Search Results

Search found 1783 results on 72 pages for 'computation theory'.

Page 55/72 | < Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >

  • Personal Project - Next practical language/tech to learn

    - by Paul Nathan
    I'm working on a personal project doing some finance analysis. It's a totally new field for me, and I'm really having fun with it so far, plus working in the high-level language arena is a great break from my embedded systems daytime work. I have a MySQL backend on a non-local server with a pile of stock data. My task now is to do some analysis of the stocks and produce something approximating a useful result. There are a couple technical difficulties. (1) I have a lot of records. To be precise, I believe I'm near 100K records right now, and this number grows by 6.1K each weekday. I need to create a way to rummage through these fields and do data analysis - based on a given computation, go look at this other set. Fine and dandy, nothing too outre. But this means I could really use a straightforward API for talking to MySQL. (2) Ideally, it runs on OS X 10.4.11. No Windows/Linux machine at home. (3) I can use PHP, C++, Perl, etc. I even have an R installation. I'm pretty flexible with stuff, so long as it runs on OS X. (Lots of options here, pick water, H20, or dihydrogen monoxide ;-) ) (4)Lack of hassle. While I like clever and fun ways of doing things, I'm trying to get some analysis done, not spend ten hours doing installation work and scratching my head figuring out a theoretical syntax question needed to spout out "hello world". What's the question? I'd like to dig into something different than my usual PHP/C++/C toolset. I'm looking for recommendations for languages/technologies that will assist me and meet the above requirements. In particular, I've heard a lot of buzz about F# and Python on SO. I've used CLISP for small problems before, and kinda liked it. I'm seeking opinions about those in particular. edit:since I rent the DB server and have a limited amount of CPU time online, I'm trying to do the analysis on a local machine.

    Read the article

  • Runge-Kutta Method with adaptive step

    - by infoholic_anonymous
    I am implementing Runge-Kutta method with adaptive step in matlab. I get different results as compared to matlab's own ode45 and my own implementation of Runge-Kutta method with fixed step. What am I doing wrong in my code? Is it possible? function [ result ] = rk4_modh( f, int, init, h, h_min ) % % f - function handle % int - interval - pair (x_min, x_max) % init - initial conditions - pair (y1(0),y2(0)) % h_min - lower limit for h (step length) % h - initial step length % x - independent variable ( for example time ) % y - dependent variable - vertical vector - in our case ( y1, y2 ) function [ k1, k2, k3, k4, ka, y ] = iteration( f, h, x, y ) % core functionality performed within loop k1 = h * f(x,y); k2 = h * f(x+h/2, y+k1/2); k3 = h * f(x+h/2, y+k2/2); k4 = h * f(x+h, y+k3); ka = (k1 + 2*k2 + 2*k3 + k4)/6; y = y + ka; end % constants % relative error eW = 1e-10; % absolute error eB = 1e-10; s = 0.9; b = 5; % initialization i = 1; x = int(1); y = init; while true hy = y; hx = x; %algorithm [ k1, k2, k3, k4, ka, y ] = iteration( f, h, x, y ); % error estimation for j=1:2 [ hk1, hk2, hk3, hk4, hka, hy ] = iteration( f, h/2, hx, hy ); hx = hx + h/2; end err(:,i) = abs(hy - y); % step adjustment e = abs( hy ) * eW + eB; a = min( e ./ err(:,i) )^(0.2); mul = a * s; if mul >= 1 % step length admitted keepH(i) = h; k(:,:,i) = [ k1, k2, k3, k4, ka ]; previous(i,:) = [ x+h, y' ]; %' i = i + 1; if floor( x + h + eB ) == int(2) break; else h = min( [mul*h, b*h, int(2)-x] ); x = x + keepH(i-1); end else % step length requires further adjustments h = mul * h; if ( h < h_min ) error('Computation with given precision impossible'); end end end result = struct( 'val', previous, 'k', k, 'err', err, 'h', keepH ); end The function in question is: function [ res ] = fun( x, y ) % res(1) = y(2) + y(1) * ( 0.9 - y(1)^2 - y(2)^2 ); res(2) = -y(1) + y(2) * ( 0.9 - y(1)^2 - y(2)^2 ); res = res'; %' end The call is: res = rk4( @fun, [0,20], [0.001; 0.001], 0.008 ); The resulting plot for x1 : The result of ode45( @fun, [0, 20], [0.001, 0.001] ) is:

    Read the article

  • What is the difference between NULL in C++ and null in Java?

    - by Stephano
    I've been trying to figure out why C++ is making me crazy typing NULL. Suddenly it hits me the other day; I've been typing null (lower case) in Java for years. Now suddenly I'm programming in C++ and that little chunk of muscle memory is making me crazy. Wikiperipatetic defines C++ NULL as part of the stddef: A macro that expands to a null pointer constant. It may be defined as ((void*)0), 0 or 0L depending on the compiler and the language. Sun's docs tells me this about Java's "null literal": The null type has one value, the null reference, represented by the literal null, which is formed from ASCII characters. A null literal is always of the null type. So this is all very nice. I know what a null pointer reference is, and thank you for the compiler notes. Now I'm a little fuzzy on the idea of a literal in Java so I read on... A literal is the source code representation of a fixed value; literals are represented directly in your code without requiring computation. There's also a special null literal that can be used as a value for any reference type. null may be assigned to any variable, except variables of primitive types. There's little you can do with a null value beyond testing for its presence. Therefore, null is often used in programs as a marker to indicate that some object is unavailable. Ok, so I think I get it now. In C++ NULL is a macro that, when compiled, defines the null pointer constant. In Java, null is a fixed value that any non-primitive can be assigned too; great for testing in a handy if statement. Java does not have pointers, so I can see why they kept null a simple value rather than anything fancy. But why did java decide to change the all caps NULL to null? Furthermore, am I missing anything here?

    Read the article

  • Efficient algorithm to distribute work?

    - by Zwei Steinen
    It's a bit complicated to explain but here we go. We have problems like this (code is pseudo-code, and is only for illustrating the problem. Sorry it's in java. If you don't understand, I'd be glad to explain.). class Problem { final Set<Integer> allSectionIds = { 1,2,4,6,7,8,10 }; final Data data = //Some data } And a subproblem is: class SubProblem { final Set<Integer> targetedSectionIds; final Data data; SubProblem(Set<Integer> targetedSectionsIds, Data data){ this.targetedSectionIds = targetedSectionIds; this.data = data; } } Work will look like this, then. class Work implements Runnable { final Set<Section> subSections; final Data data; final Result result; Work(Set<Section> subSections, Data data) { this.sections = SubSections; this.data = data; } @Override public void run(){ for(Section section : subSections){ result.addUp(compute(data, section)); } } } Now we have instances of 'Worker', that have their own state sections I have. class Worker implements ExecutorService { final Map<Integer,Section> sectionsIHave; { sectionsIHave = {1:section1, 5:section5, 8:section8 }; } final ExecutorService executor = //some executor. @Override public void execute(SubProblem problem){ Set<Section> sectionsNeeded = fetchSections(problem.targetedSectionIds); super.execute(new Work(sectionsNeeded, problem.data); } } phew. So, we have a lot of Problems and Workers are constantly asking for more SubProblems. My task is to break up Problems into SubProblem and give it to them. The difficulty is however, that I have to later collect all the results for the SubProblems and merge (reduce) them into a Result for the whole Problem. This is however, costly, so I want to give the workers "chunks" that are as big as possible (has as many targetedSections as possible). It doesn't have to be perfect (mathematically as efficient as possible or something). I mean, I guess that it is impossible to have a perfect solution, because you can't predict how long each computation will take, etc.. But is there a good heuristic solution for this? Or maybe some resources I can read up before I go into designing? Any advice is highly appreciated!

