Search Results

Search found 9518 results on 381 pages for 'explicit implementation'.

Page 54/381 | < Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >

  • What is the best way to declare a property?

    - by Simon
    Hi. We declare properties using the @property keyword and synthesize it in the implementation file. My question is, What if I declare a property using the @property keyword and also declare a variable in the interface block with the same name? For example, consider the following code, Interface: @interface myClass : NSObject { NSString *myClass_name; // LINE 1 } @property(nonatomic, retain) NSString *myClass_name; // LINE 2 @end Implementation: @implementation myClass @synthesize myClass_name // LINE 3 @end Declaring myClass_name in LINE 1 will make any problem? Like any reference problem or any unnecessary memory consumption problem?

    Read the article

  • Does C++ require a destructor call for each placement new?

    - by Josh Haberman
    I understand that placement new calls are usually matched with explicit calls to the destructor. My question is: if I have no need for a destructor (no code to put there, and no member variables that have destructors) can I safely skip the explicit destructor call? Here is my use case: I want to write C++ bindings for a C API. In the C API many objects are accessible only by pointer. Instead of creating a wrapper object that contains a single pointer (which is wasteful and semantically confusing). I want to use placement new to construct an object at the address of the C object. The C++ object will do nothing in its constructor or destructor, and its methods will do nothing but delegate to the C methods. The C++ object will contain no virtual methods. I have two parts to this question. Is there any reason why this idea will not work in practice on any production compiler? Does this technically violate the C++ language spec?

    Read the article

  • How to implement a private virtual function within derived classes?

    - by Dane
    Hi, I know why I want to use private virtual functions, but how exactly can I implement them? For example: class Base{ [...] private: virtual void func() = 0; [...] } class Derived1: puplic Base{ void func() { //short implementation is ok here } } class Derived2: puplic Base{ void func(); //long implementation elsewhere (in cpp file) } [...] void Derived2::func() { //long implementation } The first version is ok but not always possible. Isn't the second version simply name hiding? How do you define the Base::func() of Derived2, if you cannot do it within the class declaration of Dereived2? Thanks

    Read the article

  • Is this basically what an IOC like NInject does?

    - by mrblah
    Normally I would do this: public class DBFactory { public UserDAO GetUserDao() { return new UserDao(); } } Where UserDao being the concrete implementation of IUserDao. So now my code will be littered with: DBFactory factory = new DBFactory(); IUserDao userDao = factory.GetUserDao(); User user = userDao.GetById(1); Now if I wanted to swap implementaitons, I would have to go to my DBFactory and change my code to call a different implementation. Now if I used NINject, I would bind the specific implementation on application startup, or via a config file. (or bind based on specific parameters etc. etc.). Is that all there is too it? Or is there more? (reason I am asking if I want to know how it will help me here: http://stackoverflow.com/questions/1930328/help-designing-a-order-manager-class)

    Read the article

  • How do I get regex support in excel via a function, or custom function?

    - by blunders
    It appears that regex (as in regular expressions) is not supported in excel, except via VBA. Is this so, and is it is, are there any "open source" custom VBA functions that support regex. In this case I'm looking to extract complex pattern within a string, but any implementation of a custom VBA function that expose support of regex within the function itself would be of use. If you know of semi-related function such as the IS function, feel feel to comment, though I'm really looking for a full regular expression implementation that is exposed via functions. Might even be open to a pay to use add-in if the implementation is good. If you have questions, please comment.

    Read the article

  • Xcode method navigation

    - by Bill
    In Xcode 4, I can press Ctrl-6 to get a list of all the methods in the current file. The problem is, if I have private methods declared at the top of my implementation file, say: @interface Foo () -(void)tap:(id)sender; @end @implementation Foo ... -(void)tap:(id)sender { ... } then starting to type "tap" while the method list is visible will just take me to the declaration, since it comes first in the file, when what I really want is the implementation. Is there any way to exclude these declarations from the method list or do I need to resort to separate Foo.h and Foo+Private.h headers? Thanks!

    Read the article

  • Microsoft, please help me diagnose TFS Administration permission issues!

    - by Martin Hinshelwood
    I recently had a fun time trying to debug a permission issue I ran into using TFS 2010’s TfsConfig. Update 5th March 2010 – In its style of true excellence my company has added rant to its “Suggestions for Better TFS”. <rant> I was trying to run the TfsConfig tool and I kept getting the message: “TF55038: You don't have sufficient privileges to run this tool. Contact your Team Foundation system administrator." This message made me think that it was something to do with the Install permissions as it is always recommended to use a single account to do every install of TFS. I did not install the original TFS on our network and my account was not used to do the TFS2010 install. But I did do the upgrade from 2010 beta 2 to 2010 RC with my current account. So I proceeded to do some checking: Am I in the administrators group on the server? Figure: Yes, I am in the administrators group on the server Am I in the Administration Console users list? Figure: Yes, I am in the Administration Console users list Have I reapplied the permissions in the Administration Console users list ticking all the options? Figure: Make sure you check all of the boxed if you want to have all the admin options Figure: Yes, I have made sure that all my options are correct. Am I in the Team Foundation administrators group? Figure: Yes, I am in the Team Foundation Administrators group Is my account explicitly SysAdmin on the Database server? Figure: Yes, I do have explicit SysAdmin on the database Can you guess what the problem was? The command line window was not running as the administrator! As with most other applications there should be an explicit error message that states: "You are not currently running in administrator mode; please restart the command line with elevated privileges!" This would have saved me 30 minutes, although I agree that I should change my name to Muppet and just be done with it. </rant>   Technorati Tags: Visual Studio ALM,Administration,Team Foundation Server Admin Console,TFS Admin Console

    Read the article

  • SQL Server – Learning SQL Server Performance: Indexing Basics – Video

    - by pinaldave
    Today I remember one of my older cartoon years ago created for Indexing and Performance. Every single time when Performance is discussed, Indexes are mentioned along with it. In recent times, data and application complexity is continuously growing.  The demand for faster query response, performance, and scalability by organizations is increasing and developers and DBAs need to now write efficient code to achieve this. DBA and Developers A DBA’s role is critical, because a production environment has to run 24×7, hence maintenance, trouble shooting, and quick resolutions are the need of the hour.  The first baby step into any performance tuning exercise in SQL Server involves creating, analysing, and maintaining indexes. Though we have learnt indexing concepts from our college days, indexing implementation inside SQL Server can vary.  Understanding this behaviour and designing our applications appropriately will make sure the application is performed to its highest potential. Video Learning Vinod Kumar and myself we often thought about this and realized that practical understanding of the indexes is very important. One can not master every single aspects of the index. However there are some minimum expertise one should gain if performance is one of the concern. We decided to build a course which just addresses the practical aspects of the performance. In this course, we explored some of these indexing fundamentals and we elaborated on how SQL Server goes about using indexes.  At the end of this course of you will know the basic structure of indexes, practical insights into implementation, and maintenance tips and tricks revolving around indexes.  Finally, we will introduce SQL Server 2012 column store indexes.  We have refrained from discussing internal storage structure of the indexes but have taken a more practical, demo-oriented approach to explain these core concepts. Course Outline Here are salient topics of the course. We have explained every single concept along with a practical demonstration. Additionally shared our personal scripts along with the same. Introduction Fundamentals of Indexing Index Fundamentals Index Fundamentals – Visual Representation Practical Indexing Implementation Techniques Primary Key Over Indexing Duplicate Index Clustered Index Unique Index Included Columns Filtered Index Disabled Index Index Maintenance and Defragmentation Introduction to Columnstore Index Indexing Practical Performance Tips and Tricks Index and Page Types Index and Non Deterministic Columns Index and SET Values Importance of Clustered Index Effect of Compression and Fillfactor Index and Functions Dynamic Management Views (DMV) – Fillfactor Table Scan, Index Scan and Index Seek Index and Order of Columns Final Checklist: Index and Performance Well, we believe we have done our part, now waiting for your comments and feedback. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology, Video

    Read the article

  • Quartz.Net Writing your first Hello World Job

    - by Tarun Arora
    In this blog post I’ll be covering, 01: A few things to consider before you should schedule a Job using Quartz.Net 02: Setting up your solution to use Quartz.Net API 03: Quartz.Net configuration 04: Writing & scheduling a hello world job with Quartz.Net If you are new to Quartz.Net I would recommend going through, A brief introduction to Quartz.net Walkthrough of Installing & Testing Quartz.Net as a Windows Service A few things to consider before you should schedule a Job using Quartz.Net - An instance of the scheduler service - A trigger - And last but not the least a job For example, if I wanted to schedule a script to run on the server, I should be jotting down answers to the below questions, a. Considering there are multiple machines set up with Quartz.Net windows service, how can I choose the instance of Quartz.Net where I want my script to be run b. What will trigger the execution of the job c. How often do I want the job to run d. Do I want the job to run right away or start after a delay or may be have the job start at a specific time e. What will happen to my job if Quartz.Net windows service is reset f. Do I want multiple instances of this job to run concurrently g. Can I pass parameters to the job being executed by Quartz.Net windows service Setting up your solution to use Quartz.Net API 1. Create a new C# Console Application project and call it “HelloWorldQuartzDotNet” and add a reference to Quartz.Net.dll. I use the NuGet Package Manager to add the reference. This can be done by right clicking references and choosing Manage NuGet packages, from the Nuget Package Manager choose Online from the left panel and in the search box on the right search for Quartz.Net. Click Install on the package “Quartz” (Screen shot below). 2. Right click the project and choose Add New Item. Add a new Interface and call it ‘IScheduledJob.cs’. Mark the Interface public and add the signature for Run. Your interface should look like below. namespace HelloWorldQuartzDotNet { public interface IScheduledJob { void Run(); } }   3. Right click the project and choose Add new Item. Add a class and call it ‘Scheduled Job’. Use this class to implement the interface ‘IscheduledJob.cs’. Look at the pseudo code in the implementation of the Run method. using System; namespace HelloWorldQuartzDotNet { class ScheduledJob : IScheduledJob { public void Run() { // Get an instance of the Quartz.Net scheduler // Define the Job to be scheduled // Associate a trigger with the Job // Assign the Job to the scheduler throw new NotImplementedException(); } } }   I’ll get into the implementation in more detail, but let’s look at the minimal configuration a sample configuration file for Quartz.Net service to work. Quartz.Net configuration In the App.Config file copy the below configuration <?xml version="1.0" encoding="utf-8" ?> <configuration> <configSections> <section name="quartz" type="System.Configuration.NameValueSectionHandler, System, Version=1.0.5000.0,Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </configSections> <quartz> <add key="quartz.scheduler.instanceName" value="ServerScheduler" /> <add key="quartz.threadPool.type" value="Quartz.Simpl.SimpleThreadPool, Quartz" /> <add key="quartz.threadPool.threadCount" value="10" /> <add key="quartz.threadPool.threadPriority" value="2" /> <add key="quartz.jobStore.misfireThreshold" value="60000" /> <add key="quartz.jobStore.type" value="Quartz.Simpl.RAMJobStore, Quartz" /> </quartz> </configuration>   As you can see in the configuration above, I have included the instance name of the quartz scheduler, the thread pool type, count and priority, the job store type has been defined as RAM. You have the option of configuring that to ADO.NET JOB store. More details here. Writing & scheduling a hello world job with Quartz.Net Once fully implemented the ScheduleJob.cs class should look like below. I’ll walk you through the details of the implementation… - GetScheduler() uses the name of the quartz.net and listens on localhost port 555 to try and connect to the quartz.net windows service. - Run() an attempt is made to start the scheduler in case it is in standby mode - I have defined a job “WriteHelloToConsole” (that’s the name of the job), this job belongs to the group “IT”. Think of group as a logical grouping feature. It helps you bucket jobs into groups. Quartz.Net gives you the ability to pause or delete all jobs in a group (We’ll look at that in some of the future posts). I have requested for recovery of this job in case the quartz.net service fails over to the other node in the cluster. The jobType is “HelloWorldJob”. This is the class that would be called to execute the job. More details on this below… - I have defined a trigger for my job. I have called the trigger “WriteHelloToConsole”. The Trigger works on the cron schedule “0 0/1 * 1/1 * ? *” which means fire the job once every minute. I would recommend that you look at www.cronmaker.com a free and great website to build and parse cron expressions. The trigger has a priority 1. So, if two jobs are run at the same time, this trigger will have high priority and will be run first. - Use the Job and Trigger to schedule the job. This method returns a datetime offeset. It is possible to see the next fire time for the job from this variable. using System.Collections.Specialized; using System.Configuration; using Quartz; using System; using Quartz.Impl; namespace HelloWorldQuartzDotNet { class ScheduledJob : IScheduledJob { public void Run() { // Get an instance of the Quartz.Net scheduler var schd = GetScheduler(); // Start the scheduler if its in standby if (!schd.IsStarted) schd.Start(); // Define the Job to be scheduled var job = JobBuilder.Create<HelloWorldJob>() .WithIdentity("WriteHelloToConsole", "IT") .RequestRecovery() .Build(); // Associate a trigger with the Job var trigger = (ICronTrigger)TriggerBuilder.Create() .WithIdentity("WriteHelloToConsole", "IT") .WithCronSchedule("0 0/1 * 1/1 * ? *") // visit http://www.cronmaker.com/ Queues the job every minute .WithPriority(1) .Build(); // Assign the Job to the scheduler var schedule = schd.ScheduleJob(job, trigger); Console.WriteLine("Job '{0}' scheduled for '{1}'", "", schedule.ToString("r")); } // Get an instance of the Quartz.Net scheduler private static IScheduler GetScheduler() { try { var properties = new NameValueCollection(); properties["quartz.scheduler.instanceName"] = "ServerScheduler"; // set remoting expoter properties["quartz.scheduler.proxy"] = "true"; properties["quartz.scheduler.proxy.address"] = string.Format("tcp://{0}:{1}/{2}", "localhost", "555", "QuartzScheduler"); // Get a reference to the scheduler var sf = new StdSchedulerFactory(properties); return sf.GetScheduler(); } catch (Exception ex) { Console.WriteLine("Scheduler not available: '{0}'", ex.Message); throw; } } } }   The above highlighted values have been taken from the Quartz.config file, this file is available in the Quartz.net server installation directory. Implementation of my HelloWorldJob Class below. The HelloWorldJob class gets called to execute the job “WriteHelloToConsole” using the once every minute trigger set up for this job. The HelloWorldJob is a class that implements the interface IJob. I’ll walk you through the details of the implementation… - context is passed to the method execute by the quartz.net scheduler service. This has everything you need to pull out the job, trigger specific information. - for example. I have pulled out the value of the jobKey name, the fire time and next fire time. using Quartz; using System; namespace HelloWorldQuartzDotNet { class HelloWorldJob : IJob { public void Execute(IJobExecutionContext context) { try { Console.WriteLine("Job {0} fired @ {1} next scheduled for {2}", context.JobDetail.Key, context.FireTimeUtc.Value.ToString("r"), context.NextFireTimeUtc.Value.ToString("r")); Console.WriteLine("Hello World!"); } catch (Exception ex) { Console.WriteLine("Failed: {0}", ex.Message); } } } }   I’ll add a call to call the scheduler in the Main method in Program.cs using System; using System.Threading; namespace HelloWorldQuartzDotNet { class Program { static void Main(string[] args) { try { var sj = new ScheduledJob(); sj.Run(); Thread.Sleep(10000 * 10000); } catch (Exception ex) { Console.WriteLine("Failed: {0}", ex.Message); } } } }   This was third in the series of posts on enterprise scheduling using Quartz.net, in the next post I’ll be covering how to pass parameters to the scheduled task scheduled on Quartz.net windows service. Thank you for taking the time out and reading this blog post. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Stay tuned!

    Read the article

  • Sorting a ListView in WPF – Part II

    - by marianor
    Some time ago I wrote a post about how to sort a ListView by clicking on the header of the column. The problem with that solution was that you needed to implement it each time and you have to define an explicit header for each column. As a more general solution I use attached properties to extend the ListView and GridViewColumn . The first attached property is tied to the ListView itself, and it indicates that the control supports sorting. This property attach or detach to the Click event of the...(read more)

    Read the article

  • Restful Services, oData, and Rest Sharp

    - by jkrebsbach
    After a great presentation by Jason Sheehan at MDC about RestSharp, I decided to implement it. RestSharp is a .Net framework for consuming restful data sources via either Json or XML. My first step was to put together a Restful data source for RestSharp to consume.  Staying entirely withing .Net, I decided to use Microsoft's oData implementation, built on System.Data.Services.DataServices.  Natively, these support Json, or atom+pub xml.  (XML with a few bells and whistles added on) There are three main steps for creating an oData data source: 1)  override CreateDSPMetaData This is where the metadata data is returned.  The meta data defines the structure of the data to return.  The structure contains the relationships between data objects, along with what properties the objects expose.  The meta data can and should be somehow cached so that the structure is not rebuild with every data request. 2) override CreateDataSource The context contains the data the data source will publish.  This method is the conduit which will populate the metadata objects to be returned to the requestor. 3) implement static InitializeService At this point we can set up security, along with setting up properties of the web service (versioning, etc)   Here is a web service which publishes stock prices for various Products (stocks) in various Categories. namespace RestService {     public class RestServiceImpl : DSPDataService<DSPContext>     {         private static DSPContext _context;         private static DSPMetadata _metadata;         /// <summary>         /// Populate traversable data source         /// </summary>         /// <returns></returns>         protected override DSPContext CreateDataSource()         {             if (_context == null)             {                 _context = new DSPContext();                 Category utilities = new Category(0);                 utilities.Name = "Electric";                 Category financials = new Category(1);                 financials.Name = "Financial";                                 IList products = _context.GetResourceSetEntities("Products");                 Product electric = new Product(0, utilities);                 electric.Name = "ABC Electric";                 electric.Description = "Electric Utility";                 electric.Price = 3.5;                 products.Add(electric);                 Product water = new Product(1, utilities);                 water.Name = "XYZ Water";                 water.Description = "Water Utility";                 water.Price = 2.4;                 products.Add(water);                 Product banks = new Product(2, financials);                 banks.Name = "FatCat Bank";                 banks.Description = "A bank that's almost too big";                 banks.Price = 19.9; // This will never get to the client                 products.Add(banks);                 IList categories = _context.GetResourceSetEntities("Categories");                 categories.Add(utilities);                 categories.Add(financials);                 utilities.Products.Add(electric);                 utilities.Products.Add(electric);                 financials.Products.Add(banks);             }             return _context;         }         /// <summary>         /// Setup rules describing published data structure - relationships between data,         /// key field, other searchable fields, etc.         /// </summary>         /// <returns></returns>         protected override DSPMetadata CreateDSPMetadata()         {             if (_metadata == null)             {                 _metadata = new DSPMetadata("DemoService", "DataServiceProviderDemo");                 // Define entity type product                 ResourceType product = _metadata.AddEntityType(typeof(Product), "Product");                 _metadata.AddKeyProperty(product, "ProductID");                 // Only add properties we wish to share with end users                 _metadata.AddPrimitiveProperty(product, "Name");                 _metadata.AddPrimitiveProperty(product, "Description");                 EntityPropertyMappingAttribute att = new EntityPropertyMappingAttribute("Name",                     SyndicationItemProperty.Title, SyndicationTextContentKind.Plaintext, true);                 product.AddEntityPropertyMappingAttribute(att);                 att = new EntityPropertyMappingAttribute("Description",                     SyndicationItemProperty.Summary, SyndicationTextContentKind.Plaintext, true);                 product.AddEntityPropertyMappingAttribute(att);                 // Define products as a set of product entities                 ResourceSet products = _metadata.AddResourceSet("Products", product);                 // Define entity type category                 ResourceType category = _metadata.AddEntityType(typeof(Category), "Category");                 _metadata.AddKeyProperty(category, "CategoryID");                 _metadata.AddPrimitiveProperty(category, "Name");                 _metadata.AddPrimitiveProperty(category, "Description");                 // Define categories as a set of category entities                 ResourceSet categories = _metadata.AddResourceSet("Categories", category);                 att = new EntityPropertyMappingAttribute("Name",                     SyndicationItemProperty.Title, SyndicationTextContentKind.Plaintext, true);                 category.AddEntityPropertyMappingAttribute(att);                 att = new EntityPropertyMappingAttribute("Description",                     SyndicationItemProperty.Summary, SyndicationTextContentKind.Plaintext, true);                 category.AddEntityPropertyMappingAttribute(att);                 // A product has a category, a category has products                 _metadata.AddResourceReferenceProperty(product, "Category", categories);                 _metadata.AddResourceSetReferenceProperty(category, "Products", products);             }             return _metadata;         }         /// <summary>         /// Based on the requesting user, can set up permissions to Read, Write, etc.         /// </summary>         /// <param name="config"></param>         public static void InitializeService(DataServiceConfiguration config)         {             config.SetEntitySetAccessRule("*", EntitySetRights.All);             config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;             config.DataServiceBehavior.AcceptProjectionRequests = true;         }     } }     The objects prefixed with DSP come from the samples on the oData site: http://www.odata.org/developers The products and categories objects are POCO business objects with no special modifiers. Three main options are available for defining the MetaData of data sources in .Net: 1) Generate Entity Data model (Potentially directly from SQL Server database).  This requires the least amount of manual interaction, and uses the edmx WYSIWYG editor to generate a data model.  This can be directly tied to the SQL Server database and generated from the database if you want a data access layer tightly coupled with your database. 2) Object model decorations.  If you already have a POCO data layer, you can decorate your objects with properties to statically inform the compiler how the objects are related.  The disadvantage is there are now tags strewn about your business layer that need to be updated as the business rules change.  3) Programmatically construct metadata object.  This is the object illustrated above in CreateDSPMetaData.  This puts all relationship information into one central programmatic location.  Here business rules are constructed when the DSPMetaData response object is returned.   Once you have your service up and running, RestSharp is designed for XML / Json, along with the native Microsoft library.  There are currently some differences between how Jason made RestSharp expect XML with how atom+pub works, so I found better results currently with the Json implementation - modifying the RestSharp XML parser to make an atom+pub parser is fairly trivial though, so use what implementation works best for you. I put together a sample console app which calls the RestSvcImpl.svc service defined above (and assumes it to be running on port 2000).  I used both RestSharp as a client, and also the default Microsoft oData client tools. namespace RestConsole {     class Program     {         private static DataServiceContext _ctx;         private enum DemoType         {             Xml,             Json         }         static void Main(string[] args)         {             // Microsoft implementation             _ctx = new DataServiceContext(new System.Uri("http://localhost:2000/RestServiceImpl.svc"));             var msProducts = RunQuery<Product>("Products").ToList();             var msCategory = RunQuery<Category>("/Products(0)/Category").AsEnumerable().Single();             var msFilteredProducts = RunQuery<Product>("/Products?$filter=length(Name) ge 4").ToList();             // RestSharp implementation                          DemoType demoType = DemoType.Json;             var client = new RestClient("http://localhost:2000/RestServiceImpl.svc");             client.ClearHandlers(); // Remove all available handlers             // Set up handler depending on what situation dictates             if (demoType == DemoType.Json)                 client.AddHandler("application/json", new RestSharp.Deserializers.JsonDeserializer());             else if (demoType == DemoType.Xml)             {                 client.AddHandler("application/atom+xml", new RestSharp.Deserializers.XmlDeserializer());             }                          var request = new RestRequest();             if (demoType == DemoType.Json)                 request.RootElement = "d"; // service root element for json             else if (demoType == DemoType.Xml)             {                 request.XmlNamespace = "http://www.w3.org/2005/Atom";             }                              // Return all products             request.Resource = "/Products?$orderby=Name";             RestResponse<List<Product>> productsResp = client.Execute<List<Product>>(request);             List<Product> products = productsResp.Data;             // Find category for product with ProductID = 1             request.Resource = string.Format("/Products(1)/Category");             RestResponse<Category> categoryResp = client.Execute<Category>(request);             Category category = categoryResp.Data;             // Specialized queries             request.Resource = string.Format("/Products?$filter=ProductID eq {0}", 1);             RestResponse<Product> productResp = client.Execute<Product>(request);             Product product = productResp.Data;                          request.Resource = string.Format("/Products?$filter=Name eq '{0}'", "XYZ Water");             productResp = client.Execute<Product>(request);             product = productResp.Data;         }         private static IEnumerable<TElement> RunQuery<TElement>(string queryUri)         {             try             {                 return _ctx.Execute<TElement>(new Uri(queryUri, UriKind.Relative));             }             catch (Exception ex)             {                 throw ex;             }         }              } }   Feel free to step through the code a few times and to attach a debugger to the service as well to see how and where the context and metadata objects are constructed and returned.  Pay special attention to the response object being returned by the oData service - There are several properties of the RestRequest that can be used to help troubleshoot when the structure of the response is not exactly what would be expected.

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using a WCF Message Inspector to extend AppFabric Monitoring

    - by Shawn Cicoria
    I read through Ron Jacobs post on Monitoring WCF Data Services with AppFabric http://blogs.msdn.com/b/endpoint/archive/2010/06/09/tracking-wcf-data-services-with-windows-server-appfabric.aspx What is immediately striking are 2 things – it’s so easy to get monitoring data into a viewer (AppFabric Dashboard) w/ very little work.  And the 2nd thing is, why can’t this be a WCF message inspector on the dispatch side. So, I took the base class WCFUserEventProvider that’s located in the WCF/WF samples [1] in the following path, \WF_WCF_Samples\WCF\Basic\Management\AnalyticTraceExtensibility\CS\WCFAnalyticTracingExtensibility\  and then created a few classes that project the injection as a IEndPointBehavior There are just 3 classes to drive injection of the inspector at runtime via config: IDispatchMessageInspector implementation BehaviorExtensionElement implementation IEndpointBehavior implementation The full source code is below with a link to the solution file here: [Solution File] using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.ServiceModel.Dispatcher; using System.ServiceModel.Channels; using System.ServiceModel; using System.ServiceModel.Configuration; using System.ServiceModel.Description; using Microsoft.Samples.WCFAnalyticTracingExtensibility; namespace Fabrikam.Services { public class AppFabricE2EInspector : IDispatchMessageInspector { static WCFUserEventProvider evntProvider = null; static AppFabricE2EInspector() { evntProvider = new WCFUserEventProvider(); } public object AfterReceiveRequest( ref Message request, IClientChannel channel, InstanceContext instanceContext) { OperationContext ctx = OperationContext.Current; var opName = ctx.IncomingMessageHeaders.Action; evntProvider.WriteInformationEvent("start", string.Format("operation: {0} at address {1}", opName, ctx.EndpointDispatcher.EndpointAddress)); return null; } public void BeforeSendReply(ref System.ServiceModel.Channels.Message reply, object correlationState) { OperationContext ctx = OperationContext.Current; var opName = ctx.IncomingMessageHeaders.Action; evntProvider.WriteInformationEvent("end", string.Format("operation: {0} at address {1}", opName, ctx.EndpointDispatcher.EndpointAddress)); } } public class AppFabricE2EBehaviorElement : BehaviorExtensionElement { #region BehaviorExtensionElement /// <summary> /// Gets the type of behavior. /// </summary> /// <value></value> /// <returns>The type that implements the end point behavior<see cref="T:System.Type"/>.</returns> public override Type BehaviorType { get { return typeof(AppFabricE2EEndpointBehavior); } } /// <summary> /// Creates a behavior extension based on the current configuration settings. /// </summary> /// <returns>The behavior extension.</returns> protected override object CreateBehavior() { return new AppFabricE2EEndpointBehavior(); } #endregion BehaviorExtensionElement } public class AppFabricE2EEndpointBehavior : IEndpointBehavior //, IServiceBehavior { #region IEndpointBehavior public void AddBindingParameters(ServiceEndpoint endpoint, BindingParameterCollection bindingParameters) {} public void ApplyClientBehavior(ServiceEndpoint endpoint, ClientRuntime clientRuntime) { throw new NotImplementedException(); } public void ApplyDispatchBehavior(ServiceEndpoint endpoint, EndpointDispatcher endpointDispatcher) { endpointDispatcher.DispatchRuntime.MessageInspectors.Add(new AppFabricE2EInspector()); } public void Validate(ServiceEndpoint endpoint) { ; } #endregion IEndpointBehavior } }     [1] http://www.microsoft.com/downloads/details.aspx?FamilyID=35ec8682-d5fd-4bc3-a51a-d8ad115a8792&displaylang=en

    Read the article

  • ADF and Oracle E-Business Suite Integration Series Index

    - by Juan Camilo Ruiz
    I'm creating this entry with the purpose of keeping one page that lists all the past and future entries on the series of integration of ADF with Oracle E-Business Suite, you can access all the articles and reference information that resides in other places too. Also this would the one link that I can reference while presenting about this topic. Here is the list of individual entries from the series: ADF and Oracle E-Business Suite Integration Series: Displaying Read-Only EBS data on ADF ADF and Oracle E-Business Suite Integration Series: Displaying Read-Only EBS data on iPad Using the Oracle E-Business Suite SDK for Java on ADF Applications Securing ADF Applications Using the Oracle E-Business Suite SDK JAAS Implementation Debugging ADF Security in JDeveloper 11g Adding a Role to a Responsibility for Use with the Oracle E-Business Suite SDK for Java JAAS Implementation Embedding ADF UI Components into OAF regions Bonus Material: Webcast Replays Using Oracle ADF with Oracle E-Business Suite: The Full Integration View Best Practices for Using Oracle E-Business Suite SDK for Java with Oracle ADF Documents FAQ for Integration of Oracle E-Business Suite and Oracle Application Development Framework (ADF) Applications (Doc ID 1296491.1)

    Read the article

  • First toe in the water with Object Databases : DB4O

    - by REA_ANDREW
    I have been wanting to have a play with Object Databases for a while now, and today I have done just that.  One of the obvious choices I had to make was which one to use.  My criteria for choosing one today was simple, I wanted one which I could literally wack in and start using, which means I wanted one which either had a .NET API or was designed/ported to .NET.  My decision was between two being: db4o MongoDb I went for db4o for the single reason that it looked like I could get it running and integrated the quickest.  I am making a Blogging application and front end as a project with which I can test and learn with these object databases.  Another requirement which I thought I would mention is that I also want to be able to use the said database in a shared hosting environment where I cannot install, run and maintain a server instance of said object database.  I can do exactly this with db4o. I have not tried to do this with MongoDb at time of writing.  There are quite a few in the industry now and you read an interesting post about different ones and how they are used with some of the heavy weights in the industry here : http://blog.marcua.net/post/442594842/notes-from-nosql-live-boston-2010 In the example which I am building I am using StructureMap as my IOC.  To inject the object for db4o I went with a Singleton instance scope as I am using a single file and I need this to be available to any thread on in the process as opposed to using the server implementation where I could open and close client connections with the server handling each one respectively.  Again I want to point out that I have chosen to stick with the non server implementation of db4o as I wanted to use this in a shared hosting environment where I cannot have such servers installed and run.     public static class Bootstrapper    {        public static void ConfigureStructureMap()        {            ObjectFactory.Initialize(x => x.AddRegistry(new MyApplicationRegistry()));        }    }    public class MyApplicationRegistry : Registry    {        public const string DB4O_FILENAME = "blog123";        public string DbPath        {            get            {                return Path.Combine(Path.GetDirectoryName(Assembly.GetAssembly(typeof(IBlogRepository)).Location), DB4O_FILENAME);            }        }        public MyApplicationRegistry()        {            For<IObjectContainer>().Singleton().Use(                () => Db4oEmbedded.OpenFile(Db4oEmbedded.NewConfiguration(), DbPath));            Scan(assemblyScanner =>            {                assemblyScanner.TheCallingAssembly();                assemblyScanner.WithDefaultConventions();            });        }    } So my code above is the structure map plumbing which I use for the application.  I am doing this simply as a quick scratch pad to play around with different things so I am simply segregating logical layers with folder structure as opposed to different assemblies.  It will be easy if I want to do this with any segment but for the purposes of example I have literally just wacked everything in the one assembly.  You can see an example file structure I have on the right.  I am planning on testing out a few implementations of the object databases out there so I can program to an interface of IBlogRepository One of the things which I was unsure about was how it performed under a multi threaded environment which it will undoubtedly be used 9 times out of 10, and for the reason that I am using the db context as a singleton, I assumed that the library was of course thread safe but I did not know as I have not read any where in the documentation, again this is probably me not reading things correctly.  In short though I threw together a simple test where I simply iterate to a limit each time kicking a common task off with a thread from a thread pool.  This task simply created and added an random Post and added it to the storage. The execution of the threads I put inside the Setup of the Test and then simply ensure the number of posts committed to the database is equal to the number of iterations I made; here is the code I used to do the multi thread jobs: [TestInitialize] public void Setup() { var sw = new System.Diagnostics.Stopwatch(); sw.Start(); var resetEvent = new ManualResetEvent(false); ThreadPool.SetMaxThreads(20, 20); for (var i = 0; i < MAX_ITERATIONS; i++) { ThreadPool.QueueUserWorkItem(delegate(object state) { var eventToReset = (ManualResetEvent)state; var post = new Post { Author = MockUser, Content = "Mock Content", Title = "Title" }; Repository.Put(post); var counter = Interlocked.Decrement(ref _threadCounter); if (counter == 0) eventToReset.Set(); }, resetEvent); } WaitHandle.WaitAll(new[] { resetEvent }); sw.Stop(); Console.WriteLine("{0:00}.{1:00} seconds", sw.Elapsed.Seconds, sw.Elapsed.Milliseconds); }   I was not doing this to test out the speed performance of db4o but while I was doing this I could not help but put in a StopWatch and see out of sheer interest how fast it would take to insert a number of Posts.  I tested it out in this case with 10000 inserts of a small, simple POCO and it resulted in an average of:  899.36 object inserts / second.  Again this is just  simple crude test which came out of my curiosity at how it performed under many threads when using the non server implementation of db4o. The spec summary of the computer I used is as follows: With regards to the actual Repository implementation itself, it really is quite straight forward and I have to say I am very surprised at how easy it was to integrate and get up and running.  One thing I have noticed in the exposure I have had so far is that the Query returns IList<T> as opposed to IQueryable<T> but again I have not looked into this in depth and this could be there already and if not they have provided everything one needs to make there own repository.  An example of a couple of methods from by db4o implementation of the BlogRepository is below: public class BlogRepository : IBlogRepository { private readonly IObjectContainer _db; public BlogRepository(IObjectContainer db) { _db = db; } public void Put(DomainObject obj) { _db.Store(obj); } public void Delete(DomainObject obj) { _db.Delete(obj); } public Post GetByKey(object key) { return _db.Query<Post>(post => post.Key == key).FirstOrDefault(); } … Anyways I hope to get a few more implementations going of the object databases and literally just get familiarized with them and the concept of no sql databases. Cheers for now, Andrew

    Read the article

  • TDD and WCF behavior

    - by Frederic Hautecoeur
    Some weeks ago I wanted to develop a WCF behavior using TDD. I have lost some time trying to use mocks. After a while i decided to just use a host and a client. I don’t like this approach but so far I haven’t found a good and fast solution to use Unit Test for testing a WCF behavior. To Implement my solution I had to : Create a Dummy Service Definition; Create the Dummy Service Implementation; Create a host; Create a client in my test; Create and Add the behavior; Dummy Service Definition This is just a simple service, composed of an Interface and a simple implementation. The structure is aimed to be easily customizable for my future needs.   Using Clauses : 1: using System.Runtime.Serialization; 2: using System.ServiceModel; 3: using System.ServiceModel.Channels; The DataContract: 1: [DataContract()] 2: public class MyMessage 3: { 4: [DataMember()] 5: public string MessageString; 6: } The request MessageContract: 1: [MessageContract()] 2: public class RequestMessage 3: { 4: [MessageHeader(Name = "MyHeader", Namespace = "http://dummyservice/header", Relay = true)] 5: public string myHeader; 6:  7: [MessageBodyMember()] 8: public MyMessage myRequest; 9: } The response MessageContract: 1: [MessageContract()] 2: public class ResponseMessage 3: { 4: [MessageHeader(Name = "MyHeader", Namespace = "http://dummyservice/header", Relay = true)] 5: public string myHeader; 6:  7: [MessageBodyMember()] 8: public MyMessage myResponse; 9: } The ServiceContract: 1: [ServiceContract(Name="DummyService", Namespace="http://dummyservice",SessionMode=SessionMode.Allowed )] 2: interface IDummyService 3: { 4: [OperationContract(Action="Perform", IsOneWay=false, ProtectionLevel=System.Net.Security.ProtectionLevel.None )] 5: ResponseMessage DoThis(RequestMessage request); 6: } Dummy Service Implementation 1: public class DummyService:IDummyService 2: { 3: #region IDummyService Members 4: public ResponseMessage DoThis(RequestMessage request) 5: { 6: ResponseMessage response = new ResponseMessage(); 7: response.myHeader = "Response"; 8: response.myResponse = new MyMessage(); 9: response.myResponse.MessageString = 10: string.Format("Header:<{0}> and Request was <{1}>", 11: request.myHeader, request.myRequest.MessageString); 12: return response; 13: } 14: #endregion 15: } Host Creation The most simple host implementation using a Named Pipe binding. The GetBinding method will create a binding for the host and can be used to create the same binding for the client. 1: public static class TestHost 2: { 3: 4: internal static string hostUri = "net.pipe://localhost/dummy"; 5:  6: // Create Host method. 7: internal static ServiceHost CreateHost() 8: { 9: ServiceHost host = new ServiceHost(typeof(DummyService)); 10:  11: // Creating Endpoint 12: Uri namedPipeAddress = new Uri(hostUri); 13: host.AddServiceEndpoint(typeof(IDummyService), GetBinding(), namedPipeAddress); 14:  15: return host; 16: } 17:  18: // Binding Creation method. 19: internal static Binding GetBinding() 20: { 21: NamedPipeTransportBindingElement namedPipeTransport = new NamedPipeTransportBindingElement(); 22: TextMessageEncodingBindingElement textEncoding = new TextMessageEncodingBindingElement(); 23:  24: return new CustomBinding(textEncoding, namedPipeTransport); 25: } 26:  27: // Close Method. 28: internal static void Close(ServiceHost host) 29: { 30: if (null != host) 31: { 32: host.Close(); 33: host = null; 34: } 35: } 36: } Checking the service A simple test tool check the plumbing. 1: [TestMethod] 2: public void TestService() 3: { 4: using (ServiceHost host = TestHost.CreateHost()) 5: { 6: host.Open(); 7:  8: using (ChannelFactory<IDummyService> channel = 9: new ChannelFactory<IDummyService>(TestHost.GetBinding() 10: , new EndpointAddress(TestHost.hostUri))) 11: { 12: IDummyService svc = channel.CreateChannel(); 13: try 14: { 15: RequestMessage request = new RequestMessage(); 16: request.myHeader = Guid.NewGuid().ToString(); 17: request.myRequest = new MyMessage(); 18: request.myRequest.MessageString = "I want some beer."; 19:  20: ResponseMessage response = svc.DoThis(request); 21: } 22: catch (Exception ex) 23: { 24: Assert.Fail(ex.Message); 25: } 26: } 27: host.Close(); 28: } 29: } Running the service should show that the client and the host are running fine. So far so good. Adding the Behavior Add a reference to the Behavior project and add the using entry in the test class. We just need to add the behavior to the service host : 1: [TestMethod] 2: public void TestService() 3: { 4: using (ServiceHost host = TestHost.CreateHost()) 5: { 6: host.Description.Behaviors.Add(new MyBehavior()); 7: host.Open();¨ 8: …  If you set a breakpoint in your behavior and run the test in debug mode, you will hit the breakpoint. In this case I used a ServiceBehavior. To add an Endpoint behavior you have to add it to the endpoints. 1: host.Description.Endpoints[0].Behaviors.Add(new MyEndpointBehavior()) To add a contract or an operation behavior a custom attribute should work on the service contract definition. I haven’t tried that yet.   All the code provided in this blog and in the following files are for sample use. Improvements I don’t like to instantiate a client and a service to test my behaviors. But so far I have' not found an easy way to do it. Today I am passing a type of endpoint to the host creator and it creates the right binding type. This allows me to easily switch between bindings at will. I have used the same approach to test Mex Endpoints, another post should come later for this. Enjoy !

    Read the article

  • Web application / Domain model integration using JSON capable DTOs [on hold]

    - by g-makulik
    I'm a bit confused about architectural choices for the web-applications/java/python world. For c/c++ world the available (open source) choices to implement web applications is pretty limited to zero, involving java or python the choices explode to a,- hard to sort out -, mess of available 'frameworks' and application approaches. I want to sort out a clean MVC model, where the M stands for a fully blown (POCO, POJO driven) domain model (according M.Fowler's EAA pattern) using a mature OO language (Java,C++) for implementation. The background is: I have a system with certain hardware components (that introduce system immanent active behavior) and a configuration database for system meta and HW-components configuration data (these are even usually self contained, since the HW-components are capable to persist their configuration data anyway). For realization of the configuration/status data exchange protocol with the HW-components we have chosen the Google Protobuf format, which works well for the directly wired communication with these components. This protocol is already used successfully with a Java based GUI application via TCP/IP connection to the main system controlling HW-component. This application has some drawbacks and design flaws for historical reasons. Now we want to develop an abstract model (domain model) for configuration and monitoring those HW-components, that represents a more use case oriented view to the overall system behavior. I have the feeling that a plain Java class model would fit best for this (c++ implementation seems to have too much implementation/integration overhead with viable language-bridge interfaces). Google Protobuf message definitions could still serve well to describe DTO objects used to interact with a domain model API. But integrating Google Protobuf messages client side for e.g. data binding in the current view doesn't seem to be a good choice. I'm thinking about some extra serialization features, e.g. for JSON based data exchange with the views/controllers. Most lightweight solutions seem to involve a python based presentation layer using JSON based data transfer (I'm at least not sure to be fully informed about this). Is there some lightweight (applicable for a limited ARM Linux platform) framework available, supporting such architecture to realize a web-application? UPDATE: According to my recent research and comments of colleagues I've noticed that using Java (and some JVM) might not be the preferable choice for integration with python on a limited linux system as we have (running on ARM9 with hard to discuss memory and MCU costs), but C/C++ modules would do well for this (since this forms the native interface to python extensions, doesn't it?). I can imagine to provide a domain model from an appropriate C/C++ API (though I still think it's more efforts and higher skill requirements for the involved developers to do with these languages). Still I'm searching for a good approach that supports such architecture. I'll appreciate any pointers!

    Read the article

  • Sending Big Files with WCF

    - by Sean Feldman
    I had to look into a project that submits large files to WCF service. Implementation is based on data chunking. This is a good approach when your client and server are not both based on WCF, bud different technologies. The problem with something like this is that chunking (either you wish it or not) complicates the overall solution. Alternative would be streaming. In WCF to WCF scenario, this is a piece of cake. When client is Java, it becomes a bit more challenging (has anyone implemented Java client streaming data to WCF service?). What I really liked about .NET implementation with WCF, is that sending header info along with stream was dead simple, and from the developer point of view looked like it’s all a part of the DTO passed into the service. [ServiceContract] public interface IFileUpload { [OperationContract] void UploadFile(SendFileMessage message); } Where SendFileMessage is [MessageContract] public class SendFileMessage { [MessageBodyMember(Order = 1)] public Stream FileData; [MessageHeader(MustUnderstand = true)] public FileTransferInfo FileTransferInfo; }

    Read the article

  • HDFC Bank's Journey to Oracle Private Database Cloud

    - by Nilesh Agrawal
    One of the key takeaways from a recent post by Sushil Kumar is the importance of business initiative that drives the transformational journey from legacy IT to enterprise private cloud. The journey that leads to a agile, self-service and efficient infrastructure with reduced complexity and enables IT to deliver services more closely aligned with business requirements. Nilanjay Bhattacharjee, AVP, IT of HDFC Bank presented a real-world case study based on one such initiative in his Oracle OpenWorld session titled "HDFC BANK Journey into Oracle Database Cloud with EM 12c DBaaS". The case study highlighted in this session is from HDFC Bank’s Lending Business Segment, which comprises roughly 50% of Bank’s top line. Bank’s Lending Business is always under pressure to launch “New Schemes” to compete and stay ahead in this segment and IT has to keep up with this challenging business requirement. Lending related applications are highly dynamic and go through constant changes and every single and minor change in each related application is required to be thoroughly UAT tested certified before they are certified for production rollout. This leads to a constant pressure in IT for rapid provisioning of UAT databases on an ongoing basis to enable faster time to market. Nilanjay joined Sushil Kumar, VP, Product Strategy, Oracle, during the Enterprise Manager general session at Oracle OpenWorld 2012. Let's watch what Nilanjay had to say about their recent Database cloud deployment. “Agility” in launching new business schemes became the key business driver for private database cloud adoption in the Bank. Nilanjay spent an hour discussing it during his session. Let's look at why Database-as-a-Service(DBaaS) model was need of the hour in this case  - Average 3 days to provision UAT Database for Loan Management Application Silo’ed UAT environment with Average 30% utilization Compliance requirement consume UAT testing resources DBA activities leads to $$ paid to SI for provisioning databases manually Overhead in managing configuration drift between production and test environments Rollout impact/delay on new business initiatives The private database cloud implementation progressed through 4 fundamental phases - Standardization, Consolidation, Automation, Optimization of UAT infrastructure. Project scoping was carried out and end users and stakeholders were engaged early on right from planning phase and including all phases of implementation. Standardization and Consolidation phase involved multiple iterations of planning to first standardize on infrastructure, db versions, patch levels, configuration, IT processes etc and with database level consolidation project onto Exadata platform. It was also decided to have existing AIX UAT DB landscape covered and EM 12c DBaaS solution being platform agnostic supported this model well. Automation and Optimization phase provided the necessary Agility, Self-Service and efficiency and this was made possible via EM 12c DBaaS. EM 12c DBaaS Self-Service/SSA Portal was setup with required zones, quotas, service templates, charge plan defined. There were 2 zones implemented - Exadata zone  primarily for UAT and benchmark testing for databases running on Exadata platform and second zone was for AIX setup to cover other databases those running on AIX. Metering and Chargeback/Showback capabilities provided business and IT the framework for cloud optimization and also visibility into cloud usage. More details on UAT cloud implementation, related building blocks and EM 12c DBaaS solution are covered in Nilanjay's OpenWorld session here. Some of the key Benefits achieved from UAT cloud initiative are - New business initiatives can be easily launched due to rapid provisioning of UAT Databases [ ~3 hours ] Drastically cut down $$ on SI for DBA Activities due to Self-Service Effective usage of infrastructure leading to  better ROI Empowering  consumers to provision database using Self-Service Control on project schedule with DB end date aligned to project plan submitted during provisioning Databases provisioned through Self-Service are monitored in EM and auto configured for Alerts and KPI Regulatory requirement of database does not impact existing project in queue This table below shows typical list of activities and tasks involved when a end user requests for a UAT database. EM 12c DBaaS solution helped reduce UAT database provisioning time from roughly 3 days down to 3 hours and this timing also includes provisioning time for database with production scale data (ranging from 250 G to 2 TB of data) - And it's not just about time to provision,  this initiative has enabled an agile, efficient and transparent UAT environment where end users are empowered with real control of cloud resources and IT's role is shifted as enabler of strategic services instead of being administrator of all user requests. The strong collaboration between IT and business community right from planning to implementation to go-live has played the key role in achieving this common goal of enterprise private cloud. Finally, real cloud is here and this cloud is accompanied with rain (business benefits) as well ! For more information, please go to Oracle Enterprise Manager  web page or  follow us at :  Twitter | Facebook | YouTube | Linkedin | Newsletter

    Read the article

  • Absent Code attribute in method that is not native or abstract

    - by kerry
    I got the following, quite puzzling error today when running a unit test: java.lang.ClassFormatError: Absent Code attribute in method that is not native or abstract in class file javax/servlet/http/Cookie A google search found this post, which explains that it is caused by having an interface in the classpath, and not an actual implementation. In this case it’s the java-ee interface. To fix this I added the jetty servlet api implementation to my pom: jetty javax.servlet test Piece of cake. I have run in to this before, so I figured I would capture the fix here in case I run in to it again.

    Read the article

  • Data Modeling Resources

    - by Dejan Sarka
    You can find many different data modeling resources. It is impossible to list all of them. I selected only the most valuable ones for me, and, of course, the ones I contributed to. Books Chris J. Date: An Introduction to Database Systems – IMO a “must” to understand the relational model correctly. Terry Halpin, Tony Morgan: Information Modeling and Relational Databases – meet the object-role modeling leaders. Chris J. Date, Nikos Lorentzos and Hugh Darwen: Time and Relational Theory, Second Edition: Temporal Databases in the Relational Model and SQL – all theory needed to manage temporal data. Louis Davidson, Jessica M. Moss: Pro SQL Server 2012 Relational Database Design and Implementation – the best SQL Server focused data modeling book I know by two of my friends. Dejan Sarka, et al.: MCITP Self-Paced Training Kit (Exam 70-441): Designing Database Solutions by Using Microsoft® SQL Server™ 2005 – SQL Server 2005 data modeling training kit. Most of the text is still valid for SQL Server 2008, 2008 R2, 2012 and 2014. Itzik Ben-Gan, Lubor Kollar, Dejan Sarka, Steve Kass: Inside Microsoft SQL Server 2008 T-SQL Querying – Steve wrote a chapter with mathematical background, and I added a chapter with theoretical introduction to the relational model. Itzik Ben-Gan, Dejan Sarka, Roger Wolter, Greg Low, Ed Katibah, Isaac Kunen: Inside Microsoft SQL Server 2008 T-SQL Programming – I added three chapters with theoretical introduction and practical solutions for the user-defined data types, dynamic schema and temporal data. Dejan Sarka, Matija Lah, Grega Jerkic: Training Kit (Exam 70-463): Implementing a Data Warehouse with Microsoft SQL Server 2012 – my first two chapters are about data warehouse design and implementation. Courses Data Modeling Essentials – I wrote a 3-day course for SolidQ. If you are interested in this course, which I could also deliver in a shorter seminar way, you can contact your closes SolidQ subsidiary, or, of course, me directly on addresses [email protected] or [email protected]. This course could also complement the existing courseware portfolio of training providers, which are welcome to contact me as well. Logical and Physical Modeling for Analytical Applications – online course I wrote for Pluralsight. Working with Temporal data in SQL Server – my latest Pluralsight course, where besides theory and implementation I introduce many original ways how to optimize temporal queries. Forthcoming presentations SQL Bits 12, July 17th – 19th, Telford, UK – I have a full-day pre-conference seminar Advanced Data Modeling Topics there.

    Read the article

< Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >