evolution of Java. Victor Grazi is happy and honored to receive this award." - Susanne Cech Previtali, Executive Committee (EC) representative of Credit Suisse, accepting award for 2012 JCP Outstanding Spec Lead Winner "Managing a JSR is difficult. There are so many decisions to be made and so many good and varied opinions, you never really know if you have decided correctly. The key to success is transparency and collaboration. I am truly humbled by receiving this award, there are so many other active JSRs.” Victor added that going forward in the JCP EC, they would like to simplify and open the process of participation – being addressed in the JCP.Next initiative of the JCP EC. "We would also like to encourage the engagement of universities, professors and students – as an important part of the Java community. While innovation is the lifeblood of our community and industry, without strong standards and compatibility requirements, we all end up in a maze of technology where everything is slightly different and doesn’t quite work with everything else." Victo Grazi, Executive Committee (EC) representative of Credit Suisse, 2012 JCP Outstanding Spec Lead Winner“I am very pleased, of course, to accept this award, but the credit really should go to all of those who have participated in the work of the JCP, while pushing for changes in the way it operates.  JCP.Next represents three JSRs. The first two are done, but the final step, JSR 358, is the complicated one, and it will bring in the lawyers. Just to give you an idea of what we’re dealing with, it affects licensing, intellectual property, patents, implementations not based on the Reference Implementation (RI), the role of the RI, compatibility policy, possible changes to the Technical Compatibility Kit (TCK), transparency, where do individuals fit in, open source, and more.”- Patrick Curran, JCP Chair, Spec Lead on JCP.Next JSRs (JSR 348, JSR 355 and JSR 358), 2012 JCP Most Significant JSR Winner“I’m especially glad to see the JCP community recognize JCP.Next for its importance. The governance work it represents is KEY to moving the Java platform forward and the success of the technology.”- John Rizzo, Executive Committee (EC) representative of Aplix Corporation, JSR Expert Group Member “I am deeply honored to be nominated. I had the privilege to receive two awards on behalf of Expert Groups and Spec Leads two years ago. But this time, I am nominated personally, which values my own contribution to the JCP, and of course, participation in JSRs and the EC work. I’m a fan of Agile Principles and Values Working. Being an Agile Coach and Consultant, I use it for some of the biggest EC Member companies and projects. It fuels my ability to help the JCP become more agile, lean and transparent as part of the JCP.Next effort.” - Werner Keil, Individual Executive Committee (EC) Member, a 2012 JCP Member/Participant of the Year Nominee, JSR Expert Group Member“The JCP ever has been some kind of institution for me,” Markus said. “If in technical doubt, I go there, look for the specifications of the implementation I work with at the moment and verify what I had observed. Since the beginning of my Java journey more than 12 years back now, I always had a strong relationship with the JCP. Shaping the future of a technology by joining the JCP – giving feedback and contributing to the road ahead through individual JSRs – that brings you to a whole new level.”Calling himself, “the new kid on the block,” he explained that for years he was afraid to join the JCP and contribute. But in reality, “Every single one of the big names I meet from the different Expert Groups is a nice person. People you can actually work with,” he says. “And nobody blames you for things you don't know. As long as you are committed and bring what is worth the most: passion, experiences and the desire to make a difference.” - Markus Eisele, a 2012 JCP Member of the Year Nominee, JSR Expert Group MemberCongratulations again to all of the nominees and winners of the JCP Program Awards.  Next year, we will add another award for the group of JUG members (not an entire JUG) that makes the best contribution to the Adopt-a-JSR program.  Let us know if you have other suggestions or improvements.

    Read the article

  • Want to Run OS Commands From WLST?

    - by Bala Kothandaraman
    If you spend a lot of time with WLST in the interactive mode, I am sure you have opened another command prompt/shell to check something at the OS file system level. If you wonder whether can execute an OS command from within WLST prompt, the answer is "Yes". This is very convenient similar to how you can execute OS commands from within "Vi" editor. In fact this feature is not from WLST but from underlying Jython. There is "os" module in Jython that provides a unified interface to a number of operating system functions. There is "system" function in the "os" module that can take a OS command as a string input and returns either "0" or "1" depends on whether the command was successful or failed. So this feature can also be used with scripting mode where the return code can be verified for further processing in the script. For eg. os.system(r'dir c:\bea') can list the contents of the bea folder under c drive. Notice the use of the preceding 'r' for escaping the entire string.

    Read the article

  • Calendário de Formação OPN

    - by Claudia Costa
    Está disponível a versão actualizada do Calendário de Formação que pode aceder clicando no seguinte link:  Calendário OPN - versão Dezembro 2010Nota: Estão ainda por confirmar as datas de alguns eventos, as mesmas serão acrescentadas oportunamente. Mantenha-se atento às últimas atualizações do calendário que vão sendo publicadas no Blogue e inscreva-se!  --------------------------------------------- Para mais informação e inscrições contacte Claudia Costa - Tel. 214235027

    Read the article

  • European Interoperability Framework - a new beginning?

