Search Results

Search found 1354 results on 55 pages for 'compute scalar'.

Page 55/55 | < Previous Page | 51 52 53 54 55 

  • Alright, I'm still stuck on this homework problem. C++

    - by Josh
    Okay, the past few days I have been trying to get some input on my programs. Well I decided to scrap them for the most part and try again. So once again, I'm in need of help. For the first program I'm trying to fix, it needs to show the sum of SEVEN numbers. Well, I'm trying to change is so that I don't need the mem[##] = ####. I just want the user to be able to input the numbers and the program run from there and go through my switch loop. And have some kind of display..saying like the sum is?.. Here's my code so far. #include <iostream> #include <iomanip> #include <ios> using namespace std; int main() { const int READ = 10; const int WRITE = 11; const int LOAD = 20; const int STORE = 21; const int ADD = 30; const int SUBTRACT = 31; const int DIVIDE = 32; const int MULTIPLY = 33; const int BRANCH = 40; const int BRANCHNEG = 41; const int BRANCHZERO = 42; const int HALT = 43; int mem[100] = {0}; //Making it 100, since simpletron contains a 100 word mem. int operation; //taking the rest of these variables straight out of the book seeing as how they were italisized. int operand; int accum = 0; // the special register is starting at 0 int counter; for ( counter=0; counter < 100; counter++) mem[counter] = 0; // This is for part a, it will take in positive variables in //a sent-controlled loop and compute + print their sum. Variables from example in text. mem[0] = 1009; mem[1] = 1109; mem[2] = 2010; mem[3] = 2111; mem[4] = 2011; mem[5] = 3100; mem[6] = 2113; mem[7] = 1113; mem[8] = 4300; counter = 0; //Makes the variable counter start at 0. while(true) { operand = mem[ counter ]%100; // Finds the op codes from the limit on the mem (100) operation = mem[ counter ]/100; //using a switch loop to set up the loops for the cases switch ( operation ){ case READ: //reads a variable into a word from loc. Enter in -1 to exit cout <<"\n Input a positive variable: "; cin >> mem[ operand ]; counter++; break; case WRITE: // takes a word from location cout << "\n\nThe content at location " << operand << " is " << mem[operand]; counter++; break; case LOAD:// loads accum = mem[ operand ];counter++; break; case STORE: //stores mem[ operand ] = accum;counter++; break; case ADD: //adds accum += mem[operand];counter++; break; case SUBTRACT: // subtracts accum-= mem[ operand ];counter++; break; case DIVIDE: //divides accum /=(mem[ operand ]);counter++; break; case MULTIPLY: // multiplies accum*= mem [ operand ];counter++; break; case BRANCH: // Branches to location counter = operand; break; case BRANCHNEG: //branches if acc. is < 0 if (accum < 0) counter = operand; else counter++; break; case BRANCHZERO: //branches if acc = 0 if (accum == 0) counter = operand; else counter++; break; case HALT: // Program ends break; } } return 0; } part B int main() { const int READ = 10; const int WRITE = 11; const int LOAD = 20; const int STORE = 21; const int ADD = 30; const int SUBTRACT = 31; const int DIVIDE = 32; const int MULTIPLY = 33; const int BRANCH = 40; const int BRANCHNEG = 41; const int BRANCHZERO = 41; const int HALT = 43; int mem[100] = {0}; int operation; int operand; int accum = 0; int pos = 0; int j; mem[22] = 7; // loop 7 times mem[25] = 1; // increment by 1 mem[00] = 4306; mem[01] = 2303; mem[02] = 3402; mem[03] = 6410; mem[04] = 3412; mem[05] = 2111; mem[06] = 2002; mem[07] = 2312; mem[08] = 4210; mem[09] = 2109; mem[10] = 4001; mem[11] = 2015; mem[12] = 3212; mem[13] = 2116; mem[14] = 1101; mem[15] = 1116; mem[16] = 4300; j = 0; while ( true ) { operand = memory[ j ]%100; // Finds the op codes from the limit on the memory (100) operation = memory[ j ]/100; //using a switch loop to set up the loops for the cases switch ( operation ){ case 1: //reads a variable into a word from loc. Enter in -1 to exit cout <<"\n enter #: "; cin >> memory[ operand ]; break; case 2: // takes a word from location cout << "\n\nThe content at location " << operand << "is " << memory[operand]; break; case 3:// loads accum = memory[ operand ]; break; case 4: //stores memory[ operand ] = accum; break; case 5: //adds accum += mem[operand];; break; case 6: // subtracts accum-= memory[ operand ]; break; case 7: //divides accum /=(memory[ operand ]); break; case 8: // multiplies accum*= memory [ operand ]; break; case 9: // Branches to location j = operand; break; case 10: //branches if acc. is < 0 break; case 11: //branches if acc = 0 if (accum == 0) j = operand; break; case 12: // Program ends exit(0); break; } j++; } return 0; }

    Read the article

  • C++ cin keeps skipping.....

    - by user69514
    I am having problems with my program. WHen I run it, it asks the user for the album, the title, but then it just exits the loop without asking for the price and the sale tax. Any ideas what's going on? This is a sample run Discounts effective for September 15, 2010 Classical 8% Country 4% International 17% Jazz 0% Rock 16% Show 12% Are there more transactions? Y/N y Enter Artist of CD: Sevendust Enter Title of CD: Self titled Enter Genre of CD: Rock enter price Are there more transactions? Y/N Thank you for shopping with us! Program code: #include <iostream> #include <string> using namespace std; int counter = 0; string discount_tiles[] = {"Classical", "Country", "International", "Jazz", "Rock", "Show"}; int discount_amounts[] = {8, 4, 17, 0, 16, 12, 14}; string date = "September 15, 2010"; // Array Declerations //Artist array char** artist = new char *[100]; //Title array char** title = new char *[100]; //Genres array char** genres = new char *[100]; //Price array double* price[100]; //Discount array double* tax[100]; // sale price array double* sale_price[100]; //sale tax array double* sale_tax[100]; //cash price array double* cash_price[100]; //Begin Prototypes char* getArtist(); char* getTitle(); char* getGenre(); double* getPrice(); double* getTax(); unsigned int* AssignDiscounts(); void ReadTransaction (char ** artist, char ** title, char ** genre, float ** cash, float & taxrate, int albumcount); void computesaleprice(); bool AreThereMore (); //End Prototypes bool areThereMore () { char answer; cout << "Are there more transactions? Y/N" << endl; cin >> answer; if (answer =='y' || answer =='Y') return true; else return false; } char* getArtist() { char * artist= new char [100]; cout << "Enter Artist of CD: " << endl; cin.getline(artist,100); cin.ignore(); return artist; } char* getTitle() { char * title= new char [100]; cout << "Enter Title of CD: " << endl; cin.getline(title,100); cin.ignore(); return title; } char* getGenre() { char * genre= new char [100]; cout << "Enter Genre of CD: " << endl; cin.getline(genre,100); cin.ignore(); return genre; } double* getPrice() { //double* price = new double(); //cout << "Enter Price of CD: " << endl; //cin >> *price; //return price; double p = 0.0; cout<< "enter price" << endl; cin >> p; cin.ignore(); double* pp = &p; return pp; } double* getTax() { double* tax= new double(); cout << "Enter local sales tax: " << endl; cin >> *tax; return tax; } int findDiscount(string str){ if(str.compare(discount_tiles[0]) == 0) return discount_amounts[0]; else if(str.compare(discount_tiles[0]) == 0) return discount_amounts[1]; else if(str.compare(discount_tiles[0]) == 0) return discount_amounts[2]; else if(str.compare(discount_tiles[0]) == 0) return discount_amounts[3]; else if(str.compare(discount_tiles[0]) == 0) return discount_amounts[4]; else if(str.compare(discount_tiles[0]) == 0) return discount_amounts[5]; else{ cout << "Error in findDiscount function" << endl; return 0; } } void computesaleprice() { /** fill in array for all purchases **/ for( int i=0; i<=counter; i++){ double temp = *price[i]; temp -= findDiscount(genres[i]); double* tmpPntr = new double(); tmpPntr = &temp; sale_price[i] = tmpPntr; delete(&temp); delete(tmpPntr); } } void printDailyDiscounts(){ cout << "Discounts effective for " << date << endl; for(int i=0; i < 6; i++){ cout << discount_tiles[i] << "\t" << discount_amounts[i] << "%" << endl; } } //Begin Main int main () { for( int i=0; i<100; i++){ artist[i]=new char [100]; title[i]=new char [100]; genres[i]=new char [100]; price[i] = new double(0.0); tax[i] = new double(0.0); } // End Array Decleration printDailyDiscounts(); bool flag = true; while(flag == true){ if(areThereMore() == true){ artist[counter] = getArtist(); title[counter] = getTitle(); genres[counter] = getGenre(); price[counter] = getPrice(); //tax[counter] = getTax(); //counter++; flag = true; } else { flag = false; } } //compute sale prices //computesaleprice(); cout << "Thank you for shopping with us!" << endl; return 0; } //End Main /** void ReadTransaction (char ** artist, char ** title, char ** genre, float ** cash, float & taxrate, int albumcount) { strcpy(artist[albumcount],getArtist()); strcpy(title[albumcount],getTitle()); strcpy(genre[albumcount],getGenre()); //cash[albumcount][0]=computesaleprice();??????? //taxrate=getTax;?????????????? } * * */ unsigned int * AssignDiscounts() { unsigned int * discount = new unsigned int [7]; cout << "Enter Classical Discount: " << endl; cin >> discount[0]; cout << "Enter Country Discount: " << endl; cin >> discount[1]; cout << "Enter International Discount: " << endl; cin >> discount[2]; cout << "Enter Jazz Discount: " << endl; cin >> discount[3]; cout << "Enter Pop Discount: " << endl; cin >> discount[4]; cout << "Enter Rock Discount: " << endl; cin >> discount[5]; cout << "Enter Show Discount: " << endl; cin >> discount[6]; return discount; } /** char ** AssignGenres () { char ** genres = new char * [7]; for (int x=0;x<7;x++) genres[x] = new char [20]; strcpy(genres [0], "Classical"); strcpy(genres [1], "Country"); strcpy(genres [2], "International"); strcpy(genres [3], "Jazz"); strcpy(genres [4], "Pop"); strcpy(genres [5], "Rock"); strcpy(genres [6], "Show"); return genres; } **/ float getTax(float taxrate) { cout << "Please enter store tax rate: " << endl; cin >> taxrate; return taxrate; }

    Read the article

  • Threading across multiple files

    - by Zach M.
    My program is reading in files and using thread to compute the highest prime number, when I put a print statement into the getNum() function my numbers are printing out. However, it seems to just lag no matter how many threads I input. Each file has 1 million integers in it. Does anyone see something apparently wrong with my code? Basically the code is giving each thread 1000 integers to check before assigning a new thread. I am still a C noobie and am just learning the ropes of threading. My code is a mess right now because I have been switching things around constantly. #include <stdio.h> #include <stdlib.h> #include <time.h> #include <string.h> #include <pthread.h> #include <math.h> #include <semaphore.h> //Global variable declaration char *file1 = "primes1.txt"; char *file2 = "primes2.txt"; char *file3 = "primes3.txt"; char *file4 = "primes4.txt"; char *file5 = "primes5.txt"; char *file6 = "primes6.txt"; char *file7 = "primes7.txt"; char *file8 = "primes8.txt"; char *file9 = "primes9.txt"; char *file10 = "primes10.txt"; char **fn; //file name variable int numberOfThreads; int *highestPrime = NULL; int fileArrayNum = 0; int loop = 0; int currentFile = 0; sem_t semAccess; sem_t semAssign; int prime(int n)//check for prime number, return 1 for prime 0 for nonprime { int i; for(i = 2; i <= sqrt(n); i++) if(n % i == 0) return(0); return(1); } int getNum(FILE* file) { int number; char* tempS = malloc(20 *sizeof(char)); fgets(tempS, 20, file); tempS[strlen(tempS)-1] = '\0'; number = atoi(tempS); free(tempS);//free memory for later call return(number); } void* findPrimality(void *threadnum) //main thread function to find primes { int tNum = (int)threadnum; int checkNum; char *inUseFile = NULL; int x=1; FILE* file; while(currentFile < 10){ if(inUseFile == NULL){//inUseFIle being used to check if a file is still being read sem_wait(&semAccess);//critical section inUseFile = fn[currentFile]; sem_post(&semAssign); file = fopen(inUseFile, "r"); while(!feof(file)){ if(x % 1000 == 0 && tNum !=1){ //go for 1000 integers and then wait sem_wait(&semAssign); } checkNum = getNum(file); /* * * * * I think the issue is here * * * */ if(checkNum > highestPrime[tNum]){ if(prime(checkNum)){ highestPrime[tNum] = checkNum; } } x++; } fclose(file); inUseFile = NULL; } currentFile++; } } int main(int argc, char* argv[]) { if(argc != 2){ //checks for number of arguements being passed printf("To many ARGS\n"); return(-1); } else{//Sets thread cound to user input checking for correct number of threads numberOfThreads = atoi(argv[1]); if(numberOfThreads < 1 || numberOfThreads > 10){ printf("To many threads entered\n"); return(-1); } time_t preTime, postTime; //creating time variables int i; fn = malloc(10 * sizeof(char*)); //create file array and initialize fn[0] = file1; fn[1] = file2; fn[2] = file3; fn[3] = file4; fn[4] = file5; fn[5] = file6; fn[6] = file7; fn[7] = file8; fn[8] = file9; fn[9] = file10; sem_init(&semAccess, 0, 1); //initialize semaphores sem_init(&semAssign, 0, numberOfThreads); highestPrime = malloc(numberOfThreads * sizeof(int)); //create an array to store each threads highest number for(loop = 0; loop < numberOfThreads; loop++){//set initial values to 0 highestPrime[loop] = 0; } pthread_t calculationThread[numberOfThreads]; //thread to do the work preTime = time(NULL); //start the clock for(i = 0; i < numberOfThreads; i++){ pthread_create(&calculationThread[i], NULL, findPrimality, (void *)i); } for(i = 0; i < numberOfThreads; i++){ pthread_join(calculationThread[i], NULL); } for(i = 0; i < numberOfThreads; i++){ printf("this is a prime number: %d \n", highestPrime[i]); } postTime= time(NULL); printf("Wall time: %ld seconds\n", (long)(postTime - preTime)); } } Yes I am trying to find the highest number over all. So I have made some head way the last few hours, rescucturing the program as spudd said, currently I am getting a segmentation fault due to my use of structures, I am trying to save the largest individual primes in the struct while giving them the right indices. This is the revised code. So in short what the first thread is doing is creating all the threads and giving them access points to a very large integer array which they will go through and find prime numbers, I want to implement semaphores around the while loop so that while they are executing every 2000 lines or the end they update a global prime number. #include <stdio.h> #include <stdlib.h> #include <time.h> #include <string.h> #include <pthread.h> #include <math.h> #include <semaphore.h> //Global variable declaration char *file1 = "primes1.txt"; char *file2 = "primes2.txt"; char *file3 = "primes3.txt"; char *file4 = "primes4.txt"; char *file5 = "primes5.txt"; char *file6 = "primes6.txt"; char *file7 = "primes7.txt"; char *file8 = "primes8.txt"; char *file9 = "primes9.txt"; char *file10 = "primes10.txt"; int numberOfThreads; int entries[10000000]; int entryIndex = 0; int fileCount = 0; char** fileName; int largestPrimeNumber = 0; //Register functions int prime(int n); int getNum(FILE* file); void* findPrimality(void *threadNum); void* assign(void *num); typedef struct package{ int largestPrime; int startingIndex; int numberCount; }pack; //Beging main code block int main(int argc, char* argv[]) { if(argc != 2){ //checks for number of arguements being passed printf("To many threads!!\n"); return(-1); } else{ //Sets thread cound to user input checking for correct number of threads numberOfThreads = atoi(argv[1]); if(numberOfThreads < 1 || numberOfThreads > 10){ printf("To many threads entered\n"); return(-1); } int threadPointer[numberOfThreads]; //Pointer array to point to entries time_t preTime, postTime; //creating time variables int i; fileName = malloc(10 * sizeof(char*)); //create file array and initialize fileName[0] = file1; fileName[1] = file2; fileName[2] = file3; fileName[3] = file4; fileName[4] = file5; fileName[5] = file6; fileName[6] = file7; fileName[7] = file8; fileName[8] = file9; fileName[9] = file10; FILE* filereader; int currentNum; for(i = 0; i < 10; i++){ filereader = fopen(fileName[i], "r"); while(!feof(filereader)){ char* tempString = malloc(20 *sizeof(char)); fgets(tempString, 20, filereader); tempString[strlen(tempString)-1] = '\0'; entries[entryIndex] = atoi(tempString); entryIndex++; free(tempString); } } //sem_init(&semAccess, 0, 1); //initialize semaphores //sem_init(&semAssign, 0, numberOfThreads); time_t tPre, tPost; pthread_t coordinate; tPre = time(NULL); pthread_create(&coordinate, NULL, assign, (void**)numberOfThreads); pthread_join(coordinate, NULL); tPost = time(NULL); } } void* findPrime(void* pack_array) { pack* currentPack= pack_array; int lp = currentPack->largestPrime; int si = currentPack->startingIndex; int nc = currentPack->numberCount; int i; int j = 0; for(i = si; i < nc; i++){ while(j < 2000 || i == (nc-1)){ if(prime(entries[i])){ if(entries[i] > lp) lp = entries[i]; } j++; } } return (void*)currentPack; } void* assign(void* num) { int y = (int)num; int i; int count = 10000000/y; int finalCount = count + (10000000%y); int sIndex = 0; pack pack_array[(int)num]; pthread_t workers[numberOfThreads]; //thread to do the workers for(i = 0; i < y; i++){ if(i == (y-1)){ pack_array[i].largestPrime = 0; pack_array[i].startingIndex = sIndex; pack_array[i].numberCount = finalCount; } pack_array[i].largestPrime = 0; pack_array[i].startingIndex = sIndex; pack_array[i].numberCount = count; pthread_create(&workers[i], NULL, findPrime, (void *)&pack_array[i]); sIndex += count; } for(i = 0; i< y; i++) pthread_join(workers[i], NULL); } //Functions int prime(int n)//check for prime number, return 1 for prime 0 for nonprime { int i; for(i = 2; i <= sqrt(n); i++) if(n % i == 0) return(0); return(1); }

    Read the article

  • Java code optimization on matrix windowing computes in more time

    - by rano
    I have a matrix which represents an image and I need to cycle over each pixel and for each one of those I have to compute the sum of all its neighbors, ie the pixels that belong to a window of radius rad centered on the pixel. I came up with three alternatives: The simplest way, the one that recomputes the window for each pixel The more optimized way that uses a queue to store the sums of the window columns and cycling through the columns of the matrix updates this queue by adding a new element and removing the oldes The even more optimized way that does not need to recompute the queue for each row but incrementally adjusts a previously saved one I implemented them in c++ using a queue for the second method and a combination of deques for the third (I need to iterate through their elements without destructing them) and scored their times to see if there was an actual improvement. it appears that the third method is indeed faster. Then I tried to port the code to Java (and I must admit that I'm not very comfortable with it). I used ArrayDeque for the second method and LinkedLists for the third resulting in the third being inefficient in time. Here is the simplest method in C++ (I'm not posting the java version since it is almost identical): void normalWindowing(int mat[][MAX], int cols, int rows, int rad){ int i, j; int h = 0; for (i = 0; i < rows; ++i) { for (j = 0; j < cols; j++) { h = 0; for (int ry =- rad; ry <= rad; ry++) { int y = i + ry; if (y >= 0 && y < rows) { for (int rx =- rad; rx <= rad; rx++) { int x = j + rx; if (x >= 0 && x < cols) { h += mat[y][x]; } } } } } } } Here is the second method (the one optimized through columns) in C++: void opt1Windowing(int mat[][MAX], int cols, int rows, int rad){ int i, j, h, y, col; queue<int>* q = NULL; for (i = 0; i < rows; ++i) { if (q != NULL) delete(q); q = new queue<int>(); h = 0; for (int rx = 0; rx <= rad; rx++) { if (rx < cols) { int mem = 0; for (int ry =- rad; ry <= rad; ry++) { y = i + ry; if (y >= 0 && y < rows) { mem += mat[y][rx]; } } q->push(mem); h += mem; } } for (j = 1; j < cols; j++) { col = j + rad; if (j - rad > 0) { h -= q->front(); q->pop(); } if (j + rad < cols) { int mem = 0; for (int ry =- rad; ry <= rad; ry++) { y = i + ry; if (y >= 0 && y < rows) { mem += mat[y][col]; } } q->push(mem); h += mem; } } } } And here is the Java version: public static void opt1Windowing(int [][] mat, int rad){ int i, j = 0, h, y, col; int cols = mat[0].length; int rows = mat.length; ArrayDeque<Integer> q = null; for (i = 0; i < rows; ++i) { q = new ArrayDeque<Integer>(); h = 0; for (int rx = 0; rx <= rad; rx++) { if (rx < cols) { int mem = 0; for (int ry =- rad; ry <= rad; ry++) { y = i + ry; if (y >= 0 && y < rows) { mem += mat[y][rx]; } } q.addLast(mem); h += mem; } } j = 0; for (j = 1; j < cols; j++) { col = j + rad; if (j - rad > 0) { h -= q.peekFirst(); q.pop(); } if (j + rad < cols) { int mem = 0; for (int ry =- rad; ry <= rad; ry++) { y = i + ry; if (y >= 0 && y < rows) { mem += mat[y][col]; } } q.addLast(mem); h += mem; } } } } I recognize this post will be a wall of text. Here is the third method in C++: void opt2Windowing(int mat[][MAX], int cols, int rows, int rad){ int i = 0; int j = 0; int h = 0; int hh = 0; deque< deque<int> *> * M = new deque< deque<int> *>(); for (int ry = 0; ry <= rad; ry++) { if (ry < rows) { deque<int> * q = new deque<int>(); M->push_back(q); for (int rx = 0; rx <= rad; rx++) { if (rx < cols) { int val = mat[ry][rx]; q->push_back(val); h += val; } } } } deque<int> * C = new deque<int>(M->front()->size()); deque<int> * Q = new deque<int>(M->front()->size()); deque<int> * R = new deque<int>(M->size()); deque< deque<int> *>::iterator mit; deque< deque<int> *>::iterator mstart = M->begin(); deque< deque<int> *>::iterator mend = M->end(); deque<int>::iterator rit; deque<int>::iterator rstart = R->begin(); deque<int>::iterator rend = R->end(); deque<int>::iterator cit; deque<int>::iterator cstart = C->begin(); deque<int>::iterator cend = C->end(); for (mit = mstart, rit = rstart; mit != mend, rit != rend; ++mit, ++rit) { deque<int>::iterator pit; deque<int>::iterator pstart = (* mit)->begin(); deque<int>::iterator pend = (* mit)->end(); for(cit = cstart, pit = pstart; cit != cend && pit != pend; ++cit, ++pit) { (* cit) += (* pit); (* rit) += (* pit); } } for (i = 0; i < rows; ++i) { j = 0; if (i - rad > 0) { deque<int>::iterator cit; deque<int>::iterator cstart = C->begin(); deque<int>::iterator cend = C->end(); deque<int>::iterator pit; deque<int>::iterator pstart = (M->front())->begin(); deque<int>::iterator pend = (M->front())->end(); for(cit = cstart, pit = pstart; cit != cend; ++cit, ++pit) { (* cit) -= (* pit); } deque<int> * k = M->front(); M->pop_front(); delete k; h -= R->front(); R->pop_front(); } int row = i + rad; if (row < rows && i > 0) { deque<int> * newQ = new deque<int>(); M->push_back(newQ); deque<int>::iterator cit; deque<int>::iterator cstart = C->begin(); deque<int>::iterator cend = C->end(); int rx; int tot = 0; for (rx = 0, cit = cstart; rx <= rad; rx++, ++cit) { if (rx < cols) { int val = mat[row][rx]; newQ->push_back(val); (* cit) += val; tot += val; } } R->push_back(tot); h += tot; } hh = h; copy(C->begin(), C->end(), Q->begin()); for (j = 1; j < cols; j++) { int col = j + rad; if (j - rad > 0) { hh -= Q->front(); Q->pop_front(); } if (j + rad < cols) { int val = 0; for (int ry =- rad; ry <= rad; ry++) { int y = i + ry; if (y >= 0 && y < rows) { val += mat[y][col]; } } hh += val; Q->push_back(val); } } } } And finally its Java version: public static void opt2Windowing(int [][] mat, int rad){ int cols = mat[0].length; int rows = mat.length; int i = 0; int j = 0; int h = 0; int hh = 0; LinkedList<LinkedList<Integer>> M = new LinkedList<LinkedList<Integer>>(); for (int ry = 0; ry <= rad; ry++) { if (ry < rows) { LinkedList<Integer> q = new LinkedList<Integer>(); M.addLast(q); for (int rx = 0; rx <= rad; rx++) { if (rx < cols) { int val = mat[ry][rx]; q.addLast(val); h += val; } } } } int firstSize = M.getFirst().size(); int mSize = M.size(); LinkedList<Integer> C = new LinkedList<Integer>(); LinkedList<Integer> Q = null; LinkedList<Integer> R = new LinkedList<Integer>(); for (int k = 0; k < firstSize; k++) { C.add(0); } for (int k = 0; k < mSize; k++) { R.add(0); } ListIterator<LinkedList<Integer>> mit; ListIterator<Integer> rit; ListIterator<Integer> cit; ListIterator<Integer> pit; for (mit = M.listIterator(), rit = R.listIterator(); mit.hasNext();) { Integer r = rit.next(); int rsum = 0; for (cit = C.listIterator(), pit = (mit.next()).listIterator(); cit.hasNext();) { Integer c = cit.next(); Integer p = pit.next(); rsum += p; cit.set(c + p); } rit.set(r + rsum); } for (i = 0; i < rows; ++i) { j = 0; if (i - rad > 0) { for(cit = C.listIterator(), pit = M.getFirst().listIterator(); cit.hasNext();) { Integer c = cit.next(); Integer p = pit.next(); cit.set(c - p); } M.removeFirst(); h -= R.getFirst(); R.removeFirst(); } int row = i + rad; if (row < rows && i > 0) { LinkedList<Integer> newQ = new LinkedList<Integer>(); M.addLast(newQ); int rx; int tot = 0; for (rx = 0, cit = C.listIterator(); rx <= rad; rx++) { if (rx < cols) { Integer c = cit.next(); int val = mat[row][rx]; newQ.addLast(val); cit.set(c + val); tot += val; } } R.addLast(tot); h += tot; } hh = h; Q = new LinkedList<Integer>(); Q.addAll(C); for (j = 1; j < cols; j++) { int col = j + rad; if (j - rad > 0) { hh -= Q.getFirst(); Q.pop(); } if (j + rad < cols) { int val = 0; for (int ry =- rad; ry <= rad; ry++) { int y = i + ry; if (y >= 0 && y < rows) { val += mat[y][col]; } } hh += val; Q.addLast(val); } } } } I guess that most is due to the poor choice of the LinkedList in Java and to the lack of an efficient (not shallow) copy method between two LinkedList. How can I improve the third Java method? Am I doing some conceptual error? As always, any criticisms is welcome. UPDATE Even if it does not solve the issue, using ArrayLists, as being suggested, instead of LinkedList improves the third method. The second one performs still better (but when the number of rows and columns of the matrix is lower than 300 and the window radius is small the first unoptimized method is the fastest in Java)

    Read the article

< Previous Page | 51 52 53 54 55