Search Results

Search found 53332 results on 2134 pages for 'c to vb net'.

Page 541/2134 | < Previous Page | 537 538 539 540 541 542 543 544 545 546 547 548  | Next Page >

  • A review of the latest version of Crypto Obfuscator for .NET and its features.

    Crypto Obfuscator For .Net is a powerful and easy-to-use product for code protection, deployment and optimization of your your .Net software. A review of the latest version of Crypto Obfuscator for .NET and its features.  read moreBy Peter BrombergDid you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Fun with RadCaptcha for ASP.NET AJAX and OCR software

    A friend of mine was evaluating OCR software and finally decided to go with FineReader. I was curious what would happen if we put the RadCaptcha control in. Will the advanced OCR manage to decode it or not? At first he showed me a test run with the RadCaptcha demo description, to get an idea of the basic output:    Naturally, the captured description text was no problem - only a few characters were misread but then corrected with the spellcheck. Next, the real test was performed:    These were only a couple of the results, but there is no need to post the rest of the tests - none of the RadCaptcha images were recognized by the OCR software. Here are the CaptchaImage settings used in the tests: Background Noise Level: Low /default value Line Noise Level: Low /default value Font Warp Factor: Low /Medium is default value...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Report Viewer - Out Of Memory Exception

    - by Garcia Julien
    Hi, i'v got a problem with the Report Viewer form .NET 2008. I'ave to get Some 100000 Records for my company for a year dump report. The problem is i get the OutOfMemory Exception on the design of report. Do you know how can i fix it? I get only the column i need and i use a Dataset to display. Thanks Julien

    Read the article

  • WPF DataGrid and Avalon TimePicker binding problem

    - by Jorge Vargas
    I'm using a the WPF DataGrid from the wpf toolkit and a TimePicker from AvalonControlsLibrary to insert a collection of TimeSpans. My problem is that bindings are not working inside the DataGrid, and I have no clue of why this isn't working. Here is my setup: I have the following XAML: <Window x:Class="Views.TestMainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:wpf="http://schemas.microsoft.com/wpf/2008/toolkit" xmlns:a="http://schemas.AvalonControls/AvalonControlsLibrary/Controls" SizeToContent="WidthAndHeight" MinHeight="250" MinWidth="300"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="*" /> <RowDefinition Height="Auto" /> </Grid.RowDefinitions> <GroupBox Grid.Row="0"> <GroupBox.Header> Testing it: </GroupBox.Header> <wpf:DataGrid ItemsSource="{Binding Path=TestSpans}" AutoGenerateColumns="False"> <wpf:DataGrid.Columns> <wpf:DataGridTemplateColumn Header="Start"> <wpf:DataGridTemplateColumn.CellEditingTemplate> <DataTemplate> <a:TimePicker SelectedTime="{Binding Path=., Mode=TwoWay}" /> </DataTemplate> </wpf:DataGridTemplateColumn.CellEditingTemplate> <wpf:DataGridTemplateColumn.CellTemplate> <DataTemplate> <TextBlock Text="{Binding}" /> </DataTemplate> </wpf:DataGridTemplateColumn.CellTemplate> </wpf:DataGridTemplateColumn> </wpf:DataGrid.Columns> </wpf:DataGrid> </GroupBox> <StackPanel Orientation="Horizontal" HorizontalAlignment="Right" Grid.Row="1"> <a:TimePicker SelectedTime="{Binding Path=SelectedTime, Mode=TwoWay}" /> </StackPanel> </Grid> And this is my ViewModel: Imports System.Collections.ObjectModel Namespace ViewModels Public Class TestMainWindowViewModel Private _selectedTime As TimeSpan = DateTime.Now.TimeOfDay Public Property SelectedTime() As TimeSpan Get Return _selectedTime End Get Set(ByVal value As TimeSpan) _selectedTime = value End Set End Property Private _testSpans As ObservableCollection(Of TimeSpan) = New ObservableCollection(Of TimeSpan) Public Property TestSpans() As ObservableCollection(Of TimeSpan) Get Return _testSpans End Get Set(ByVal value As ObservableCollection(Of TimeSpan)) _testSpans = value End Set End Property Public Sub New() _testSpans.Add(DateTime.Now.TimeOfDay) _testSpans.Add(DateTime.Now.TimeOfDay) _testSpans.Add(DateTime.Now.TimeOfDay) End Sub End Class End Namespace I'm starting this window in application.xaml.vb like this: Class Application ' Application-level events, such as Startup, Exit, and DispatcherUnhandledException ' can be handled in this file. Protected Overrides Sub OnStartup(ByVal e As System.Windows.StartupEventArgs) MyBase.OnStartup(e) Dim window As Views.TestMainWindow = New Views.TestMainWindow window.DataContext = New TestMainWindowViewModel() window.Show() End Sub End Class

    Read the article

  • Problem with FedEx Address validation web service

    - by DJ Matthews
    Hi, I'm trying to get started with Fedex'es Address validation service and I'm running into a road block with FedEx's own demo application. This is the code in there app: Sub Main() ''# Build a AddressValidationRequest object Dim request As AddressValidationRequest = New AddressValidationRequest() Console.WriteLine("--- Setting Credentials ---") request.WebAuthenticationDetail = New WebAuthenticationDetail() request.WebAuthenticationDetail.UserCredential = New WebAuthenticationCredential() request.WebAuthenticationDetail.UserCredential.Key = "###" ''# Replace "XXX" with the Key request.WebAuthenticationDetail.UserCredential.Password = "###" ''# Replace "XXX" with the Password Console.WriteLine("--- Setting Account Information ---") request.ClientDetail = New ClientDetail() request.ClientDetail.AccountNumber = "###" ''# Replace "XXX" with clients account number request.ClientDetail.MeterNumber = "###" ''# Replace "XXX" with clients meter number request.TransactionDetail = New TransactionDetail() request.TransactionDetail.CustomerTransactionId = "Address Validation v2 Request using VB.NET Sample Code" ''# This is just an echo back request.Version = New VersionId() request.RequestTimestamp = DateTime.Now Console.WriteLine("--- Setting Validation Options ---") request.Options = New AddressValidationOptions() request.Options.CheckResidentialStatus = True request.Options.MaximumNumberOfMatches = 5 request.Options.StreetAccuracy = AddressValidationAccuracyType.LOOSE request.Options.DirectionalAccuracy = AddressValidationAccuracyType.LOOSE request.Options.CompanyNameAccuracy = AddressValidationAccuracyType.LOOSE request.Options.ConvertToUpperCase = True request.Options.RecognizeAlternateCityNames = True request.Options.ReturnParsedElements = True Console.WriteLine("--- Address 1 ---") request.AddressesToValidate = New AddressToValidate(1) {New AddressToValidate(), New AddressToValidate()} request.AddressesToValidate(0).AddressId = "WTC" request.AddressesToValidate(0).Address = New Address() request.AddressesToValidate(0).Address.StreetLines = New String(0) {"10 FedEx Parkway"} request.AddressesToValidate(0).Address.PostalCode = "38017" request.AddressesToValidate(0).CompanyName = "FedEx Services" Console.WriteLine("--- Address 2 ---") request.AddressesToValidate(1).AddressId = "Kinkos" request.AddressesToValidate(1).Address = New Address() request.AddressesToValidate(1).Address.StreetLines = New String(0) {"50 N Front St"} request.AddressesToValidate(1).Address.PostalCode = "38103" request.AddressesToValidate(1).CompanyName = "FedEx Kinkos" Dim addressValidationService As AddressValidationService.AddressValidationService = New AddressValidationService.AddressValidationService ''# Try ''# This is the call to the web service passing in a AddressValidationRequest and returning a AddressValidationReply Console.WriteLine("--- Sending Request..... ---") Dim reply As New AddressValidationReply() reply = addressValidationService.addressValidation(request) Console.WriteLine("--- Processing request.... ---") ''#This is where I get the error If (Not reply.HighestSeverity = NotificationSeverityType.ERROR) And (Not reply.HighestSeverity = NotificationSeverityType.FAILURE) Then If (Not reply.AddressResults Is Nothing) Then For Each result As AddressValidationResult In reply.AddressResults Console.WriteLine("Address Id - " + result.AddressId) Console.WriteLine("--- Proposed Details ---") If (Not result.ProposedAddressDetails Is Nothing) Then For Each detail As ProposedAddressDetail In result.ProposedAddressDetails Console.WriteLine("Score - " + detail.Score) Console.WriteLine("Address - " + detail.Address.StreetLines(0)) Console.WriteLine(" " + detail.Address.StateOrProvinceCode + " " + detail.Address.PostalCode + " " + detail.Address.CountryCode) Console.WriteLine("Changes -") For Each change As AddressValidationChangeType In detail.Changes Console.WriteLine(change.ToString()) Next Console.WriteLine("") Next End If Console.WriteLine("") Next End If Else For Each notification As Notification In reply.Notifications Console.WriteLine(notification.Message) Next End If Catch e As SoapException Console.WriteLine(e.Detail.InnerText) Catch e As Exception Console.WriteLine(e.Message) End Try Console.WriteLine("Press any key to quit !") Console.ReadKey() End Sub It seems to send the request object to the web service, but the"reply" object is returned with "Nothing". I could understand if I wrote the code, but good god... they can't even get their own code to work? Has anyone else seen/fixed this problem?

    Read the article

  • Telerik Object reference not set to an instance of an object

    - by Duncan
    Hi, I have a main form which contains multiple worker threads. These threads raise events which update Telerik controls on the main form. The event handlers contain code which check if InvokeRequired and BeginInvoke where required. At random interval I am receiving the following exception, and have no idea on how where to find this? I was wondering if the following is understandable to anyone to point me in the right direction. Thanks in advance System.Reflection.TargetInvocationException was unhandled Message="Exception has been thrown by the target of an invocation." Source="mscorlib" StackTrace: at System.RuntimeMethodHandle._InvokeMethodFast(Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeTypeHandle typeOwner) at System.RuntimeMethodHandle.InvokeMethodFast(Object target, Object[] arguments, Signature sig, MethodAttributes methodAttributes, RuntimeTypeHandle typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Forms.Control.InvokeMarshaledCallbackDo(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbackHelper(Object obj) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Forms.Control.InvokeMarshaledCallback(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbacks() at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.ScrollableControl.WndProc(Message& m) at Telerik.WinControls.RadControl.WndProc(Message& m) at Telerik.WinControls.UI.RadStatusStrip.WndProc(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.OnMessage(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG& msg) at System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(Int32 dwComponentID, Int32 reason, Int32 pvLoopData) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.Run(ApplicationContext context) at Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.OnRun() at Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.DoApplicationModel() at Microsoft.VisualBasic.ApplicationServices.WindowsFormsApplicationBase.Run(String[] commandLine) at MyFX.My.MyApplication.Main(String[] Args) in 17d14f5c-a337-4978-8281-53493378c1071.vb:line 81 at System.AppDomain._nExecuteAssembly(Assembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() InnerException: System.NullReferenceException Message="Object reference not set to an instance of an object." Source="Telerik.WinControls" StackTrace: at Telerik.WinControls.Layouts.ContextLayoutManager.LayoutQueue.RemoveOrphans(RadElement parent) at Telerik.WinControls.Layouts.ContextLayoutManager.LayoutQueue.Add(RadElement e) at Telerik.WinControls.RadElement.InvalidateArrange(Boolean recursive) at Telerik.WinControls.RadElement.InvalidateArrange() at Telerik.WinControls.RadElement.Measure(SizeF availableSize) at Telerik.WinControls.Layouts.ImageAndTextLayoutPanel.MeasureOverride(SizeF availableSize) at Telerik.WinControls.RadElement.MeasureCore(SizeF availableSize) at Telerik.WinControls.RadElement.Measure(SizeF availableSize) at Telerik.WinControls.Layouts.ContextLayoutManager.UpdateLayout() at Telerik.WinControls.Layouts.ContextLayoutManager.UpdateLayoutCallback(ILayoutManager manager)

    Read the article

  • Problems upgrading VB.Net 2008 project into VS2010

    - by Brett Rigby
    Hi there, I have been upgrading several different VS2008 projects into VS2010 and have found a problem with VB.Net projects when they are converted. Once converted, the .vbproj files have changed from this in VS2008: <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' "> <DebugSymbols>true</DebugSymbols> <DebugType>full</DebugType> <DefineDebug>true</DefineDebug> <DefineTrace>true</DefineTrace> <OutputPath>bin\Debug\</OutputPath> <DocumentationFile>CustomerManager.xml</DocumentationFile> <WarningsAsErrors>41999,42016,42017,42018,42019,42020,42021,42022,42032,42036</WarningsAsErrors> </PropertyGroup> To this in VS2010: <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' "> <DebugSymbols>true</DebugSymbols> <DebugType>full</DebugType> <DefineDebug>true</DefineDebug> <DefineTrace>true</DefineTrace> <OutputPath>bin\Debug\</OutputPath> <DocumentationFile>CustomerManager.xml</DocumentationFile> <NoWarn>42353,42354,42355</NoWarn> <WarningsAsErrors>41999,42016,42017,42018,42019,42020,42021,42022,42032,42036</WarningsAsErrors> </PropertyGroup> The main difference, is that in the VS2010 version, the 42353,42354,42355 value has been added; Inside the IDE, this manifests itself as the following setting in the Project Properties | Compile section as: "Function returning intrinsic value type without return value" = None This isn't a problem when building code inside Visual Studio 2010, but when trying to build the code through our continuous integration scripts, it fails with the following errors: [msbuild] vbc : Command line error BC2026: warning number '42353' for the option 'nowarn' is either not configurable or not valid [msbuild] vbc : Command line error BC2026: warning number '42354' for the option 'nowarn' is either not configurable or not valid [msbuild] vbc : Command line error BC2026: warning number '42355' for the option 'nowarn' is either not configurable or not valid I couldn't find anything on Google for these messages, which is strange, as I am trying to find out why this is happening. Any suggestions as to why Visual Studio 2010's conversion wizard is doing this?

    Read the article

  • StructureMap Autowiring with two different instances of the same interface

    - by Lambda
    For the last two days, i tried my best to learn something about StructureMap, using an old project of mine as an concrete implementation example. I tried to simplify my question as much as possible. While i will post my examples in vb.net, answers with examples in C# are also okay. The project includes an interfaces called IDatabase which connects itself to a Database. The important part looks like this. Public Interface IDatabase Function Connect(ByVal ConnectionSettings As ConnectionSettings) As Boolean ReadOnly Property ConnectionOpen As Boolean [... more functions...] End Interface Public Class MSSQLConnection Implements IDatabase Public Function Connect(ByVal ConnectionSettings As ConnectionSettings) As Boolean Implements IDatabase.Connect [... Implementation ...] End Function [... more implementations...] End Class ConnectionSettings is a structure that has all the information needed to connect to a Database. I want to open the Database Connection once and use it for every single connection in the project, so i register a instance in the ObjectFactory. dim foo = ObjectFactory.GetInstance(Of MSSQLConnection)() dim bar as ConnectionSettings foo.connect(bar) ObjectFactory.Configure(Sub(x) x.For(Of IDatabase).Use(foo)) Up until this part, everything works like a charm. Now, i get to a point where i hav e classes that need an additional instance of IDatabase because they connect to a second database. Public Class ExampleClass Public Sub New(ByVal SameOldDatabase as IDatabase, ByVal NewDatabase as IDatabase) [...] Magic happens here [...] End Sub End Class I want this second IDatabase to behave much like the first one. I want it to use a concrete, single instance and want to connect it to a different database invoking Connect with a different ConnectionSettings. The problem is: While i'm pretty sure it's somewhow possible, (my initial idea was registering ExampleClass with alternative constructor arguments), i actually want to do it without registering ExampleClass. This probably involves more configuration, but i have no idea how to do it. So, basically, it comes down to this question: How do i configurate the ObjectFactory in a way that the autowiring always invokes the constructor with object Database1 for the first IDatabase parameter and object Database2 for the second one (if there is one?)

    Read the article

  • Global Entity Framework Context in WPF Application

    - by OffApps Cory
    Good day, I am in the middle of development of a WPF application that is using Entity Framework (.NET 3.5). It accesses the entities in several places throughout. I am worried about consistency throughout the application in regard to the entities. Should I be instancing separate contexts in my different views, or should I (and is a a good way to do this) instance a single context that can be accessed globally? For instance, my entity model has three sections, Shipments (with child packages and further child contents), Companies/Contacts (with child addresses and telephones), and disk specs. The Shipments and EditShipment views access the DiskSpecs, and the OptionsView manages the DiskSpecs (Create, Edit, Delete). If I edit a DiskSpec, I have to have something in the ShipmentsView to retrieve the latest specs if I have separate contexts right? If it is safe to have one overall context from which the rest of the app retrieves it's objects, then I imagine that is the way to go. If so, where would that instance be put? I am using VB.NET, but I can translate from C# pretty good. Any help would be appreciated. I just don't want one of those applications where the user has to hit reload a dozen times in different parts of the app to get the new data. Update: OK so I have changed my app as follows: All contexts are created in Using Blocks to dispose of them after they are no longer needed. When loaded, all entities are detatched from context before it is disposed. A new property in the MainViewModel (ContextUpdated) raises an event that all of the other ViewModels subscribe to which runs that ViewModels RefreshEntities method. After implementing this, I started getting errors saying that an entity can only be referenced by one ChangeTracker at a time. Since I could not figure out which context was still referencing the entity (shouldn't be any context right?) I cast the object as IEntityWithChangeTracker, and set SetChangeTracker to nothing (Null). This has let to the current problem: When I Null the changeTracker on the Entity, and then attach it to a context, it loses it's changed state and does not get updated to the database. However if I do not null the change tracker, I can't attach. I have my own change tracking code, so that is not a problem. My new question is, how are you supposed to do this. A good example Entity query and entity save code snipped would go a long way, cause I am beating my head in trying to get what I once thought was a simple transaction to work. Any help would elevate you to near god-hood.

    Read the article

  • How should I provide access to this custom DAL?

    - by Casey
    I'm writing a custom DAL (VB.NET) for an ordering system project. I'd like to explain how it is coded now, and receive some alternate ideas to make coding against the DAL easier/more readable. The DAL is part of an n-tier (not n-layer) application, where each tier is in it's own assembly/DLL. The DAL consists of several classes that have specific behavior. For instance, there is an Order class that is responsible for retrieving and saving orders. Most of the classes have only two methods, a "Get" and a "Save," with multiple overloads for each. These classes are marked as Friend and are only visible to the DAL (which is in it's own assembly). In most cases, the DAL returns what I will call a "Data Object." This object is a class that contains only data and validation, and is located in a common assembly that both the BLL and DAL can read. To provide public access to the DAL, I currently have a static (module) class that has many shared members. A simplified version looks something like this: Public Class DAL Private Sub New End Sub Public Shared Function GetOrder(OrderID as String) as OrderData Dim OrderGetter as New OrderClass Return OrderGetter.GetOrder(OrderID) End Function End Class Friend Class OrderClass Friend Function GetOrder(OrderID as string) as OrderData End Function End Class The BLL would call for an order like this: DAL.GetOrder("123456") As you can imagine, this gets cumbersome very quickly. I'm mainly interested in structuring access to the DAL so that Intellisense is very intuitive. As it stands now, there are too many methods/functions in the DAL class with similar names. One idea I had is to break down the DAL into nested classes: Public Class DAL Private Sub New End Sub Public Class Orders Private Sub New End Sub Public Shared Function Get(OrderID as string) as OrderData End Function End Class End Class So the BLL would call like this: DAL.Orders.Get("12345") This cleans it up a bit, but it leaves a lot of classes that only have references to other classes, which I don't like for some reason. Without resorting to passing DB specific instructions (like where clauses) from BLL to DAL, what is the best or most common practice for providing a single point of access for the DAL?

    Read the article

  • How Do You Databind Avalon DateTimePicker Start Value?

    - by discwiz
    Trying to set the start time of the Avalon DateTimePicker, but all I get is the current time. Anyone had any success with this control. FYI, I am stuck using .Net 3.0. <wf:DateTimePicker x:Name="DatePickerStartTime" DateTimeSelected="{Binding Path=StartTime,Mode=TwoWay}" > </wf:DateTimePicker> Thanks, Dave

    Read the article

  • How to assign class property as display data member in datagridview

    - by KoolKabin
    hi guys, I am trying to display my data in datagridview. I created a class with different property and used its list as the datasource. it worked fine. but I got confused how to do that in case we have nested class. My Classes are as follows: class Category property UIN as integer property Name as string end class class item property uin as integer property name as string property mycategory as category end class my data list as follows: dim myDataList as list(of Item) = new List(of Item) myDataList.Add(new Item(1,"item1",new category(1,"cat1"))) myDataList.Add(new Item(2,"item2",new category(1,"cat1"))) myDataList.Add(new Item(3,"item3",new category(1,"cat1"))) myDataList.Add(new Item(4,"item4",new category(2,"cat2"))) myDataList.Add(new Item(5,"item5",new category(2,"cat2"))) myDataList.Add(new Item(6,"item6",new category(2,"cat2"))) Now I binded the datagridview control like: DGVMain.AutoGenerateColumns = False DGVMain.ColumnCount = 3 DGVMain.Columns(0).DataPropertyName = "UIN" DGVMain.Columns(0).HeaderText = "ID" DGVMain.Columns(1).DataPropertyName = "Name" DGVMain.Columns(1).HeaderText = "Name" DGVMain.Columns(2).DataPropertyName = "" **'here i want my category name** DGVMain.Columns(2).HeaderText = "category" DGVMain.datasource = myDataList DGVMain.refresh() I have tried using mycategory.name but it didn't worked. What can be done to get expected result? Is there any better idea other than this to accomplish the same task? Edited My question as per comment: I have checked the link given by u. It was nice n very usefull. Since the code was in c# i tried to convert it in vb. Everything went good but failed at a point of case sensitive and next one is that i had my nested class name itemcategory and my property name was category. there it arouse the problem. it didn't searched for category but it searched for itemcategory. so confused on it. My Code as follows: Private Sub DGVMain_CellFormatting(ByVal sender As Object, ByVal e As System.Windows.Forms.DataGridViewCellFormattingEventArgs) Handles DGVMain.CellFormatting Dim DGVMain As DataGridView = CType(sender, DataGridView) e.Value = EvaluateValue(DGVMain.Rows(e.RowIndex).DataBoundItem, DGVMain.Columns(e.ColumnIndex).DataPropertyName) End Sub Private Function EvaluateValue(ByRef myObj As Object, ByRef myProp As String) As String Dim Ret As String = "" Dim Props As System.Reflection.PropertyInfo() Dim PropA As System.Reflection.PropertyInfo Dim ObjA As Object If myProp.Contains(".") Then myProp = myProp.Substring(0, myProp.IndexOf(".")) Props = myObj.GetType().GetProperties() For Each PropA In Props ObjA = PropA.GetValue(myObj, New Object() {}) If ObjA.GetType().Name = myProp Then Ret = EvaluateValue(ObjA, myProp.Substring(myProp.IndexOf(".") + 1)) Exit For End If Next Else PropA = myObj.GetType().GetProperty(myProp) Ret = PropA.GetValue(myObj, New Object() {}).ToString() End If Return Ret End Function

    Read the article

  • Invalid cast exception

    - by user127147
    I have a simple application to store address details and edit them. I have been away from VB for a few years now and need to refreash my knowledge while working to a tight deadline. I have a general Sub responsible for displaying a form where user can add contact details (by pressing button add) and edit them (by pressing button edit). This sub is stored in a class Contact. The way it is supposed to work is that there is a list with all the contacts and when new contact is added a new entry is displayed. If user wants to edit given entry he or she selects it and presses edit button Public Sub Display() Dim C As New Contact C.Cont = InputBox("Enter a title for this contact.") C.Fname = frmAddCont.txtFName.Text C.Surname = frmAddCont.txtSName.Text C.Address = frmAddCont.txtAddress.Text frmStart.lstContact.Items.Add(C.Cont.ToString) End Sub I call it from the form responsible for adding new contacts by Dim C As New Contact C.Display() and it works just fine. However when I try to do something similar using the edit button I get errors - "Unable to cast object of type 'System.String' to type 'AddressBook.Contact'." Dim C As Contact If lstContact.SelectedItem IsNot Nothing Then C = lstContact.SelectedItem() C.Display() End If I think it may be something simple however I wasn't able to fix it and given short time I have I decided to ask for help here. I have updated my class with advice from other members and here is the final version (there are some problems however). When I click on the edit button it displays only the input box for the title of the contact and actually adds another entry in the list with previous data for first name, second name etc. Public Class Contact Public Contact As String Public Fname As String Public Surname As String Public Address As String Private myCont As String Public Property Cont() Get Return myCont End Get Set(ByVal value) myCont = Value End Set End Property Public Overrides Function ToString() As String Return Me.Cont End Function Sub NewContact() FName = frmAddCont.txtFName.ToString frmStart.lstContact.Items.Add(FName) frmAddCont.Hide() End Sub Public Sub Display() Dim C As New Contact C.Cont = InputBox("Enter a title for this contact.") C.Fname = frmAddCont.txtFName.Text C.Surname = frmAddCont.txtSName.Text C.Address = frmAddCont.txtAddress.Text 'frmStart.lstContact.Items.Add(C.Cont.ToString) frmStart.lstContact.Items.Add(C) End Sub End Class

    Read the article

  • how to create a system-wide independent universal counter object primarily for Database keys?

    - by andora
    I would like to create/use a system-wide independent universal 'counter object' that can be called via COM in a thread-safe manner. The counter object will be passed an ID to identify which counter to return, handle the counting, 'persist' the count (occasionally), have reasonable performance (as fast as possible) perhaps capable of 1000 counts per second or better (1mS) and be accessible cross-process/out-of-process. The current count status must be persisted between object restarts/shutdowns. The counter object is liklely to be a 'singleton' type object implemented in some form of free-threaded dictionary, containing maybe 10 counters (perhaps 50 max). The count needs to be monotonic and consistent, (ie: guaranteed unique sequential values). Each counter should have a few methods, like reset, inc, dec, set, clear, remove. As a luxury, I would like to have a variable-increment (ie: 'step by' value). To support thread-safefty, perhaps some sorm of critical-section or mutex call. It just needs to return a long/4byte signed integer. I really want something that can be called from anywhere, including VBScript, so I figure COM is my preferred solution. The primary use of this is for database keys. I am unable to use autoinc or guid type keys and have ruled out database-generated counting systems at this point. I've spent days researching this and I have really struggled to find a solution. The best I can find is a free-threaded dictionary object that can be instantiated using COM+ from Motobit - it seems to offer all the 'basics' and I guess I could create some form of wrapper for this. So, here are my questions: Does such a 'general purpose counter-object already exist? Can you direct me to it? (MS did do an IIS/ASP object called 'MSWC.Counter' but this isn't 'cross-process'/ out-of-process component and isn't thread-safe. (but if it was, it would do!) What is the best way of creating such a Component? (I'd prefer VB6 right-now, [don't ask!] but can do in VB.NET2005 if I had to). I don't have the skills/knowledge/tools to use anything else. I am desparate for a workable solution. I need specific guidance! If anybody can code something up for me I am prepared to pay for it.

    Read the article

  • Parse CSS out from <style> elements

    - by awj
    Can someone tell me an efficient method of retrieving the CSS between tags on a page of markup in .NET? I've come up with a method which uses recursion, Split() and CompareTo() but is really long-winded, and I feel sure that there must be a far shorter (and more clever) method of doing the same. Please keep in mind that it is possible to have more than one element on a page, and that the element can be either or .

    Read the article

  • HttpWebRequest and Ignoring SSL Certificate Errors

    - by Rick Strahl
    Man I can't believe this. I'm still mucking around with OFX servers and it drives me absolutely crazy how some these servers are just so unbelievably misconfigured. I've recently hit three different 3 major brokerages which fail HTTP validation with bad or corrupt certificates at least according to the .NET WebRequest class. What's somewhat odd here though is that WinInet seems to find no issue with these servers - it's only .NET's Http client that's ultra finicky. So the question then becomes how do you tell HttpWebRequest to ignore certificate errors? In WinInet there used to be a host of flags to do this, but it's not quite so easy with WebRequest. Basically you need to configure the CertificatePolicy on the ServicePointManager by creating a custom policy. Not exactly trivial. Here's the code to hook it up: public bool CreateWebRequestObject(string Url) {    try     {        this.WebRequest =  (HttpWebRequest) System.Net.WebRequest.Create(Url);         if (this.IgnoreCertificateErrors)            ServicePointManager.CertificatePolicy = delegate { return true; };}One thing to watch out for is that this an application global setting. There's one global ServicePointManager and once you set this value any subsequent requests will inherit this policy as well, which may or may not be what you want. So it's probably a good idea to set the policy when the app starts and leave it be - otherwise you may run into odd behavior in some situations especially in multi-thread situations.Another way to deal with this is in you application .config file. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} <configuration>   <system.net>     <settings>       <servicePointManager           checkCertificateName="false"           checkCertificateRevocationList="false"                />     </settings>   </system.net> </configuration> This seems to work most of the time, although I've seen some situations where it doesn't, but where the code implementation works which is frustrating. The .config settings aren't as inclusive as the programmatic code that can ignore any and all cert errors - shrug. Anyway, the code approach got me past the stopper issue. It still amazes me that theses OFX servers even require this. After all this is financial data we're talking about here. The last thing I want to do is disable extra checks on the certificates. Well I guess I shouldn't be surprised - these are the same companies that apparently don't believe in XML enough to generate valid XML (or even valid SGML for that matter)...© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp  HTTP  

    Read the article

  • Package and Publish Web Sites with TFS 2010 Build Server

    - by jdanforth
    To package and publish web sites with TFS 2010 Build Server, you can use MSDeploy and some of the new MSBuild arguments. For example: /p:DeployOnBuild=True /p:DeployTarget=MsDeployPublish /p:MSDeployPublishMethod=InProc /p:CreatePackageOnPublish=True /p:DeployIisAppPath="Default Web Site/WebApplication1" /p:MsDeployServiceUrl=localhost Does all the work for you! Unfortunately these arguments are not very well documented, yet. Please feel free comment with pointers to good docs. You can enter these arguments when editing the Build Definition, under the Process tab and the Advanced section: If you’re working with these things, I’m sure you’ve not missed the PDC 2009 presentation by Vishal Joshi about MS Deploy. A few links on the topic: http://stackoverflow.com/questions/2636153/where-is-the-documentation-for-msbuild-arguments-to-run-msdeploy http://blogs.msdn.com/aspnetue/archive/2010/03/05/automated-deployment-in-asp-net-4-frequently-asked-questions.aspx http://www.hanselman.com/blog/WebDeploymentMadeAwesomeIfYoureUsingXCopyYoureDoingItWrong.aspx

    Read the article

< Previous Page | 537 538 539 540 541 542 543 544 545 546 547 548  | Next Page >