    - by trond-arne.undheim
    The most controversial document in the history of the European Commission's IT policy is out. EIF is here, wrapped in the Communication "Towards interoperability for European public services", and including the new feature European Interoperability Strategy (EIS), arguably a higher strategic take on the same topic. Leaving EIS aside for a moment, the EIF controversy has been around IPR, defining open standards and about the proper terminology around standardization deliverables. Today, as the document finally emerges, what is the verdict? First of all, to be fair to those among you who do not spend your lives in the intricate labyrinths of Commission IT policy documents on interoperability, let's define what we are talking about. According to the Communication: "An interoperability framework is an agreed approach to interoperability for organisations that want to collaborate to provide joint delivery of public services. Within its scope of applicability, it specifies common elements such as vocabulary, concepts, principles, policies, guidelines, recommendations, standards, specifications and practices." The Good - EIF reconfirms that "The Digital Agenda can only take off if interoperability based on standards and open platforms is ensured" and also confirms that "The positive effect of open specifications is also demonstrated by the Internet ecosystem." - EIF takes a productive and pragmatic stance on openness: "In the context of the EIF, openness is the willingness of persons, organisations or other members of a community of interest to share knowledge and stimulate debate within that community, the ultimate goal being to advance knowledge and the use of this knowledge to solve problems" (p.11). "If the openness principle is applied in full: - All stakeholders have the same possibility of contributing to the development of the specification and public review is part of the decision-making process; - The specification is available for everybody to study; - Intellectual property rights related to the specification are licensed on FRAND terms or on a royalty-free basis in a way that allows implementation in both proprietary and open source software" (p. 26). - EIF is a formal Commission document. The former EIF 1.0 was a semi-formal deliverable from the PEGSCO, a working group of Member State representatives. - EIF tackles interoperability head-on and takes a clear stance: "Recommendation 22. When establishing European public services, public administrations should prefer open specifications, taking due account of the coverage of functional needs, maturity and market support." - The Commission will continue to support the National Interoperability Framework Observatory (NIFO), reconfirming the importance of coordinating such approaches across borders. - The Commission will align its internal interoperability strategy with the EIS through the eCommission initiative. - One cannot stress the importance of using open standards enough, whether in the context of open source or non-open source software. The EIF seems to have picked up on this fact: What does the EIF says about the relation between open specifications and open source software? The EIF introduces, as one of the characteristics of an open specification, the requirement that IPRs related to the specification have to be licensed on FRAND terms or on a royalty-free basis in a way that allows implementation in both proprietary and open source software. In this way, companies working under various business models can compete on an equal footing when providing solutions to public administrations while administrations that implement the standard in their own software (software that they own) can share such software with others under an open source licence if they so decide. - EIF is now among the center pieces of the Digital Agenda (even though this demands extensive inter-agency coordination in the Commission): "The EIS and the EIF will be maintained under the ISA Programme and kept in line with the results of other relevant Digital Agenda actions on interoperability and standards such as the ones on the reform of rules on implementation of ICT standards in Europe to allow use of certain ICT fora and consortia standards, on issuing guidelines on essential intellectual property rights and licensing conditions in standard-setting, including for ex-ante disclosure, and on providing guidance on the link between ICT standardisation and public procurement to help public authorities to use standards to promote efficiency and reduce lock-in.(Communication, p.7)" All in all, quite a few good things have happened to the document in the two years it has been on the shelf or was being re-written, depending on your perspective, in any case, awaiting the storms to calm. The Bad - While a certain pragmatism is required, and governments cannot migrate to full openness overnight, EIF gives a bit too much room for governments not to apply the openness principle in full. Plenty of reasons are given, which should maybe have been put as challenges to be overcome: "However, public administrations may decide to use less open specifications, if open specifications do not exist or do not meet functional interoperability needs. In all cases, specifications should be mature and sufficiently supported by the market, except if used in the context of creating innovative solutions". - EIF does not use the internationally established terminology: open standards. Rather, the EIF introduces the notion of "formalised specification". How do "formalised specifications" relate to "standards"? According to the FAQ provided: The word "standard" has a specific meaning in Europe as defined by Directive 98/34/EC. Only technical specifications approved by a recognised standardisation body can be called a standard. Many ICT systems rely on the use of specifications developed by other organisations such as a forum or consortium. The EIF introduces the notion of "formalised specification", which is either a standard pursuant to Directive 98/34/EC or a specification established by ICT fora and consortia. The term "open specification" used in the EIF, on the one hand, avoids terminological confusion with the Directive and, on the other, states the main features that comply with the basic principle of openness laid down in the EIF for European Public Services. Well, this may be somewhat true, but in reality, Europe is 30 year behind in terminology. Unless the European Standardization Reform gets completed in the next few months, most Member States will likely conclude that they will go on referencing and using standards beyond those created by the three European endorsed monopolists of standardization, CEN, CENELEC and ETSI. Who can afford to begin following the strict Brussels rules for what they can call open standards when, in reality, standards stemming from global standardization organizations, so-called fora/consortia, dominate in the IT industry. What exactly is EIF saying? Does it encourage Member States to go on using non-ESO standards as long as they call it something else? I guess I am all for it, although it is a bit cumbersome, no? Why was there so much interest around the EIF? The FAQ attempts to explain: Some Member States have begun to adopt policies to achieve interoperability for their public services. These actions have had a significant impact on the ecosystem built around the provision of such services, e.g. providers of ICT goods and services, standardisation bodies, industry fora and consortia, etc... The Commission identified a clear need for action at European level to ensure that actions by individual Member States would not create new electronic barriers that would hinder the development of interoperable European public services. As a result, all stakeholders involved in the delivery of electronic public services in Europe have expressed their opinions on how to increase interoperability for public services provided by the different public administrations in Europe. Well, it does not take two years to read 50 consultation documents, and the EU Standardization Reform is not yet completed, so, more pragmatically, you finally had to release the document. Ok, let's leave some of that aside because the document is out and some people are happy (and others definitely not). The Verdict Considering the controversy, the delays, the lobbying, and the interests at stake both in the EU, in Member States and among vendors large and small, this document is pretty impressive. As with a good wine that has not yet come to full maturity, let's say that it seems to be coming in in the 85-88/100 range, but only a more fine-grained analysis, enjoyment in good company, and ultimately, implementation, will tell. The European Commission has today adopted a significant interoperability initiative to encourage public administrations across the EU to maximise the social and economic potential of information and communication technologies. Today, we should rally around this achievement. Tomorrow, let's sit down and figure out what it means for the future.

    Read the article

  • BIEE Answer Parameter Passing

    - by Tim Dexter
    A little off BIP topic today but I spent some time researching how to pass parameters between Answer reports and knocked up a document for a client this morning and thought, what the heck someone might find it useful. If you have a source Answer request and you want to link to another Answer in another subject area and pass values to the target request, read this.

    Read the article

  • Save 10% when you by this Java mascot stress toy

    - by hinkmond
    That's right! Attention Java online shoppers! We have a blue-light special for a limited time. Buy a squishy Duke stress reliever toy and get 10% off. See: Java mascot stress toy Here's a quote: Polyfoam stress toy is shaped like Java mascot, Duke. 2-1/4" x 3-1/2" x 1-3/4". Custom mold. Red/White/Black. Stress Reliever Toy? Now, why would you be stressed out if you're a Java technology fan..? Don't answer that. Hinkmond

    Read the article

  • Finally home - and something fully off topic

    - by Mike Dietrich
    Arrived at Munich Pasing last night at 0:50am ... finally :-) On Sunday I've left the Dylan Hotel in Dublin (thanks to the staff there as well: you were REALLY helpful!!) around 7:30pm to go to the port - and came home on Tuesday morning 1:15am. So all together 29:45hrs door-to-door - not bad for nearly 2000km just relying on public transport. And could have been faster if there were seats in ealier TGV's left. But I don't complain at all ;-) Just checked the website of Dublin Airport - it says currently: 17.00pm: Latest on flight disruptions at Dublin Airport The IAA have advised us that based on the latest Volcanic Ash Advisory Centre London Dublin Airport will remain closed for all inbound and outbound commercial flights until 20.00hours. This effectively means that no flights will land or take off at Dublin Airport until then. A further update will be posted this afternoon. When traveling I have always my iPod with me. It has gotten a bit old now (I think I've bought it 3 years ago in November 2007) but it has a 160GB hard disk in it so it fits most of my music collection (not the entire collection anymore as I'm currently re-riping everything to Apple Lossless because at least for my ears it makes a big difference - but I listen to good ol' vinyl as well ...and I don't download compressed music ;-) ). The battery of my little travel companion is still good for more than 20 hours consistent music playback - and there was a band from Texas being in my ears most of the whole journey called Midlake. I haven't heard of them before until I asked a lady at a Munich store some few weeks ago what she's playing on the speakers in the shop. She was amazed and came back with the CD cover but I hesitated to buy it as I always want to listen the tunes before - and at this day I had no time left to do so. But in Dublin I had a bit of spare time on Saturday and I always enter record stores - and the Tower Records was the sort of store I really enjoy and so I've spent there nearly two hours - leaving with 3 Midlake CDs in my bag. So if you are interested just listen those tunes which may remind some people on Fleetwood Mac: As I said in the title, fully off topic ;-)

    Read the article

  • The JRockit Book is Now in Print!

    - by Marcus Hirt
    Yes. I know. It’s been in print for some days already, but I haven’t found time to write about it until now. The book is a good guide for JVM’s in general, and for JRockit in particular. If you’ve ever wondered how the innards of the Java Virtual Machine works, or how to use the JRockit Mission Control to hunt down problems in your Java applications, this book is for you. The book is written for intermediate to advanced Java Developers. These are the chapters: Getting Started Adaptive Code Generation Adaptive Memory Management Threads and Synchronization Benchmarking and Tuning JRockit Mission Control The Management Console The Runtime Analyzer The Flight Recorder The Memory Leak Detector JRCMD Using the JRockit Management APIs JRockit Virtual Edition Appendix A: Bibliography Appendix B: Glossary Index The book is 588 pages long. For more information about the book, see the book page at Packt.

    Read the article

  • NetBeans Podcast #61

    - by TinuA
    Download mp3: 39 minutes – 31.6 MB Subscribe to the NetBeans Podcast on iTunes NetBeans Community News with Geertjan and Tinu What's NEW? The Smarter and NOW FASTER NetBeans IDE 7.2 available since July. Is it faster for you too? Tell us about it on Twitter! (#netbeans) NetBeans Community Day at JavaOne is BACK!!! Join the NetBeans team in San Francisco on Sunday, September 30th for a full day of sessions about how various Java EE, JavaFX, and NetBeans Platform experts are using NetBeans in the real-world. NetBeans Community Day is just the start of the fun at JavaOne 2012, check out the full listing of ALL NetBeans-related sessions at the conference. NetBeans Governance Board elections are around the corner. Nominate yourself or someone who you think can represent the interest of the NetBeans Community. Email us at nbpodcast at netbeans dot org to get on the ballot in September. Community Interview: Çagatay Çivici, PrimeFaces Çagatay Çivici is the lead architect and founder of PrimeFaces , the popular JSF component library. Find out what the project is about, its inception, how to create PrimeFaces-based application inside NetBeans IDE, and more. Learn more about PrimeFaces at NetBeans Community Day at JavaOne 2012. Dig deeper into PrimeFaces at JavaOne 2012: CON6139 - Lessons Learned in Building Enterprise and Desktop Applications with the NetBeans IDE Community Interview: Timon Veenstra, Agrosense Timon Veenstra is the architect behind Agrosense , an open-source farm management system built on the NetBeans Platform. Find out how Agrosense helps farms run more efficiently and productively, and why NetBeans is the platform of choice for Timon and the Agrosense team. Catch a demo of Agrosense at NetBeans Community Day at JavaOne 2012. API Design with Jarda Tulach Geertjan has been using the Lookup API incorrectly; Jarda sets him on the right path. *Have ideas for NetBeans Podcast topics? Send them to nbpodcast at netbeans dot org. *Subscribe to the official NetBeans page on Facebook! Check us out as well on Twitter, YouTube, and Google+.

    Read the article

  • JSR 360 and JSR 361: A Big Leap for Java ME 8

    - by terrencebarr
    It might have gone unnoticed to some, but Java ME took a big leap forward a couple of weeks ago with the filing of two new JSRs: JSR 360: “Connected Limited Device Configuration 8″ (aka CLDC 8) JSR 361: “Java ME Embedded Profile” (aka ME EP) Together, these two JSRs will significantly update, enhance, and modernize the Java ME platform, and specifically small embedded Java, with a host of new features and functionality. JSR 360 – Connected Limited Device Configuration 8 CLDC 8 is based on JSR 139 (CLDC 1.1) and updates the core Java ME VM, language support, libraries, and features to be aligned with Java SE 8. This will include: VM updated to comply with the JVM language specification version 2 Support for SE 7/8 language features like Generics, Assertions, Annotations, Try-with-Resources, and more New libraries such as Collections, NIO subset, Logging API subset A consolidated and enhanced Generic Connection Framework for multi-protocol I/O With CLDC 8, Java ME and Java SE are entering their next phase of alignment – making Java the only technology today that truly scales application development, code re-use, and tooling across the whole range of IT platforms, from small embedded to large enterprise. JSR 361 – Java ME Embedded Profile ME EP is based on JSR 228 (IMP-NG) and updates the specification in key areas to provide a powerful and flexible application environment for small embedded Java platforms, building on the features of CLDC 8:  A new, lightweight component and services model Shared libraries Multi-application concurrency, inter-application communication, and event system Application management API optionality, to address low-footprint use cases With ME EP, application developers will have a modern application environment which allows development and deployment of  modular, robust, sophisticated, and footprint-optimized solutions for a wide range of embedded use cases and devices. Summary While these JSRs are still under development, it’s clear that there are exciting new times ahead for Java ME – turning into a serious application platform while maintaining the focus on resource-constrained devices to address the expected explosion of small, smart, and connected embedded platforms. To learn more, click on the above links for JSR 360 and JSR 361. Or review the JavaOne 2012 online presentations on the topic: CON11300: Expanding the reach of the Java ME Platform CON5943: Java ME 8 Service Platform And stay tuned for more in this space! Cheers, – Terrence Filed under: Mobile & Embedded Tagged: "jsr 360", "jsr 361", "me 8", embedded, Embedded Java, JCP

    Read the article

  • JSR 360 and JSR 361: A Big Leap for Java ME 8

    - by terrencebarr
    It might have gone unnoticed to some, but Java ME took a big leap forward a couple of weeks ago with the filing of two new JSRs: JSR 360: “Connected Limited Device Configuration 8″ (aka CLDC 8) JSR 361: “Java ME Embedded Profile” (aka ME EP) Together, these two JSRs will significantly update, enhance, and modernize the Java ME platform, and specifically small embedded Java, with a host of new features and functionality. JSR 360 – Connected Limited Device Configuration 8 CLDC 8 is based on JSR 139 (CLDC 1.1) and updates the core Java ME VM, language support, libraries, and features to be aligned with Java SE 8. This will include: VM updated to comply with the JVM language specification version 2 Support for SE 7/8 language features like Generics, Assertions, Annotations, Try-with-Resources, and more New libraries such as Collections, NIO subset, Logging API subset A consolidated and enhanced Generic Connection Framework for multi-protocol I/O With CLDC 8, Java ME and Java SE are entering their next phase of alignment – making Java the only technology today that truly scales application development, code re-use, and tooling across the whole range of IT platforms, from small embedded to large enterprise. JSR 361 – Java ME Embedded Profile ME EP is based on JSR 228 (IMP-NG) and updates the specification in key areas to provide a powerful and flexible application environment for small embedded Java platforms, building on the features of CLDC 8:  A new, lightweight component and services model Shared libraries Multi-application concurrency, inter-application communication, and event system Application management API optionality, to address low-footprint use cases With ME EP, application developers will have a modern application environment which allows development and deployment of  modular, robust, sophisticated, and footprint-optimized solutions for a wide range of embedded use cases and devices. Summary While these JSRs are still under development, it’s clear that there are exciting new times ahead for Java ME – turning into a serious application platform while maintaining the focus on resource-constrained devices to address the expected explosion of small, smart, and connected embedded platforms. To learn more, click on the above links for JSR 360 and JSR 361. Or review the JavaOne 2012 online presentations on the topic: CON11300: Expanding the reach of the Java ME Platform CON5943: Java ME 8 Service Platform And stay tuned for more in this space! Cheers, – Terrence Filed under: Mobile & Embedded Tagged: "jsr 360", "jsr 361", "me 8", embedded, Embedded Java, JCP

    Read the article

  • SOA Governance Starts with People and Processes

    - by Jyothi Swaroop
    While we all agree that SOA Governance is about People, Processes and Technology. Some experts are of the opinion that SOA Governance begins with People and Processes but needs to be empowered with technology to achieve the best results. Here's an interesting piece from David Linthicum on eBizq: In the world of SOA, the concept of SOA governance is getting a lot of attention. However, how SOA governance is defined and implemented really depends on the SOA governance vendor who just left the building within most enterprises. Indeed, confusion is a huge issue when considering SOA governance, and the core issues are more about the fundamentals of people and processes, and not about the technology. SOA governance is a concept used for activities related to exercising control over services in an SOA, including tracking the services, monitoring the service, and controlling changes made to the services, simple put. The trouble comes in when SOA governance vendors attempt to define SOA governance around their technology, all with different approaches to SOA governance. Thus, it's important that those building SOAs within the enterprise take a step back and understand what really need to support the concept of SOA governance. The value of SOA governance is pretty simple. Since services make up the foundation of an SOA, and are at their essence the behavior and information from existing systems externalized, it's critical to make sure that those accessing, creating, and changing services do so using a well controlled and orderly mechanism. Those of you, who already have governance in place, typically around enterprise architecture efforts, will be happy to know that SOA governance does not replace those processes, but becomes a mechanism within the larger enterprise governance concept. People and processes are first thing on the list to get under control before you begin to toss technology at this problem. This means establishing an understanding of SOA governance within the team members, including why it's important, who's involved, and the core processes that are to be follow to make SOA governance work. Indeed, when creating the core SOA governance strategy should really be independent of the technology. The technology will change over the years, but the core processes and discipline should be relatively durable over time.

    Read the article

  • Url Navigation

    - by russ.bishop
    One of the new features is URL-based navigation which is useful for creating intranet links or auto-generating email links (such as from workflow systems, etc). For IIS 6 and earlier, the format is as follows: http://machine/drm-client/Logon.aspx? app=<appname>&action=go&ver=<version name>&hier=<hier name>&node=<node name> Just replace the fields with their appropriate values (URL-encoded of course). <node name> is optional. If provided it will open the hierarchy and expand directly to the target node. Otherwise the hierarchy is opened to the top node. Note that if the specified version is not loaded it will be loaded automatically.

    Read the article

  • Repeat row headers after Page Break

    - by klaus.fabian
    The lead developer of the FO engine send me by chance an email about a REALLY nice feature I did not know about. Did you ever encounter a long table with merged cells, where the merged cell went on to the next page? While column headers are by default repeated on the next page, row headers are not. Tables with group-left column and pivot tables are prime examples where this problem occurs. I have seen reports where merged cells could go over multiple pages and you would need to back to find the row header on previous pages. The BI Publisher RTF templates have a special tag you can added to a merged cell to repeat the contents after each page break. You just need to add the following (wordy) tag to the next merged table cell: true Example: 2nd page of report before adding the tag 2nd page of report after adding the tag. Thought you might want to know. Klaus

    Read the article

  • Gamify your Web

    - by Isabel F. Peñuelas
    Yesterday Valencia welcomed the Gamification World Congress that I follow virtually through #GWC2012. BBVA, Iberia, Ligeresa, Axe, Wayra, ESADE, GlaxoSmithKline, Macmillan, Gamisfaction, Nomaders, Blaffin were among the companies presenting success stories on gaming. It has been proved that people remember things easily when an emotion is created. The marketing expectations around Gamification techniques have a lot to do with Neuromarketing theories. There are a lot of expectations on internal enterprise Gamification. In the public Web some sectors are taking the lead on following the trend. The Gartner Analyst Brian Burke opened another Gamification recent event in Madrid remembering that “Gamification is mostly about Engagement”, and this can be applied both to customers or employees. Gamification and Banking The experience of the Spanish Financial Group BBVA that just launched BBVA Game was also presented a week ago at the BBVA Innovation Centre during the event “Gamification & Banking: a fad or a serious business?” . One of the objectives of the BBVA Game was to double the name of registered users. “People like the efficiency of the online channel want to keep a one-to-one contact with the brand”-explained Bernardo Crespo. Another interested data coming out the BBVA presentation was that “only 20% of Spanish users –out of the total holders of Bank Accounts in the country- is familiar with the use of a Web Site to consult their bank accounts”, the project aims also to reverse this situation helping people to learn making a heavy use of the Video in the gaming context. In general Banking presenters seem to agree that Gamification techniques are helping to increase the time spent on the Web. Gamification and Health Using Gamification techniques for chronic illness rehabilitation was another topic of the World Congress. Here you can find some ideas and experiences What can games do for the health (In Spanish) I have personally started my own mental-health gaming project at http://www.lumosity.com/ Gamification in the Enterprise I really recommend Reading this excellent post of Ultan ÓBroin my Introduction to Gamification and Applications. Employee´s motivation and learning are experiencing a 360º turn and it looks than some of us will become soon the Dragon of the year instead of the Employee of the Year. Using Web 2.0 Tools for Gamification Projects  What type of tools do we need for a quick-win Gamification project? To certain extend Gamification can be considered an evolution of the participative Web. Badging, avatars, points and awards, leader boards, progress charts, virtual currencies, gifting and giving challenges and quests are common components and elements. The Web is offering new development frameworks to that purpose as this Avatar Framework from Paypal or Badgeville to include in web applications. Besides, tools to create communities around a game are required to comment, share and vote players as well as for an efficient multimedia management. Due to its entirely open architecture, its community features, and its multimedia and imaging solutions is were I see WebCenter as a tool helping brands to success. Link to Sources & Recommended Readings YouTube Video of BBVAGame presentation Where To Apply Gamification In Your Incentive Jim Calhoun Cancer Challenge Ride and Walkh For my Spanish Readers El aburrimiento es el enemigo número uno del éxito

    Read the article

  • Sony Ericsson txt: workhorse feature phone with Java ME tech

    - by hinkmond
    Just like your basic Quarter Horse, the new Sony Ericsson txt feature phone might not be as fancy as a "thoroughbred" smartphone, but it can sure get the job done with Java ME technology. See: Sony Ericsson txt w/Java ME Here's a quote: ...comes with the usual features such as a web browser, email client and music player and FM radio, plus support for social networking applications and a YouTube client. You can download and install additional Java applications... Sometimes the simple workhorse feature phone (with Java ME) is much better to go with than the idiosyncratic thoroughbred smartphone. Hinkmond

    Read the article

  • You do not need a separate SQL Server license for a Standby or Passive server - this Microsoft White Paper explains all

    - by tonyrogerson
    If you were in any doubt at all that you need to license Standby / Passive Failover servers then the White Paper “Do Not Pay Too Much for Your Database Licensing” will settle those doubts. I’ve had debate before people thinking you can only have a single instance as a standby machine, that’s just wrong; it would mean you could have a scenario where you had a 2 node active/passive cluster with database mirroring and log shipping (a total of 4 SQL Server instances) – in that set up you only need to buy one physical license so long as the standby nodes have the same or less physical processors (cores are irrelevant). So next time your supplier suggests you need a license for your standby box tell them you don’t and educate them by pointing them to the white paper. For clarity I’ve copied the extract below from the White Paper. Extract from “Do Not Pay Too Much for Your Database Licensing” Standby Server Customers often implement standby server to make sure the application continues to function in case primary server fails. Standby server continuously receives updates from the primary server and will take over the role of primary server in case of failure in the primary server. Following are comparisons of how each vendor supports standby server licensing. SQL Server Customers does not need to license standby (or passive) server provided that the number of processors in the standby server is equal or less than those in the active server. Oracle DB Oracle requires customer to fully license both active and standby servers even though the standby server is essentially idle most of the time. IBM DB2 IBM licensing on standby server is quite complicated and is different for every editions of DB2. For Enterprise Edition, a minimum of 100 PVUs or 25 Authorized User is needed to license standby server.   The following graph compares prices based on a database application with two processors (dual-core) and 25 users with one standby server. [chart snipped]  Note   All prices are based on newest Intel Xeon Nehalem processor database pricing for purchases within the United States and are in United States dollars. Pricing is based on information available on vendor Web sites for Enterprise Edition. Microsoft SQL Server Enterprise Edition 25 users (CALs) x $164 / CAL + $8,592 / Server = $12,692 (no need to license standby server) Oracle Enterprise Edition (base license without options) Named User Plus minimum (25 Named Users Plus per Core) = 25 x 2 = 50 Named Users Plus x $950 / Named Users Plus x 2 servers = $95,000 IBM DB2 Enterprise Edition (base license without feature pack) Need to purchase 125 Authorized User (400 PVUs/100 PVUs = 4 X 25 = 100 Authorized User + 25 Authorized Users for standby server) = 125 Authorized Users x $1,040 / Authorized Users = $130,000  

    Read the article

< Previous Page | 530 531 532 533 534 535 536 537 538 539 540 541  | Next Page >