Search Results

Search found 5165 results on 207 pages for 'const cast'.

Page 54/207 | < Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >

  • Scheduling thread tiles with C++ AMP

    - by Daniel Moth
    This post assumes you are totally comfortable with, what some of us call, the simple model of C++ AMP, i.e. you could write your own matrix multiplication. We are now ready to explore the tiled model, which builds on top of the non-tiled one. Tiling the extent We know that when we pass a grid (which is just an extent under the covers) to the parallel_for_each call, it determines the number of threads to schedule and their index values (including dimensionality). For the single-, two-, and three- dimensional cases you can go a step further and subdivide the threads into what we call tiles of threads (others may call them thread groups). So here is a single-dimensional example: extent<1> e(20); // 20 units in a single dimension with indices from 0-19 grid<1> g(e);      // same as extent tiled_grid<4> tg = g.tile<4>(); …on the 3rd line we subdivided the single-dimensional space into 5 single-dimensional tiles each having 4 elements, and we captured that result in a concurrency::tiled_grid (a new class in amp.h). Let's move on swiftly to another example, in pictures, this time 2-dimensional: So we start on the left with a grid of a 2-dimensional extent which has 8*6=48 threads. We then have two different examples of tiling. In the first case, in the middle, we subdivide the 48 threads into tiles where each has 4*3=12 threads, hence we have 2*2=4 tiles. In the second example, on the right, we subdivide the original input into tiles where each has 2*2=4 threads, hence we have 4*3=12 tiles. Notice how you can play with the tile size and achieve different number of tiles. The numbers you pick must be such that the original total number of threads (in our example 48), remains the same, and every tile must have the same size. Of course, you still have no clue why you would do that, but stick with me. First, we should see how we can use this tiled_grid, since the parallel_for_each function that we know expects a grid. Tiled parallel_for_each and tiled_index It turns out that we have additional overloads of parallel_for_each that accept a tiled_grid instead of a grid. However, those overloads, also expect that the lambda you pass in accepts a concurrency::tiled_index (new in amp.h), not an index<N>. So how is a tiled_index different to an index? A tiled_index object, can have only 1 or 2 or 3 dimensions (matching exactly the tiled_grid), and consists of 4 index objects that are accessible via properties: global, local, tile_origin, and tile. The global index is the same as the index we know and love: the global thread ID. The local index is the local thread ID within the tile. The tile_origin index returns the global index of the thread that is at position 0,0 of this tile, and the tile index is the position of the tile in relation to the overall grid. Confused? Here is an example accompanied by a picture that hopefully clarifies things: array_view<int, 2> data(8, 6, p_my_data); parallel_for_each(data.grid.tile<2,2>(), [=] (tiled_index<2,2> t_idx) restrict(direct3d) { /* todo */ }); Given the code above and the picture on the right, what are the values of each of the 4 index objects that the t_idx variables exposes, when the lambda is executed by T (highlighted in the picture on the right)? If you can't work it out yourselves, the solution follows: t_idx.global       = index<2> (6,3) t_idx.local          = index<2> (0,1) t_idx.tile_origin = index<2> (6,2) t_idx.tile             = index<2> (3,1) Don't move on until you are comfortable with this… the picture really helps, so use it. Tiled Matrix Multiplication Example – part 1 Let's paste here the C++ AMP matrix multiplication example, bolding the lines we are going to change (can you guess what the changes will be?) 01: void MatrixMultiplyTiled_Part1(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M, N, vC); 07: parallel_for_each(c.grid, 08: [=](index<2> idx) restrict(direct3d) { 09: 10: int row = idx[0]; int col = idx[1]; 11: float sum = 0.0f; 12: for(int i = 0; i < W; i++) 13: sum += a(row, i) * b(i, col); 14: c[idx] = sum; 15: }); 16: } To turn this into a tiled example, first we need to decide our tile size. Let's say we want each tile to be 16*16 (which assumes that we'll have at least 256 threads to process, and that c.grid.extent.size() is divisible by 256, and moreover that c.grid.extent[0] and c.grid.extent[1] are divisible by 16). So we insert at line 03 the tile size (which must be a compile time constant). 03: static const int TS = 16; ...then we need to tile the grid to have tiles where each one has 16*16 threads, so we change line 07 to be as follows 07: parallel_for_each(c.grid.tile<TS,TS>(), ...that means that our index now has to be a tiled_index with the same characteristics as the tiled_grid, so we change line 08 08: [=](tiled_index<TS, TS> t_idx) restrict(direct3d) { ...which means, without changing our core algorithm, we need to be using the global index that the tiled_index gives us access to, so we insert line 09 as follows 09: index<2> idx = t_idx.global; ...and now this code just works and it is tiled! Closing thoughts on part 1 The process we followed just shows the mechanical transformation that can take place from the simple model to the tiled model (think of this as step 1). In fact, when we wrote the matrix multiplication example originally, the compiler was doing this mechanical transformation under the covers for us (and it has additional smarts to deal with the cases where the total number of threads scheduled cannot be divisible by the tile size). The point is that the thread scheduling is always tiled, even when you use the non-tiled model. But with this mechanical transformation, we haven't gained anything… Hint: our goal with explicitly using the tiled model is to gain even more performance. In the next post, we'll evolve this further (beyond what the compiler can automatically do for us, in this first release), so you can see the full usage of the tiled model and its benefits… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • UV Atlas Generation and Seam Removal