    Read the article

  • What to Expect in Rails 4

    - by mikhailov
    Rails 4 is nearly there, we should be ready before it released. Most developers are trying hard to keep their application on the edge. Must see resources: 1) @sikachu talk: What to Expect in Rails 4.0 - YouTube 2) Rails Guides release notes: http://edgeguides.rubyonrails.org/4_0_release_notes.html There is a mix of all major changes down here: ActionMailer changes excerpt: Asynchronously send messages via the Rails Raise an ActionView::MissingTemplate exception when no implicit template could be found ActionPack changes excerpt Added controller-level etag additions that will be part of the action etag computation Add automatic template digests to all CacheHelper#cache calls (originally spiked in the cache_digests plugin) Add Routing Concerns to declare common routes that can be reused inside others resources and routes Added ActionController::Live. Mix it in to your controller and you can stream data to the client live truncate now always returns an escaped HTML-safe string. The option :escape can be used as false to not escape the result Added ActionDispatch::SSL middleware that when included force all the requests to be under HTTPS protocol ActiveModel changes excerpt AM::Validation#validates ability to pass custom exception to :strict option Changed `AM::Serializers::JSON.include_root_in_json' default value to false. Now, AM Serializers and AR objects have the same default behaviour Added ActiveModel::Model, a mixin to make Ruby objects work with AP out of box Trim down Active Model API by removing valid? and errors.full_messages ActiveRecord changes excerpt Use native mysqldump command instead of structure_dump method when dumping the database structure to a sql file. Attribute predicate methods, such as article.title?, will now raise ActiveModel::MissingAttributeError if the attribute being queried for truthiness was not read from the database, instead of just returning false ActiveRecord::SessionStore has been extracted from Active Record as activerecord-session_store gem. Please read the README.md file on the gem for the usage Fix reset_counters when there are multiple belongs_to association with the same foreign key and one of them have a counter cache Raise ArgumentError if list of attributes to change is empty in update_all Add Relation#load. This method explicitly loads the records and then returns self Deprecated most of the 'dynamic finder' methods. All dynamic methods except for find_by_... and find_by_...! are deprecated Added ability to ActiveRecord::Relation#from to accept other ActiveRecord::Relation objects Remove IdentityMap ActiveSupport changes excerpt ERB::Util.html_escape now escapes single quotes ActiveSupport::Callbacks: deprecate monkey patch of object callbacks Replace deprecated memcache-client gem with dalli in ActiveSupport::Cache::MemCacheStore Object#try will now return nil instead of raise a NoMethodError if the receiving object does not implement the method, but you can still get the old behavior by using the new Object#try! Object#try can't call private methods Add ActiveSupport::Deprecations.behavior = :silence to completely ignore Rails runtime deprecations What are the most important changes for you?

    Read the article

  • Multiple column subselect in mysql 5 (5.1.42)

    - by rubber boots
    This one seems to be a simple problem, but I can't make it work in a single select or nested select. Retrieve the authors and (if any) advisers of a paper (article) into one row. I order to explain the problem, here are the two data tables (pseudo) papers (id, title, c_year) persons (id, firstname, lastname) plus a link table w/one extra attribute (pseudo): paper_person_roles( paper_id person_id act_role ENUM ('AUTHOR', 'ADVISER') ) This is basically a list of written papers (table: papers) and a list of staff and/or students (table: persons) An article my have (1,N) authors. An article may have (0,N) advisers. A person can be in 'AUTHOR' or 'ADVISER' role (but not at the same time). The application eventually puts out table rows containing the following entries: TH: || Paper_ID | Author(s) | Title | Adviser(s) | TD: || 21334 |John Doe, Jeff Tucker|Why the moon looks yellow|Brown, Rayleigh| ... My first approach was like: select/extract a full list of articles into the application, eg.SELECT q.id, q.title FROM papers AS q ORDER BY q.c_year and save the results of the query into an array (in the application). After this step, loop over the array of the returned information and retrieve authors and advisers (if any), via prepared statement (? is the paper's id) from the link table like:APPLICATION_LOOP(paper_ids in array) SELECT p.lastname, p.firstname, r.act_role FROM persons AS p, paper_person_roles AS r WHERE p.id=r.person_id AND r.paper_id = ? # The application does further processing from here (pseudo): foreach record from resulting records if record.act_role eq 'AUTHOR' then join to author_column if record.act_role eq 'ADVISER' then join to avdiser_column end print id, author_column, title, adviser_column APPLICATION_LOOP This works so far and gives the desired output. Would it make sense to put the computation back into the DB? I'm not very proficient in nontrivial SQL and can't find a solution with a single (combined or nested) select call. I tried sth. like SELECT q.title (CONCAT_WS(' ', (SELECT p.firstname, p.lastname AS aunames FROM persons AS p, paper_person_roles AS r WHERE q.id=r.paper_id AND r.act_role='AUTHOR') ) ) AS aulist FROM papers AS q, persons AS p, paper_person_roles AS r in several variations, but no luck ... Maybe there is some chance? Thanks in advance r.b.

    Read the article

  • [C] Programming problem: Storing values of an array in one variable

    - by OldMacDonald
    Hello, I am trying to use md5 code to calculate checksums of file. Now the given function prints out the (previously calculated) checksum on screen, but I want to store it in a variable, to be able to compare it later on. I guess the main problem is that I want to store the content of an array in one variable. How can I manage that? Probably this is a very stupid question, but maybe somone can help. Below is the function to print out the value. I want to modify it to store the result in one variable. static void MDPrint (mdContext) MD5_CTX *mdContext; { int i; for (i = 0; i < 16; i++) { printf ("%02x", mdContext->digest[i]); } // end of for } // end of function For reasons of completeness the used struct: /* typedef a 32 bit type */ typedef unsigned long int UINT4; /* Data structure for MD5 (Message Digest) computation */ typedef struct { UINT4 i[2]; /* number of _bits_ handled mod 2^64 */ UINT4 buf[4]; /* scratch buffer */ unsigned char in[64]; /* input buffer */ unsigned char digest[16]; /* actual digest after MD5Final call */ } MD5_CTX; and the used function to calculate the checksum: static int MDFile (filename) char *filename; { FILE *inFile = fopen (filename, "rb"); MD5_CTX mdContext; int bytes; unsigned char data[1024]; if (inFile == NULL) { printf ("%s can't be opened.\n", filename); return -1; } // end of if MD5Init (&mdContext); while ((bytes = fread (data, 1, 1024, inFile)) != 0) MD5Update (&mdContext, data, bytes); MD5Final (&mdContext); MDPrint (&mdContext); printf (" %s\n", filename); fclose (inFile); return 0; }

    Read the article

  • SQL SERVER – Introduction to Extended Events – Finding Long Running Queries

    - by pinaldave
    The job of an SQL Consultant is very interesting as always. The month before, I was busy doing query optimization and performance tuning projects for our clients, and this month, I am busy delivering my performance in Microsoft SQL Server 2005/2008 Query Optimization and & Performance Tuning Course. I recently read white paper about Extended Event by SQL Server MVP Jonathan Kehayias. You can read the white paper here: Using SQL Server 2008 Extended Events. I also read another appealing chapter by Jonathan in the book, SQLAuthority Book Review – Professional SQL Server 2008 Internals and Troubleshooting. After reading these excellent notes by Jonathan, I decided to upgrade my course and include Extended Event as one of the modules. This week, I have delivered Extended Events session two times and attendees really liked the said course. They really think Extended Events is one of the most powerful tools available. Extended Events can do many things. I suggest that you read the white paper I mentioned to learn more about this tool. Instead of writing a long theory, I am going to write a very quick script for Extended Events. This event session captures all the longest running queries ever since the event session was started. One of the many advantages of the Extended Events is that it can be configured very easily and it is a robust method to collect necessary information in terms of troubleshooting. There are many targets where you can store the information, which include XML file target, which I really like. In the following Events, we are writing the details of the event at two locations: 1) Ringer Buffer; and 2) XML file. It is not necessary to write at both places, either of the two will do. -- Extended Event for finding *long running query* IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='LongRunningQuery') DROP EVENT SESSION LongRunningQuery ON SERVER GO -- Create Event CREATE EVENT SESSION LongRunningQuery ON SERVER -- Add event to capture event ADD EVENT sqlserver.sql_statement_completed ( -- Add action - event property ACTION (sqlserver.sql_text, sqlserver.tsql_stack) -- Predicate - time 1000 milisecond WHERE sqlserver.sql_statement_completed.duration > 1000 ) -- Add target for capturing the data - XML File ADD TARGET package0.asynchronous_file_target( SET filename='c:\LongRunningQuery.xet', metadatafile='c:\LongRunningQuery.xem'), -- Add target for capturing the data - Ring Bugger ADD TARGET package0.ring_buffer (SET max_memory = 4096) WITH (max_dispatch_latency = 1 seconds) GO -- Enable Event ALTER EVENT SESSION LongRunningQuery ON SERVER STATE=START GO -- Run long query (longer than 1000 ms) SELECT * FROM AdventureWorks.Sales.SalesOrderDetail ORDER BY UnitPriceDiscount DESC GO -- Stop the event ALTER EVENT SESSION LongRunningQuery ON SERVER STATE=STOP GO -- Read the data from Ring Buffer SELECT CAST(dt.target_data AS XML) AS xmlLockData FROM sys.dm_xe_session_targets dt JOIN sys.dm_xe_sessions ds ON ds.Address = dt.event_session_address JOIN sys.server_event_sessions ss ON ds.Name = ss.Name WHERE dt.target_name = 'ring_buffer' AND ds.Name = 'LongRunningQuery' GO -- Read the data from XML File SELECT event_data_XML.value('(event/data[1])[1]','VARCHAR(100)') AS Database_ID, event_data_XML.value('(event/data[2])[1]','INT') AS OBJECT_ID, event_data_XML.value('(event/data[3])[1]','INT') AS object_type, event_data_XML.value('(event/data[4])[1]','INT') AS cpu, event_data_XML.value('(event/data[5])[1]','INT') AS duration, event_data_XML.value('(event/data[6])[1]','INT') AS reads, event_data_XML.value('(event/data[7])[1]','INT') AS writes, event_data_XML.value('(event/action[1])[1]','VARCHAR(512)') AS sql_text, event_data_XML.value('(event/action[2])[1]','VARCHAR(512)') AS tsql_stack, CAST(event_data_XML.value('(event/action[2])[1]','VARCHAR(512)') AS XML).value('(frame/@handle)[1]','VARCHAR(50)') AS handle FROM ( SELECT CAST(event_data AS XML) event_data_XML, * FROM sys.fn_xe_file_target_read_file ('c:\LongRunningQuery*.xet', 'c:\LongRunningQuery*.xem', NULL, NULL)) T GO -- Clean up. Drop the event DROP EVENT SESSION LongRunningQuery ON SERVER GO Just run the above query, afterwards you will find following result set. This result set contains the query that was running over 1000 ms. In our example, I used the XML file, and it does not reset when SQL services or computers restarts (if you are using DMV, it will reset when SQL services restarts). This event session can be very helpful for troubleshooting. Let me know if you want me to write more about Extended Events. I am totally fascinated with this feature, so I’m planning to acquire more knowledge about it so I can determine its other usages. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Training, SQLServer, T SQL, Technology Tagged: SQL Extended Events

    Read the article

  • SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28

    - by pinaldave
    I have been working a lot on Wait Stats and Wait Types recently. Last Year, I requested blog readers to send me their respective server’s wait stats. I appreciate their kind response as I have received  Wait stats from my readers. I took each of the results and carefully analyzed them. I provided necessary feedback to the person who sent me his wait stats and wait types. Based on the feedbacks I got, many of the readers have tuned their server. After a while I got further feedbacks on my recommendations and again, I collected wait stats. I recorded the wait stats and my recommendations and did further research. At some point at time, there were more than 10 different round trips of the recommendations and suggestions. Finally, after six month of working my hands on performance tuning, I have collected some real world wisdom because of this. Now I plan to share my findings with all of you over here. Before anything else, please note that all of these are based on my personal observations and opinions. They may or may not match the theory available at other places. Some of the suggestions may not match your situation. Remember, every server is different and consequently, there is more than one solution to a particular problem. However, this series is written with kept wait stats in mind. While I was working on various performance tuning consultations, I did many more things than just tuning wait stats. Today we will discuss how to capture the wait stats. I use the script diagnostic script created by my friend and SQL Server Expert Glenn Berry to collect wait stats. Here is the script to collect the wait stats: -- Isolate top waits for server instance since last restart or statistics clear WITH Waits AS (SELECT wait_type, wait_time_ms / 1000. AS wait_time_s, 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct, ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn FROM sys.dm_os_wait_stats WHERE wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER_SLEEP','RESOURCE_QUEUE','SLEEP_TASK' ,'SLEEP_SYSTEMTASK','SQLTRACE_BUFFER_FLUSH','WAITFOR', 'LOGMGR_QUEUE','CHECKPOINT_QUEUE' ,'REQUEST_FOR_DEADLOCK_SEARCH','XE_TIMER_EVENT','BROKER_TO_FLUSH','BROKER_TASK_STOP','CLR_MANUAL_EVENT' ,'CLR_AUTO_EVENT','DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT' ,'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP')) SELECT W1.wait_type, CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s, CAST(W1.pct AS DECIMAL(12, 2)) AS pct, CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct FROM Waits AS W1 INNER JOIN Waits AS W2 ON W2.rn <= W1.rn GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct HAVING SUM(W2.pct) - W1.pct < 99 OPTION (RECOMPILE); -- percentage threshold GO This script uses Dynamic Management View sys.dm_os_wait_stats to collect the wait stats. It omits the system-related wait stats which are not useful to diagnose performance-related bottleneck. Additionally, not OPTION (RECOMPILE) at the end of the DMV will ensure that every time the query runs, it retrieves new data and not the cached data. This dynamic management view collects all the information since the time when the SQL Server services have been restarted. You can also manually clear the wait stats using the following command: DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR); Once the wait stats are collected, we can start analysis them and try to see what is causing any particular wait stats to achieve higher percentages than the others. Many waits stats are related to one another. When the CPU pressure is high, all the CPU-related wait stats show up on top. But when that is fixed, all the wait stats related to the CPU start showing reasonable percentages. It is difficult to have a sure solution, but there are good indications and good suggestions on how to solve this. I will keep this blog post updated as I will post more details about wait stats and how I reduce them. The reference to Book On Line is over here. Of course, I have selected February to run this Wait Stats series. I am already cheating by having the smallest month to run this series. :) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • NDepend tool – Why every developer working with Visual Studio.NET must try it!

    - by hajan
    In the past two months, I have had a chance to test the capabilities and features of the amazing NDepend tool designed to help you make your .NET code better, more beautiful and achieve high code quality. In other words, this tool will definitely help you harmonize your code. I mean, you’ve probably heard about Chaos Theory. Experienced developers and architects are already advocates of the programming chaos that happens when working with complex project architecture, the matrix of relationships between objects which simply even if you are the one who have written all that code, you know how hard is to visualize everything what does the code do. When the application get more and more complex, you will start missing a lot of details in your code… NDepend will help you visualize all the details on a clever way that will help you make smart moves to make your code better. The NDepend tool supports many features, such as: Code Query Language – which will help you write custom rules and query your own code! Imagine, you want to find all your methods which have more than 100 lines of code :)! That’s something simple! However, I will dig much deeper in one of my next blogs which I’m going to dedicate to the NDepend’s CQL (Code Query Language) Architecture Visualization – You are an architect and want to visualize your application’s architecture? I’m thinking how many architects will be really surprised from their architectures since NDepend shows your whole architecture showing each piece of it. NDepend will show you how your code is structured. It shows the architecture in graphs, but if you have very complex architecture, you can see it in Dependency Matrix which is more suited to display large architecture Code Metrics – Using NDepend’s panel, you can see the code base according to Code Metrics. You can do some additional filtering, like selecting the top code elements ordered by their current code metric value. You can use the CQL language for this purpose too. Smart Search – NDepend has great searching ability, which is again based on the CQL (Code Query Language). However, you have some options to search using dropdown lists and text boxes and it will generate the appropriate CQL code on fly. Moreover, you can modify the CQL code if you want it to fit some more advanced searching tasks. Compare Builds and Code Difference – NDepend will also help you compare previous versions of your code with the current one at one of the most clever ways I’ve seen till now. Create Custom Rules – using CQL you can create custom rules and let NDepend warn you on each build if you break a rule Reporting – NDepend can automatically generate reports with detailed stats, graph representation, dependency matrixes and some additional advanced reporting features that will simply explain you everything related to your application’s code, architecture and what you’ve done. And that’s not all. As I’ve seen, there are many other features that NDepend supports. I will dig more in the upcoming days and will blog more about it. The team who built the NDepend have also created good documentation, which you can find on the NDepend website. On their website, you can also find some good videos that will help you get started quite fast. It’s easy to install and what is very important it is fully integrated with Visual Studio. To get you started, you can watch the following Getting Started Online Demo and Tutorial with explanations and screenshots. If you are interested to know more about how to use the features of this tool, either visit their website or wait for my next blogs where I will show some real examples of using the tool and how it helps make your code better. And the last thing for this blog, I would like to copy one sentence from the NDepend’s home page which says: ‘Hence the software design becomes concrete, code reviews are effective, large refactoring are easy and evolution is mastered.’ Website: www.ndepend.com Getting Started: http://www.ndepend.com/GettingStarted.aspx Features: http://www.ndepend.com/Features.aspx Download: http://www.ndepend.com/NDependDownload.aspx Hope you like it! Please do let me know your feedback by providing comments to my blog post. Kind Regards, Hajan

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • Required Skill Sets Of A Software Architect

    The question has been asked as to what is the required skill sets of a software architect. The answer to this is that it truly depends. When I state that it depend, it depends on the organization, industry, and skill sets available on the open market and internally within a company. With open ended skill sets even Napoleon Dynamite could be an architect. Napoleon Dynamite’s Skills Pedro: Have you asked anybody yet? Napoleon Dynamite: No, but who would? I don't even have any good skills. Pedro: What do you mean? Napoleon Dynamite: You know, like nunchuck skills, bow hunting skills, computer hacking skills... Girls only want boyfriends who have great skills. Pedro: Aren't you pretty good at drawing, like animals and warriors and stuff? This example might be a little off base but it does illustrate a point. What are the real required skills of a software architect? In my opinion, an architect needs to demonstrate the knowledge of the following three main skill set categories so that they are successful. General Skill Sets of an Architect Basic Engineering Skills Organizational  Skills Interpersonal Skills Basic Engineering Skills are a very large part of what a software architect deal with on a daily bases when designing or updating systems. Think about it, how good would a lead mechanic be if they did not know how to fix or repair cars? They would not be, and that is my point that architects need to have at least some basic skills regarding engineering. The skills listed below are generic in nature because they change from job to job, so in this discussion I am trying to focus more on generalities so that anyone can apply this information to their individual situation. Common Basic Engineering Skills Data Modeling Code Creation Configuration Testing Deployment/Publishing System and Environment Knowledge Organizational Skills If an Architect works for or with an origination then they will need strong organization skills to survive. An architect is no use to a project if the project is missed managed. Additionally, budgets and timelines can really affect a company and their products when established deadlines are repeated not meet. By not meeting these timelines a company is forced to cancel the project and waste all the money and time spent or spend more money until it is completed, if it is ever completed. Common Organizational Skills Project Management Estimation (Cost and Time) Creation and Maintenance of Accepted Standards Interpersonal Skills For me personally Interpersonal skill ranks above the other types of skill sets because an architect can quickly pick up the other two skill sets by communicating with other team/project members so that they are quickly up to speed on a project. Additionally, in order for an architect to manage a project or even derive rough estimates they will more than likely have to consult with others actually working on the code (Programmers/Software Engineers) to get there estimates since they will be the ones actually working on the changes to be implemented. Common Interpersonal Skills Good Communicator Focus on projects success over personal Honors roles within a team Reference: Taylor, R. N., Medvidovic, N., & Dashofy, E. M. (2009). Software architecture: Foundations, theory, and practice Hoboken, NJ: John Wiley & Sons

    Read the article

  • Making a Job Change That's Easy Why Not Try a Career Change

    - by david.talamelli
    A few nights ago I received a comment on one of our blog posts that reminded me of a statistic that I heard a while back. The statistic reflected the change in our views towards work and showed how while people in past generations would stay in one role for their working career - now with so much choice people not only change jobs often but also change careers 4-5 times in their working life. To differentiate between a job change and a career change: when I say job change this could be an IT Sales person moving from one IT Sales role to another IT Sales role. A Career change for example would be that same IT Sales person moving from IT Sales to something outside the scope of their industry - maybe to something like an Engineer or Scuba Dive Instructor. The reason for Career changes can be as varied as the people who make them. Someone's motivation could be to pursue a passion or maybe there is a change in their personal circumstances forcing the change or it could be any other number of reasons. I think it takes courage to make a Career change - it can be easy to stay in your comfort zone and do what you know, but to really push yourself sometimes you need to try something new, it is a matter of making that career transition as smooth as possible for yourself. The comment that was posted is here below (thanks Dean for the kind words they are appreciated). Hi David, I just wanted to let you know that I work for a company called Milestone Search in Melbourne, Victoria Australia. (www.mstone.com.au) We subscribe to your feed on a daily basis and find your blogs both interesting and insightful. Not to mention extremely entertaining. I wonder if you have missed out on getting in journalism as this seems to be something you'd be great at ?: ) Anyways back to my point about changing careers. This could be anything from going from I.T. to Journalism, Engineering to Teaching or any combination of career you can think of. I don't think there ever has been a time where we have had so many opportunities to do so many different things in our working life. While this idea sounds great in theory, putting it into practice would be much harder to do I think. First, in an increasingly competitive job market, employers tend to look for specialists in their field. You may want to make a change but your options may be limited by the number of employers willing to take a chance on someone new to an industry that will likely require a significant investment in time to get brought up to speed. Also, using myself as an example if I was given the opportunity to move into Journalism/Communication/Marketing career from my career as an IT Recruiter - realistically I would have to take a significant pay cut to make this change as my current salary reflects the expertise I have in my current career. I would not immediately be up to speed moving into a new career and would not be able to justify a similar salary. Yes there are transferable skills in any career change, but even though you may have transferable skills you must realise that you will also have a large amount of learning to do which would take time. These are two initial hurdles that I immediately think of, there may be more but nothing is insurmountable. If you work out what you want to do with your working career whatever that may be, you then need to just need to work out the steps to get to your end goal. This is where utilising the power of your networks and using Social Media can come in handy. If you are interested in working somewhere why not proactively take the opportunity to research the industry or company - find out who it is you need to speak to and get in touch with them. We spend so much time working, we should enjoy the work we do and not be afraid to try new things. Waiting for your dream job to fall into your lap or be handed to you on a silver platter is not likely going to happen, so if there is something you do want to do, work out a plan to make it happen and chase after it. This article was originally posted on David Talamelli's Blog - David's Journal on Tap

    Read the article

  • Call Webservices&hellip;Maybe!?

    - by MOSSLover
    So I have been doing preliminary work for my iOS talk for a while, but did not get into the meat of the project until recently.  One day I envision my talk uploading pictures from a camera on an iPhone or iPad into SharePoint and telling people how I did it.  As you know with my Silverlight talk and any new technology, building new talks with new technologies always ends up with some pain points that you must jump over just to grab data.  So step 1 always starts out with how do we even access a webservice using the new technology. I started out watching every single SPC video available on oAuth and Rest Webservices in SharePoint 2013.  I also sent an email to Eric Shupps about some REST and 2013 examples.  The videos further confused me, because all the videos were on SharePoint hosted apps (provider and autohosted).  I did not want to create a SharePoint hosted app, but instead a mobile app outside of the SharePoint context altogether.  Nick Swan sent me his code and it was great for a starting point on how the JSON calls would look like on iOS, but I was still missing a piece.  Nick does a great job on showing how to use the REST/JSON calls in a non-MS tech, however his presentation uses the SharePoint context and can grab the SPAppToken.  At this point I had to ask the question how do you grab the SAML token outside of SharePoint 2013 in iOS using Objective-C?  After reading all the MSDN documentation, some documentation on Restkit and Objective-C/oAuth calls, and some SharePoint 2013 blog post my head was swimming.  I was dreaming about REST and iOS in SharePoint 2013.  SAML tokens were taunting me.  I was nowhere near understanding 2013. I started talking to my friend, Pedro Jimenez, who is also playing with Objective-C and went to SPC.  He found me a couple good MSDN posts with REST/JSON calls that basically showed the accessToken was all I needed (at this point I was still thinking iOS needed to be a provider hosted app which is wrong).  So then again I had to ask the SAML token question…How do you get a SAML token outside of SharePoint without the TokenHelper class? So then I started talking to people and thinking why do I need to completely avoid TokenHelper…The solution in concept is basically create a webservice in Azure wrapped into a Provider Hosted App in SharePoint.  Wictor Wilen created a helper webservice in the following blog post: http://www.wictorwilen.se/Post/How-to-do-active-authentication-to-Office-365-and-SharePoint-Online.aspx. So now I have to basically stand up the webservice, the SharePoint app wrapper, and then use Restkit to call the first webservice to grab the token and then the second webservice to pass in the token and grab some SharePoint data.  What this means is that you can no longer just pass credentials into SharePoint webservices and get data back.  You have to pass in a SAML token with every single webservice call to SharePoint.  The theory is that this token is associated with the permissions the app can handle (read, write, whatever).  It seems like a ton of pain and a lot of work, but this is step 1 in my crusade to pull some piece of data into iOS from SharePoint and show people how to do it themselves.  In the upcoming months hopefully I can get halfway to my end goal. Technorati Tags: SharePoint 2013,REST,oAuth,Objective-C,iOS

    Read the article

  • How do I fix my resolution after Directx install through Steam?

    - by Justin
    I'm a bit long-winded so see bottom for quick version and specs. Friendly Hello: Hello all on these askUbuntu pages, I just recently built my own computer and decided to switch to Ubuntu for the extra coolness. I've been learning a lot through all this, and mostly been trying to figure out issues on my own (read: Google searches). However, I couldn't seem to find others with this problem so I've come here for help. Detailed Recount: So I just used WINE and WINETRICKS to install Steam. All went well and it worked. Then I went to trying a game out. I remembered that Orcs Must Die! worked from http://www.steamgamesonlinux.com/ so I tried that out. After selecting to download it, that's when the problem occurred. The screen suddenly zoomed in!!! I think it's the resolution right? Half the screen is cut off and I can't see parts of the right side of windows. My theory is that this is due to Direct X being installed through Steam, as Steam automatically installed it as I chose to download the game. It didn't even ask me to install Direct X or not ): It all happened so fast. This all being said, the game works fine! It looks a little strange, as if the resolution was off, but it plays just fine. What I did so far: Restarted my computer. Didn't work -_- Researched Steam installing DirectX on Ubuntu then messing up resolution and couldn't really find anything. Researched uninstalling DirectX from Ubuntu but only found uninstalling DirectX after having been installed with Wine, not through Steam. Got mad and ate my feelings. Tried "xrandr -s 0" but it didn't do anything. Ran xrandr alone and terminal showed this: Screen 0: minimum 8 x 8, current 640 x 480, maximum 16384 x 16384 DVI-I-0 connected 640x480+0+0 (normal left inverted right x axis y axis) 0mm x 0mm 640x480 59.9*+ 320x240 120.1 DVI-I-1 disconnected (normal left inverted right x axis y axis) HDMI-0 disconnected (normal left inverted right x axis y axis) DP-0 disconnected (normal left inverted right x axis y axis) DVI-D-0 disconnected (normal left inverted right x axis y axis) DP-1 disconnected (normal left inverted right x axis y axis) About now I was mad so I played Odin's Sphere then took a nap. Back to it! I entered the following: xrandr --output DVI-I-0 --mode 1024x768 But I was met with this message: xrandr: cannot find mode 1024x768 I get the same messages for 800x600, 1400x1050, and seemingly any other combination of numbers. I then tried Going into System Settings then Displays, then playing around in there. My Resolution is set to 640x480 and there are no other options for me to choose from. Rotation has Normal, Clockwise, Counter Clockwise, and 180 Degrees. It's set to Normal and I haven't messed with that. Launcher Placement has Unknown and All Displays as its two options. It's set to Unknown, but moving it to All Displays doesn't seem to do anything. Finally, when I click Detect Displays, nothing seems to happen. Quick Version: Linux noob. Steam installed with Wine and Winetricks. Steam downloaded and installed game + DirectX. Resolution messed up now (I think; pretty sure), can't fix it, very annoying, no idea what's going on, halp! Specs: Ubuntu Version 12.04 Wine Version 1.4.1 Have not changed any settings in Wine Using Winetricks Graphics Card: http://www.gigabyte.com/products/pro...px?pid=4361#sp Drivers: Proprietary (Installing those were a LOT of fun) Also let it be known that I have a DVI to VGA cord running from my Graphics card to my monitor. If any more information is needed I am ready to report. Thank You: Thanks a lot for your help and all the work you do to support noob ubuntuers like me (:

    Read the article

  • More SQL Smells

    - by Nick Harrison
    Let's continue exploring some of the SQL Smells from Phil's list. He has been putting together. Datatype mis-matches in predicates that rely on implicit conversion.(Plamen Ratchev) This is a great example poking holes in the whole theory of "If it works it's not broken" Queries will this probably will generally work and give the correct response. In fact, without careful analysis, you probably may be completely oblivious that there is even a problem. This subtle little problem will needlessly complicate queries and slow them down regardless of the indexes applied. Consider this example: CREATE TABLE [dbo].[Page](     [PageId] [int] IDENTITY(1,1) NOT NULL,     [Title] [varchar](75) NOT NULL,     [Sequence] [int] NOT NULL,     [ThemeId] [int] NOT NULL,     [CustomCss] [text] NOT NULL,     [CustomScript] [text] NOT NULL,     [PageGroupId] [int] NOT NULL;  CREATE PROCEDURE PageSelectBySequence ( @sequenceMin smallint , @sequenceMax smallint ) AS BEGIN SELECT [PageId] , [Title] , [Sequence] , [ThemeId] , [CustomCss] , [CustomScript] , [PageGroupId] FROM [CMS].[dbo].[Page] WHERE Sequence BETWEEN @sequenceMin AND @SequenceMax END  Note that the Sequence column is defined as int while the sequence parameter is defined as a small int. The problem is that the database may have to do a lot of type conversions to evaluate the query. In some cases, this may even negate the indexes that you have in place. Using Correlated subqueries instead of a join   (Dave_Levy/ Plamen Ratchev) There are two main problems here. The first is a little subjective, since this is a non-standard way of expressing the query, it is harder to understand. The other problem is much more objective and potentially problematic. You are taking much of the control away from the optimizer. Written properly, such a query may well out perform a corresponding query written with traditional joins. More likely than not, performance will degrade. Whenever you assume that you know better than the optimizer, you will most likely be wrong. This is the fundmental problem with any hint. Consider a query like this:  SELECT Page.Title , Page.Sequence , Page.ThemeId , Page.CustomCss , Page.CustomScript , PageEffectParams.Name , PageEffectParams.Value , ( SELECT EffectName FROM dbo.Effect WHERE EffectId = dbo.PageEffects.EffectId ) AS EffectName FROM Page INNER JOIN PageEffect ON Page.PageId = PageEffects.PageId INNER JOIN PageEffectParam ON PageEffects.PageEffectId = PageEffectParams.PageEffectId  This can and should be written as:  SELECT Page.Title , Page.Sequence , Page.ThemeId , Page.CustomCss , Page.CustomScript , PageEffectParams.Name , PageEffectParams.Value , EffectName FROM Page INNER JOIN PageEffect ON Page.PageId = PageEffects.PageId INNER JOIN PageEffectParam ON PageEffects.PageEffectId = PageEffectParams.PageEffectId INNER JOIN dbo.Effect ON dbo.Effects.EffectId = dbo.PageEffects.EffectId  The correlated query may just as easily show up in the where clause. It's not a good idea in the select clause or the where clause. Few or No comments. This one is a bit more complicated and controversial. All comments are not created equal. Some comments are helpful and need to be included. Other comments are not necessary and may indicate a problem. I tend to follow the rule of thumb that comments that explain why are good. Comments that explain how are bad. Many people may be shocked to hear the idea of a bad comment, but hear me out. If a comment is needed to explain what is going on or how it works, the logic is too complex and needs to be simplified. Comments that explain why are good. Comments may explain why the sql is needed are good. Comments that explain where the sql is used are good. Comments that explain how tables are related should not be needed if the sql is well written. If they are needed, you need to consider reworking the sql or simplify your data model. Use of functions in a WHERE clause. (Anil Das) Calling a function in the where clause will often negate the indexing strategy. The function will be called for every record considered. This will often a force a full table scan on the tables affected. Calling a function will not guarantee that there is a full table scan, but there is a good chance that it will. If you find that you often need to write queries using a particular function, you may need to add a column to the table that has the function already applied.

    Read the article

  • Windows Azure Use Case: Agility

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Agility in this context is defined as the ability to quickly develop and deploy an application. In theory, the speed at which your organization can develop and deploy an application on available hardware is identical to what you could deploy in a distributed environment. But in practice, this is not always the case. Having an option to use a distributed environment can be much faster for the deployment and even the development process. Implementation: When an organization designs code, they are essentially becoming a Software-as-a-Service (SaaS) provider to their own organization. To do that, the IT operations team becomes the Infrastructure-as-a-Service (IaaS) to the development teams. From there, the software is developed and deployed using an Application Lifecycle Management (ALM) process. A simplified view of an ALM process is as follows: Requirements Analysis Design and Development Implementation Testing Deployment to Production Maintenance In an on-premise environment, this often equates to the following process map: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including physical plant, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to on-premise Testing servers. If no server capacity available, more resources procured through standard budgeting and ordering processes. Manual and automated functional, load, security, etc. performed. Deployment to Production Server team involved to select platform and environments with available capacity. If no server capacity available, standard budgeting and procurement process followed. If no server capacity available, systems built, configured and put under standard organizational IT control. Systems configured for proper operating systems, patches, security and virus scans. System maintenance, HA/DR, backups and recovery plans configured and put into place. Maintenance Code changes evaluated and altered according to need. In a distributed computing environment like Windows Azure, the process maps a bit differently: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including budget, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to Azure. Manual and automated functional, load, security, etc. performed. Deployment to Production Code deployed to Azure. Point in time backup and recovery plans configured and put into place.(HA/DR and automated backups already present in Azure fabric) Maintenance Code changes evaluated and altered according to need. This means that several steps can be removed or expedited. It also means that the business function requesting the application can be held directly responsible for the funding of that request, speeding the process further since the IT budgeting process may not be involved in the Azure scenario. An additional benefit is the “Azure Marketplace”, In effect this becomes an app store for Enterprises to select pre-defined code and data applications to mesh or bolt-in to their current code, possibly saving development time. Resources: Whitepaper download- What is ALM?  http://go.microsoft.com/?linkid=9743693  Whitepaper download - ALM and Business Strategy: http://go.microsoft.com/?linkid=9743690  LiveMeeting Recording on ALM and Windows Azure (registration required, but free): http://www.microsoft.com/uk/msdn/visualstudio/contact-us.aspx?sbj=Developing with Windows Azure (ALM perspective) - 10:00-11:00 - 19th Jan 2011

    Read the article

  • Common business drivers that lead to creating and sustaining a project

    Common business drivers that lead to creating and sustaining a project include and are not limited to: cost reduction, increased return on investment (ROI), reduced time to market, increased speed and efficiency, increased security, and increased interoperability. These drivers primarily focus on streamlining and reducing cost to make a company more profitable with less overhead. According to Answers.com cost reduction is defined as reducing costs to improve profitability, and may be implemented when a company is having financial problems or prevent problems. ROI is defined as the amount of value received relative to the amount of money invested according to PayperclickList.com.  With the ever increasing demands on businesses to compete in today’s market, companies are constantly striving to reduce the time it takes for a concept to become a product and be sold within the global marketplace. In business, some people say time is money, so if a project can reduce the time a business process takes it in fact saves the company which is always good for the bottom line. The Social Security Administration states that data security is the protection of data from accidental or intentional but unauthorized modification, destruction. Interoperability is the capability of a system or subsystem to interact with other systems or subsystems. In my personal opinion, these drivers would not really differ for a profit-based organization, compared to a non-profit organization. Both corporate entities strive to reduce cost, and strive to keep operation budgets low. However, the reasoning behind why they want to achieve this does contrast. Typically profit based organizations strive to increase revenue and market share so that the business can grow. Alternatively, not-for-profit businesses are more interested in increasing their reach within communities whether it is to increase annual donations or invest in the lives of others. Success or failure of a project can be determined by one or more of these drivers based on the scope of a project and the company’s priorities associated with each of the drivers. In addition, if a project attempts to incorporate multiple drivers and is only partially successful, then the project might still be considered to be a success due to how close the project was to meeting each of the priorities. Continuous evaluation of the project could lead to a decision to abort a project, because it is expected to fail before completion. Evaluations should be executed after the completion of every software development process stage. Pfleeger notes that software development process stages include: Requirements Analysis and Definition System Design Program Design Program Implementation Unit Testing Integration Testing System Delivery Maintenance Each evaluation at every state should consider all the business drivers included in the scope of a project for how close they are expected to meet expectations. In addition, minimum requirements of acceptance should also be included with the scope of the project and should be reevaluated as the project progresses to ensure that the project makes good economic sense to continue. If the project falls below these benchmarks then the project should be put on hold until it does make more sense or the project should be aborted because it does not meet the business driver requirements.   References Cost Reduction Program. (n.d.). Dictionary of Accounting Terms. Retrieved July 19, 2009, from Answers.com Web site: http://www.answers.com/topic/cost-reduction-program Government Information Exchange. (n.d.). Government Information Exchange Glossary. Retrieved July 19, 2009, from SSA.gov Web site: http://www.ssa.gov/gix/definitions.html PayPerClickList.com. (n.d.). Glossary Term R - Pay Per Click List. Retrieved July 19, 2009, from PayPerClickList.com Web site: http://www.payperclicklist.com/glossary/termr.html Pfleeger, S & Atlee, J.(2009). Software Engineering: Theory and Practice. Boston:Prentice Hall Veluchamy, Thiyagarajan. (n.d.). Glossary « Thiyagarajan Veluchamy’s Blog. Retrieved July 19, 2009, from Thiyagarajan.WordPress.com Web site: http://thiyagarajan.wordpress.com/glossary/

    Read the article

  • Changes in licence in forked project what are my rights?

    - by Wes
    Hi I'm intrested in using the apparently now defunct app-mdi libray in a flex application for a paying customer. http://sourceforge.net/projects/appmdi/ It appears that the app-mdi project has been forked from flex-mdi and indeed the code has so much in common it would appear almost identical to the origional code. Now in the original source flex-mdi the following licence appears in the source code /* Copyright (c) 2007 FlexMDI Contributors. See: http://code.google.com/p/flexmdi/wiki/ProjectContributors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ However in the app-mdi library on the same file the following licence appears. Copyright (c) 2010, TRUEAGILE All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the TRUEAGILE nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ Now I've no problem with the licence except for the line. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. The copyright notice in its entireity makes no sense in binary material. Specifically talking about redistobutions in the binary form. Finally the question is what exactly has to be shown on web clients who access softare that utilises this library? Also is changing the licence in this manner actually allowed?

    Read the article

  • How can we improve overall Programmer Education & Training?

    - by crosenblum
    Last week, I was just viewing this amazing interview by Kevin Rose of Phillip Rosedale, of Second Life. And they had an amazing discussion about how to find, hire and identify good programmer's, and how hard it is to find good ones. Which has lead me to really think about the way we programmer's learn, are taught. For a majority of us, myself included, we are self-taught. Which is great about being a programmer, anyone can learn and develop skills. But this also means, that there is no real standards of what a good programmer is/are, and what kind of environment's encourage the growth of programming skills. This isn't so much a question, but just a desire in me, to see how we can change the culture of programming, and the manager's of programming, so that education and self-improvement is encouraged. There are a lot of avenue's for continued education, youtube videos, books, conferences, but because of the experiental nature of what we do, it isn't always clear what's important to learn and to master. Let's look at the The Joel 12 Steps. The Joel Test Do you use source control? Can you make a build in one step? Do you make daily builds? Do you have a bug database? Do you fix bugs before writing new code? Do you have an up-to-date schedule? Do you have a spec? Do programmers have quiet working conditions? Do you use the best tools money can buy? Do you have testers? Do new candidates write code during their interview? Do you do hallway usability testing? I think all of these have important value, but because of something I call the Experiential Gap, if a programmer or manager has never experienced any of the negative consequences for not having done items on the list, they will never see the need to do any of them. The Experiental Gap, is my basic theory, that each of us has different jobs and different experiences. So for some of us, that have always worked with dozens of programmer's, source control is a must have. But for people who have always been the only programmer, they can not imagine the need for source control. And it's because of this major flaw in how we learn, that we evaluate people by what best practices they do or not do, and the reason for either can start a flame war. We always evaluate people in our field by what they do, and think "Oh if this guy/gal isn't doing xyz best practice, he/she can't be a good programmer, so let's not waste time or energy talking to them." This is exactly why we have so many programming flame wars, that it becomes, because of the Experiental Gap, we can't imagine people not having made the decisions that we have had to made. So this has lead me to think, that we totally need to rethink how we train, educate and manage programmer's. For example, what percentage of you have had encouragement by your manager's to go to conferences, and even have them pay for it? For me, and a lot of people, this is extremely rare, a lot of us would love to go to conferences, to learn more, but the money ain't there to do that. So the point of this question is really to spark a lot of how can we train, learn and manage better? How can we create a new culture of learning that doesn't insult people for not having the same job experiences. Yes we all have jobs and work to do, but our ability to do our jobs well, depends on our desire, interest and support in improving our mastery of our skills. Right now, I see our culture being rather disorganized, we support the elite, but those tons of us that want to get better, just don't have enough support to learn and improve ourselves. I mean, do we as an industry, want to be perceived as just replaceable cogs? Thank you...

    Read the article

  • Inappropriate Updates?

    - by Tony Davis
    A recent Simple-talk article by Kathi Kellenberger dissected the fastest SQL solution, submitted by Peter Larsson as part of Phil Factor's SQL Speed Phreak challenge, to the classic "running total" problem. In its analysis of the code, the article re-ignited a heated debate regarding the techniques that should, and should not, be deemed acceptable in your search for fast SQL code. Peter's code for running total calculation uses a variation of a somewhat contentious technique, sometimes referred to as a "quirky update": SET @Subscribers = Subscribers = @Subscribers + PeopleJoined - PeopleLeft This form of the UPDATE statement, @variable = column = expression, is documented and it allows you to set a variable to the value returned by the expression. Microsoft does not guarantee the order in which rows are updated in this technique because, in relational theory, a table doesn’t have a natural order to its rows and the UPDATE statement has no means of specifying the order. Traditionally, in cases where a specific order is requires, such as for running aggregate calculations, programmers who used the technique have relied on the fact that the UPDATE statement, without the WHERE clause, is executed in the order imposed by the clustered index, or in heap order, if there isn’t one. Peter wasn’t satisfied with this, and so used the ingenious device of assuring the order of the UPDATE by the use of an "ordered CTE", based on an underlying temporary staging table (a heap). However, in either case, the ordering is still not guaranteed and, in addition, would be broken under conditions of parallelism, or partitioning. Many argue, with validity, that this reliance on a given order where none can ever be guaranteed is an abuse of basic relational principles, and so is a bad practice; perhaps even irresponsible. More importantly, Microsoft doesn't wish to support the technique and offers no guarantee that it will always work. If you put it into production and it breaks in a later version, you can't file a bug. As such, many believe that the technique should never be tolerated in a production system, under any circumstances. Is this attitude justified? After all, both forms of the technique, using a clustered index to guarantee the order or using an ordered CTE, have been tested rigorously and are proven to be robust; although not guaranteed by Microsoft, the ordering is reliable, provided none of the conditions that are known to break it are violated. In Peter's particular case, the technique is being applied to a temporary table, where the developer has full control of the data ordering, and indexing, and knows that the table will never be subject to parallelism or partitioning. It might be argued that, in such circumstances, the technique is not really "quirky" at all and to ban it from your systems would server no real purpose other than to deprive yourself of a reliable technique that has uses that extend well beyond the running total calculations. Of course, it is doubly important that such a technique, including its unsupported status and the assumptions that underpin its success, is fully and clearly documented, preferably even when posting it online in a competition or forum post. Ultimately, however, this technique has been available to programmers throughout the time Sybase and SQL Server has existed, and so cannot be lightly cast aside, even if one sympathises with Microsoft for the awkwardness of maintaining an archaic way of doing updates. After all, a Table hint could easily be devised that, if specified in the WITH (<Table_Hint_Limited>) clause, could be used to request the database engine to do the update in the conventional order. Then perhaps everyone would be satisfied. Cheers, Tony.

    Read the article

  • Creating a branch for every Sprint

    - by Martin Hinshelwood
    There are a lot of developers using version control these days, but a feature of version control called branching is very poorly understood and remains unused by most developers in favour of Labels. Most developers think that branching is hard and complicated. Its not! What is hard and complicated is a bad branching strategy. Just like a bad software architecture a bad branch architecture, or one that is not adhered to can prove fatal to a project. We I was at Aggreko we had a fairly successful Feature branching strategy (although the developers hated it) that meant that we could have multiple feature teams working at the same time without impacting each other. Now, this had to be carefully orchestrated as it was a Business Intelligence team and many of the BI artefacts do not lend themselves to merging. Today at SSW I am working on a Scrum team delivering a product that will be used by many hundreds of developers. SSW SQL Deploy takes much of the pain out of upgrading production databases when you are not using the Database projects in Visual Studio. With Scrum each Scrum Team works for a fixed period of time on a single sprint. You can have one or more Scrum Teams involved in delivering a product, but all the work must be merged and tested, ready to be shown to the Product Owner at the the Sprint Review meeting at the end of the current Sprint. So, what does this mean for a branching strategy? We have been using a “Main” (sometimes called “Trunk”) line and doing a branch for each sprint. It’s like Feature Branching, but with only ONE feature in operation at any one time, so no conflicts Figure: DEV folder containing the Development branches.   I know that some folks advocate applying a Label at the start of each Sprint and then rolling back if you need to, but I have always preferred the security of a branch. Like: being able to create a release from Main that has Sprint3 code even while Sprint4 is being worked on. being sure I can always create a stable build on request. Being able to guarantee a version (labels are not auditable) Be able to abandon the sprint without having to delete the code (rare I know, but would be a mess if it happened) Being able to see the flow of change sets through to a safe release It helps you find invalid dependencies when merging to Main as there may be some file that is in everyone’s Sprint branch, but never got checked in. (We had this at the merge of Sprint2) If you are always operating in this way as a standard it makes it easier to then add more scrum teams in the future. Muscle memory of this way of working. Don’t Like: Additional DB space for the branches Baseless merging between sprint branches when changes are directly ported Note: I do not think we will ever attempt this! Maybe a bit tougher to see the history between sprint branches since the changes go up through Main and down to another sprint branch Note: What you would have to do is see which Sprint the changes were made in and then check the history he same file in that Sprint. A little bit of added complexity that you would have to do anyway with multiple teams. Over time, you can end up with a lot of old unused sprint branches. Perhaps destroy with /keephistory can help in this case. Note: We ALWAYS delete the Sprint branch after it has been merged into Main. That is the theory anyway, and as you can see from the images Sprint2 has already been deleted. Why take the chance of having a problem rolling back or wanting to keep some of the code, when you can just abandon a branch and start a new one? It just seems easier and less painful to use a branch to me! What do you think?   Technorati Tags: TFS,TFS2010,Software Development,ALM,Branching

    Read the article

  • Measuring Code Quality

    - by DotNetBlues
    Several months back, I was tasked with measuring the quality of code in my organization. Foolishly, I said, "No problem." I figured that Visual Studio has a built-in code metrics tool (Analyze -> Calculate Code Metrics) and that would be a fine place to start with. I was right, but also very wrong. The Visual Studio calculates five primary metrics: Maintainability Index, Cyclomatic Complexity, Depth of Inheritance, Class Coupling, and Lines of Code. The first two are figured at the method level, the second at (primarily) the class level, and the last is a simple count. The first question any reasonable person should ask is "Which one do I look at first?" The first question any manager is going to ask is, "What one number tells me about the whole application?" My answer to both, in a way, was "Maintainability Index." Why? Because each of the other numbers represent one element of quality while MI is a composite number that includes Cyclomatic Complexity. I'd be lying if I said no consideration was given to the fact that it was abstract enough that it's harder for some surly developer (I've been known to resemble that remark) to start arguing why a high coupling or inheritance is no big deal or how complex requirements are to blame for complex code. I should also note that I don't think there is one magic bullet metric that will tell you objectively how good a code base is. There are a ton of different metrics out there, and each one was created for a specific purpose in mind and has a pet theory behind it. When you've got a group of developers who aren't accustomed to measuring code quality, picking a 0-100 scale, non-controversial metric that can be easily generated by tools you already own really isn't a bad place to start. That sort of answers the question a developer would ask, but what about the management question; how do you dashboard this stuff when Visual Studio doesn't roll up the numbers to the solution level? Since VS does roll up the MI to the project level, I thought I could just figure out what sort of weighting Microsoft used to roll method scores up to the class level and then to the namespace and project levels. I was a bit surprised by the answer: there is no weighting. That means that a class with one 1300 line method (which will score a 0 MI) and one empty constructor (which will score a 100 MI) will have an overall MI of a respectable 50. Throw in a couple of DTOs that are nothing more than getters and setters (which tend to score 95 or better) and the project ends up looking really, really healthy. The next poor bastard who has to work on the application is probably not going to be singing the praises of its maintainability, though. For the record, that 1300 line method isn't a hypothetical, either. So, what does one do with that? Well, I decided to weight the average by the Lines of Code per method. For our above example, the formula for the class's MI becomes ((1300 * 0) + (1 * 100))/1301 = .077, rounded to 0. Sounds about right. Continue the pattern for namespace, project, solution, and even multi-solution application MI scores. This can be done relatively easily by using the "export to Excel" button and running a quick formula against the data. On the short list of follow-up questions would be, "How do I improve my application's score?" That's an answer for another time, though.

    Read the article

  • Is Apache 2.2.22 able to sustain 1.000 simultaneous connected clients?

    - by Fnux
    For an article in a news paper, I'm benchmarking 5 different web servers (Apache2, Cherokee, Lighttpd, Monkey and Nginx). The tests made consist of measuring the execution times as well as different parameters such as the number of request served per second, the amount of RAM, the CPU used, during a growing load of simultaneous clients (from 1 to 1.000 with a step of 10) each client sending 1.000.000 requets of a small fixed file, then of a medium fixed file, then a small dynamic content (hello.php) and finally a complex dynamic content (the computation of the reimbursment of a loan). All the web servers are able to sustain such a load (up to 1.000 clients) but Apache2 which always stops to respond when the test reach 450 to 500 simultaneous clients. My configuration is : CPU: AMD FX 8150 8 cores @ 4.2 GHz RAM: 32 Gb. SSD: 2 x Crucial 240 Gb SATA6 OS: Ubuntu 12.04.3 64 bit WS: Apache 2.2.22 My Apache2 configuration is as follows: /etc/apache2/apache2.conf LockFile ${APACHE_LOCK_DIR}/accept.lock PidFile ${APACHE_PID_FILE} Timeout 30 KeepAlive On MaxKeepAliveRequests 1000000 KeepAliveTimeout 2 ServerName "fnux.net" <IfModule mpm_prefork_module> StartServers 16 MinSpareServers 16 MaxSpareServers 16 ServerLimit 2048 MaxClients 1024 MaxRequestsPerChild 0 </IfModule> User ${APACHE_RUN_USER} Group ${APACHE_RUN_GROUP} AccessFileName .htaccess <Files ~ "^\.ht"> Order allow,deny Deny from all Satisfy all </Files> DefaultType None HostnameLookups Off ErrorLog ${APACHE_LOG_DIR}/error.log LogLevel emerg Include mods-enabled/*.load Include mods-enabled/*.conf Include httpd.conf Include ports.conf LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" vhost_combined LogFormat "%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" combined LogFormat "%h %l %u %t \"%r\" %>s %O" common LogFormat "%{Referer}i -> %U" referer LogFormat "%{User-agent}i" agent Include conf.d/ Include sites-enabled/ /etc/apache2/ports.conf NameVirtualHost *:8180 Listen 8180 <IfModule mod_ssl.c> Listen 443 </IfModule> <IfModule mod_gnutls.c> Listen 443 </IfModule> /etc/apache2/mods-available <IfModule mod_fastcgi.c> AddHandler php5-fcgi .php Action php5-fcgi /cgi-bin/php5.external <Location "/cgi-bin/php5.external"> Order Deny,Allow Deny from All Allow from env=REDIRECT_STATUS </Location> </IfModule> /etc/apache2/sites-available/default <VirtualHost *:8180> ServerAdmin webmaster@localhost DocumentRoot /var/www/apache2 <Directory /> Options FollowSymLinks AllowOverride None </Directory> <Directory /var/www/> Options Indexes FollowSymLinks MultiViews AllowOverride None Order allow,deny allow from all </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> ErrorLog ${APACHE_LOG_DIR}/error.log LogLevel emerg ##### CustomLog ${APACHE_LOG_DIR}/access.log combined Alias /doc/ "/usr/share/doc/" <Directory "/usr/share/doc/"> Options Indexes MultiViews FollowSymLinks AllowOverride None Order deny,allow Deny from all Allow from 127.0.0.0/255.0.0.0 ::1/128 </Directory> <IfModule mod_fastcgi.c> AddHandler php5-fcgi .php Action php5-fcgi /php5-fcgi Alias /php5-fcgi /usr/lib/cgi-bin/php5-fcgi FastCgiExternalServer /usr/lib/cgi-bin/php5-fcgi -host 127.0.0.1:9000 -pass-header Authorization </IfModule> </VirtualHost> /etc/security/limits.conf * soft nofile 1000000 * hard nofile 1000000 So, I would trully appreciate your advice to setup Apache2 to make it able to sustain 1.000 simultaneous clients, if this is even possible. TIA for your help. Cheers.

    Read the article

  • Do we still have a case against the goto statement? [closed]

    - by FredOverflow
    Possible Duplicate: Is it ever worthwhile using goto? In a recent article, Andrew Koenig writes: When asked why goto statements are harmful, most programmers will say something like "because they make programs hard to understand." Press harder, and you may well hear something like "I don't really know, but that's what I was taught." For that reason, I'd like to summarize Dijkstra's arguments. He then shows two program fragments, one without a goto and and one with a goto: if (n < 0) n = 0; Assuming that n is a variable of a built-in numeric type, we know that after this code, n is nonnegative. Suppose we rewrite this fragment: if (n >= 0) goto nonneg; n = 0; nonneg: ; In theory, this rewrite should have the same effect as the original. However, rewriting has changed something important: It has opened the possibility of transferring control to nonneg from anywhere else in the program. I emphasized the part that I don't agree with. Modern languages like C++ do not allow goto to transfer control arbitrarily. Here are two examples: You cannot jump to a label that is defined in a different function. You cannot jump over a variable initialization. Now consider composing your code of tiny functions that adhere to the single responsibility principle: int clamp_to_zero(int n) { if (n >= 0) goto n_is_not_negative: n = 0; n_is_not_negative: return n; } The classic argument against the goto statement is that control could have transferred from anywhere inside your program to the label n_is_not_negative, but this simply is not (and was never) true in C++. If you try it, you will get a compiler error, because labels are scoped. The rest of the program doesn't even see the name n_is_not_negative, so it's just not possible to jump there. This is a static guarantee! Now, I'm not saying that this version is better then the one without the goto, but to make the latter as expressive as the first one, we would at least have to insert a comment, or even better yet, an assertion: int clamp_to_zero(int n) { if (n < 0) n = 0; // n is not negative at this point assert(n >= 0); return n; } Note that you basically get the assertion for free in the goto version, because the condition n >= 0 is already written in line 1, and n = 0; satisfies the condition trivially. But that's just a random observation. It seems to me that "don't use gotos!" is one of those dogmas like "don't use multiple returns!" that stem from a time where the real problem were functions of hundreds or even thousand of lines of code. So, do we still have a case against the goto statement, other than that it is not particularly useful? I haven't written a goto in at least a decade, but it's not like I was running away in terror whenever I encountered one. 1 Ideally, I would like to see a strong and valid argument against gotos that still holds when you adhere to established programming principles for clean code like the SRP. "You can jump anywhere" is not (and has never been) a valid argument in C++, and somehow I don't like teaching stuff that is not true. 1: Also, I have never been able to resurrect even a single velociraptor, no matter how many gotos I tried :(

    Read the article

< Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >