Search Results

Search found 1591 results on 64 pages for 'implementations'.

Page 54/64 | < Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >

  • configuring slime in emacs

    - by CodeKingPlusPlus
    I am in the process of configuring slime for emacs. So far I have read about basic functionality for common lisp such as C-c C-q which invokes the command slime-close-parens-at-point which places the proper number of parens where your mouse is. Another command that seemed cool was invoked by C-c C-c and it would pass the code you are editing in a buffer to the REPL, and "compile" it. Why won't these commands work for me? Anyway, I have downloaded slime via M-x list-packages and do not seem to have this functionality (C-h w and then any of these commands tells me that these commands do note exist). So, I saw a bunch of other slime extensions such as slime-repl', 'slime-fuzzy' and 'hippie-expand-slime'. So I again usedM-x list-packages` and downloaded them. Still I did not have these commands. Here is the content of my emacs file relevant to slime: ;;;Common Lisp and Slime (add-to-list 'load-path "/home/s2s2/.emacs.d/elpa/slime-20130626.1151") (add-to-list 'load-path "/home/s2s2/.emacs.d/elpa/slime-repl-201000404") (add-to-list 'load-path "/home/s2s2/.emacs.d/elpa/hippie-expand-slime-20130226.1656") (add-to-list 'load-path "/home/s2s2/.emacs.d/elpa/slime-fuzzy-20100404") (require 'slime) (setq slime-lisp-implementations `((sbcl ("/usr/bin/sbcl")) (ecl ("/usr/bin/ecl")) (clisp ("/usr/bin/clisp" "-q -I")))) (require 'slime-repl) (require 'slime-fuzzy) (require 'hippie-expand-slime) When I execute M-x slime I get the following message in the inferior-lisp buffer where I can execute common lisp code (however, shouldn't this be the slime-repl since I required it?): STYLE-WARNING: redefining EMACS-INSPECT (#<BUILT-IN-CLASS T>) in DEFMETHOD STYLE-WARNING: Implicitly creating new generic function STREAM-READ-CHAR-WILL-HANG-P. WARNING: These Swank interfaces are unimplemented: (DISASSEMBLE-FRAME SLDB-BREAK-AT-START SLDB-BREAK-ON-RETURN) ;; Swank started at port: 46533. Then a slime-error buffer is created with the contents: Invalid protocol message: Symbol "CREATE-REPL" not found in the SWANK package. Line: 1, Column: 28, File-Position: 28 Stream: #<SB-IMPL::STRING-INPUT-STREAM {10056B9C33}> (:emacs-rex (swank:create-repl nil) "COMMON-LISP-USER" t 5) How should I modify my emacs file to give me the functionality of those commands? In my emacs file am I not loading the necessary files? Do I need to install an additional package? If you need more information let me know! All help is much appreciated!

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • SharePoint 2010 – Central Admin tooling to create host header site collections

    - by eJugnoo
    Just like SharePoint 2007, you can create host-header based site collections in SharePoint 2010 as well. It means, that you do not necessarily need to create a site-collection under a managed path like /sites/, you can create multiple root-level site collections on same web-application/port by using host-header site collections. All you need to do is point your domain or sub-domain to your web-application and create a matching site-collection that you want. But, just like in 2007, it is something that you do by using STSADM, and is not available on Central Admin UI in 2010 as well. Yeah, though you can now also use PowerShell to create one: C:\PS>$w = Get-SPWebApplication http://sitename   C:\PS>New-SPSite http://www.contoso.com -OwnerAlias "DOMAIN\jdoe" -HostHeaderWebApplication $w -Title "Contoso" -Template "STS#0"   This example creates a host header site collection. Because the template is provided, the root Web of this site collection will be created. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I’ve been playing with WCM in SharePoint 2010 more and more, and for that I preferred creating hosts file entries for desired domains and create site-collections by those headers – in my dev environment. I used PowerShell initially, but then got interested to build my own UI on Central Admin instead. Developed with Visual Studio 2010 So I used new Visual Studio 2010 tooling to create an empty SharePoint 2010 project. Added an application page (there is no option to add _Admin page item in VS 2010 RC), that got created in Layouts “mapped” folder. Created a new Admin mapped folder for 14-“hive”, and moved my new page there instead. Yes, I didn’t change the base class for page, its just that it runs under _admin, but it is indeed a LayoutsPageBase inherited page. To introduce a action-link in Central Admin console, I created following element: 1: <Elements xmlns="http://schemas.microsoft.com/sharepoint/"> 2: <CustomAction 3: Id="CreateSiteByHeader" 4: Location="Microsoft.SharePoint.Administration.Applications" 5: Title="Create site collections by host header" 6: GroupId="SiteCollections" 7: Sequence="15" 8: RequiredAdmin="Delegated" 9: Description="Create a new top-level web site, by host header" > 10: <UrlAction Url="/_admin/OfficeToolbox/CreateSiteByHeader.aspx" /> 11: </CustomAction> 12: </Elements> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Used Reflector to understand any special code behind createpage.aspx, and created a new for our purpose – CreateSiteByHeader.aspx. From there I quickly created a similar code behind, without all the fancy of Farm Config Wizard handling and dealt with alternate implementations of sealed classes! Goal was to create a professional looking and OOB-type experience. I also added Regex validation to ensure user types a valid domain name as header value. Below is the result…   Release @ Codeplex I’ve released to WSP on OfficeToolbox @ Codeplex, and you can download from here. Hope you find it useful… -- Sharad

    Read the article

  • WCF REST on .Net 4.0

    - by AngelEyes
    A simple and straight forward article taken from: http://christopherdeweese.com/blog2/post/drop-the-soap-wcf-rest-and-pretty-uris-in-net-4 Drop the Soap: WCF, REST, and Pretty URIs in .NET 4 Years ago I was working in libraries when the Web 2.0 revolution began.  One of the things that caught my attention about early start-ups using the AJAX/REST/Web 2.0 model was how nice the URIs were for their applications.  Those were my first impressions of REST; pretty URIs.  Turns out there is a little more to it than that. REST is an architectural style that focuses on resources and structured ways to access those resources via the web.  REST evolved as an “anti-SOAP” movement, driven by developers who did not want to deal with all the complexity SOAP introduces (which is al lot when you don’t have frameworks hiding it all).  One of the biggest benefits to REST is that browsers can talk to rest services directly because REST works using URIs, QueryStrings, Cookies, SSL, and all those HTTP verbs that we don’t have to think about anymore. If you are familiar with ASP.NET MVC then you have been exposed to rest at some level.  MVC is relies heavily on routing to generate consistent and clean URIs.  REST for WCF gives you the same type of feel for your services.  Let’s dive in. WCF REST in .NET 3.5 SP1 and .NET 4 This post will cover WCF REST in .NET 4 which drew heavily from the REST Starter Kit and community feedback.  There is basic REST support in .NET 3.5 SP1 and you can also grab the REST Starter Kit to enable some of the features you’ll find in .NET 4. This post will cover REST in .NET 4 and Visual Studio 2010. Getting Started To get started we’ll create a basic WCF Rest Service Application using the new on-line templates option in VS 2010: When you first install a template you are prompted with this dialog: Dude Where’s my .Svc File? The WCF REST template shows us the new way we can simply build services.  Before we talk about what’s there, let’s look at what is not there: The .Svc File An Interface Contract Dozens of lines of configuration that you have to change to make your service work REST in .NET 4 is greatly simplified and leverages the Web Routing capabilities used in ASP.NET MVC and other parts of the web frameworks.  With REST in .NET 4 you use a global.asax to set the route to your service using the new ServiceRoute class.  From there, the WCF runtime handles dispatching service calls to the methods based on the Uri Templates. global.asax using System; using System.ServiceModel.Activation; using System.Web; using System.Web.Routing; namespace Blog.WcfRest.TimeService {     public class Global : HttpApplication     {         void Application_Start(object sender, EventArgs e)         {             RegisterRoutes();         }         private static void RegisterRoutes()         {             RouteTable.Routes.Add(new ServiceRoute("TimeService",                 new WebServiceHostFactory(), typeof(TimeService)));         }     } } The web.config contains some new structures to support a configuration free deployment.  Note that this is the default config generated with the template.  I did not make any changes to web.config. web.config <?xml version="1.0"?> <configuration>   <system.web>     <compilation debug="true" targetFramework="4.0" />   </system.web>   <system.webServer>     <modules runAllManagedModulesForAllRequests="true">       <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,            System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />     </modules>   </system.webServer>   <system.serviceModel>     <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>     <standardEndpoints>       <webHttpEndpoint>         <!--             Configure the WCF REST service base address via the global.asax.cs file and the default endpoint             via the attributes on the <standardEndpoint> element below         -->         <standardEndpoint name="" helpEnabled="true" automaticFormatSelectionEnabled="true"/>       </webHttpEndpoint>     </standardEndpoints>   </system.serviceModel> </configuration> Building the Time Service We’ll create a simple “TimeService” that will return the current time.  Let’s start with the following code: using System; using System.ServiceModel; using System.ServiceModel.Activation; using System.ServiceModel.Web; namespace Blog.WcfRest.TimeService {     [ServiceContract]     [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]     [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]     public class TimeService     {         [WebGet(UriTemplate = "CurrentTime")]         public string CurrentTime()         {             return DateTime.Now.ToString();         }     } } The endpoint for this service will be http://[machinename]:[port]/TimeService.  To get the current time http://[machinename]:[port]/TimeService/CurrentTime will do the trick. The Results Are In Remember That Route In global.asax? Turns out it is pretty important.  When you set the route name, that defines the resource name starting after the host portion of the Uri. Help Pages in WCF 4 Another feature that came from the starter kit are the help pages.  To access the help pages simply append Help to the end of the service’s base Uri. Dropping the Soap Having dabbled with REST in the past and after using Soap for the last few years, the WCF 4 REST support is certainly refreshing.  I’m currently working on some REST implementations in .NET 3.5 and VS 2008 and am looking forward to working on REST in .NET 4 and VS 2010.

    Read the article

  • C# 4.0: Dynamic Programming

    - by Paulo Morgado
    The major feature of C# 4.0 is dynamic programming. Not just dynamic typing, but dynamic in broader sense, which means talking to anything that is not statically typed to be a .NET object. Dynamic Language Runtime The Dynamic Language Runtime (DLR) is piece of technology that unifies dynamic programming on the .NET platform, the same way the Common Language Runtime (CLR) has been a common platform for statically typed languages. The CLR always had dynamic capabilities. You could always use reflection, but its main goal was never to be a dynamic programming environment and there were some features missing. The DLR is built on top of the CLR and adds those missing features to the .NET platform. The Dynamic Language Runtime is the core infrastructure that consists of: Expression Trees The same expression trees used in LINQ, now improved to support statements. Dynamic Dispatch Dispatches invocations to the appropriate binder. Call Site Caching For improved efficiency. Dynamic languages and languages with dynamic capabilities are built on top of the DLR. IronPython and IronRuby were already built on top of the DLR, and now, the support for using the DLR is being added to C# and Visual Basic. Other languages built on top of the CLR are expected to also use the DLR in the future. Underneath the DLR there are binders that talk to a variety of different technologies: .NET Binder Allows to talk to .NET objects. JavaScript Binder Allows to talk to JavaScript in SilverLight. IronPython Binder Allows to talk to IronPython. IronRuby Binder Allows to talk to IronRuby. COM Binder Allows to talk to COM. Whit all these binders it is possible to have a single programming experience to talk to all these environments that are not statically typed .NET objects. The dynamic Static Type Let’s take this traditional statically typed code: Calculator calculator = GetCalculator(); int sum = calculator.Sum(10, 20); Because the variable that receives the return value of the GetCalulator method is statically typed to be of type Calculator and, because the Calculator type has an Add method that receives two integers and returns an integer, it is possible to call that Sum method and assign its return value to a variable statically typed as integer. Now lets suppose the calculator was not a statically typed .NET class, but, instead, a COM object or some .NET code we don’t know he type of. All of the sudden it gets very painful to call the Add method: object calculator = GetCalculator(); Type calculatorType = calculator.GetType(); object res = calculatorType.InvokeMember("Add", BindingFlags.InvokeMethod, null, calculator, new object[] { 10, 20 }); int sum = Convert.ToInt32(res); And what if the calculator was a JavaScript object? ScriptObject calculator = GetCalculator(); object res = calculator.Invoke("Add", 10, 20); int sum = Convert.ToInt32(res); For each dynamic domain we have a different programming experience and that makes it very hard to unify the code. With C# 4.0 it becomes possible to write code this way: dynamic calculator = GetCalculator(); int sum = calculator.Add(10, 20); You simply declare a variable who’s static type is dynamic. dynamic is a pseudo-keyword (like var) that indicates to the compiler that operations on the calculator object will be done dynamically. The way you should look at dynamic is that it’s just like object (System.Object) with dynamic semantics associated. Anything can be assigned to a dynamic. dynamic x = 1; dynamic y = "Hello"; dynamic z = new List<int> { 1, 2, 3 }; At run-time, all object will have a type. In the above example x is of type System.Int32. When one or more operands in an operation are typed dynamic, member selection is deferred to run-time instead of compile-time. Then the run-time type is substituted in all variables and normal overload resolution is done, just like it would happen at compile-time. The result of any dynamic operation is always dynamic and, when a dynamic object is assigned to something else, a dynamic conversion will occur. Code Resolution Method double x = 1.75; double y = Math.Abs(x); compile-time double Abs(double x) dynamic x = 1.75; dynamic y = Math.Abs(x); run-time double Abs(double x) dynamic x = 2; dynamic y = Math.Abs(x); run-time int Abs(int x) The above code will always be strongly typed. The difference is that, in the first case the method resolution is done at compile-time, and the others it’s done ate run-time. IDynamicMetaObjectObject The DLR is pre-wired to know .NET objects, COM objects and so forth but any dynamic language can implement their own objects or you can implement your own objects in C# through the implementation of the IDynamicMetaObjectProvider interface. When an object implements IDynamicMetaObjectProvider, it can participate in the resolution of how method calls and property access is done. The .NET Framework already provides two implementations of IDynamicMetaObjectProvider: DynamicObject : IDynamicMetaObjectProvider The DynamicObject class enables you to define which operations can be performed on dynamic objects and how to perform those operations. For example, you can define what happens when you try to get or set an object property, call a method, or perform standard mathematical operations such as addition and multiplication. ExpandoObject : IDynamicMetaObjectProvider The ExpandoObject class enables you to add and delete members of its instances at run time and also to set and get values of these members. This class supports dynamic binding, which enables you to use standard syntax like sampleObject.sampleMember, instead of more complex syntax like sampleObject.GetAttribute("sampleMember").

    Read the article

  • Importing Multiple Schemas to a Model in Oracle SQL Developer Data Modeler

    - by thatjeffsmith
    Your physical data model might stretch across multiple Oracle schemas. Or maybe you just want a single diagram containing tables, views, etc. spanning more than a single user in the database. The process for importing a data dictionary is the same, regardless if you want to suck in objects from one schema, or many schemas. Let’s take a quick look at how to get started with a data dictionary import. I’m using Oracle SQL Developer in this example. The process is nearly identical in Oracle SQL Developer Data Modeler – the only difference being you’ll use the ‘File’ menu to get started versus the ‘File – Data Modeler’ menu in SQL Developer. Remember, the functionality is exactly the same whether you use SQL Developer or SQL Developer Data Modeler when it comes to the data modeling features – you’ll just have a cleaner user interface in SQL Developer Data Modeler. Importing a Data Dictionary to a Model You’ll want to open or create your model first. You can import objects to an existing or new model. The easiest way to get started is to simply open the ‘Browser’ under the View menu. The Browser allows you to navigate your open designs/models You’ll see an ‘Untitled_1′ model by default. I’ve renamed mine to ‘hr_sh_scott_demo.’ Now go back to the File menu, and expand the ‘Data Modeler’ section, and select ‘Import – Data Dictionary.’ This is a fancy way of saying, ‘suck objects out of the database into my model’ Connect! If you haven’t already defined a connection to the database you want to reverse engineer, you’ll need to do that now. I’m going to assume you already have that connection – so select it, and hit the ‘Next’ button. Select the Schema(s) to be imported Select one or more schemas you want to import The schemas selected on this page of the wizard will dictate the lists of tables, views, synonyms, and everything else you can choose from in the next wizard step to import. For brevity, I have selected ALL tables, views, and synonyms from 3 different schemas: HR SCOTT SH Once I hit the ‘Finish’ button in the wizard, SQL Developer will interrogate the database and add the objects to our model. The Big Model and the 3 Little Models I can now see ALL of the objects I just imported in the ‘hr_sh_scott_demo’ relational model in my design tree, and in my relational diagram. Quick Tip: Oracle SQL Developer calls what most folks think of as a ‘Physical Model’ the ‘Relational Model.’ Same difference, mostly. In SQL Developer, a Physical model allows you to define partitioning schemes, advanced storage parameters, and add your PL/SQL code. You can have multiple physical models per relational models. For example I might have a 4 Node RAC in Production that uses partitioning, but in test/dev, only have a single instance with no partitioning. I can have models for both of those physical implementations. The list of tables in my relational model Wouldn’t it be nice if I could segregate the objects based on their schema? Good news, you can! And it’s done by default Several of you might already know where I’m going with this – SUBVIEWS. You can easily create a ‘SubView’ by selecting one or more objects in your model or diagram and add them to a new SubView. SubViews are just mini-models. They contain a subset of objects from the main model. This is very handy when you want to break your model into smaller, more digestible parts. The model information is identical across the model and subviews, so you don’t have to worry about making a change in one place and not having it propagate across your design. SubViews can be used as filters when you create reports and exports as well. So instead of generating a PDF for everything, just show me what’s in my ‘ABC’ subview. But, I don’t want to do any work! Remember, I’m really lazy. More good news – it’s already done by default! The schemas are automatically used to create default SubViews Auto-Navigate to the Object in the Diagram In the subview tree node, right-click on the object you want to navigate to. You can ask to be taken to the main model view or to the SubView location. If you haven’t already opened the SubView in the diagram, it will be automatically opened for you. The SubView diagram only contains the objects from that SubView Your SubView might still be pretty big, many dozens of objects, so don’t forget about the ‘Navigator‘ either! In summary, use the ‘Import’ feature to add existing database objects to your model. If you import from multiple schemas, take advantage of the default schema based SubViews to help you manage your models! Sometimes less is more!

    Read the article

  • Install SharePoint 2013 on a two server farm

    - by sreejukg
    When SharePoint 2010 was released, I published an article on how to install SharePoint on a two server farm. You can find that article from the below link. http://weblogs.asp.net/sreejukg/archive/2010/09/28/install-sharepoint-2010-in-a-farm-environment.aspx Now it is the time for SharePoint 2013. SharePoint 2013 brings lots of improvements to the topologies, but still supports two-server architecture. Be noted that “two-server architecture” is meant for small implementations with limited service applications. Refer the below link to understand more about the SharePoint architecture http://technet.microsoft.com/en-us/sharepoint/fp123594.aspx A two tier farm consists of a database server and a web/application server as follows. In this article I am going to explain how to install SharePoint in a two server farm. I prepared 2 servers, both of them joined to a domain(SP2013Domain), and in one server I installed SQL Server 2012 (Server name: SP2013_DB). Now I am going to install SharePoint 2013 in the second server (Server Name: SP2013). The following domain accounts are created for the installation.   User Account Purpose Server roles required SQLService - SQL Server service account - This account is used as the service account for SQL Server. - domain user account / local account spSetup - You will be running SharePoint setup and SharePoint products and configuration wizard using this account. -domain user account - Member of the Administrators group on each server on which Setup is run(In our case SP2013) - SQL Server login on the computer running SQL Server - Member of the Server admin SQL Server security role spDataaccess - Configure and manage server farm. This - Application pool identity for central admin website - Microsoft SharePoint Foundation Workflow Timer Service Domain user account (Other permissions will be set to this account automatically)   The above are the minimum list of accounts needed for SharePoint 2013 installation. Now you need additional accounts for services, application pool identities for web applications etc. Refer the service accounts requirements for SharePoint from the below link. http://technet.microsoft.com/en-us/library/cc263445.aspx In order to install SharePoint 2013 login to the server using setup account(spsetup). Now run the setup from the installation media. First you need to install the pre-requisites. During the installation process, the server may restart several times. The installation wizard will guide you through the installation. In the next step, you need to agree on the terms and conditions as usual. Once you click next, the installation will start immediately. The installation wizard will let you know the progress of the installation. During the installation you may receive notifications to restart the server, you need to just click the finish button so that the system will be restarted. Once all the pre-requisites are installed, you will get the success message as below. Click finish to close the dialog. Now from the media, run the setup again and this time you choose install SharePoint server. In the next screen, you need to enter the product key, and then click continue. Now you need to agree on the terms and conditions for SharePoint 2013, and click continue. Choose the file location as per your policies and click on the install now button. You will see the installation progress. Once completed, you will see the installation completed dialog. Make sure you select the run products and configuration wizard option and click close. From the start screen, click next to start the configuration wizard. You will receive warning telling you some of the services will be stopped during the installation. Select “create new server farm” radio button and click next. In the next step, you need to enter the configuration database settings. Enter the database server details and then specify the database access account. You need to specify the farm account(spdataaccess). The wizard will grant additional privileges to the account as needed. In the next step you need to specify the passphrase, you need to note this as you need this passphrase if you add additional server to the farm. In the next step, you need to enter the central administration website port and security settings. You can choose a port or just keep it as suggested by the wizard. Click next, you will see the summary of what you have been selected. Verify the selected settings and if you want to change any, just click back and change them, or click continue to start the configuration. The configuration may take some time, you can view the progress, in case of any error, you will get the log file, you need to fix any error and again start the configuration wizard. Once the configuration successful, you will see the success message. Just click finish. Now you can browse the central administration website. It is good to check the health analyzer to review whether there are any errors/warnings. No warnings/errors indicate a good installation. Two-Server architecture is the least configuration for production environments. For small firms with less number of employees can implement SharePoint 2013 using this topology and as the workload increases, they can add more servers to the farm without reconstructing everything.

    Read the article

  • Commercial Drupal Modules & Themes

    - by Ravish
    A discussion at Drupal.org forums prompted me to give my input about commercial ecosystem around Open Source Content Management Systems. WordPress and Joomla have been growing rapidly since past few years. But, growth rate of Drupal seems to be almost flat. Despite being the most powerful CMS around, Drupal is still not being adopted by masses. Many people will argue that Drupal is not targeted towards masses, but developers. I agree, Drupal is more of a development platform than a consumer CMS. Drupal is ‘many things to many people’, and I can build almost any type of website with it. Drupal is being used for building blogs, corporate websites, Intranet portals, social networking and even a project management system. Looking at the wide array of Drupal implementations, it deserves to be the most widely adopted CMS. I believe there are few challenges that Drupal community needs to overcome. To understand these challenges, I surveyed some webmasters who use Joomla or WordPress but not Drupal. I asked them why they don’t want to use Drupal, following are the responses I got from them: Drupal is too complicated, takes time to learn. Drupal is great, but its admin panel is overwhelming. I couldn’t find any nice themes for Drupal. There is no WYSIWYG editor in Drupal. Most Drupal modules do not work out of the box. There aren’t enough modules like Ubercart which provides any out of the box functionality. I tried modules like CCK, Views and Panels. After wasting several hours struggling with them, I decided to give up on Drupal. I don’t use Drupal because of pushbutton and Garland theme. I had hard time trying to customize Garland and it messed up the whole layout. There are no premium modules and themes for Drupal. Joomla has tons of awesome themes and modules. I don’t want a million hacks like CCK, Views, Tokens, Pathauto, ImageCache and CTools just to run a simple website. Most of the complaints from users are related to the learning and development curve involved with Drupal, and the lack of ecosystem. While most of the problems will be gone in Drupal 7, ecosystem is something that needs to be built by the Drupal community. Drupal distributions are a great step forward. There are few awesome Drupal distributions available like Open Publish, Open Atrium and Drupal Commons. I predict, there will be a wave of many powerful Drupal distributions after Drupal 7 release. Many of them will be user-friendly and commercial supported. Following is my post at Drupal.org forums: Quote from: http://drupal.org/node/863776#comment-3313836 Brian Gardner (StudioPress) and Woo Themes launched premium WordPress themes in 2007, the developer community did not accept it at first. Moreover, they were not even GPL licensed. There was an outcry in WordPress community against them. Following that, most premium theme providers switched to GPL licensing. Despite controversies, users voted for premium theme and plugins by buying them. Inspired by their success, hundreds of other developers started to sell premium themes and plugins. It is now the acceptable and in fact most popular business model among WordPress community. Matt Mullenweg once told me, they would not support premium themes. If he supported, developers would no more give out free GPL themes & plugins. He pointed me towards Joomla, there were hardly any nice free themes & modules available. Now two years forward, premium products are not just accepted but embraced by the WordPress community – http://wordpress.org/extend/themes/commercial/ The quality and number of themes & modules has increased, even the free ones. This also helped to boost the adoption and ecosystem of WordPress. Today, state of Drupal is like WordPress was in 2007. There are hardly any out of the box solutions available for Drupal. Ubercart, Open Publish and Open Atrium are the only ones I can think of. Many of the popular Drupal modules are patches and hole-fillers. Thankfully, these hole-filler modules are going to be in Drupal 7 core. Drupal 7 and distributions will spawn a new array of solutions built upon Drupal. Soon, we will have more like Ubercarts and Open Atriums. If commercial solutions can help fuel this ecosystem and growth, Drupal community will accept them eventually. This debate will not stop your customers from buying your product. If your product is awesome, they will vote for you by buying your product.

    Read the article

  • Your thoughts on Best Practices for Scientific Computing?

    - by John Smith
    A recent paper by Wilson et al (2014) pointed out 24 Best Practices for scientific programming. It's worth to have a look. I would like to hear opinions about these points from experienced programmers in scientific data analysis. Do you think these advices are helpful and practical? Or are they good only in an ideal world? Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, Haddock SHD, Huff KD, Mitchell IM, Plumbley MD, Waugh B, White EP, Wilson P (2014) Best Practices for Scientific Computing. PLoS Biol 12:e1001745. http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001745 Box 1. Summary of Best Practices Write programs for people, not computers. (a) A program should not require its readers to hold more than a handful of facts in memory at once. (b) Make names consistent, distinctive, and meaningful. (c) Make code style and formatting consistent. Let the computer do the work. (a) Make the computer repeat tasks. (b) Save recent commands in a file for re-use. (c) Use a build tool to automate workflows. Make incremental changes. (a) Work in small steps with frequent feedback and course correction. (b) Use a version control system. (c) Put everything that has been created manually in version control. Don’t repeat yourself (or others). (a) Every piece of data must have a single authoritative representation in the system. (b) Modularize code rather than copying and pasting. (c) Re-use code instead of rewriting it. Plan for mistakes. (a) Add assertions to programs to check their operation. (b) Use an off-the-shelf unit testing library. (c) Turn bugs into test cases. (d) Use a symbolic debugger. Optimize software only after it works correctly. (a) Use a profiler to identify bottlenecks. (b) Write code in the highest-level language possible. Document design and purpose, not mechanics. (a) Document interfaces and reasons, not implementations. (b) Refactor code in preference to explaining how it works. (c) Embed the documentation for a piece of software in that software. Collaborate. (a) Use pre-merge code reviews. (b) Use pair programming when bringing someone new up to speed and when tackling particularly tricky problems. (c) Use an issue tracking tool. I'm relatively new to serious programming for scientific data analysis. When I tried to write code for pilot analyses of some of my data last year, I encountered tremendous amount of bugs both in my code and data. Bugs and errors had been around me all the time, but this time it was somewhat overwhelming. I managed to crunch the numbers at last, but I thought I couldn't put up with this mess any longer. Some actions must be taken. Without a sophisticated guide like the article above, I started to adopt "defensive style" of programming since then. A book titled "The Art of Readable Code" helped me a lot. I deployed meticulous input validations or assertions for every function, renamed a lot of variables and functions for better readability, and extracted many subroutines as reusable functions. Recently, I introduced Git and SourceTree for version control. At the moment, because my co-workers are much more reluctant about these issues, the collaboration practices (8a,b,c) have not been introduced. Actually, as the authors admitted, because all of these practices take some amount of time and effort to introduce, it may be generally hard to persuade your reluctant collaborators to comply them. I think I'm asking your opinions because I still suffer from many bugs despite all my effort on many of these practices. Bug fix may be, or should be, faster than before, but I couldn't really measure the improvement. Moreover, much of my time has been invested on defence, meaning that I haven't actually done much data analysis (offence) these days. Where is the point I should stop at in terms of productivity? I've already deployed: 1a,b,c, 2a, 3a,b,c, 4b,c, 5a,d, 6a,b, 7a,7b I'm about to have a go at: 5b,c Not yet: 2b,c, 4a, 7c, 8a,b,c (I could not really see the advantage of using GNU make (2c) for my purpose. Could anyone tell me how it helps my work with MATLAB?)

    Read the article

  • Building the Elusive Windows Phone Panorama Control

    When the Windows Phone 7 Developer SDK was released a couple of weeks ago at MIX10 many people noticed the SDK doesnt include a template for a Panorama control.   Here at Clarity we decided to build our own Panorama control for use in some of our prototypes and I figured I would share what we came up with. There have been a couple of implementations of the Panorama control making their way through the interwebs, but I didnt think any of them really nailed the experience that is shown in the simulation videos.   One of the key design principals in the UX Guide for Windows Phone 7 is the use of motion.  The WP7 OS is fairly stripped of extraneous design elements and makes heavy use of typography and motion to give users the necessary visual cues.  Subtle animations and wide layouts help give the user a sense of fluidity and consistency across the phone experience.  When building the panorama control I was fairly meticulous in recreating the motion as shown in the videos.  The effect that is shown in the application hubs of the phone is known as a Parallax Scrolling effect.  This this pseudo-3D technique has been around in the computer graphics world for quite some time. In essence, the background images move slower than foreground images, creating an illusion of depth in 2D.  Here is an example of the traditional use: http://www.mauriciostudio.com/.  One of the animation gems I've learned while building interactive software is the follow animation.  The premise is straightforward: instead of translating content 1:1 with the interaction point, let the content catch up to the mouse or finger.  The difference is subtle, but the impact on the smoothness of the interaction is huge.  That said, it became the foundation of how I achieved the effect shown below.   Source Code Available HERE Before I briefly describe the approach I took in creating this control..and Ill add some **asterisks ** to the code below as my coding skills arent up to snuff with the rest of my colleagues.  This code is meant to be an interpretation of the WP7 panorama control and is not intended to be used in a production application.  1.  Layout the XAML The UI consists of three main components :  The background image, the Title, and the Content.  You can imagine each  these UI Elements existing on their own plane with a corresponding Translate Transform to create the Parallax effect.  2.  Storyboards + Procedural Animations = Sexy As I mentioned above, creating a fluid experience was at the top of my priorities while building this control.  To recreate the smooth scroll effect shown in the video we need to add some place holder storyboards that we can manipulate in code to simulate the inertia and snapping.  Using the easing functions built into Silverlight helps create a very pleasant interaction.    3.  Handle the Manipulation Events With Silverlight 3 we have some new touch event handlers.  The new Manipulation events makes handling the interactivity pretty straight forward.  There are two event handlers that need to be hooked up to enable the dragging and motion effects: the ManipulationDelta event :  (the most relevant code is highlighted in pink) Here we are doing some simple math with the Manipulation Deltas and setting the TO values of the animations appropriately. Modifying the storyboards dynamically in code helps to create a natural feel.something that cant easily be done with storyboards alone.   And secondly, the ManipulationCompleted event:  Here we take the Final Velocities from the Manipulation Completed Event and apply them to the Storyboards to create the snapping and scrolling effects.  Most of this code is determining what the next position of the viewport will be.  The interesting part (shown in pink) is determining the duration of the animation based on the calculated velocity of the flick gesture.  By using velocity as a variable in determining the duration of the animation we can produce a slow animation for a soft flick and a fast animation for a strong flick. Challenges to the Reader There are a couple of things I didnt have time to implement into this control.  And I would love to see other WPF/Silverlight approaches.  1.  A good mechanism for deciphering when the user is manipulating the content within the panorama control and the panorama itself.   In other words, being able to accurately determine what is a flick and what is click. 2.  Dynamically Sizing the panorama control based on the width of its content.  Right now each control panel is 400px, ideally the Panel items would be measured and then panorama control would update its size accordingly.  3.  Background and content wrapping.  The WP7 UX guidelines specify that the content and background should wrap at the end of the list.  In my code I restrict the drag at the ends of the list (like the iPhone).  It would be interesting to see how this would effect the scroll experience.     Well, Its been fun building this control and if you use it Id love to know what you think.  You can download the Source HERE or from the Expression Gallery  Erik Klimczak  | [email protected] | twitter.com/eklimczDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Programmatically use a server as the Build Server for multiple Project Collections

    Important: With this post you create an unsupported scenario by Microsoft. It will break your support for this server with Microsoft. So handle with care. I am the administrator an a TFS environment with a lot of Project Collections. In the supported configuration of Microsoft 2010 you need one Build Controller per Project Collection, and it is not supported to have multiple Build Controllers installed. Jim Lamb created a post how you can modify your system to change this behaviour. But since I have so many Project Collections, I automated this with the API of TFS. When you install a new build server via the UI, you do the following steps Register the build service (with this you hook the windows server into the build server environment) Add a new build controller Add a new build agent So in pseudo code, the code would look like foreach (projectCollection in GetAllProjectCollections) {       CreateNewWindowsService();       RegisterService();       AddNewController();       AddNewAgent(); } The following code fragements show you the most important parts of the method implementations. Attached is the full project. CreateNewWindowsService We create a new windows service with the SC command via the Diagnostics.Process class:             var pi = new ProcessStartInfo("sc.exe")                         {                             Arguments =                                 string.Format(                                     "create \"{0}\" start= auto binpath= \"C:\\Program Files\\Microsoft Team Foundation Server 2010\\Tools\\TfsBuildServiceHost.exe              /NamedInstance:{0}\" DisplayName= \"Visual Studio Team Foundation Build Service Host ({1})\"",                                     serviceHostName, tpcName)                         };            Process.Start(pi);             pi.Arguments = string.Format("failure {0} reset= 86400 actions= restart/60000", serviceHostName);            Process.Start(pi); RegisterService The trick in this method is that we set the NamedInstance static property. This property is Internal, so we need to set it through reflection. To get information on these you need nice Microsoft friends and the .Net reflector .             // Indicate which build service host instance we are using            typeof(BuildServiceHostUtilities).Assembly.GetType("Microsoft.TeamFoundation.Build.Config.BuildServiceHostProcess").InvokeMember("NamedInstance",              System.Reflection.BindingFlags.NonPublic | System.Reflection.BindingFlags.SetProperty | System.Reflection.BindingFlags.Static, null, null, new object[] { serviceName });             // Create the build service host            serviceHost = buildServer.CreateBuildServiceHost(serviceName, endPoint);            serviceHost.Save();             // Register the build service host            BuildServiceHostUtilities.Register(serviceHost, user, password); AddNewController and AddNewAgent Once you have the BuildServerHost, the rest is pretty straightforward. There are methods on the BuildServerHost to modify the controllers and the agents                 controller = serviceHost.CreateBuildController(controllerName);                 agent = controller.ServiceHost.CreateBuildAgent(agentName, buildDirectory, controller);                controller.AddBuildAgent(agent); You have now seen the highlights of the application. If you need it and want to have sample information when you work in this area, download the app TFS2010_RegisterBuildServerToTPCs

    Read the article

  • ODI 12c's Mapping Designer - Combining Flow Based and Expression Based Mapping

    - by Madhu Nair
    post by David Allan ODI is renowned for its declarative designer and minimal expression based paradigm. The new ODI 12c release has extended this even further to provide an extended declarative mapping designer. The ODI 12c mapper is a fusion of ODI's new declarative designer with the familiar flow based designer while retaining ODI’s key differentiators of: Minimal expression based definition, The ability to incrementally design an interface and to extract/load data from any combination of sources, and most importantly Backed by ODI’s extensible knowledge module framework. The declarative nature of the product has been extended to include an extensible library of common components that can be used to easily build simple to complex data integration solutions. Big usability improvements through consistent interactions of components and concepts all constructed around the familiar knowledge module framework provide the utmost flexibility. Here is a little taster: So what is a mapping? A mapping comprises of a logical design and at least one physical design, it may have many. A mapping can have many targets, of any technology and can be arbitrarily complex. You can build reusable mappings and use them in other mappings or other reusable mappings. In the example below all of the information from an Oracle bonus table and a bonus file are joined with an Oracle employees table before being written to a target. Some things that are cool include the one-click expression cross referencing so you can easily see what's used where within the design. The logical design in a mapping describes what you want to accomplish  (see the animated GIF here illustrating how the above mapping was designed) . The physical design lets you configure how it is to be accomplished. So you could have one logical design that is realized as an initial load in one physical design and as an incremental load in another. In the physical design below we can customize how the mapping is accomplished by picking Knowledge Modules, in ODI 12c you can pick multiple nodes (on logical or physical) and see common properties. This is useful as we can quickly compare property values across objects - below we can see knowledge modules settings on the access points between execution units side by side, in the example one table is retrieved via database links and the other is an external table. In the logical design I had selected an append mode for the integration type, so by default the IKM on the target will choose the most suitable/default IKM - which in this case is an in-built Oracle Insert IKM (see image below). This supports insert and select hints for the Oracle database (the ANSI SQL Insert IKM does not support these), so by default you will get direct path inserts with Oracle on this statement. In ODI 12c, the mapper is just that, a mapper. Design your mapping, write to multiple targets, the targets can be in the same data server, in different data servers or in totally different technologies - it does not matter. ODI 12c will derive and generate a plan that you can use or customize with knowledge modules. Some of the use cases which are greatly simplified include multiple heterogeneous targets, multi target inserts for Oracle and writing of XML. Let's switch it up now and look at a slightly different example to illustrate expression reuse. In ODI you can define reusable expressions using user functions. These can be reused across mappings and the implementations specialized per technology. So you can have common expressions across Oracle, SQL Server, Hive etc. shielding the design from the physical aspects of the generated language. Another way to reuse is within a mapping itself. In ODI 12c expressions can be defined and reused within a mapping. Rather than replicating the expression text in larger expressions you can decompose into smaller snippets, below you can see UNIT_TAX AMOUNT has been defined and is used in two downstream target columns - its used in the TOTAL_TAX_AMOUNT plus its used in the UNIT_TAX_AMOUNT (a recording of the calculation).  You can see the columns that the expressions depend on (upstream) and the columns the expression is used in (downstream) highlighted within the mapper. Also multi selecting attributes is a convenient way to see what's being used where, below I have selected the TOTAL_TAX_AMOUNT in the target datastore and the UNIT_TAX_AMOUNT in UNIT_CALC. You can now see many expressions at once now and understand much more at the once time without needlessly clicking around and memorizing information. Our mantra during development was to keep it simple and make the tool more powerful and do even more for the user. The development team was a fusion of many teams from Oracle Warehouse Builder, Sunopsis and BEA Aqualogic, debating and perfecting the mapper in ODI 12c. This was quite a project from supporting the capabilities of ODI in 11g to building the flow based mapping tool to support the future. I hope this was a useful insight, there is so much more to come on this topic, this is just a preview of much more that you will see of the mapper in ODI 12c.

    Read the article

  • The Complementary Roles of PLM and PIM

    - by Ulf Köster
    Oracle Product Value Chain Solutions (aka Enterprise PLM Solutions) are a comprehensive set of product management solutions that work together to provide Oracle customers with a broad array of capabilities to manage all aspects of product life: innovation, design, launch, and supply chain / commercialization processes beyond the capabilities and boundaries of traditional engineering-focused Product Lifecycle Management applications. They support companies with an integrated managed view across the product value chain: From Lab to Launch, From Farm to Fork, From Concept to Product to Customer, From Product Innovation to Product Design and Product Commercialization. Product Lifecycle Management (PLM) represents a broad suite of software solutions to improve product-oriented business processes and data. PLM success stories prove that PLM helps companies improve time to market, increase product-related revenue, reduce product costs, reduce internal costs and improve product quality. As a maturing suite of enterprise solutions, PLM is still evolving to realize the promise it can provide across all facets of a business and all phases of the product lifecycle. The vision for PLM includes everything from gathering early requirements for a product through multiple stages of the product lifecycle from product design, through commercialization and eventual product retirement or replacement. In discrete or process industries, PLM is typically more focused on Product Definition as items with respect to the technical view of a material or part, including specifications, bills of material and manufacturing data. With Agile PLM, this is specifically related to capabilities addressing Product Collaboration, Governance and Compliance, Product Quality Management, Product Cost Management and Engineering Collaboration. PLM today is mainly addressing key requirements in the early product lifecycle, in engineering changes or in the “innovation cycle”, and primarily adds value related to product design, development, launch and engineering change process. In short, PLM is the master for Product Definition, wherever manufacturing takes place. Product Information Management (PIM) is a product suite that has evolved in parallel to PLM. Product Information Management (PIM) can extend the value of PLM implementations by providing complementary tools and capabilities. More relevant in the area of Product Commercialization, the vision for PIM is to manage product information throughout an enterprise and supply chain to improve product-related knowledge management, information sharing and synchronization from multiple data sources. PIM success stories have shown the ability to provide multiple benefits, with particular emphasis on reducing information complexity and information management costs. Product Information in PIM is typically treated as the commercial view of a material or part, including sales and marketing information and categorization. PIM collects information from multiple manufacturing sites and multiple suppliers into its repository, but also provides integration tools to push the information back out to the other systems, serving as an active central repository with the aim to provide a holistic view on any product sold by a company (hence the name “Product Hub”). In short, PIM is the master of commercial Product Information. So PIM is quickly becoming mandatory because of its value in optimizing multichannel selling processes and relationships with customers, as you can see from the following table: Viewpoint PLM Current State PIM Key Benefits PIM adds to PLM Product Lifecycle Primarily R&D Front end Innovation Cycle Change process Primarily commercial / transactional state of lifecycle Provides a seamless information flow from design and manufacturing through the ultimate selling and servicing of products Data Primarily focused on “item” vs. “product” data Product structures Specifications Technical information Repository for all product information. Reaches out to entire enterprise and its various silos of product information and descriptions Provides a “trusted source” of accurate product information to the internal organization and trading partners Data Lifecycle Repository for all design iterations Historical information Released, current information, with version management and time stamping Provides a single location to track and audit historical product information Communication PLM release finished product to ERP PLM is the master for Product Definition Captures information from disparate sources, including in-house data stores Recognizes the reality of today’s data “mess” across information silos Provides the ability to package product information to its audience in the desired, relevant format to meet their exacting business requirements Departmental R&D Manufacturing Quality Compliance Procurement Strategic Marketing Focus on Marketing and Sales Gathering information from other Departments, multiple sites, multiple suppliers A singular enterprise solution that leverages existing information silos and data stores Supply Chain Multi-site internal collaboration Supplier collaboration Customer collaboration Works with customers, exchanges / data pools, and trading partners to provide relevant product information packaged the way the customer desires Provides ability to provide trading partners and internal customers with information in a manner they desire, continuously Tools Data Management Collaboration Innovation Management Cleansing Synchronization Hub functions Consistent, clean and complete commercial product information The goals of both PLM and PIM, put simply, are to help companies make more profit from their products. PLM and PIM solutions can be easily added as they share some of the same goals, while coming from two different perspectives: the definition of the product and the commercialization of the product. Both can serve as a form of product “system of record”, but take different approaches to delivering value. Oracle Product Value Chain solutions offer rich new strategies for executives to collectively leverage Agile PLM, Product Data Hub, together with Enterprise Data Quality for Products, and other industry leading Oracle applications to achieve further incremental value, like Oracle Innovation Management. This is unique on the market today.

    Read the article

  • NoSQL Memcached API for MySQL: Latest Updates

    - by Mat Keep
    With data volumes exploding, it is vital to be able to ingest and query data at high speed. For this reason, MySQL has implemented NoSQL interfaces directly to the InnoDB and MySQL Cluster (NDB) storage engines, which bypass the SQL layer completely. Without SQL parsing and optimization, Key-Value data can be written directly to MySQL tables up to 9x faster, while maintaining ACID guarantees. In addition, users can continue to run complex queries with SQL across the same data set, providing real-time analytics to the business or anonymizing sensitive data before loading to big data platforms such as Hadoop, while still maintaining all of the advantages of their existing relational database infrastructure. This and more is discussed in the latest Guide to MySQL and NoSQL where you can learn more about using the APIs to scale new generations of web, cloud, mobile and social applications on the world's most widely deployed open source database The native Memcached API is part of the MySQL 5.6 Release Candidate, and is already available in the GA release of MySQL Cluster. By using the ubiquitous Memcached API for writing and reading data, developers can preserve their investments in Memcached infrastructure by re-using existing Memcached clients, while also eliminating the need for application changes. Speed, when combined with flexibility, is essential in the world of growing data volumes and variability. Complementing NoSQL access, support for on-line DDL (Data Definition Language) operations in MySQL 5.6 and MySQL Cluster enables DevOps teams to dynamically update their database schema to accommodate rapidly changing requirements, such as the need to capture additional data generated by their applications. These changes can be made without database downtime. Using the Memcached interface, developers do not need to define a schema at all when using MySQL Cluster. Lets look a little more closely at the Memcached implementations for both InnoDB and MySQL Cluster. Memcached Implementation for InnoDB The Memcached API for InnoDB is previewed as part of the MySQL 5.6 Release Candidate. As illustrated in the following figure, Memcached for InnoDB is implemented via a Memcached daemon plug-in to the mysqld process, with the Memcached protocol mapped to the native InnoDB API. Figure 1: Memcached API Implementation for InnoDB With the Memcached daemon running in the same process space, users get very low latency access to their data while also leveraging the scalability enhancements delivered with InnoDB and a simple deployment and management model. Multiple web / application servers can remotely access the Memcached / InnoDB server to get direct access to a shared data set. With simultaneous SQL access, users can maintain all the advanced functionality offered by InnoDB including support for Foreign Keys, XA transactions and complex JOIN operations. Benchmarks demonstrate that the NoSQL Memcached API for InnoDB delivers up to 9x higher performance than the SQL interface when inserting new key/value pairs, with a single low-end commodity server supporting nearly 70,000 Transactions per Second. Figure 2: Over 9x Faster INSERT Operations The delivered performance demonstrates MySQL with the native Memcached NoSQL interface is well suited for high-speed inserts with the added assurance of transactional guarantees. You can check out the latest Memcached / InnoDB developments and benchmarks here You can learn how to configure the Memcached API for InnoDB here Memcached Implementation for MySQL Cluster Memcached API support for MySQL Cluster was introduced with General Availability (GA) of the 7.2 release, and joins an extensive range of NoSQL interfaces that are already available for MySQL Cluster Like Memcached, MySQL Cluster provides a distributed hash table with in-memory performance. MySQL Cluster extends Memcached functionality by adding support for write-intensive workloads, a full relational model with ACID compliance (including persistence), rich query support, auto-sharding and 99.999% availability, with extensive management and monitoring capabilities. All writes are committed directly to MySQL Cluster, eliminating cache invalidation and the overhead of data consistency checking to ensure complete synchronization between the database and cache. Figure 3: Memcached API Implementation with MySQL Cluster Implementation is simple: 1. The application sends reads and writes to the Memcached process (using the standard Memcached API). 2. This invokes the Memcached Driver for NDB (which is part of the same process) 3. The NDB API is called, providing for very quick access to the data held in MySQL Cluster’s data nodes. The solution has been designed to be very flexible, allowing the application architect to find a configuration that best fits their needs. It is possible to co-locate the Memcached API in either the data nodes or application nodes, or alternatively within a dedicated Memcached layer. The benefit of this flexible approach to deployment is that users can configure behavior on a per-key-prefix basis (through tables in MySQL Cluster) and the application doesn’t have to care – it just uses the Memcached API and relies on the software to store data in the right place(s) and to keep everything synchronized. Using Memcached for Schema-less Data By default, every Key / Value is written to the same table with each Key / Value pair stored in a single row – thus allowing schema-less data storage. Alternatively, the developer can define a key-prefix so that each value is linked to a pre-defined column in a specific table. Of course if the application needs to access the same data through SQL then developers can map key prefixes to existing table columns, enabling Memcached access to schema-structured data already stored in MySQL Cluster. Conclusion Download the Guide to MySQL and NoSQL to learn more about NoSQL APIs and how you can use them to scale new generations of web, cloud, mobile and social applications on the world's most widely deployed open source database See how to build a social app with MySQL Cluster and the Memcached API from our on-demand webinar or take a look at the docs Don't hesitate to use the comments section below for any questions you may have 

    Read the article

  • Building the Elusive Windows Phone Panorama Control

    When the Windows Phone 7 Developer SDK was released a couple of weeks ago at MIX10 many people noticed the SDK doesnt include a template for a Panorama control.   Here at Clarity we decided to build our own Panorama control for use in some of our prototypes and I figured I would share what we came up with. There have been a couple of implementations of the Panorama control making their way through the interwebs, but I didnt think any of them really nailed the experience that is shown in the simulation videos.   One of the key design principals in the UX Guide for Windows Phone 7 is the use of motion.  The WP7 OS is fairly stripped of extraneous design elements and makes heavy use of typography and motion to give users the necessary visual cues.  Subtle animations and wide layouts help give the user a sense of fluidity and consistency across the phone experience.  When building the panorama control I was fairly meticulous in recreating the motion as shown in the videos.  The effect that is shown in the application hubs of the phone is known as a Parallax Scrolling effect.  This this pseudo-3D technique has been around in the computer graphics world for quite some time. In essence, the background images move slower than foreground images, creating an illusion of depth in 2D.  Here is an example of the traditional use: http://www.mauriciostudio.com/.  One of the animation gems I've learned while building interactive software is the follow animation.  The premise is straightforward: instead of translating content 1:1 with the interaction point, let the content catch up to the mouse or finger.  The difference is subtle, but the impact on the smoothness of the interaction is huge.  That said, it became the foundation of how I achieved the effect shown below.   Source Code Available HERE Before I briefly describe the approach I took in creating this control..and Ill add some **asterisks ** to the code below as my coding skills arent up to snuff with the rest of my colleagues.  This code is meant to be an interpretation of the WP7 panorama control and is not intended to be used in a production application.  1.  Layout the XAML The UI consists of three main components :  The background image, the Title, and the Content.  You can imagine each  these UI Elements existing on their own plane with a corresponding Translate Transform to create the Parallax effect.  2.  Storyboards + Procedural Animations = Sexy As I mentioned above, creating a fluid experience was at the top of my priorities while building this control.  To recreate the smooth scroll effect shown in the video we need to add some place holder storyboards that we can manipulate in code to simulate the inertia and snapping.  Using the easing functions built into Silverlight helps create a very pleasant interaction.    3.  Handle the Manipulation Events With Silverlight 3 we have some new touch event handlers.  The new Manipulation events makes handling the interactivity pretty straight forward.  There are two event handlers that need to be hooked up to enable the dragging and motion effects: the ManipulationDelta event :  (the most relevant code is highlighted in pink) Here we are doing some simple math with the Manipulation Deltas and setting the TO values of the animations appropriately. Modifying the storyboards dynamically in code helps to create a natural feel.something that cant easily be done with storyboards alone.   And secondly, the ManipulationCompleted event:  Here we take the Final Velocities from the Manipulation Completed Event and apply them to the Storyboards to create the snapping and scrolling effects.  Most of this code is determining what the next position of the viewport will be.  The interesting part (shown in pink) is determining the duration of the animation based on the calculated velocity of the flick gesture.  By using velocity as a variable in determining the duration of the animation we can produce a slow animation for a soft flick and a fast animation for a strong flick. Challenges to the Reader There are a couple of things I didnt have time to implement into this control.  And I would love to see other WPF/Silverlight approaches.  1.  A good mechanism for deciphering when the user is manipulating the content within the panorama control and the panorama itself.   In other words, being able to accurately determine what is a flick and what is click. 2.  Dynamically Sizing the panorama control based on the width of its content.  Right now each control panel is 400px, ideally the Panel items would be measured and then panorama control would update its size accordingly.  3.  Background and content wrapping.  The WP7 UX guidelines specify that the content and background should wrap at the end of the list.  In my code I restrict the drag at the ends of the list (like the iPhone).  It would be interesting to see how this would effect the scroll experience.     Well, Its been fun building this control and if you use it Id love to know what you think.  You can download the Source HERE or from the Expression Gallery  Erik Klimczak  | [email protected] | twitter.com/eklimczDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • JavaOne pictures and Community Commentary on JCP Awards

    - by heathervc
    We posted some pictures from JCP related events at JavaOne 2012 on the JCP Facebook page today.  The 2012 JCP Program Award winners and some of the nominees responded to the community recognition of their achievements during some of the JCP events last week.     “Our job on the EC is to balance the need of innovation – so we don’t standardize too early, or too late. We try to find that sweet spot that makes innovation and standardization work together, and not against each other.”- Ben Evans, CEO of jClarity and Executive Committee (EC) representative of the London Java Community, 2012 JCP Member/Participant of the Year Winner“SouJava has been evangelizing the Java platform, promoting the Java ecosystem in Brazil, and contributing to JSRs for several years. It’s very gratifying to have our work recognized, on behalf of many developers and Java User Groups around the world. This really is the work of a large group of people, represented by the few that can be here tonight.”- Michael Santos, representative of SouJava, 2012 JCP Member/Participant of the Year Winner "In the last years Credit Suisse has contributed to the development of Java EE specifications through participation in many customer advisory boards, through statements of requirements for extensions to the core Java related products in use, and active participation in JSRs. Winning the JCP Outstanding Spec Lead Award 2012 is very encouraging for our engagement and also demonstrates the level of expertise and commitment to drive the evolution of Java. Victor Grazi is happy and honored to receive this award." - Susanne Cech Previtali, Executive Committee (EC) representative of Credit Suisse, accepting award for 2012 JCP Outstanding Spec Lead Winner "Managing a JSR is difficult. There are so many decisions to be made and so many good and varied opinions, you never really know if you have decided correctly. The key to success is transparency and collaboration. I am truly humbled by receiving this award, there are so many other active JSRs.” Victor added that going forward in the JCP EC, they would like to simplify and open the process of participation – being addressed in the JCP.Next initiative of the JCP EC. "We would also like to encourage the engagement of universities, professors and students – as an important part of the Java community. While innovation is the lifeblood of our community and industry, without strong standards and compatibility requirements, we all end up in a maze of technology where everything is slightly different and doesn’t quite work with everything else." Victo Grazi, Executive Committee (EC) representative of Credit Suisse, 2012 JCP Outstanding Spec Lead Winner“I am very pleased, of course, to accept this award, but the credit really should go to all of those who have participated in the work of the JCP, while pushing for changes in the way it operates.  JCP.Next represents three JSRs. The first two are done, but the final step, JSR 358, is the complicated one, and it will bring in the lawyers. Just to give you an idea of what we’re dealing with, it affects licensing, intellectual property, patents, implementations not based on the Reference Implementation (RI), the role of the RI, compatibility policy, possible changes to the Technical Compatibility Kit (TCK), transparency, where do individuals fit in, open source, and more.”- Patrick Curran, JCP Chair, Spec Lead on JCP.Next JSRs (JSR 348, JSR 355 and JSR 358), 2012 JCP Most Significant JSR Winner“I’m especially glad to see the JCP community recognize JCP.Next for its importance. The governance work it represents is KEY to moving the Java platform forward and the success of the technology.”- John Rizzo, Executive Committee (EC) representative of Aplix Corporation, JSR Expert Group Member “I am deeply honored to be nominated. I had the privilege to receive two awards on behalf of Expert Groups and Spec Leads two years ago. But this time, I am nominated personally, which values my own contribution to the JCP, and of course, participation in JSRs and the EC work. I’m a fan of Agile Principles and Values Working. Being an Agile Coach and Consultant, I use it for some of the biggest EC Member companies and projects. It fuels my ability to help the JCP become more agile, lean and transparent as part of the JCP.Next effort.” - Werner Keil, Individual Executive Committee (EC) Member, a 2012 JCP Member/Participant of the Year Nominee, JSR Expert Group Member“The JCP ever has been some kind of institution for me,” Markus said. “If in technical doubt, I go there, look for the specifications of the implementation I work with at the moment and verify what I had observed. Since the beginning of my Java journey more than 12 years back now, I always had a strong relationship with the JCP. Shaping the future of a technology by joining the JCP – giving feedback and contributing to the road ahead through individual JSRs – that brings you to a whole new level.”Calling himself, “the new kid on the block,” he explained that for years he was afraid to join the JCP and contribute. But in reality, “Every single one of the big names I meet from the different Expert Groups is a nice person. People you can actually work with,” he says. “And nobody blames you for things you don't know. As long as you are committed and bring what is worth the most: passion, experiences and the desire to make a difference.” - Markus Eisele, a 2012 JCP Member of the Year Nominee, JSR Expert Group MemberCongratulations again to all of the nominees and winners of the JCP Program Awards.  Next year, we will add another award for the group of JUG members (not an entire JUG) that makes the best contribution to the Adopt-a-JSR program.  Let us know if you have other suggestions or improvements.

    Read the article

  • Profit's COLLABORATE 10 Session Selections

    - by Aaron Lazenby
    COLLABORATE 2010 is a mere 11 days away (thanks for the reminder @ocp_advisor). Every year I publish my a list of the sessions I think reflect some of the more interesting people/trends in enterprise IT. I should be at all of these sessions, so drop by for a chat--I'll be the guy tapping out emails on my iPad... Monday, April 19 9:15 a.m. - Keynote: Transforming Customer Value, Delivering Highest Customer Service Location: Keynote Hall I never miss Charles Phillips when he speaks--it's one of the best opportunities to get an update on Oracle product developments and strategy. And there's certainly occasion for an update: this will be Phillips' first big presentation since the Oracle + Sun Strategy Update in late January. Phillips is appearing with Oracle Executive Vice President of Development Thomas Kurian which means there should be some excellent information about how customers are using Oracle's complete software and hardware stack to address enterprise IT challenges. The session should provide some excellent context for the rest of the week's session...don't miss it. 10:45 a.m. - Oracle Fusion Applications: Functional Overview Location: South Seas FI met Basheer Khan at COLLABORATE 08 in Denver and have followed his work ever since. He's a former member of the OAUG Board of Directors, an Oracle ACE, and a charismatic enterprise IT expert. Having worked with the Oracle Usability Advisory Board, Basheer should have some fascinating insights to share about the features and interface of Oracle's Fusine Applications. This session, along with Nadia Bendjedou's "10 Things You Can Do Today to Prepare for the Next Generation Applications" (on Tuesday, April 20 8:00 a.m. in room 3662) should give attendees the update they need about Oracle's next-generation applications.   1:15p.m. - E-Business Suite in the Amazon Cloud Location: South Seas HI did my first full-fledged cloud computing coverage at last year's COLLABORATE show (check out my interview with Oracle's Bill Hodak), where I first learned about Amazon's EC2 offering. I've since talked with several people who have provisioned server space on Amazon's cloud with great results. So I'm looking forward to watching the audience configure an instance of the Oracle E-Business Suite release 12 on the cloud while Chuck Edwards from Blue Gecko drives. This session should take some of the mist and vapor out of the cloud conversation.2:30 p.m. - "Zero Sign-on" to EBS - Enabling 96000 Users to Login to EBS Without User Maintenance Location: South Seas HI'll be sitting tight in South Seas H for the next session on Monday where Doug Pepka, a ten-year veteran of communications giant Comcast, will be walking attendees through a massive single sign-on (SSO) project across the enterprise. I'm working on a story about SSO for the August issue of Profit, so this session has real practical value to me. Plus the proliferation of user account logins--both personal and professional--makes this a critical usability/change management issue for IT leaders planning for successful long-term IT implementations.   Tuesday 8:00 am  - Information Architecture for Men in Kilts Location: SURF AGetting to a 8:00 a.m. presentation is a tall order in Las Vegas, but presenter Billy Cripe will make it worth your effort. Not only is the title of this session great, but the content should appeal to any IT strategist looking to push the limits of Web 2.0 technologies in the enterprise. Cripe is a product management director of Enterprise 2.0 and Enterprise Content Management at Oracle, author of Reshaping Your Business with Web 2.0, and a prolific blogger--he knows how information architecture is critical to and enterprise 2.0 implementation.    10:30a.m. - Oracle Virtualization: From Desktop to Data Center Location: REEF FData center virtualization is still one of the best ways to reduce the cost of running enterprise IT. With the addition of Sun products, Oracle has the industry's most comprehensive virtualization portfolio. I must admit, I'm no expert in this subject. So I'm looking forward to Monica Kumar's presentation so I can get up to speed.   Wednesday 8:00 a.m. - The Art of the Steal Location: Mandalay Bay Ballroom JMany will know Frank Abagnale from Steven Spielberg's 2002 film "Catch Me if You Can." The one-time con man and international fugitive who swindled $2.5 million in forged checks went on to help U.S. federal officials investigate fraud cases. Now the CEO of Abagnale and Associates, he has become an invaluable source to the business world on the subject of fraud and fraud protection. With identity theft and digital fraud still on the rise, this session should be an entertaining, and sobering, education on the threats facing businesses and customers around the world. A great way to start Wednesday.1:00 p.m. - Google Wave: Will it replace e-mail as we know it today? Location: SURF EBy many assessments (my own included), Google Wave is a bit of an open collaboration failure. It may seem like an odd reason for me to be excited about this session, but I'm looking forward to the chance to revisit the technology. Also, this is a great case study in connecting free, available Internet tools to existing enterprise computing environments--an issue that IT strategists must contend with as workers spreads out and choose their own productivity tools.  

    Read the article

  • Towards an F# .NET Reflector add-in

    - by CliveT
    When I had the opportunity to spent some time during Red Gate's recent "down tools" week on a project of my choice, the obvious project was an F# add-in for Reflector . To be honest, this was a bit of a misnomer as the amount of time in the designated week for coding was really less than three days, so it was always unlikely that very much progress would be made in such a small amount of time (and that certainly proved to be the case), but I did learn some things from the experiment. Like lots of problems, one useful technique is to take examples, get them to work, and then generalise to get something that works across the board. Unfortunately, I didn't have enough time to do the last stage. The obvious first step is to take a few function definitions, starting with the obvious hello world, moving on to a non-recursive function and finishing with the ubiquitous recursive Fibonacci function. let rec printMessage message  =     printfn  message let foo x  =    (x + 1) let rec fib x  =     if (x >= 2) then (fib (x - 1) + fib (x - 2)) else 1 The major problem in decompiling these simple functions is that Reflector has an in-memory object model that is designed to support object-oriented languages. In particular it has a return statement that allows function bodies to finish early. I used some of the in-built functionality to take the IL and produce an in-memory object model for the language, but then needed to write a transformer to push the return statements to the top of the tree to make it easy to render the code into a functional language. This tree transform works in some scenarios, but not in others where we simply regenerate code that looks more like CPS style. The next thing to get working was library level bindings of values where these values are calculated at runtime. let x = [1 ; 2 ; 3 ; 4] let y = List.map  (fun x -> foo x) x The way that this is translated into a set of classes for the underlying platform means that the code needs to follow references around, from the property exposing the calculated value to the class in which the code for generating the value is embedded. One of the strongest selling points of functional languages is the algebraic datatypes, which allow definitions via standard mathematical-style inductive definitions across the union cases. type Foo =     | Something of int     | Nothing type 'a Foo2 =     | Something2 of 'a     | Nothing2 Such a definition is compiled into a number of classes for the cases of the union, which all inherit from a class representing the type itself. It wasn't too hard to get such a de-compilation happening in the cases I tried. What did I learn from this? Firstly, that there are various bits of functionality inside Reflector that it would be useful for us to allow add-in writers to access. In particular, there are various implementations of the Visitor pattern which implement algorithms such as calculating the number of references for particular variables, and which perform various substitutions which could be more generally useful to add-in writers. I hope to do something about this at some point in the future. Secondly, when you transform a functional language into something that runs on top of an object-based platform, you lose some fidelity in the representation. The F# compiler leaves attributes in place so that tools can tell which classes represent classes from the source program and which are there for purposes of the implementation, allowing the decompiler to regenerate these constructs again. However, decompilation technology is a long way from being able to take unannotated IL and transform it into a program in a different language. For a simple function definition, like Fibonacci, I could write a simple static function and have it come out in F# as the same function, but it would be practically impossible to take a mass of class definitions and have a decompiler translate it automatically into an F# algebraic data type. What have we got out of this? Some data on the feasibility of implementing an F# decompiler inside Reflector, though it's hard at the moment to say how long this would take to do. The work we did is included the 6.5 EAP for Reflector that you can get from the EAP forum. All things considered though, it was a useful way to gain more familiarity with the process of writing an add-in and understand difficulties other add-in authors might experience. If you'd like to check out a video of Down Tools Week, click here.

    Read the article

  • ASP.NET WebAPI Security 2: Identity Architecture

    - by Your DisplayName here!
    Pedro has beaten me to the punch with a detailed post (and diagram) about the WebAPI hosting architecture. So go read his post first, then come back so we can have a closer look at what that means for security. The first important takeaway is that WebAPI is hosting independent-  currently it ships with two host integration implementations – one for ASP.NET (aka web host) and WCF (aka self host). Pedro nicely shows the integration into the web host. Self hosting is not done yet so we will mainly focus on the web hosting case and I will point out security related differences when they exist. The interesting part for security (amongst other things of course) is the HttpControllerHandler (see Pedro’s diagram) – this is where the host specific representation of an HTTP request gets converted to the WebAPI abstraction (called HttpRequestMessage). The ConvertRequest method does the following: Create a new HttpRequestMessage. Copy URI, method and headers from the HttpContext. Copies HttpContext.User to the Properties<string, object> dictionary on the HttpRequestMessage. The key used for that can be found on HttpPropertyKeys.UserPrincipalKey (which resolves to “MS_UserPrincipal”). So the consequence is that WebAPI receives whatever IPrincipal has been set by the ASP.NET pipeline (in the web hosting case). Common questions are: Are there situations where is property does not get set? Not in ASP.NET – the DefaultAuthenticationModule in the HTTP pipeline makes sure HttpContext.User (and Thread.CurrentPrincipal – more on that later) are always set. Either to some authenticated user – or to an anonymous principal. This may be different in other hosting environments (again more on that later). Why so generic? Keep in mind that WebAPI is hosting independent and may run on a host that materializes identity completely different compared to ASP.NET (or .NET in general). This gives them a way to evolve the system in the future. How does WebAPI code retrieve the current client identity? HttpRequestMessage has an extension method called GetUserPrincipal() which returns the property as an IPrincipal. A quick look at self hosting shows that the moral equivalent of HttpControllerHandler.ConvertRequest() is HttpSelfHostServer.ProcessRequestContext(). Here the principal property gets only set when the host is configured for Windows authentication (inconsisteny). Do I like that? Well – yes and no. Here are my thoughts: I like that it is very straightforward to let WebAPI inherit the client identity context of the host. This might not always be what you want – think of an ASP.NET app that consists of UI and APIs – the UI might use Forms authentication, the APIs token based authentication. So it would be good if the two parts would live in a separate security world. It makes total sense to have this generic hand off point for identity between the host and WebAPI. It also makes total sense for WebAPI plumbing code (especially handlers) to use the WebAPI specific identity abstraction. But – c’mon we are running on .NET. And the way .NET represents identity is via IPrincipal/IIdentity. That’s what every .NET developer on this planet is used to. So I would like to see a User property of type IPrincipal on ApiController. I don’t like the fact that Thread.CurrentPrincipal is not populated. T.CP is a well established pattern as a one stop shop to retrieve client identity on .NET.  That makes a lot of sense – even if the name is misleading at best. There might be existing library code you want to call from WebAPI that makes use of T.CP (e.g. PrincipalPermission, or a simple .Name or .IsInRole()). Having the client identity as an ambient property is useful for code that does not have access to the current HTTP request (for calling GetUserPrincipal()). I don’t like the fact that that the client identity conversion from host to WebAPI is inconsistent. This makes writing security plumbing code harder. I think the logic should always be: If the host has a client identity representation, copy it. If not, set an anonymous principal on the request message. Btw – please don’t annoy me with the “but T.CP is static, and static is bad for testing” chant. T.CP is a getter/setter and, in fact I find it beneficial to be able to set different security contexts in unit tests before calling in some logic. And, in case you have wondered – T.CP is indeed thread static (and the name comes from a time where a logical operation was bound to a thread – which is not true anymore). But all thread creation APIs in .NET actually copy T.CP to the new thread they create. This is the case since .NET 2.0 and is certainly an improvement compared to how Win32 does things. So to sum it up: The host plumbing copies the host client identity to WebAPI (this is not perfect yet, but will surely be improved). or in other words: The current WebAPI bits don’t ship with any authentication plumbing, but solely use whatever authentication (and thus client identity) is set up by the host. WebAPI developers can retrieve the client identity from the HttpRequestMessage. Hopefully my proposed changes around T.CP and the User property on ApiController will be added. In the next post, I will detail how to add WebAPI specific authentication support, e.g. for Basic Authentication and tokens. This includes integrating the notion of claims based identity. After that we will look at the built-in authorization bits and how to improve them as well. Stay tuned.

    Read the article

  • Goodbye XML&hellip; Hello YAML (part 2)

    - by Brian Genisio's House Of Bilz
    Part 1 After I explained my motivation for using YAML instead of XML for my data, I got a lot of people asking me what type of tooling is available in the .Net space for consuming YAML.  In this post, I will discuss a nice tooling option as well as describe some small modifications to leverage the extremely powerful dynamic capabilities of C# 4.0.  I will be referring to the following YAML file throughout this post Recipe: Title: Macaroni and Cheese Description: My favorite comfort food. Author: Brian Genisio TimeToPrepare: 30 Minutes Ingredients: - Name: Cheese Quantity: 3 Units: cups - Name: Macaroni Quantity: 16 Units: oz Steps: - Number: 1 Description: Cook the macaroni - Number: 2 Description: Melt the cheese - Number: 3 Description: Mix the cooked macaroni with the melted cheese Tooling It turns out that there are several implementations of YAML tools out there.  The neatest one, in my opinion, is YAML for .NET, Visual Studio and Powershell.  It includes a great editor plug-in for Visual Studio as well as YamlCore, which is a parsing engine for .Net.  It is in active development still, but it is certainly enough to get you going with YAML in .Net.  Start by referenceing YamlCore.dll, load your document, and you are on your way.  Here is an example of using the parser to get the title of the Recipe: var yaml = YamlLanguage.FileTo("Data.yaml") as Hashtable; var recipe = yaml["Recipe"] as Hashtable; var title = recipe["Title"] as string; In a similar way, you can access data in the Ingredients set: var yaml = YamlLanguage.FileTo("Data.yaml") as Hashtable; var recipe = yaml["Recipe"] as Hashtable; var ingredients = recipe["Ingredients"] as ArrayList; foreach (Hashtable ingredient in ingredients) { var name = ingredient["Name"] as string; } You may have noticed that YamlCore uses non-generic Hashtables and ArrayLists.  This is because YamlCore was designed to work in all .Net versions, including 1.0.  Everything in the parsed tree is one of two things: Hashtable, ArrayList or Value type (usually String).  This translates well to the YAML structure where everything is either a Map, a Set or a Value.  Taking it further Personally, I really dislike writing code like this.  Years ago, I promised myself to never write the words Hashtable or ArrayList in my .Net code again.  They are ugly, mostly depreciated collections that existed before we got generics in C# 2.0.  Now, especially that we have dynamic capabilities in C# 4.0, we can do a lot better than this.  With a relatively small amount of code, you can wrap the Hashtables and Array lists with a dynamic wrapper (wrapper code at the bottom of this post).  The same code can be re-written to look like this: dynamic doc = YamlDoc.Load("Data.yaml"); var title = doc.Recipe.Title; And dynamic doc = YamlDoc.Load("Data.yaml"); foreach (dynamic ingredient in doc.Recipe.Ingredients) { var name = ingredient.Name; } I significantly prefer this code over the previous.  That’s not all… the magic really happens when we take this concept into WPF.  With a single line of code, you can bind to the data dynamically in the view: DataContext = YamlDoc.Load("Data.yaml"); Then, your XAML is extremely straight-forward (Nothing else.  No static types, no adapter code.  Nothing): <StackPanel> <TextBlock Text="{Binding Recipe.Title}" /> <TextBlock Text="{Binding Recipe.Description}" /> <TextBlock Text="{Binding Recipe.Author}" /> <TextBlock Text="{Binding Recipe.TimeToPrepare}" /> <TextBlock Text="Ingredients:" FontWeight="Bold" /> <ItemsControl ItemsSource="{Binding Recipe.Ingredients}" Margin="10,0,0,0"> <ItemsControl.ItemTemplate> <DataTemplate> <StackPanel Orientation="Horizontal"> <TextBlock Text="{Binding Quantity}" /> <TextBlock Text=" " /> <TextBlock Text="{Binding Units}" /> <TextBlock Text=" of " /> <TextBlock Text="{Binding Name}" /> </StackPanel> </DataTemplate> </ItemsControl.ItemTemplate> </ItemsControl> <TextBlock Text="Steps:" FontWeight="Bold" /> <ItemsControl ItemsSource="{Binding Recipe.Steps}" Margin="10,0,0,0"> <ItemsControl.ItemTemplate> <DataTemplate> <StackPanel Orientation="Horizontal"> <TextBlock Text="{Binding Number}" /> <TextBlock Text=": " /> <TextBlock Text="{Binding Description}" /> </StackPanel> </DataTemplate> </ItemsControl.ItemTemplate> </ItemsControl> </StackPanel> This nifty XAML binding trick only works in WPF, unfortunately.  Silverlight handles binding differently, so they don’t support binding to dynamic objects as of late (March 2010).  This, in my opinion, is a major lacking feature in Silverlight and I really hope we will see this feature available to us in Silverlight 4 Release.  (I am not very optimistic for Silverlight 4, but I can hope for the feature in Silverlight 5, can’t I?) Conclusion I still have a few things I want to say about using YAML in the .Net space including de-serialization and using IronRuby for your YAML parser, but this post is hopefully enough to see how easy it is to incorporate YAML documents in your code. Codeplex Site for YAML tools Dynamic wrapper for YamlCore

    Read the article

  • Oracle Delivers Latest Release of Oracle Enterprise Manager 12c

    - by Scott McNeil
    Richer Service Catalog for Database and Middleware as a Service; Enhanced Database and Middleware Management Help Drive Enterprise-Scale Private Cloud Adoption News Summary IT organizations are adopting private clouds as a stepping-stone to business-driven, self-service IT. Successful implementations hinge on the ability to efficiently deploy and manage cloud services at enterprise scale. Having a complete cloud management solution integrated with an enterprise-class technology stack is a fundamental requirement for IT. Oracle Enterprise Manager 12c Release 4 meets that requirement by helping businesses become more agile and responsive, while reducing cost, complexity, and risk. News Facts Oracle Enterprise Manager 12c Release 4, available today, lets organizations rapidly adopt Oracle-based, enterprise-scale private clouds. New capabilities provide advanced technology stack management, secure database administration, and enterprise service governance, enabling Oracle customers and partners to maximize database and application performance and drive innovation using self-service IT platforms. The enhancements have been driven by customers and the growing Oracle Enterprise Manager Ecosystem, comprised of more than 750 Oracle PartnerNetwork (OPN) Specialized partners. Oracle and its partners and customers have built over 140 plug-ins and connectors for Oracle Enterprise Manager. Watch the video highlights. Automation for Broader Cloud Services Oracle Enterprise Manager 12c Release 4 allows for a rapid enterprise-wide adoption of database, middleware and infrastructure services in the private cloud, driven by an enhanced API-enabled service catalog. The release features “push button” style provisioning of complete environments such as SOA and Oracle Active Data Guard, and fast data cloning that enables rapid deployment and testing of enterprise applications. Out-of-the-box capabilities to detect data and configuration vulnerabilities provide enhanced cloud service governance along with greater operational control through a flexible and extensible showback mechanism. Enhanced Database Management A new performance warehouse enables predictive database diagnostics and trend analysis and helps identify database problems before they occur. New enterprise data-governance capabilities enhance security by helping systematically discover and protect sensitive data. Step-by-step orchestration of upgrades with the ability to rollback changes enables faster adoption of Oracle Database 12c. Expanded Fusion Middleware Management A new consolidated view of Oracle Fusion Middleware 12c deployments with a guided management capability lets administrators apply best management practices to diverse middleware environments and identify performance issues quickly. A Java VM Diagnostics as a Service feature allows governed access to diagnostics data for IT workers across multiple disciplines for accelerated DevOps resolutions of defects and performance optimization. New automated provisioning for SOA lets middleware administrators perform mass SOA provisioning with ease. Superior Enterprise-Grade Management Private roles and preferred credentials have been added to Oracle Enterprise Manager to provide additional fine-grained security for organizations with complex access control requirements. A new security console provides a single point of control for managing the security of Oracle Enterprise Manager environments. Support for the latest industry standard SNMP v3 protocol, including encryption, enables more secure heterogeneous management. “Smart monitoring” adapts to observed environmental changes and adds self-management capabilities to help Oracle Enterprise Manager run at peak performance, while demanding less IT supervision. Supporting Quotes “Lawrence Livermore National Laboratory has a strong tradition of technology breakthroughs and leadership. As a member of Oracle’s Customer Advisory Board for Oracle Enterprise Manager, we have consistently provided feedback and guidance in the areas of enterprise-scale cloud, self-diagnosability, and secure administration for the product,” said Tim Frazier, CIO, NIF and Photon Sciences, Lawrence Livermore National Laboratory. “We intend to take advantage of the Release 4 features that support enterprise-scale availability and fine-grained security capabilities for private cloud deployments.” “IDC's most recent CloudTrack survey shows that most enterprises plan to adopt hybrid cloud architectures over the next three years,” said Mary Johnston Turner, Research Vice President, Enterprise System Management Software, IDC. “These organizations plan to deploy a wide range of workloads into cloud environments including mission critical database and middleware services that require high levels of fault tolerance and disaster recovery. Such capabilities were traditionally custom configured for each application but cloud offers the possibility to incorporate such properties within the service definition, enabling organizations to adopt cloud without compromise. With the latest release of Oracle Enterprise Manager 12c, Oracle is providing customers with an out-of-the-box experience for delivering highly-resilient cloud services for databases and applications.” “Since its inception, Oracle has been leading the way in innovative, scalable and high performance solutions for the enterprise. With this release of Oracle Enterprise Manager, we are extending this leadership by providing enterprise-scale capabilities for planning, delivering, and managing private clouds. We call this ‘zero-to-cloud – accelerated.’ These enhancements help our customers to expedite their adoption of cloud computing and prepares them for the next generation of self-service IT,” said Prakash Ramamurthy, senior vice president of Systems and Cloud Management at Oracle. Supporting Resources Oracle Enterprise Manager 12c Video: Cerner Delivers High Performance Private Cloud Video: BIAS Achieves Outstanding Results with Private Cloud Press Release Stay Connected: Twitter | Facebook | YouTube | Linkedin | Newsletter Download the Oracle Enterprise Manager 12c Mobile app

    Read the article

  • MDM for Tax Authorities

    - by david.butler(at)oracle.com
    In last week’s MDM blog, we discussed MDM in the Public Sector. I want to continue that thread. After all, no industry faces tougher data quality problems than governmental organizations, and few industries suffer more significant down side consequences to poor operations than local, state and federal governments. One key challenge area is taxation. Tax Authorities face a multitude of IT challenges. Firstly, the data used in tax calculations is increasing in volume and complexity. They must improve service by introducing multi-channel contact centers and self-service capabilities. Security concerns necessitate increasingly sophisticated data protection procedures. And cost constraints are driving Tax Authorities to rely on off-the-shelf software for many of their functional areas. Compounding these issues is the fact that the IT architectures in operation at most revenue and collections agencies are very complex. They typically include multiple, disparate operational and analytical systems across which the sum total of data about individual constituents is fragmented. To make matters more complicated, taxation is not carried out by a single jurisdiction, and often sources of income including employers, investments and other sources of taxable income and deductions must also be tracked and shared among tax authorities. Collectively, these systems are involved in tax assessment and collections, risk analysis, scoring, tracking, auditing and investigation case management. The Problem of Constituent Data Management The infrastructure described above makes it very difficult to create a consolidated representation of a given party. Differing formats and data models mean that a constituent may be represented in one way in one system and in a different way in another. Individual records are frequently inaccurate, incomplete, out of date and/or inconsistent with other records relating to the same constituent. When constituent data must be aggregated and scored, information within each system must be rationalized and normalized so the agency can produce a constituent information file (CIF) that provides a single source of truth about that party. If information about that constituent changes, each system in turn must be updated. There have been many attempts to solve this problem with technology: from consolidating transactional systems to conducting manual systems integration projects and superimposing layers of business intelligence and analytics. All these approaches can be successful in solving a portion of the problem at a specific point in time, but without an enterprise perspective, anything gained is quickly lost again. Oracle Constituent Data Mastering for Tax Authorities: A Single View of the Constituent Oracle has a flexible and long-term solution to the problem of securely integrating and managing constituent data. The Oracle Solution for mastering Constituent Data for Tax Authorities is based on two core product offerings: Oracle Customer Hub and – optionally – Oracle Application Integration Architecture (AIA). Customer Hub is a master data management (MDM) product that centralizes, de-duplicates, and enriches constituent data. It unifies fragmented information without disrupting existing business processes or IT investments. Role based data access and privacy rules guarantee maximum security and privacy. Data is continuously and automatically synchronized with all source systems. With the Oracle Customer Hub managing the master constituent identity, every department can capture transaction activity against the same record, improving reporting accuracy, employee productivity, reliability of constituent analytics, and day-to-day constituent relationships. Oracle Application Integration Architecture provides a collection of core pre-built processes to support out of the box Master Data Governance across Oracle Customer Hub, Siebel CRM, and Oracle E-Business Suite. It also provides a framework to enable MDM integrations with other Oracle and non-Oracle applications. Oracle AIA removes some of the key inhibitors to implementing a service-oriented architecture (SOA) by providing a pre-built SOA-based middleware foundation as well as industry-optimized service oriented applications, all built around a SOA governance model that encourages effective design and reuse. I encourage you to read Oracle Solution for Mastering Constituents Data for Public Sector – Tax Authorities by Roberto Negro. It is an outstanding whitepaper that describes how the Oracle MDM solution allows you to create a unified, reconciled source of high-quality constituent data and gain an accurate single view of each constituent. This foundation enables you to lower the costs associated with data quality and integration and create a tax organization that is efficient, secure and constituent-centric. Also, don’t forget the upcoming webcast on Thursday, February 10th: Deliver Improved Services to Citizens at Lower Cost to your Organization Our Guest Speaker is Ruben Spekle, from Capgemini. He will also provide insight into Public Sector Master Data Management and Case Management implementations including one that was executed for a Dutch Government Agency. If you are interested in how governmental organizations from around the world are using MDM to advance their cause, click here to register for the webcast.

    Read the article

  • A little primer on using TFS with a small team

    - by johndoucette
    The scenario; A small team of 3 developers mostly in maintenance mode with traditional ASP.net, classic ASP, .Net integration services and utilities with the company’s third party packages, and a bunch of java-based Coldfusion web applications all under Visual Source Safe (VSS). They are about to embark on a huge SharePoint 2010 new construction project and wanted to use subversion instead VSS. TFS was a foreign word and smelled of “high cost” and of an “over complicated process”. Since they had no preconditions about the old TFS versions (‘05 & ‘08), it was fun explaining how simple it was to install a TFS server and get the ball rolling, with or without all the heavy stuff one sometimes associates with such a huge and powerful application management lifecycle product. So, how does a small team begin using TFS? 1. Start by using source control and migrate current VSS source trees into TFS. You can take the latest version or migrate the entire version history. It’s up to you on whether you want a clean start or need quick access to all the version notes and history of the bits. 2. Since most shops are mainly in maintenance mode with existing applications, begin using bug workitems for everything. When you receive an issue/bug from your current tracking system, manually enter the workitem in TFS right through Visual Studio. You can automate the integration to the current tracking system later or replace it entirely. Believe me, this thing is powerful and can handle even the largest of help desks. 3. With new construction, begin work with requirements and task workitems and follow the traditional sprint-based development lifecycle. Obviously, some minor training will be needed, but don’t fear, this is very intuitive and MSDN has a ton of lesson based labs and videos. 4. For the java developers, use the new Team Explorer Everywhere 2010 plugin (recently known as Teamprise). There is a seamless interface in Eclipse, but also a good command-line utility for other environments such as Dreamweaver. 5. Wait to fully integrate the whole workitem/project management/testing process until your team is familiar with the integrated workitems for bugs and code. After a while, you will see the team wanting more transparency into the work they are all doing and naturally, everyone will want workitems to help them organize the chaos! 6. Management will be limited in the value of the reports until you have a fully blown implementation of project planning, construction, build, deployment and testing. However, there are some basic “bug rate” reports and current backlog listings that can provide good information. Some notable explanations of TFS; Work Item Tracking and Project Management - A workitem represents the unit of work within the system which enables tracking of all activities produced by a user, whether it is a developer, business user, project manager or tester. The properties of a workitem such as linked changesets (checked-in code), who updated the data and when, the states and reasons for change, are all transitioned to a data warehouse within TFS for reporting purposes. A workitem can be defines as a "bug", "requirement", test case", or a "change request". They drive the work effort by the individual assigned to it and also provide a key role in defining what needs to be done. Workitems are the things the team needs to do to accomplish a goal. Test Case Management - Starting with a workitem known as a "test case", a tester (or developer) can now author and manage test cases within a formal test plan subsystem. Although TFS supports the test case workitem type, there is a new product known as the VS Test Professional 2010 which allows a tester to facilitate manual tests including fast forwarding steps in the process to arrive at the assertion point quickly. This repeatable process provides quick regression tests and can be conducted by the business user to ensure completeness during UAT. In addition, developers no longer can provide a response to a bug with the line "cannot reproduce". With every test run, attachments including the recorded session, captured environment configurations and settings, screen shots, intellitrace (debugging history), and in some cases if the lab manager is being used, a snapshot of the tested environment is available. Version Control - A modern system allowing shared check-in/check-out, excellent merge conflict resolution, Shelvesets (personal check-ins), branching/merging visualization, public workspaces, gated check-ins, security hierarchy capabilities, and changeset/workitem tracking. Knowing what was done with the code by any developer has become much easier to picture and resolve issues. Team Build - Automate the compilation process whether you need it to be whenever a developer checks-in code, periodically such as nightly builds for testers in the morning, or manual builds to be deployed into production. Each build can run through pre-determined tests, perform code analysis to see if the developer conforms to the team standards, and reject the build if either fails. Project Portal & Reporting - Provide management with a dashboard with insight into the project(s). "Where are we" in each step of the way including past iterations and the current burndown rate. Enabling this feature is easy as it seamlessly interfaces with existing SharePoint implementations.

    Read the article

  • Adopt-a-JSR for Java EE 7 - Getting Started

    - by arungupta
    Adopt-a-JSR is an initiative started by JUG leaders to encourage JUG members to get involved in a JSR, in order to increase grass roots participation. This allows JUG members to provide early feedback to specifications before they are finalized in the JCP. The standards in turn become more complete and developer-friendly after getting feedback from a wide variety of audience. adoptajsr.org provide more details about the logistics and benefits for you and your JUG. A similar activity was conducted for OpenJDK as well. Markus Eisele also provide a great introduction to the program (in German). Java EE 7 (JSR 342) is scheduled to go final in Q2 2013. There are several new JSRs that are getting included in the platform (e.g. WebSocket, JSON, and Batch), a few existing ones are getting an overhaul (e.g. JAX-RS 2 and JMS 2), and several other getting minor updates (e.g. JPA 2.1 and Servlets 3.1). Each Java EE 7 JSR can leverage your expertise and would love your JUG to adopt a JSR. What does it mean to adopt a JSR ? Your JUG is going to identify a particular JSR, or multiple JSRs, that is of interest to the JUG members. This is mostly done by polling/discussing on your local JUG members list. Your JUG will download and review the specification(s) and javadocs for clarity and completeness. The complete set of Java EE 7 specifications, their download links, and EG archives are listed here. glassfish.org/adoptajsr provide specific areas where different specification leads are looking for feedback. Your JUG can then think of a sample application that can be built using the chosen specification(s). An existing use case (from work or a personal hobby project) may be chosen to be implemented instead. This is where your creativity and uniqueness comes into play. Most of the implementations are already integrated in GlassFish 4 and others will be integrated soon. You can also explore integration of multiple technologies and provide feedback on the simplicity and ease-of-use of the programming model. Especially look for integration with existing Java EE technologies and see if you find any discrepancies. Report any missing features that may be included in future release of the specification. The most important part is to provide feedback by filing bugs on the corresponding spec or RI project. Any thing that is not clear either in the spec or implementation should be filed as a bug. This is what will ensure that specification and implementation leads are getting the required feedback and improving the quality of the final deliverable of the JSR. How do I get started ? A simple way to get started can be achieved by following S.M.A.R.T. as explained below. Specific Identify who all will be involved ? What would you like to accomplish ? For example, even though building a sample app will provide real-world validity of the API but because of time constraints you may identify that reviewing the specification and javadocs only can be accomplished. Establish a time frame by which the activities need to be complete. Measurable Define a success for metrics. For example, this could be the number of bugs filed. Remember, quality of bugs is more important that quantity of bugs. Define your end goal, for example, reviewing 4 chapters of the specification or completing the sample application. Create a dashboard that will highlight your JUG's contribution to this effort. Attainable Make sure JUG members understand the time commitment required for providing feedback. This can vary based upon the level of involvement (any is good!) and the number of specifications picked. adoptajsr.org defines different categories of involvement. Once again, any level of involvement is good. Just reviewing a chapter, a section, or javadocs for your usecase is helpful. Relevant Pick JSRs that JUG members are willing and able to work. If the JUG members are not interested then they might loose motivation half-way through. The "able" part is tricky as you can always stretch yourself and learn a new skill ;-) Time-bound Define a time table of activities with clearly defined tasks. A tentative time table may look like: Dec 25: Discuss and agree upon the specifications with JUG Jan 1: Start Adopt-a-JSR for Java EE 7 Jan 15: Initial spec reading complete. Keep thinking through the application that will be implemented. Jan 22: Early design of the sample application is ready Jan 29: JUG members agree upon the application Next 4 weeks: Implement the application Of course, you'll need to alter this based upon your commitment. Maintaining an activity dashboard will help you monitor and track the progress. Make sure to keep filing bugs through out the process! 12 JUGs from around the world (SouJava, Campinas JUG, Chennai JUG, London Java Community, BeJUG, Morocco JUG, Peru JUG, Indonesia JUG, Congo JUG, Silicon Valley JUG, Madrid JUG, and Houston JUG) have already adopted one of the Java EE 7 JSRs. I'm already helping some JUGs bootstrap and would love to help your JUG too. What are you waiting for ?

    Read the article

  • Why enumerator structs are a really bad idea

    - by Simon Cooper
    If you've ever poked around the .NET class libraries in Reflector, I'm sure you would have noticed that the generic collection classes all have implementations of their IEnumerator as a struct rather than a class. As you will see, this design decision has some rather unfortunate side effects... As is generally known in the .NET world, mutable structs are a Very Bad Idea; and there are several other blogs around explaining this (Eric Lippert's blog post explains the problem quite well). In the BCL, the generic collection enumerators are all mutable structs, as they need to keep track of where they are in the collection. This bit me quite hard when I was coding a wrapper around a LinkedList<int>.Enumerator. It boils down to this code: sealed class EnumeratorWrapper : IEnumerator<int> { private readonly LinkedList<int>.Enumerator m_Enumerator; public EnumeratorWrapper(LinkedList<int> linkedList) { m_Enumerator = linkedList.GetEnumerator(); } public int Current { get { return m_Enumerator.Current; } } object System.Collections.IEnumerator.Current { get { return Current; } } public bool MoveNext() { return m_Enumerator.MoveNext(); } public void Reset() { ((System.Collections.IEnumerator)m_Enumerator).Reset(); } public void Dispose() { m_Enumerator.Dispose(); } } The key line here is the MoveNext method. When I initially coded this, I thought that the call to m_Enumerator.MoveNext() would alter the enumerator state in the m_Enumerator class variable and so the enumeration would proceed in an orderly fashion through the collection. However, when I ran this code it went into an infinite loop - the m_Enumerator.MoveNext() call wasn't actually changing the state in the m_Enumerator variable at all, and my code was looping forever on the first collection element. It was only after disassembling that method that I found out what was going on The MoveNext method above results in the following IL: .method public hidebysig newslot virtual final instance bool MoveNext() cil managed { .maxstack 1 .locals init ( [0] bool CS$1$0000, [1] valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator CS$0$0001) L_0000: nop L_0001: ldarg.0 L_0002: ldfld valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator EnumeratorWrapper::m_Enumerator L_0007: stloc.1 L_0008: ldloca.s CS$0$0001 L_000a: call instance bool [System]System.Collections.Generic.LinkedList`1/Enumerator::MoveNext() L_000f: stloc.0 L_0010: br.s L_0012 L_0012: ldloc.0 L_0013: ret } Here, the important line is 0002 - m_Enumerator is accessed using the ldfld operator, which does the following: Finds the value of a field in the object whose reference is currently on the evaluation stack. So, what the MoveNext method is doing is the following: public bool MoveNext() { LinkedList<int>.Enumerator CS$0$0001 = this.m_Enumerator; bool CS$1$0000 = CS$0$0001.MoveNext(); return CS$1$0000; } The enumerator instance being modified by the call to MoveNext is the one stored in the CS$0$0001 variable on the stack, and not the one in the EnumeratorWrapper class instance. Hence why the state of m_Enumerator wasn't getting updated. Hmm, ok. Well, why is it doing this? If you have a read of Eric Lippert's blog post about this issue, you'll notice he quotes a few sections of the C# spec. In particular, 7.5.4: ...if the field is readonly and the reference occurs outside an instance constructor of the class in which the field is declared, then the result is a value, namely the value of the field I in the object referenced by E. And my m_Enumerator field is readonly! Indeed, if I remove the readonly from the class variable then the problem goes away, and the code works as expected. The IL confirms this: .method public hidebysig newslot virtual final instance bool MoveNext() cil managed { .maxstack 1 .locals init ( [0] bool CS$1$0000) L_0000: nop L_0001: ldarg.0 L_0002: ldflda valuetype [System]System.Collections.Generic.LinkedList`1/Enumerator EnumeratorWrapper::m_Enumerator L_0007: call instance bool [System]System.Collections.Generic.LinkedList`1/Enumerator::MoveNext() L_000c: stloc.0 L_000d: br.s L_000f L_000f: ldloc.0 L_0010: ret } Notice on line 0002, instead of the ldfld we had before, we've got a ldflda, which does this: Finds the address of a field in the object whose reference is currently on the evaluation stack. Instead of loading the value, we're loading the address of the m_Enumerator field. So now the call to MoveNext modifies the enumerator stored in the class rather than on the stack, and everything works as expected. Previously, I had thought enumerator structs were an odd but interesting feature of the BCL that I had used in the past to do linked list slices. However, effects like this only underline how dangerous mutable structs are, and I'm at a loss to explain why the enumerators were implemented as structs in the first place. (interestingly, the SortedList<TKey, TValue> enumerator is a struct but is private, which makes it even more odd - the only way it can be accessed is as a boxed IEnumerator!). I would love to hear people's theories as to why the enumerators are implemented in such a fashion. And bonus points if you can explain why LinkedList<int>.Enumerator.Reset is an explicit implementation but Dispose is implicit... Note to self: never ever ever code a mutable struct.

    Read the article

< Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >