Search Results

Search found 10621 results on 425 pages for 'task queue'.

Page 54/425 | < Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >

  • Looking for a specific python gui module to perform the following task

    - by Sadaf Amouz
    I am looking for a GUI python module that is best suited for the following job: I am trying to plot a graph with many columns (perhaps hundreds), each column representing an individual. The user should be able to drag the columns around and drop them onto different columns to switch the two. Also, there are going to be additional dots drawn on the columns and by hovering over those dots, the user should see the values corresponding to those dots. What is the best way to approach this?

    Read the article

  • Windows Game Loop 50% CPU on Dual Core

    - by Dave18
    The game loop alone is using 50% of CPU Usage, I haven't done any rendering work yet. What i'm doing here? while(true) { if(PeekMessage(&msg,NULL,0,0,PM_REMOVE)) { if(msg.message == WM_QUIT || msg.message == WM_CLOSE || msg.message == WM_DESTROY) break; TranslateMessage(&msg); DispatchMessage(&msg); } else { //Run game code, break out of loop when the game is over } }

    Read the article

  • "Work stealing" vs. "Work shrugging (tm)"?

    - by John
    Why is it that I can find lots of information on "work stealing" and nothing on a "work shrugging(tm)" as a load-balancing strategy? I am surprised because work-stealing seems to me to have an inherent weakness when implementating efficient fine-grained load-balancing. Vis:- Relying on consumer processors to implement distribution (by actively stealing) begs the question of what these processors do when they find no work? None of the work-stealing references and implementations I have come across so far address this issue satisfactorarily for me. They either:- 1) Manage not to disclose what they do with idle processors! [Cilk] (?anyone know?) 2) Have all idle processors sleep and wake periodically and scatter messages to the four winds to see if any work has arrived [e.g. JAWS] (= way too latent & inefficient for me). 3) Assume that it is acceptable to have processors "spinning" looking for work ( = non-starter for me!) Unless anyone thinks there is a solution for this I will move on to consider a "Work Shrugging(tm)" strategy. Having the task-producing processor distribute excess load seems to me inherently capable of a much more efficient implementation. However a quick google didn't show up anything under the heading of "Work Shrugging" so any pointers to prior-art would be welcome. tx Tags I would have added if I was allowed to [work-stealing]

    Read the article

  • python can't start a new thread

    - by Giorgos Komnino
    I am building a multi threading application. I have setup a threadPool. [ A Queue of size N and N Workers that get data from the queue] When all tasks are done I use tasks.join() where tasks is the queue . The application seems to run smoothly until suddently at some point (after 20 minutes in example) it terminates with the error thread.error: can't start new thread Any ideas? Edit: The threads are daemon Threads and the code is like: while True: t0 = time.time() keyword_statuses = DBSession.query(KeywordStatus).filter(KeywordStatus.status==0).options(joinedload(KeywordStatus.keyword)).with_lockmode("update").limit(100) if keyword_statuses.count() == 0: DBSession.commit() break for kw_status in keyword_statuses: kw_status.status = 1 DBSession.commit() t0 = time.time() w = SWorker(threads_no=32, network_server='http://192.168.1.242:8180/', keywords=keyword_statuses, cities=cities, saver=MySqlRawSave(DBSession), loglevel='debug') w.work() print 'finished' When the daemon threads are killed? When the application finishes or when the work() finishes? Look at the thread pool and the worker (it's from a recipe ) from Queue import Queue from threading import Thread, Event, current_thread import time event = Event() class Worker(Thread): """Thread executing tasks from a given tasks queue""" def __init__(self, tasks): Thread.__init__(self) self.tasks = tasks self.daemon = True self.start() def run(self): '''Start processing tasks from the queue''' while True: event.wait() #time.sleep(0.1) try: func, args, callback = self.tasks.get() except Exception, e: print str(e) return else: if callback is None: func(args) else: callback(func(args)) self.tasks.task_done() class ThreadPool: """Pool of threads consuming tasks from a queue""" def __init__(self, num_threads): self.tasks = Queue(num_threads) for _ in range(num_threads): Worker(self.tasks) def add_task(self, func, args=None, callback=None): ''''Add a task to the queue''' self.tasks.put((func, args, callback)) def wait_completion(self): '''Wait for completion of all the tasks in the queue''' self.tasks.join() def broadcast_block_event(self): '''blocks running threads''' event.clear() def broadcast_unblock_event(self): '''unblocks running threads''' event.set() def get_event(self): '''returns the event object''' return event

    Read the article

  • Producer consumer with qualifications

    - by tgguy
    I am new to clojure and am trying to understand how to properly use its concurrency features, so any critique/suggestions is appreciated. So I am trying to write a small test program in clojure that works as follows: there 5 producers and 2 consumers a producer waits for a random time and then pushes a number onto a shared queue. a consumer should pull a number off the queue as soon as the queue is nonempty and then sleep for a short time to simulate doing work the consumers should block when the queue is empty producers should block when the queue has more than 4 items in it to prevent it from growing huge Here is my plan for each step above: the producers and consumers will be agents that don't really care for their state (just nil values or something); i just use the agents to send-off a "consumer" or "producer" function to do at some time. Then the shared queue will be (def queue (ref [])). Perhaps this should be an atom though? in the "producer" agent function, simply (Thread/sleep (rand-int 1000)) and then (dosync (alter queue conj (rand-int 100))) to push onto the queue. I am thinking to make the consumer agents watch the queue for changes with add-watcher. Not sure about this though..it will wake up the consumers on any change, even if the change came from a consumer pulling something off (possibly making it empty) . Perhaps checking for this in the watcher function is sufficient. Another problem I see is that if all consumers are busy, then what happens when a producer adds something new to the queue? Does the watched event get queued up on some consumer agent or does it disappear? see above I really don't know how to do this. I heard that clojure's seque may be useful, but I couldn't find enough doc on how to use it and my initial testing didn't seem to work (sorry don't have the code on me anymore)

    Read the article

  • NullReferenceException at Microsoft.Silverlight.Build.Tasks.CompileXaml.LoadAssemblies(ITaskItem[] R

    - by Eugene Larchick
    Hi, I updated my Visual Studio 2010 to the version 10.0.30319.1 RTM Rel and start getting the following exception during the build: System.NullReferenceException: Object reference not set to an instance of an object. at Microsoft.Silverlight.Build.Tasks.CompileXaml.LoadAssemblies(ITaskItem[] ReferenceAssemblies) at Microsoft.Silverlight.Build.Tasks.CompileXaml.get_GetXamlSchemaContext() at Microsoft.Silverlight.Build.Tasks.CompileXaml.GenerateCode(ITaskItem item, Boolean isApplication) at Microsoft.Silverlight.Build.Tasks.CompileXaml.Execute() at Bohr.Silverlight.BuildTasks.BohrCompileXaml.Execute() The code of BohrCompileXaml.Execute is the following: public override bool Execute() { List<TaskItem> pages = new List<TaskItem>(); foreach (ITaskItem item in SilverlightPages) { string newFileName = getGeneratedName(item.ItemSpec); String content = File.ReadAllText(item.ItemSpec); String parentClassName = getParentClassName(content); if (null != parentClassName) { content = content.Replace("<UserControl", "<" + parentClassName); content = content.Replace("</UserControl>", "</" + parentClassName + ">"); content = content.Replace("bohr:ParentClass=\"" + parentClassName + "\"", ""); } File.WriteAllText(newFileName, content); pages.Add(new TaskItem(newFileName)); } if (null != SilverlightApplications) { foreach (ITaskItem item in SilverlightApplications) { Log.LogMessage(MessageImportance.High, "Application: " + item.ToString()); } } foreach (ITaskItem item in pages) { Log.LogMessage(MessageImportance.High, "newPage: " + item.ToString()); } CompileXaml xamlCompiler = new CompileXaml(); xamlCompiler.AssemblyName = AssemblyName; xamlCompiler.Language = Language; xamlCompiler.LanguageSourceExtension = LanguageSourceExtension; xamlCompiler.OutputPath = OutputPath; xamlCompiler.ProjectPath = ProjectPath; xamlCompiler.RootNamespace = RootNamespace; xamlCompiler.SilverlightApplications = SilverlightApplications; xamlCompiler.SilverlightPages = pages.ToArray(); xamlCompiler.TargetFrameworkDirectory = TargetFrameworkDirectory; xamlCompiler.TargetFrameworkSDKDirectory = TargetFrameworkSDKDirectory; xamlCompiler.BuildEngine = BuildEngine; bool result = xamlCompiler.Execute(); // HERE we got the error! And the definition of the task: <BohrCompileXaml LanguageSourceExtension="$(DefaultLanguageSourceExtension)" Language="$(Language)" SilverlightPages="@(Page)" SilverlightApplications="@(ApplicationDefinition)" ProjectPath="$(MSBuildProjectFullPath)" RootNamespace="$(RootNamespace)" AssemblyName="$(AssemblyName)" OutputPath="$(IntermediateOutputPath)" TargetFrameworkDirectory="$(TargetFrameworkDirectory)" TargetFrameworkSDKDirectory="$(TargetFrameworkSDKDirectory)" > <Output ItemName="Compile" TaskParameter="GeneratedCodeFiles" /> <!-- Add to the list list of files written. It is used in Microsoft.Common.Targets to clean up for a next clean build --> <Output ItemName="FileWrites" TaskParameter="WrittenFiles" /> <Output ItemName="_GeneratedCodeFiles" TaskParameter="GeneratedCodeFiles" /> </BohrCompileXaml> What can be the reason? And how can I get more info what's happening inside CompileXaml class?

    Read the article

  • How do I subscribe to a MSMQ queue but only "peek" the message in .Net?

    - by lemkepf
    We have a MSMQ Queue setup that receives messages and is processed by an application. We'd like to have another process subscribe to the Queue and just read the message and log it's contents. I have this in place already, the problem is it's constantly peeking the queue. CPU on the server when this is running is around 40%. The mqsvc.exe runs at 30% and this app runs at 10%. I'd rather have something that just waits for a message to come in, get's notified of it, and then logs it without constantly pooling the server. Dim lastid As String Dim objQueue As MessageQueue Dim strQueueName As String Public Sub Main() objQueue = New MessageQueue(strQueueName, QueueAccessMode.SendAndReceive) Dim propertyFilter As New MessagePropertyFilter propertyFilter.ArrivedTime = True propertyFilter.Body = True propertyFilter.Id = True propertyFilter.LookupId = True objQueue.MessageReadPropertyFilter = propertyFilter objQueue.Formatter = New ActiveXMessageFormatter AddHandler objQueue.PeekCompleted, AddressOf MessageFound objQueue.BeginPeek() end main Public Sub MessageFound(ByVal s As Object, ByVal args As PeekCompletedEventArgs) Dim oQueue As MessageQueue Dim oMessage As Message ' Retrieve the queue from which the message originated oQueue = CType(s, MessageQueue) oMessage = oQueue.EndPeek(args.AsyncResult) If oMessage.LookupId <> lastid Then ' Process the message here lastid = oMessage.LookupId ' let's write it out log.write(oMessage) End If objQueue.BeginPeek() End Sub

    Read the article

  • What is the fastest collection in c# to implement a prioritizing queue?

    - by Nathan Smith
    I need to implement a queue for messages on a game server so it needs to as fast as possible. The queue will have a maxiumem size. I need to prioritize messages once the queue is full by working backwards and removing a lower priority message (if one exists) before adding the new message. The appliation is asynchronous so access to the queue needs to be locked. I'm currently implementing it using a LinkedList as the underlying storage but have concerns that searching and removing nodes will keep it locked for too long. Heres the basic code I have at the moment: public class ActionQueue { private LinkedList<ClientAction> _actions = new LinkedList<ClientAction>(); private int _maxSize; /// <summary> /// Initializes a new instance of the ActionQueue class. /// </summary> public ActionQueue(int maxSize) { _maxSize = maxSize; } public int Count { get { return _actions.Count; } } public void Enqueue(ClientAction action) { lock (_actions) { if (Count < _maxSize) _actions.AddLast(action); else { LinkedListNode<ClientAction> node = _actions.Last; while (node != null) { if (node.Value.Priority < action.Priority) { _actions.Remove(node); _actions.AddLast(action); break; } } } } } public ClientAction Dequeue() { ClientAction action = null; lock (_actions) { action = _actions.First.Value; _actions.RemoveFirst(); } return action; } }

    Read the article

  • NServiceBus & MSMQ: How To Change the Default Permissions on the Queue?

    - by Amy T
    My team is on our first attempt at using NServiceBus (v2.0), using MSMQ as the backing storage. We're getting stuck on queue permissions. We're using it in a Web Forms application, where the user account the website runs under is not an administrator on the machine. When NServiceBus creates the MSMQ queue, it gives the local administrators group full control, and the local everyone and anonymous groups permissions to send messages. But then later, as part of initializing the queue, NServiceBus tries to read all of its messages. That's where we run into the permissions error. Since the website isn't running as an administrator, it's not allowed to read messages. How are other people dealing with this? Do your applications run as administrators? Or do you create the MSMQ queue in your code first, giving it the permissions you need, so that NServiceBus doesn't have to create it? Or is there a bit of configuration we're missing? Or are we likely writing our code that uses NServiceBus incorrectly to be running into this?

    Read the article

  • How to stop an IOException error using whilst using a combination of jython, pyro and ant?

    - by Kelso
    So the wonderful low down on this doozie of a problem: short version: We are building a distribution system for this item of software we're using. Basically we take out build artifact, store it on an ftp server which passes it to multiple clients which execute scripts to patch their servers. Long version: 1 distribution server multiple client servers software: jython 2.5.1, ant 1.8.0, pyro 3.10 The distribution server has an FTP server and a PYRO client running on it. Each client server has a PRYO server running on it. When the PYRO client is told to start the patch procedure then it reads a machine list which contains a list of all the client servers. Then connects to each of the PYRO servers one by one and execute the patch procedure. The procedure is: getPatch (gets the latest patch for that server), StopServer (stops the software that may or maynot be accessing what needs to be patched), Apply patch, StartServer. Each of the processes calls an ANT script that passes with some folder names and other config passes around. The fun part happens when you go to apply the patch. See below for error log. I had to remove the folder names because of NDA reasons. This is where it gets interesting. Running each section of the procedure individually. i.e. running getPatch, StopServer, etc. one at a time manually. This bug doesn't happen. Physically goign to the machine and running the processes it doesn't happen. Only when we call all 4 of the processes one after the other. It occurs during the ApplyPatch phase when an ANT replace script is called on multiple files. We think it might have something to do with the JVM keeping hold of the file for a split second or 2. however this is meant to have been patched according to the bug notes on ant. so in short: distribution server == jython == pyro connection == client server == jython == ant script Error Log: <*snip>\ant\deploy.xml:12: IOException in <*snip>\bin\startGs.sh - java.io.IOException:Failed to delete <*snip>\bin\rep4698373081723114968.tmp while trying to rename it. at org.apache.tools.ant.taskdefs.Replace.processFile(Replace.java:709) at org.apache.tools.ant.taskdefs.Replace.execute(Replace.java:548) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.MacroInstance.execute(MacroInstance.java:398) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.Target.execute(Target.java:390) at org.apache.tools.ant.Target.performTasks(Target.java:411) at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1360) at org.apache.tools.ant.helper.SingleCheckExecutor.executeTargets(SingleCheckExecutor.java:38) at org.apache.tools.ant.Project.executeTargets(Project.java:1212) at org.apache.tools.ant.taskdefs.Ant.execute(Ant.java:441) at org.apache.tools.ant.taskdefs.SubAnt.execute(SubAnt.java:302) at org.apache.tools.ant.taskdefs.SubAnt.execute(SubAnt.java:221) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.Target.execute(Target.java:390) at org.apache.tools.ant.Target.performTasks(Target.java:411) at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1360) at org.apache.tools.ant.helper.SingleCheckExecutor.executeTargets(SingleCheckExecutor.java:38) at org.apache.tools.ant.Project.executeTargets(Project.java:1212) at org.apache.tools.ant.taskdefs.Ant.execute(Ant.java:441) at org.apache.tools.ant.Extaskdefs.SubAnt.execute(SubAnt.java:302) at org.apache.tools.ant.taskdefs.SubAnt.execute(SubAnt.java:221) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.MacroInstance.execute(MacroInstance.java:398) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) at net.sf.antcontrib.logic.IfTask.execute(IfTask.java:197) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.TaskAdapter.execute(TaskAdapter.java:154) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.GeneratedMethodAccessor5.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.Target.execute(Target.java:390) at org.apache.tools.ant.Target.performTasks(Target.java:411) at org.apache.tools.ant.Project.executeSortedTargets(Project.java:1360) at org.apache.tools.ant.helper.SingleCheckExecutor.executeTargets(SingleCheckExecutor.java:38) at org.apache.tools.ant.Project.executeTargets(Project.java:1212) at org.apache.tools.ant.taskdefs.Ant.execute(Ant.java:441) at org.apache.tools.ant.taskdefs.SubAnt.execute(SubAnt.java:302) at org.apache.tools.ant.taskdefs.SubAnt.execute(SubAnt.java:221) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) it at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.MacroInstance.execute(MacroInstance.java:398) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.Sequential.execute(Sequential.java:68) at org.apache.tools.ant.UnknownElement.execute(UnknownElement.java:291) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.MacroInstance.execute(MacroInstance.java:398) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.tools.ant.dispatch.DispatchUtils.execute(DispatchUtils.java:106) at org.apache.tools.ant.Task.perform(Task.java:348) at org.apache.tools.ant.taskdefs.Parallel$TaskRunnable.run(Parallel.java:433) at java.lang.Thread.run(Thread.java:619) Caused by: java.io.IOException: Failed to delete <*snip\bin\rep4698373081723114968.tmp while trying to rename it. at org.apache.tools.ant.util.FileUtils.rename(FileUtils.java:1248) at org.apache.tools.ant.taskdefs.Replace.processFile(Replace.java:702) ... 125 more Any help would be appreciated.

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • Oracle Fusion Procurement Designed for User Productivity

    - by Applications User Experience
    Sean Rice, Manager, Applications User Experience Oracle Fusion Procurement Design Goals In Oracle Fusion Procurement, we set out to create a streamlined user experience based on the way users do their jobs. Oracle has spent hundreds of hours with customers to get to the heart of what users need to do their jobs. By designing a procurement application around user needs, Oracle has crafted a user experience that puts the tools that people need at their fingertips. In Oracle Fusion Procurement, the user experience is designed to provide the user with information that will drive navigation rather than requiring the user to find information. One of our design goals for Oracle Fusion Procurement was to reduce the number of screens and clicks that a user must go through to complete frequently performed tasks. The requisition process in Oracle Fusion Procurement (Figure 1) illustrates how we have streamlined workflows. Oracle Fusion Self-Service Procurement brings together billing metrics, descriptions of the order, justification for the order, a breakdown of the components of the order, and the amount—all in one place. Previous generations of procurement software required the user to navigate to several different pages to gather all of this information. With Oracle Fusion, everything is presented on one page. The result is that users can complete their tasks in less time. The focus is on completing the work, not finding the work. Figure 1. Creating a requisition in Oracle Fusion Self-Service Procurement is a consumer-like shopping experience. Will Oracle Fusion Procurement Increase Productivity? To answer this question, Oracle sought to model how two experts working head to head—one in an existing enterprise application and another in Oracle Fusion Procurement—would perform the same task. We compared Oracle Fusion designs to corresponding existing applications using the keystroke-level modeling (KLM) method. This method is based on years of research at universities such as Carnegie Mellon and research labs like Xerox Palo Alto Research Center. The KLM method breaks tasks into a sequence of operations and uses standardized models to evaluate all of the physical and cognitive actions that a person must take to complete a task: what a user would have to click, how long each click would take (not only the physical action of the click or typing of a letter, but also how long someone would have to think about the page when taking the action), and user interface changes that result from the click. By applying standard time estimates for all of the operators in the task, an estimate of the overall task time is calculated. Task times from the model enable researchers to predict end-user productivity. For the study, we focused on modeling procurement business process task flows that were considered business or mission critical: high-frequency tasks and high-value tasks. The designs evaluated encompassed tasks that are currently performed by employees, professional buyers, suppliers, and sourcing professionals in advanced procurement applications. For each of these flows, we created detailed task scenarios that provided the context for each task, conducted task walk-throughs in both the Oracle Fusion design and the existing application, analyzed and documented the steps and actions required to complete each task, and applied standard time estimates to the operators in each task to estimate overall task completion times. The Results The KLM method predicted that the Oracle Fusion Procurement designs would result in productivity gains in each task, ranging from 13 percent to 38 percent, with an overall productivity gain of 22.5 percent. These performance gains can be attributed to a reduction in the number of clicks and screens needed to complete the tasks. For example, creating a requisition in Oracle Fusion Procurement takes a user through only two screens, while ordering the same item in a previous version requires six screens to complete the task. Modeling user productivity has resulted not only in advances in Oracle Fusion applications, but also in advances in other areas. We leveraged lessons learned from the KLM studies to establish products like Oracle E-Business Suite (EBS). New user experience features in EBS 12.1.3, such as navigational improvements to the main menu, a Google-type search using auto-suggest, embedded analytics, and an in-context list of values tool help to reduce clicks and improve efficiency. For more information about KLM, refer to the Measuring User Productivity blog.

    Read the article

  • A Method for Reducing Contention and Overhead in Worker Queues for Multithreaded Java Applications

    - by Janice J. Heiss
    A java.net article, rich in practical resources, by IBM India Labs’ Sathiskumar Palaniappan, Kavitha Varadarajan, and Jayashree Viswanathan, explores the challenge of writing code in a way that that effectively makes use of the resources of modern multicore processors and multiprocessor servers.As the article states: “Many server applications, such as Web servers, application servers, database servers, file servers, and mail servers, maintain worker queues and thread pools to handle large numbers of short tasks that arrive from remote sources. In general, a ‘worker queue’ holds all the short tasks that need to be executed, and the threads in the thread pool retrieve the tasks from the worker queue and complete the tasks. Since multiple threads act on the worker queue, adding tasks to and deleting tasks from the worker queue needs to be synchronized, which introduces contention in the worker queue.” The article goes on to explain ways that developers can reduce contention by maintaining one queue per thread. It also demonstrates a work-stealing technique that helps in effectively utilizing the CPU in multicore systems. Read the rest of the article here.

    Read the article

  • How to explain to non-technical person why the task will take much longer then they think?

    - by Mag20
    Almost every developer has to answer questions from business side like: Why is going to take 2 days to add this simple contact form? When developer estimates this task, they may divide it into steps: make some changes to Database optimize DB changes for speed add front end HTML write server side code add validation add client side javascript use unit tests make sure SEO is setup is working implement email confirmation refactor and optimize the code for speed ... These maybe hard to explain to non-technical person, who basically sees the whole task as just putting together some HTML and creating a table to store the data. To them it could be 2 hours MAX. So is there a better way to explain why the estimate is high to non-developer?

    Read the article

  • Is there a term for "Use procedures that execute a single task"?

    - by Tom
    I'm having a discussion with a fellow developer, and I'm trying to argument this in something like a short "term". SoC (Separation of Concerns) is pretty straight forward design practice, but it dwells deeper. If we want to pick on it's deep corners, we can Google it and there are plenty of articles that pop up, and after taking a glimpse, we know a lot more, and might find some examples. But, what about "Use procedures that execute a single task"? That's also a great design principle to use when writing applications and it becomes more and more rewarding, the larger the application gets. Is there a term for Use procedures that execute a single task?

    Read the article

  • Upstart: sense of "stop on..." stanza when job is a task

    - by Binarus
    Hi, an upstart question (I think I have read all relevant man pages but could not find the answer there): What is the sense of using a "stop on ..." stanza in the definition of a job which is a task? The manuals tell us that such a job, after being started, just waits until its script (or exec stanza) is executed completely, and then stops automatically. Given that, what is the point in using "stop on ..." stanzas in such job definitions? For example, this is the job definition for Upstart's (very important) rc job in Natty 11.04 (leaving out comments and empty lines): start on runlevel [0123456] stop on runlevel [!$RUNLEVEL] export RUNLEVEL export PREVLEVEL console output env INIT_VERBOSE task exec /etc/init.d/rc $RUNLEVEL IMHO, the job, after being started by a runlevel event, will be stopped automatically as soon as /etc/init.d/rc $RUNLEVEL has finished. Thank you very much for any explanation!

    Read the article

  • Sense of "stop on..." stanza when job is a task

    - by Binarus
    Hi, an upstart question (I think I have read all relevant man pages but could not find the answer there): What is the sense of using a "stop on ..." stanza in the definition of a job which is a task? The manuals tell us that such a job, after being started, just waits until its script (or exec stanza) is executed completely, and then stops automatically. Given that, what is the point in using "stop on ..." stanzas in such job definitions? For example, this is the job definition for Upstart's (very important) rc job in Natty 11.04 (leaving out comments and empty lines): start on runlevel [0123456] stop on runlevel [!$RUNLEVEL] export RUNLEVEL export PREVLEVEL console output env INIT_VERBOSE task exec /etc/init.d/rc $RUNLEVEL IMHO, the job, after being started by a runlevel event, will be stopped automatically as soon as /etc/init.d/rc $RUNLEVEL has finished. Thank you very much for any explanation!

    Read the article

  • How to measure the time HTTP requests spend sitting in the accept-queue?

    - by David Jones
    I am using Apache2 on Ubuntu 9.10, and I am trying to tune my configuration for a web application to reduce latency of responses to HTTP requests. During a moderately heavy load on my small server, there are 24 apache2 processes handling requests. Additional requests get queued. Using "netstat", I see 24 connections are ESTABLISHED and 125 connections are TIME_WAIT. I am trying to figure out if that is considered a reasonable backlog. Most requests get serviced in a fraction of a second, so I am assuming requests move through the accept-queue fairly quickly, probably within 1 or 2 seconds, but I would like to be more certain. Can anyone recommend an easy way to measure the time an HTTP request sits in the accept-queue? The suggestions I have come across so far seem to start the clock after the apache2 worker accepts the connection. I'm trying to quantify the accept-queue delay before that. thanks in advance, David Jones

    Read the article

  • JMS - How do message selectors work with multiple queue and topic consumers?

    - by Stephen Harmon
    Say you have a JMS queue, and multiple consumers are watching the queue for messages. You want one of the consumers to get all of a particular type of message, so you decide to employ message selectors. For example, you define a property to go in your JMS message header named, "targetConsumer." Your message selector, which you apply to the consumer known as, "A," is something like "WHERE targetConsumer = "CONSUMER_A." It's clear that consumer A will now just grab messages with the property set like it is in in the example. Will the other consumers have awareness of that, though? IOW, will another consumer, unconstrained by a message selector, grab the "CONSUMER_A" messages, if it looks at the queue before Consumer A? Do I need to apply message selectors like, "WHERE targetConsumer < "CONSUMER_A" to the others? I am RTFMing and gathering empirical data now, but was hoping someone might know off the top of their head.

    Read the article

  • What is the absolute fastest way to implement a concurrent queue with ONLY one consumer and one producer?

    - by JohnPristine
    java.util.concurrent.ConcurrentLinkedQueue comes to mind, but is it really optimum for this two-thread scenario? I am looking for the minimum latency possible on both sides (producer and consumer). If the queue is empty you can immediately return null AND if the queue is full you can immediately discard the entry you are offering. Does ConcurrentLinkedQueue use super fast and light locks (AtomicBoolean) ? Has anyone benchmarked ConcurrentLinkedQueue or knows about the ultimate fastest way of doing that? Additional Details: I imagine the queue should be a fair one, meaning the consumer should not make the consumer wait any longer than it needs (by front-running it) and vice-versa.

    Read the article

  • Due Date set via EWS is wrong in reminder popup

    - by Paul McLean
    I'm having some trouble using EWS with tasks and reminders, specifically, the due date. When I run my code, shown below, the task is added to my exchange account and I can see it fine in outlook. All the data in it looks fine too. However, if I specify to have a reminder for the task, the due date it shows is very wrong. It's usually 17 hours in the future, but the screenshot I've provided shows it being 19 hours in the future. I'm finding it very strange that if I open the task, the due date looks fine, but the reminder is saying it is due well into the future. Any ideas? Screenshot: http://s970.photobucket.com/albums/ae187/paulehn/?action=view&current=ewstask.jpg ExchangeVersion exchVersion = new ExchangeVersion(); exchVersion = ExchangeVersion.Exchange2007_SP1; ExchangeService service = new ExchangeService(exchVersion); service.UseDefaultCredentials = true; service.Url = new Uri("https://mail.domain.com.au/ews/exchange.asmx"); Task task = new Task(service); task.Subject = "Subject"; task.Body = new MessageBody(BodyType.HTML, "Body"); task.StartDate = DateTime.Today; task.DueDate = DateTime.Now.AddHours(2); task.ReminderDueBy = DateTime.Now; task.ReminderMinutesBeforeStart = 15; task.IsReminderSet = true; task.Save();

    Read the article

  • Defining multiple values in DefineConstants in MsBuild element?

    - by Sardaukar
    I'm currently integrating my Wix projects in MSBuild. It is necessary for me to pass multiple values to the Wix project. One value will work (ProductVersion in the sample below). <Target Name="BuildWixSetups"> <MSBuild Condition="'%(WixSetups.Identity)'!=''" Projects="%(WixSetups.Identity)" Targets="Rebuild" Properties="Configuration=Release;OutputPath=$(OutDir);DefineConstants=ProductVersion=%(WixSetups.ISVersion)" ContinueOnError="true"/> </Target> However, how do I pass multiple values to the DefineConstants key? I've tried all the 'logical' separators (space, comma, semi-colon, pipe-symbol), but this doesn't work. Has someone else come across this problem? Solutions that don't work: Trying to add a DefineConstants element does not work because DefineConstants needs to be expressed within the Properties attribute.

    Read the article

  • How to invoke the same msbuild target twice with different parameters from within msbuild project fi

    - by mark
    Dear ladies and sirs. I have the following piece of msbuild code: <PropertyGroup> <DirA>C:\DirA\</DirA> <DirB>C:\DirB\</DirB> </PropertyGroup> <Target Name="CopyToDirA" Condition="Exists('$(DirA)') AND '@(FilesToCopy)' != ''" Inputs="@(FilesToCopy)" Outputs="@(FilesToCopy -> '$(DirA)%(Filename)%(Extension)')"> <Copy SourceFiles="@(FilesToCopy)" DestinationFolder="$(DirA)" /> </Target> <Target Name="CopyToDirB" Condition="Exists('$(DirB)') AND '@(FilesToCopy)' != ''" Inputs="@(FilesToCopy)" Outputs="@(FilesToCopy -> '$(DirB)%(Filename)%(Extension)')"> <Copy SourceFiles="@(FilesToCopy)" DestinationFolder="$(DirB)" /> </Target> <Target Name="CopyFiles" DependsOnTargets="CopyToDirA;CopyToDirB"/> So invoking the target CopyFiles copies the relevant files to $(DirA) and $(DirB), provided they are not already there and up-to-date. But the targets CopyToDirA and CopyToDirB look identical except one copies to $(DirA) and the other - to $(DirB). Is it possible to unify them into one target first invoked with $(DirA) and then with $(DirB)? Thanks.

    Read the article

  • Handle existing instance of root activity when launching root activity again from intent filter

    - by Robert
    Hi, I'm having difficulties handling multiple instances of my root (main) activity for my application. My app in question has an intent filter in place to launch my application when opening an email attatchment from the "Email" app. My problem is if I launch my application first through the the android applications screen and then launch my application via opening the Email attachment it creates two instances of my root activity. steps: Launch root activity A, press home Open email attachment, intent filter triggers launches root activity A Is it possible when opening the Email attachment that when the OS tries to launch my application it detects there is already an instance of it running and use that or remove/clear that instance?

    Read the article

< Previous Page | 50 51 52 53 54 55 56 57 58 59 60 61  | Next Page >