    - by P. Avery
    I'm generating light maps for scene mesh objects using DirectX's UV Atlas Tool( D3DXUVAtlasCreate() ). I've succeeded in generating an atlas, however, when I try to render the mesh object using the atlas the seams are visible on the mesh. Below are images of a lightmap generated for a cube. Here is the code I use to generate a uv atlas for a cube: struct sVertexPosNormTex { D3DXVECTOR3 vPos, vNorm; D3DXVECTOR2 vUV; sVertexPosNormTex(){} sVertexPosNormTex( D3DXVECTOR3 v, D3DXVECTOR3 n, D3DXVECTOR2 uv ) { vPos = v; vNorm = n; vUV = uv; } ~sVertexPosNormTex() { } }; // create a light map texture to fill programatically hr = D3DXCreateTexture( pd3dDevice, 128, 128, 1, 0, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, &pLightmap ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to D3DXCreateTexture( lightmap )", __LINE__, hr ); return hr; } // get the zero level surface from the texture IDirect3DSurface9 *pS = NULL; pLightmap->GetSurfaceLevel( 0, &pS ); // clear surface pd3dDevice->ColorFill( pS, NULL, D3DCOLOR_XRGB( 0, 0, 0 ) ); // load a sample mesh DWORD dwcMaterials = 0; LPD3DXBUFFER pMaterialBuffer = NULL; V_RETURN( D3DXLoadMeshFromX( L"cube3.x", D3DXMESH_MANAGED, pd3dDevice, &pAdjacency, &pMaterialBuffer, NULL, &dwcMaterials, &g_pMesh ) ); // generate adjacency DWORD *pdwAdjacency = new DWORD[ 3 * g_pMesh->GetNumFaces() ]; g_pMesh->GenerateAdjacency( 1e-6f, pdwAdjacency ); // create light map coordinates LPD3DXMESH pMesh = NULL; LPD3DXBUFFER pFacePartitioning = NULL, pVertexRemapArray = NULL; FLOAT resultStretch = 0; UINT numCharts = 0; hr = D3DXUVAtlasCreate( g_pMesh, 0, 0, 128, 128, 3.5f, 0, pdwAdjacency, NULL, NULL, NULL, NULL, NULL, 0, &pMesh, &pFacePartitioning, &pVertexRemapArray, &resultStretch, &numCharts ); if( SUCCEEDED( hr ) ) { // release and set mesh SAFE_RELEASE( g_pMesh ); g_pMesh = pMesh; // write mesh to file hr = D3DXSaveMeshToX( L"cube4.x", g_pMesh, 0, ( const D3DXMATERIAL* )pMaterialBuffer->GetBufferPointer(), NULL, dwcMaterials, D3DXF_FILEFORMAT_TEXT ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to D3DXSaveMeshToX() at OnD3D9CreateDevice()", __LINE__, hr ); } // fill the the light map hr = BuildLightmap( pS, g_pMesh ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to BuildLightmap()", __LINE__, hr ); } } else { DebugStringDX( "Main", "Failed to D3DXUVAtlasCreate() at OnD3D9CreateDevice()", __LINE__, hr ); } SAFE_RELEASE( pS ); SAFE_DELETE_ARRAY( pdwAdjacency ); SAFE_RELEASE( pFacePartitioning ); SAFE_RELEASE( pVertexRemapArray ); SAFE_RELEASE( pMaterialBuffer ); Here is code to fill lightmap texture: HRESULT BuildLightmap( IDirect3DSurface9 *pS, LPD3DXMESH pMesh ) { HRESULT hr = S_OK; // validate lightmap texture surface and mesh if( !pS || !pMesh ) return E_POINTER; // lock the mesh vertex buffer sVertexPosNormTex *pV = NULL; pMesh->LockVertexBuffer( D3DLOCK_READONLY, ( void** )&pV ); // lock the mesh index buffer WORD *pI = NULL; pMesh->LockIndexBuffer( D3DLOCK_READONLY, ( void** )&pI ); // get the lightmap texture surface description D3DSURFACE_DESC desc; pS->GetDesc( &desc ); // lock the surface rect to fill with color data D3DLOCKED_RECT rct; hr = pS->LockRect( &rct, NULL, 0 ); if( FAILED( hr ) ) { DebugStringDX( "main.cpp:", "Failed to IDirect3DTexture9::LockRect()", __LINE__, hr ); return hr; } // iterate the pixels of the lightmap texture // check each pixel to see if it lies between the uv coordinates of a cube face BYTE *pBuffer = ( BYTE* )rct.pBits; for( UINT y = 0; y < desc.Height; ++y ) { BYTE* pBufferRow = ( BYTE* )pBuffer; for( UINT x = 0; x < desc.Width * 4; x+=4 ) { // determine the pixel's uv coordinate D3DXVECTOR2 p( ( ( float )x / 4.0f ) / ( float )desc.Width + 0.5f / 128.0f, y / ( float )desc.Height + 0.5f / 128.0f ); // for each face of the mesh // check to see if the pixel lies within the face's uv coordinates for( UINT i = 0; i < 3 * pMesh->GetNumFaces(); i +=3 ) { sVertexPosNormTex v[ 3 ]; v[ 0 ] = pV[ pI[ i + 0 ] ]; v[ 1 ] = pV[ pI[ i + 1 ] ]; v[ 2 ] = pV[ pI[ i + 2 ] ]; if( TexcoordIsWithinBounds( v[ 0 ].vUV, v[ 1 ].vUV, v[ 2 ].vUV, p ) ) { // the pixel lies b/t the uv coordinates of a cube face // light contribution functions aren't needed yet //D3DXVECTOR3 vPos = TexcoordToPos( v[ 0 ].vPos, v[ 1 ].vPos, v[ 2 ].vPos, v[ 0 ].vUV, v[ 1 ].vUV, v[ 2 ].vUV, p ); //D3DXVECTOR3 vNormal = v[ 0 ].vNorm; // set the color of this pixel red( for demo ) BYTE ba[] = { 0, 0, 255, 255, }; //ComputeContribution( vPos, vNormal, g_sLight, ba ); // copy the byte array into the light map texture memcpy( ( void* )&pBufferRow[ x ], ( void* )ba, 4 * sizeof( BYTE ) ); } } } // go to next line of the texture pBuffer += rct.Pitch; } // unlock the surface rect pS->UnlockRect(); // unlock mesh vertex and index buffers pMesh->UnlockIndexBuffer(); pMesh->UnlockVertexBuffer(); // write the surface to file hr = D3DXSaveSurfaceToFile( L"LightMap.jpg", D3DXIFF_JPG, pS, NULL, NULL ); if( FAILED( hr ) ) DebugStringDX( "Main.cpp", "Failed to D3DXSaveSurfaceToFile()", __LINE__, hr ); return hr; } bool TexcoordIsWithinBounds( const D3DXVECTOR2 &t0, const D3DXVECTOR2 &t1, const D3DXVECTOR2 &t2, const D3DXVECTOR2 &p ) { // compute vectors D3DXVECTOR2 v0 = t1 - t0, v1 = t2 - t0, v2 = p - t0; float f00 = D3DXVec2Dot( &v0, &v0 ); float f01 = D3DXVec2Dot( &v0, &v1 ); float f02 = D3DXVec2Dot( &v0, &v2 ); float f11 = D3DXVec2Dot( &v1, &v1 ); float f12 = D3DXVec2Dot( &v1, &v2 ); // Compute barycentric coordinates float invDenom = 1 / ( f00 * f11 - f01 * f01 ); float fU = ( f11 * f02 - f01 * f12 ) * invDenom; float fV = ( f00 * f12 - f01 * f02 ) * invDenom; // Check if point is in triangle if( ( fU >= 0 ) && ( fV >= 0 ) && ( fU + fV < 1 ) ) return true; return false; } Screenshot Lightmap I believe the problem comes from the difference between the lightmap uv coordinates and the pixel center coordinates...for example, here are the lightmap uv coordinates( generated by D3DXUVAtlasCreate() ) for a specific face( tri ) within the mesh, keep in mind that I'm using the mesh uv coordinates to write the pixels for the texture: v[ 0 ].uv = D3DXVECTOR2( 0.003581, 0.295631 ); v[ 1 ].uv = D3DXVECTOR2( 0.003581, 0.003581 ); v[ 2 ].uv = D3DXVECTOR2( 0.295631, 0.003581 ); the lightmap texture size is 128 x 128 pixels. The upper-left pixel center coordinates are: float halfPixel = 0.5 / 128 = 0.00390625; D3DXVECTOR2 pixelCenter = D3DXVECTOR2( halfPixel, halfPixel ); will the mapping and sampling of the lightmap texture will require that an offset be taken into account or that the uv coordinates are snapped to the pixel centers..? ...Any ideas on the best way to approach this situation would be appreciated...What are the common practices?

    Read the article

  • Why does C qicksort function implementation works much slower (tape comparations, tape swapping) than bobble sort function?

    - by Artur Mustafin
    I'm going to implement a toy tape "mainframe" for a students, showing the quickness of "quicksort" class functions (recursive or not, does not really matters, due to the slow hardware, and well known stack reversal techniques) comparatively to the "bubblesort" function class, so, while I'm clear about the hardware implementation ans controllers, i guessed that quicksort function is much faster that other ones in terms of sequence, order and comparation distance (it is much faster to rewind the tape from the middle than from the very end, because of different speed of rewind). Unfortunately, this is not the true, this simple "bubble" code shows great improvements comparatively to the "quicksort" functions in terms of comparison distances, direction and number of comparisons and writes. So I have 3 questions: Does I have mistaken in my implememtation of quicksort function? Does I have mistaken in my implememtation of bubblesoft function? If not, why the "bubblesort" function is works much faster in (comparison and write operations) than "quicksort" function? I already have a "quicksort" function: void quicksort(float *a, long l, long r, const compare_function& compare) { long i=l, j=r, temp, m=(l+r)/2; if (l == r) return; if (l == r-1) { if (compare(a, l, r)) { swap(a, l, r); } return; } if (l < r-1) { while (1) { i = l; j = r; while (i < m && !compare(a, i, m)) i++; while (m < j && !compare(a, m, j)) j--; if (i >= j) { break; } swap(a, i, j); } if (l < m) quicksort(a, l, m, compare); if (m < r) quicksort(a, m, r, compare); return; } } and the kind of my own implememtation of the "bubblesort" function: void bubblesort(float *a, long l, long r, const compare_function& compare) { long i, j, k; if (l == r) { return; } if (l == r-1) { if (compare(a, l, r)) { swap(a, l, r); } return; } if (l < r-1) { while(l < r) { i = l; j = l; while (i < r) { i++; if (!compare(a, j, i)) { continue; } j = i; } if (l < j) { swap(a, l, j); } l++; i = r; k = r; while(l < i) { i--; if (!compare(a, i, k)) { continue; } k = i; } if (k < r) { swap(a, k, r); } r--; } return; } } I have used this sort functions in a test sample code, like this: #include <stdio.h> #include <stdlib.h> #include <math.h> #include <conio.h> long swap_count; long compare_count; typedef long (*compare_function)(float *, long, long ); typedef void (*sort_function)(float *, long , long , const compare_function& ); void init(float *, long ); void print(float *, long ); void sort(float *, long, const sort_function& ); void swap(float *a, long l, long r); long less(float *a, long l, long r); long greater(float *a, long l, long r); void bubblesort(float *, long , long , const compare_function& ); void quicksort(float *, long , long , const compare_function& ); void main() { int n; printf("n="); scanf("%d",&n); printf("\r\n"); long i; float *a = (float *)malloc(n*n*sizeof(float)); sort(a, n, &bubblesort); print(a, n); sort(a, n, &quicksort); print(a, n); free(a); } long less(float *a, long l, long r) { compare_count++; return *(a+l) < *(a+r) ? 1 : 0; } long greater(float *a, long l, long r) { compare_count++; return *(a+l) > *(a+r) ? 1 : 0; } void swap(float *a, long l, long r) { swap_count++; float temp; temp = *(a+l); *(a+l) = *(a+r); *(a+r) = temp; } float tg(float x) { return tan(x); } float ctg(float x) { return 1.0/tan(x); } void init(float *m,long n) { long i,j; for (i = 0; i < n; i++) { for (j=0; j< n; j++) { m[i + j*n] = tg(0.2*(i+1)) + ctg(0.3*(j+1)); } } } void print(float *m, long n) { long i, j; for(i = 0; i < n; i++) { for(j = 0; j < n; j++) { printf(" %5.1f", m[i + j*n]); } printf("\r\n"); } printf("\r\n"); } void sort(float *a, long n, const sort_function& sort) { long i, sort_compare = 0, sort_swap = 0; init(a,n); for(i = 0; i < n*n; i+=n) { if (fmod (i / n, 2) == 0) { compare_count = 0; swap_count = 0; sort(a, i, i+n-1, &less); if (swap_count == 0) { compare_count = 0; sort(a, i, i+n-1, &greater); } sort_compare += compare_count; sort_swap += swap_count; } } printf("compare=%ld\r\n", sort_compare); printf("swap=%ld\r\n", sort_swap); printf("\r\n"); }

    Read the article

  • Will disabling hyperthreading improve performance on our SQL Server install

    - by Sam Saffron
    Related to: Current wisdom on SQL Server and Hyperthreading Recently we upgraded our Windows 2008 R2 database server from an X5470 to a X5560. The theory is both CPUs have very similar performance, if anything the X5560 is slightly faster. However, SQL Server 2008 R2 performance has been pretty bad over the last day or so and CPU usage has been pretty high. Page life expectancy is massive, we are getting almost 100% cache hit for the pages, so memory is not a problem. When I ran: SELECT * FROM sys.dm_os_wait_stats order by signal_wait_time_ms desc I got: wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms ------------------------------------------------------------ -------------------- -------------------- -------------------- -------------------- XE_TIMER_EVENT 115166 2799125790 30165 2799125065 REQUEST_FOR_DEADLOCK_SEARCH 559393 2799053973 5180 2799053973 SOS_SCHEDULER_YIELD 152289883 189948844 960 189756877 CXPACKET 234638389 2383701040 141334 118796827 SLEEP_TASK 170743505 1525669557 1406 76485386 LATCH_EX 97301008 810738519 1107 55093884 LOGMGR_QUEUE 16525384 2798527632 20751319 4083713 WRITELOG 16850119 18328365 1193 2367880 PAGELATCH_EX 13254618 8524515 11263 1670113 ASYNC_NETWORK_IO 23954146 6981220 7110 1475699 (10 row(s) affected) I also ran -- Isolate top waits for server instance since last restart or statistics clear WITH Waits AS ( SELECT wait_type, wait_time_ms / 1000. AS [wait_time_s], 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS [pct], ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS [rn] FROM sys.dm_os_wait_stats WHERE wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER_SLEEP','RESOURCE_QUEUE', 'SLEEP_TASK','SLEEP_SYSTEMTASK','SQLTRACE_BUFFER_FLUSH','WAITFOR','LOGMGR_QUEUE', 'CHECKPOINT_QUEUE','REQUEST_FOR_DEADLOCK_SEARCH','XE_TIMER_EVENT','BROKER_TO_FLUSH', 'BROKER_TASK_STOP','CLR_MANUAL_EVENT','CLR_AUTO_EVENT','DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT','XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN')) SELECT W1.wait_type, CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s, CAST(W1.pct AS DECIMAL(12, 2)) AS pct, CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct FROM Waits AS W1 INNER JOIN Waits AS W2 ON W2.rn <= W1.rn GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct HAVING SUM(W2.pct) - W1.pct < 95; -- percentage threshold And got wait_type wait_time_s pct running_pct CXPACKET 554821.66 65.82 65.82 LATCH_EX 184123.16 21.84 87.66 SOS_SCHEDULER_YIELD 37541.17 4.45 92.11 PAGEIOLATCH_SH 19018.53 2.26 94.37 FT_IFTSHC_MUTEX 14306.05 1.70 96.07 That shows huge amounts of time synchronizing queries involving parallelism (high CXPACKET). Additionally, anecdotally many of these problem queries are being executed on multiple cores (we have no MAXDOP hints anywhere in our code) The server has not been under load for more than a day or so. We are experiencing a large amount of variance with query executions, typically many queries appear to be slower that they were on our previous DB server and CPU is really high. Will disabling Hyperthreading help at reducing our CPU usage and increase throughput?

    Read the article

  • How to convert int to char with leadind zeros ?

    - by Bitnius
    I need to convert int data table field to char leading zeros example: 1 convert to '001' 867 convert to '000867' thx. ( This is my response 4 Hours later ... ) I tested this T-SQL Script and work fine for me ! DECLARE @number1 INT, @number2 INT SET @number1 = 1 SET @number2 = 867 SELECT RIGHT('000' + CAST(@number1 AS NVARCHAR(3)), 3 ) AS NUMBER_CONVERTED SELECT RIGHT('000000' + CAST(@number2 AS NVARCHAR(6)), 6 ) AS NUMBER_CONVERTED

    Read the article

  • Casting SelectedItem of WPF Combobox to Color causes exception

    - by Nick Udell
    I have a combobox databound to the available system colors. When the user selects a color the following code is fired: private void cboFontColour_SelectionChanged(object sender, SelectionChangedEventArgs e) { Color colour = (Color)(cboFontColour.SelectedItem); } This throws a Casting Exception with the following message: "Specified cast is not valid." When I hover over cboFontColour.SelectedItem in the debugger, it is always a Color object. I do not understand why the system seemingly cannot cast from Color to Color, any help would be much obliged.

    Read the article

  • SQL Server 2008 Geography .STBuffer() distance measurement units

    - by Chris
    I'm working with a geographic point using lat/long and need to find other points in our database within a 5 mile radius of that point. However, I can't seem to find out what the "units" are for STBuffer, it doesn't seem to conform to feet, miles, meters, kilometers, etc. The documentation only refers to them as "units", any suggestions? Thanks [...] from geography::STGeomFromText('POINT(x y)', 4326).STBuffer(z).STIntersects(geography::STGeomFromText('POINT(' + CAST(v.Longitude as varchar(max)) + ' ' + CAST(v.Latitude as varchar(max)) + ')', 4326)) = 1

    Read the article

  • Understanding AddHandler and pass delegates and events.

    - by Achilles
    I am using AddHandler to wire a function to a control's event that I dynamically create: Public Sub BuildControl(EventHandler as System.Delegate) dim objMyButton as new button AddHandler objMyButton.Click, EventHandler end Sub This code is generating a run-time exception stating: Unable to cast object of type 'MyEventHandlerDelegate' to type 'System.EventHandler' What am I not understanding about System.Delegate even though AddHandler takes as an argument of type "System.Delegate"? What Type does "EventHandler need to be to cast to a type that AddHandler can accept? Thanks for your help!

    Read the article

  • LINQ Query Problem

    - by Ritz
    I want to use this in my application but I'm getting an error for GetByLatest().Cast<IRss>(); Please suggest a solution IList<IRss> news = new Trytable().GetByLatest().Cast<IRss>(); return new RssResult(news, "William Duffy - Glasgow Based ASP.NET Web Developer", "The latest news on ASP.NET, C# and ASP.NET MVC ");

    Read the article

  • Postgre varchar field between

    - by Anton
    I have an addresses table with ZIP code field which has type VARCHAR. I need to select all addresses form this table using ZIP codes range. If I used next code: select * from address where cast(zip as bigint) between 90210 and 90220 I get an error on fields where ZIP code cann't be cast as bigint. How I can resolve this issue?

    Read the article

  • Updating a *.CSPROJ using MSBUILD API.

    - by BENBUN Coder
    Based on question : Reading a *.CSPROJ file in C# I have code to extract some properties out of a *.csproj file, along the lines of : Project project = new Project(); var Property001= from pg in project.PropertyGroups.Cast<BuildPropertyGroup>() from item in pg.Cast<BuildProperty>() where item.Name == "Property001" select item.Value.ToString(); This works fine, but the next question is how do I update the property using LINQ as well?

    Read the article

  • How to convert int to nchar or nvarchar with leadind zeros ?

    - by Bitnius
    I need to convert int data table field to nchar or nvarchar leading zeros example: 1 convert to '001' 867 convert to '000867' thx. I tested this T-SQL Script and work fine for me ! DECLARE @number1 INT, @number2 INT SET @number1 = 1 SET @number2 = 867 SELECT RIGHT('000' + CAST(@number1 AS NVARCHAR(3)), 3 ) AS NUMBER_CONVERTED SELECT RIGHT('000000' + CAST(@number2 AS NVARCHAR(6)), 6 ) AS NUMBER_CONVERTED

    Read the article

  • Best way to translate from IDictionary to a generic IDictionary

    - by George Mauer
    I've got an IDictionary field that I would like to expose via a property of type IDictionary<string, dynamic> the conversion is surprisingly difficult since I have no idea what I can .Cast<>() the IDictionary to. Best I've got: IDictionary properties; protected virtual IDictionary<string, dynamic> Properties { get { return _properties.Keys.Cast<string>() .ToDictionary(name=>name, name=> _properties[name] as dynamic); } }

    Read the article

  • Define a varbinary(max) column using sqlalchemy on MS SQL Server

    - by Mark Hall
    Hi, I'm querying an SQL Server database using SQLAlchemy and need to cast a column to varbinary(max). The thing I am struggling with is the "max" part. I can get the cast to work for any actual number (say varbinary(20)), but I cannot find how to get it to work for the "max" size of the varbinary column. Any pointers? Links? Solutions? Regards, Mark

    Read the article

  • Query Problem.Please help

    - by Ritz
    hello all, i want to use this in my application but i m getting an error for GetByLatest().Cast(); Please suggest me a solution IList news = new Trytable().GetByLatest().Cast(); return new RssResult(news, "William Duffy - Glasgow Based ASP.NET Web Developer", "The latest news on ASP.NET, C# and ASP.NET MVC "); Thanks Ritz

    Read the article

  • Casting Between Data Types in C#

    - by Jimbo
    I have (for example) an object of type A that I want to be able to cast to type B (similar to how you can cast an int to a float) Data types A and B are my own. Is it possible to define the rules by which this casting occurs? Example int a = 1; float b = (float)a; int c = (int)b;

    Read the article

  • Does negate twice (!!) make any sense?

    - by Dbger
    I noticed following usage of negate (!) in our code base, like: int GetIntFromRegistry(); bool bok = !!GetIntFromRegistry(); I am really curious about the usage of !!, it you want to cast the type from int to bool, why not just cast it explicitly use (bool), or static_cast. Is there anything I am missing?

    Read the article

  • Using Distinct or Not

    - by RPS
    In the below SQL Statement, should I be using DISTINCT as I have a Group By in my Where Clause? Thoughts? SELECT [OrderUser].OrderUserId, ISNULL(SUM(total.FileSize), 0), ISNULL(SUM(total.CompressedFileSize), 0) FROM ( SELECT DISTINCT ProductSize.OrderUserId, ProductSize.FileInfoId, CAST(ProductSize.FileSize AS BIGINT) AS FileSize, CAST(ProductSize.CompressedFileSize AS BIGINT) AS CompressedFileSize FROM ProductSize WITH (NOLOCK) INNER JOIN [Version] ON ProductSize.VersionId = [Version].VersionId ) AS total RIGHT OUTER JOIN [OrderUser] WITH (NOLOCK) ON total.OrderUserId = [OrderUser].OrderUserId WHERE NOT ([OrderUser].isCustomer = 1 AND [OrderUser].isEndOrderUser = 0 OR [OrderUser].isLocation = 1) AND [OrderUser].OrderUserId = 1 GROUP BY [OrderUser].OrderUserId

    Read the article

  • How to convert a table column to another data type

    - by holden
    I have a column with the type of Varchar in my Postgres database which I meant to be integers... and now I want to change them, unfortunately this doesn't seem to work using my rails migration. change_column :table1, :columnB, :integer So I tried doing this: execute 'ALTER TABLE "table1" ALTER COLUMN "columnB" TYPE integer USING CAST(columnB AS INTEGER)' but cast doesn't work in this instance because some of the column are null... any ideas?

    Read the article

  • Casting of object for a class loaded at runtime

    - by Steven
    hi, i load a class using Class.forName(klassname,false,loader) After this i create an instance using klass.newInstance(); It returns an object type.I want to cast it to specific type(ie.Klassnamw instance).I used normal casting but it gets hung because it is not resolved during runtime.How can i cast it?Hellp

    Read the article

  • Why do I need an intermediate conversion to go from struct to decimal, but not struct to int?

    - by Jesse McGrew
    I have a struct like this, with an explicit conversion to float: struct TwFix32 { public static explicit operator float(TwFix32 x) { ... } } I can convert a TwFix32 to int with a single explicit cast: (int)fix32 But to convert it to decimal, I have to use two casts: (decimal)(float)fix32 There is no implicit conversion from float to either int or decimal. Why does the compiler let me omit the intermediate cast to float when I'm going to int, but not when I'm going to decimal?

    Read the article

  • [C++] Multiple inheritance from template class

    - by Tom P.
    Hello, I'm having issues with multiple inheritance from different instantiations of the same template class. Specifically, I'm trying to do this: template <class T> class Base { public: Base() : obj(NULL) { } virtual ~Base() { if( obj != NULL ) delete obj; } template <class T> T* createBase() { obj = new T(); return obj; } protected: T* obj; }; class Something { // ... }; class SomethingElse { // ... }; class Derived : public Base<Something>, public Base<SomethingElse> { }; int main() { Derived* d = new Derived(); Something* smth1 = d->createBase<Something>(); SomethingElse* smth2 = d->createBase<SomethingElse>(); delete d; return 0; } When I try to compile the above code, I get the following errors: 1>[...](41) : error C2440: '=' : cannot convert from 'SomethingElse *' to 'Something *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast 1> [...](71) : see reference to function template instantiation 'T *Base<Something>::createBase<SomethingElse>(void)' being compiled 1> with 1> [ 1> T=SomethingElse 1> ] 1>[...](43) : error C2440: 'return' : cannot convert from 'Something *' to 'SomethingElse *' 1> Types pointed to are unrelated; conversion requires reinterpret_cast, C-style cast or function-style cast The issue seems to be ambiguity due to member obj being inherited from both Base< Something and Base< SomethingElse , and I can work around it by disambiguating my calls to createBase: Something* smth1 = d->Base<Something>::createBase<Something>(); SomethingElse* smth2 = d->Base<SomethingElse>::createBase<SomethingElse>(); However, this solution is dreadfully impractical, syntactically speaking, and I'd prefer something more elegant. Moreover, I'm puzzled by the first error message. It seems to imply that there is an instantiation createBase< SomethingElse in Base< Something , but how is that even possible? Any information or advice regarding this issue would be much appreciated.

    Read the article

  • ((System.Object)p == null)

    - by Daniel Bryars
    Why do this: // If parameter cannot be cast to Point return false. TwoDPoint p = obj as TwoDPoint; if ((System.Object)p == null) { return false; } Instead of this: // If parameter cannot be cast to Point return false. TwoDPoint p = obj as TwoDPoint; if (p == null) { return false; } I don't understand why you'd ever write ((System.Object)p)? Regards, Dan

    Read the article

< Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >