Search Results

Search found 3438 results on 138 pages for 'nonlinear optimization'.

Page 55/138 | < Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >

  • Optimizing processing and management of large Java data arrays

    - by mikera
    I'm writing some pretty CPU-intensive, concurrent numerical code that will process large amounts of data stored in Java arrays (e.g. lots of double[100000]s). Some of the algorithms might run millions of times over several days so getting maximum steady-state performance is a high priority. In essence, each algorithm is a Java object that has an method API something like: public double[] runMyAlgorithm(double[] inputData); or alternatively a reference could be passed to the array to store the output data: public runMyAlgorithm(double[] inputData, double[] outputData); Given this requirement, I'm trying to determine the optimal strategy for allocating / managing array space. Frequently the algorithms will need large amounts of temporary storage space. They will also take large arrays as input and create large arrays as output. Among the options I am considering are: Always allocate new arrays as local variables whenever they are needed (e.g. new double[100000]). Probably the simplest approach, but will produce a lot of garbage. Pre-allocate temporary arrays and store them as final fields in the algorithm object - big downside would be that this would mean that only one thread could run the algorithm at any one time. Keep pre-allocated temporary arrays in ThreadLocal storage, so that a thread can use a fixed amount of temporary array space whenever it needs it. ThreadLocal would be required since multiple threads will be running the same algorithm simultaneously. Pass around lots of arrays as parameters (including the temporary arrays for the algorithm to use). Not good since it will make the algorithm API extremely ugly if the caller has to be responsible for providing temporary array space.... Allocate extremely large arrays (e.g. double[10000000]) but also provide the algorithm with offsets into the array so that different threads will use a different area of the array independently. Will obviously require some code to manage the offsets and allocation of the array ranges. Any thoughts on which approach would be best (and why)?

    Read the article

  • Complicated idea - how to create car racing for my RPG game's players

    - by Donator
    So, I want to create car racing for my RPG game's players. Player can create race and choose how many participants can participate in race. After race is being created, other people can join it. When the maximum participants are collected, race begins. My idea, when the last participant joins, then instantly choose the winner (who's car is the best, that person wins), but how can I do it? If I choose to pick the winner after the last participant joins, then I have to put many queries in one page (select data from table, then delete the race, then select players' cars' statistics and pick the winner and then again, using mysql, send message to everyone). But this idea is really not optimal and it will lag cruelly for that last person. Maybe you have any ideas how I can avoid lag and make it more optimal. Thank you very much.

    Read the article

  • mysql subselect alternative

    - by Arnold
    Hi, Lets say I am analyzing how high school sports records affect school attendance. So I have a table in which each row corresponds to a high school basketball game. Each game has an away team id and a home team id (FK to another "team table") and a home score and an away score and a date. I am writing a query that matches attendance with this seasons basketball games. My sample output will be (#_students_missed_class, day_of_game, home_team, away_team, home_team_wins_this_season, away_team_wins_this_season) I now want to add how each team did the previous season to my analysis. Well, I have their previous season stored in the game table but i should be able to accomplish that with a subselect. So in my main select statement I add the subselect: SELECT COUNT(*) FROM game_table WHERE game_table.date BETWEEN 'start of previous season' AND 'end of previous season' AND ( (game_table.home_team = team_table.id AND game_table.home_score > game_table.away_score) OR (game_table.away_team = team_table.id AND game_table.away_score > game_table.home_score)) In this case team-table.id refers to the id of the home_team so I now have all their wins calculated from the previous year. This method of calculation is neither time nor resource intensive. The Explain SQL shows that I have ALL in the Type field and I am not using a Key and the query times out. I'm not sure how I can accomplish a more efficient query with a subselect. It seems proposterously inefficient to have to write 4 of these queries (for home wins, home losses, away wins, away losses). I am sure this could be more lucid. I'll absolutely add color tomorrow if anyone has questions

    Read the article

  • Benefits of 'Optimize code' option in Visual Studio build

    - by gt
    Much of our C# release code is built with the 'Optimize code' option turned off. I believe this is to allow code built in Release mode to be debugged more easily. Given that we are creating fairly simple desktop software which connects to backend Web Services, (ie. not a particularly processor-intensive application) then what if any sort of performance hit might be expected? And is any particular platform likely to be worse affected? Eg. multi-processor / 64 bit.

    Read the article

  • Optimize date query for large child tables: GiST or GIN?

    - by Dave Jarvis
    Problem 72 child tables, each having a year index and a station index, are defined as follows: CREATE TABLE climate.measurement_12_013 ( -- Inherited from table climate.measurement_12_013: id bigint NOT NULL DEFAULT nextval('climate.measurement_id_seq'::regclass), -- Inherited from table climate.measurement_12_013: station_id integer NOT NULL, -- Inherited from table climate.measurement_12_013: taken date NOT NULL, -- Inherited from table climate.measurement_12_013: amount numeric(8,2) NOT NULL, -- Inherited from table climate.measurement_12_013: category_id smallint NOT NULL, -- Inherited from table climate.measurement_12_013: flag character varying(1) NOT NULL DEFAULT ' '::character varying, CONSTRAINT measurement_12_013_category_id_check CHECK (category_id = 7), CONSTRAINT measurement_12_013_taken_check CHECK (date_part('month'::text, taken)::integer = 12) ) INHERITS (climate.measurement) CREATE INDEX measurement_12_013_s_idx ON climate.measurement_12_013 USING btree (station_id); CREATE INDEX measurement_12_013_y_idx ON climate.measurement_12_013 USING btree (date_part('year'::text, taken)); (Foreign key constraints to be added later.) The following query runs abysmally slow due to a full table scan: SELECT count(1) AS measurements, avg(m.amount) AS amount FROM climate.measurement m WHERE m.station_id IN ( SELECT s.id FROM climate.station s, climate.city c WHERE -- For one city ... -- c.id = 5182 AND -- Where stations are within an elevation range ... -- s.elevation BETWEEN 0 AND 3000 AND 6371.009 * SQRT( POW(RADIANS(c.latitude_decimal - s.latitude_decimal), 2) + (COS(RADIANS(c.latitude_decimal + s.latitude_decimal) / 2) * POW(RADIANS(c.longitude_decimal - s.longitude_decimal), 2)) ) <= 50 ) AND -- -- Begin extracting the data from the database. -- -- The data before 1900 is shaky; insufficient after 2009. -- extract( YEAR FROM m.taken ) BETWEEN 1900 AND 2009 AND -- Whittled down by category ... -- m.category_id = 1 AND m.taken BETWEEN -- Start date. (extract( YEAR FROM m.taken )||'-01-01')::date AND -- End date. Calculated by checking to see if the end date wraps -- into the next year. If it does, then add 1 to the current year. -- (cast(extract( YEAR FROM m.taken ) + greatest( -1 * sign( (extract( YEAR FROM m.taken )||'-12-31')::date - (extract( YEAR FROM m.taken )||'-01-01')::date ), 0 ) AS text)||'-12-31')::date GROUP BY extract( YEAR FROM m.taken ) The sluggishness comes from this part of the query: m.taken BETWEEN /* Start date. */ (extract( YEAR FROM m.taken )||'-01-01')::date AND /* End date. Calculated by checking to see if the end date wraps into the next year. If it does, then add 1 to the current year. */ (cast(extract( YEAR FROM m.taken ) + greatest( -1 * sign( (extract( YEAR FROM m.taken )||'-12-31')::date - (extract( YEAR FROM m.taken )||'-01-01')::date ), 0 ) AS text)||'-12-31')::date The HashAggregate from the plan shows a cost of 10006220141.11, which is, I suspect, on the astronomically huge side. There is a full table scan on the measurement table (itself having neither data nor indexes) being performed. The table aggregates 237 million rows from its child tables. Question What is the proper way to index the dates to avoid full table scans? Options I have considered: GIN GiST Rewrite the WHERE clause Separate year_taken, month_taken, and day_taken columns to the tables What are your thoughts? Thank you!

    Read the article

  • set difference in SQL query

    - by TheObserver
    I'm trying to select records with a statement SELECT * FROM A WHERE LEFT(B, 5) IN (SELECT * FROM (SELECT LEFT(A.B,5), COUNT(DISTINCT A.C) c_count FROM A GROUP BY LEFT(B,5) ) p1 WHERE p1.c_count = 1 ) AND C IN (SELECT * FROM (SELECT A.C , COUNT(DISTINCT LEFT(A.B,5)) b_count FROM A GROUP BY C ) p2 WHERE p2.b_count = 1) which takes a long time to run ~15 sec. Is there a better way of writing this SQL?

    Read the article

  • cached schwartzian transform

    - by davidk01
    I'm going through "Intermediate Perl" and it's pretty cool. I just finished the section on "The Schwartzian Transform" and after it sunk in I started to wonder why the transform doesn't use a cache. In lists that have several repeated values the transform recomputes the value for each one so I thought why not use a hash to cache results. Here' some code: # a place to keep our results my %cache; # the transformation we are interested in sub foo { # expensive operations } # some data my @unsorted_list = ....; # sorting with the help of the cache my @sorted_list = sort { ($cache{$a} or $cache{$a} = &foo($a)) <=> ($cache{$b} or $cache{$b} = &foo($b)) } @unsorted_list; Am I missing something? Why isn't the cached version of the Schwartzian transform listed in books and in general just better circulated because on first glance I think the cached version should be more efficient?

    Read the article

  • ASP.NET 4.5 Bundling in Debug Mode - Stale Resources

    - by RPM1984
    Is there any way we can make the ASP.NET 4.5 Bundling functionality generate GUID's as part of the querystring when running in debug mode (e.g bundling turned OFF). The problem is when developing locally, the scripts/CSS files are generated like this: <script type="text/javascript" src="/Content/Scripts/myscript.js" /> So if i change that file, i need to do a hard-refresh (sometimes a few times) to get the file to be picked up by the browser - annoying. Is there any way we can make it render out like this: <script type="text/javascript" src="/Content/Scripts/myscript.js?v=x" /> Where x is a GUID (e.g always unique). Ideas? I'm on ASP.NET MVC 4.

    Read the article

  • Grand Central Strategy for Opening Multiple Files

    - by user276632
    I have a working implementation using Grand Central dispatch queues that (1) opens a file and computes an OpenSSL DSA hash on "queue1", (2) writing out the hash to a new "side car" file for later verification on "queue2". I would like to open multiple files at the same time, but based on some logic that doesn't "choke" the OS by having 100s of files open and exceeding the hard drive's sustainable output. Photo browsing applications such as iPhoto or Aperture seem to open multiple files and display them, so I'm assuming this can be done. I'm assuming the biggest limitation will be disk I/O, as the application can (in theory) read and write multiple files simultaneously. Any suggestions? TIA

    Read the article

  • Why better isolation level means better performance in SQL Server

    - by Oleg Zhylin
    When measuring performance on my query I came up with a dependency between isolation level and elapsed time that was surprising to me READUNCOMMITTED - 409024 READCOMMITTED - 368021 REPEATABLEREAD - 358019 SERIALIZABLE - 348019 Left column is table hint, and the right column is elapsed time in microseconds (sys.dm_exec_query_stats.total_elapsed_time). Why better isolation level gives better performance? This is a development machine and no concurrency whatsoever happens. I would expect READUNCOMMITTED to be the fasted due to less locking overhead. Update: I did measure this with DBCC DROPCLEANBUFFERS DBCC FREEPROCCACHE issued and Profiler confirms there're no cache hits happening. Update2: The query in question is an OLAP one and we need to run it as fast as possible. Closing the production server from outside world to get the computation done is not out of question if this gives performance benefits.

    Read the article

  • Is it possible to do A/B testing by page rather than by individual?

    - by mojones
    Lets say I have a simple ecommerce site that sells 100 different t-shirt designs. I want to do some a/b testing to optimise my sales. Let's say I want to test two different "buy" buttons. Normally, I would use AB testing to randomly assign each visitor to see button A or button B (and try to ensure that that the user experience is consistent by storing that assignment in session, cookies etc). Would it be possible to take a different approach and instead, randomly assign each of my 100 designs to use button A or B, and measure the conversion rate as (number of sales of design n) / (pageviews of design n) This approach would seem to have some advantages; I would not have to worry about keeping the user experience consistent - a given page (e.g. www.example.com/viewdesign?id=6) would always return the same html. If I were to test different prices, it would be far less distressing to the user to see different prices for different designs than different prices for the same design on different computers. I also wonder whether it might be better for SEO - my suspicion is that Google would "prefer" that it always sees the same html when crawling a page. Obviously this approach would only be suitable for a limited number of sites; I was just wondering if anyone has tried it?

    Read the article

  • gcc memory alignment pragma

    - by aaa
    hello. Does gcc have memory alignment pragma, akin #pragma vector aligned in Intel compiler? I would like to tell compiler to optimize particular loop using aligned loads/store instructions. Thanks

    Read the article

  • Access cost of dynamically created objects with dynamically allocated members

    - by user343547
    I'm building an application which will have dynamic allocated objects of type A each with a dynamically allocated member (v) similar to the below class class A { int a; int b; int* v; }; where: The memory for v will be allocated in the constructor. v will be allocated once when an object of type A is created and will never need to be resized. The size of v will vary across all instances of A. The application will potentially have a huge number of such objects and mostly need to stream a large number of these objects through the CPU but only need to perform very simple computations on the members variables. Could having v dynamically allocated could mean that an instance of A and its member v are not located together in memory? What tools and techniques can be used to test if this fragmentation is a performance bottleneck? If such fragmentation is a performance issue, are there any techniques that could allow A and v to allocated in a continuous region of memory? Or are there any techniques to aid memory access such as pre-fetching scheme? for example get an object of type A operate on the other member variables whilst pre-fetching v. If the size of v or an acceptable maximum size could be known at compile time would replacing v with a fixed sized array like int v[max_length] lead to better performance? The target platforms are standard desktop machines with x86/AMD64 processors, Windows or Linux OSes and compiled using either GCC or MSVC compilers.

    Read the article

  • Random Complete System Unresponsiveness Running Mathematical Functions

    - by Computer Guru
    I have a program that loads a file (anywhere from 10MB to 5GB) a chunk at a time (ReadFile), and for each chunk performs a set of mathematical operations (basically calculates the hash). After calculating the hash, it stores info about the chunk in an STL map (basically <chunkID, hash>) and then writes the chunk itself to another file (WriteFile). That's all it does. This program will cause certain PCs to choke and die. The mouse begins to stutter, the task manager takes 2 min to show, ctrl+alt+del is unresponsive, running programs are slow.... the works. I've done literally everything I can think of to optimize the program, and have triple-checked all objects. What I've done: Tried different (less intensive) hashing algorithms. Switched all allocations to nedmalloc instead of the default new operator Switched from stl::map to unordered_set, found the performance to still be abysmal, so I switched again to Google's dense_hash_map. Converted all objects to store pointers to objects instead of the objects themselves. Caching all Read and Write operations. Instead of reading a 16k chunk of the file and performing the math on it, I read 4MB into a buffer and read 16k chunks from there instead. Same for all write operations - they are coalesced into 4MB blocks before being written to disk. Run extensive profiling with Visual Studio 2010, AMD Code Analyst, and perfmon. Set the thread priority to THREAD_MODE_BACKGROUND_BEGIN Set the thread priority to THREAD_PRIORITY_IDLE Added a Sleep(100) call after every loop. Even after all this, the application still results in a system-wide hang on certain machines under certain circumstances. Perfmon and Process Explorer show minimal CPU usage (with the sleep), no constant reads/writes from disk, few hard pagefaults (and only ~30k pagefaults in the lifetime of the application on a 5GB input file), little virtual memory (never more than 150MB), no leaked handles, no memory leaks. The machines I've tested it on run Windows XP - Windows 7, x86 and x64 versions included. None have less than 2GB RAM, though the problem is always exacerbated under lower memory conditions. I'm at a loss as to what to do next. I don't know what's causing it - I'm torn between CPU or Memory as the culprit. CPU because without the sleep and under different thread priorities the system performances changes noticeably. Memory because there's a huge difference in how often the issue occurs when using unordered_set vs Google's dense_hash_map. What's really weird? Obviously, the NT kernel design is supposed to prevent this sort of behavior from ever occurring (a user-mode application driving the system to this sort of extreme poor performance!?)..... but when I compile the code and run it on OS X or Linux (it's fairly standard C++ throughout) it performs excellently even on poor machines with little RAM and weaker CPUs. What am I supposed to do next? How do I know what the hell it is that Windows is doing behind the scenes that's killing system performance, when all the indicators are that the application itself isn't doing anything extreme? Any advice would be most welcome.

    Read the article

  • How does loop address alignment affect the speed on Intel x86_64?

    - by Alexander Gololobov
    I'm seeing 15% performance degradation of the same C++ code compiled to exactly same machine instructions but located on differently aligned addresses. When my tiny main loop starts at 0x415220 it's faster then when it is at 0x415250. I'm running this on Intel Core2 Duo. I use gcc 4.4.5 on x86_64 Ubuntu. Can anybody explain the cause of slowdown and how I can force gcc to optimally align the loop? Here is the disassembly for both cases with profiler annotation: 415220 576 12.56% |XXXXXXXXXXXXXX 48 c1 eb 08 shr $0x8,%rbx 415224 110 2.40% |XX 0f b6 c3 movzbl %bl,%eax 415227 0.00% | 41 0f b6 04 00 movzbl (%r8,%rax,1),%eax 41522c 40 0.87% | 48 8b 04 c1 mov (%rcx,%rax,8),%rax 415230 806 17.58% |XXXXXXXXXXXXXXXXXXX 4c 63 f8 movslq %eax,%r15 415233 186 4.06% |XXXX 48 c1 e8 20 shr $0x20,%rax 415237 102 2.22% |XX 4c 01 f9 add %r15,%rcx 41523a 414 9.03% |XXXXXXXXXX a8 0f test $0xf,%al 41523c 680 14.83% |XXXXXXXXXXXXXXXX 74 45 je 415283 ::Run(char const*, char const*)+0x4b3 41523e 0.00% | 41 89 c7 mov %eax,%r15d 415241 0.00% | 41 83 e7 01 and $0x1,%r15d 415245 0.00% | 41 83 ff 01 cmp $0x1,%r15d 415249 0.00% | 41 89 c7 mov %eax,%r15d 415250 679 13.05% |XXXXXXXXXXXXXXXX 48 c1 eb 08 shr $0x8,%rbx 415254 124 2.38% |XX 0f b6 c3 movzbl %bl,%eax 415257 0.00% | 41 0f b6 04 00 movzbl (%r8,%rax,1),%eax 41525c 43 0.83% |X 48 8b 04 c1 mov (%rcx,%rax,8),%rax 415260 828 15.91% |XXXXXXXXXXXXXXXXXXX 4c 63 f8 movslq %eax,%r15 415263 388 7.46% |XXXXXXXXX 48 c1 e8 20 shr $0x20,%rax 415267 141 2.71% |XXX 4c 01 f9 add %r15,%rcx 41526a 634 12.18% |XXXXXXXXXXXXXXX a8 0f test $0xf,%al 41526c 749 14.39% |XXXXXXXXXXXXXXXXXX 74 45 je 4152b3 ::Run(char const*, char const*)+0x4c3 41526e 0.00% | 41 89 c7 mov %eax,%r15d 415271 0.00% | 41 83 e7 01 and $0x1,%r15d 415275 0.00% | 41 83 ff 01 cmp $0x1,%r15d 415279 0.00% | 41 89 c7 mov %eax,%r15d

    Read the article

  • PostgreSQL - fetch the row which has the Max value for a column

    - by Joshua Berry
    I'm dealing with a Postgres table (called "lives") that contains records with columns for time_stamp, usr_id, transaction_id, and lives_remaining. I need a query that will give me the most recent lives_remaining total for each usr_id There are multiple users (distinct usr_id's) time_stamp is not a unique identifier: sometimes user events (one by row in the table) will occur with the same time_stamp. trans_id is unique only for very small time ranges: over time it repeats remaining_lives (for a given user) can both increase and decrease over time example: time_stamp|lives_remaining|usr_id|trans_id ----------------------------------------- 07:00 | 1 | 1 | 1 09:00 | 4 | 2 | 2 10:00 | 2 | 3 | 3 10:00 | 1 | 2 | 4 11:00 | 4 | 1 | 5 11:00 | 3 | 1 | 6 13:00 | 3 | 3 | 1 As I will need to access other columns of the row with the latest data for each given usr_id, I need a query that gives a result like this: time_stamp|lives_remaining|usr_id|trans_id ----------------------------------------- 11:00 | 3 | 1 | 6 10:00 | 1 | 2 | 4 13:00 | 3 | 3 | 1 As mentioned, each usr_id can gain or lose lives, and sometimes these timestamped events occur so close together that they have the same timestamp! Therefore this query won't work: SELECT b.time_stamp,b.lives_remaining,b.usr_id,b.trans_id FROM (SELECT usr_id, max(time_stamp) AS max_timestamp FROM lives GROUP BY usr_id ORDER BY usr_id) a JOIN lives b ON a.max_timestamp = b.time_stamp Instead, I need to use both time_stamp (first) and trans_id (second) to identify the correct row. I also then need to pass that information from the subquery to the main query that will provide the data for the other columns of the appropriate rows. This is the hacked up query that I've gotten to work: SELECT b.time_stamp,b.lives_remaining,b.usr_id,b.trans_id FROM (SELECT usr_id, max(time_stamp || '*' || trans_id) AS max_timestamp_transid FROM lives GROUP BY usr_id ORDER BY usr_id) a JOIN lives b ON a.max_timestamp_transid = b.time_stamp || '*' || b.trans_id ORDER BY b.usr_id Okay, so this works, but I don't like it. It requires a query within a query, a self join, and it seems to me that it could be much simpler by grabbing the row that MAX found to have the largest timestamp and trans_id. The table "lives" has tens of millions of rows to parse, so I'd like this query to be as fast and efficient as possible. I'm new to RDBM and Postgres in particular, so I know that I need to make effective use of the proper indexes. I'm a bit lost on how to optimize. I found a similar discussion here. Can I perform some type of Postgres equivalent to an Oracle analytic function? Any advice on accessing related column information used by an aggregate function (like MAX), creating indexes, and creating better queries would be much appreciated! P.S. You can use the following to create my example case: create TABLE lives (time_stamp timestamp, lives_remaining integer, usr_id integer, trans_id integer); insert into lives values ('2000-01-01 07:00', 1, 1, 1); insert into lives values ('2000-01-01 09:00', 4, 2, 2); insert into lives values ('2000-01-01 10:00', 2, 3, 3); insert into lives values ('2000-01-01 10:00', 1, 2, 4); insert into lives values ('2000-01-01 11:00', 4, 1, 5); insert into lives values ('2000-01-01 11:00', 3, 1, 6); insert into lives values ('2000-01-01 13:00', 3, 3, 1);

    Read the article

  • Does Delphi really handle dynamic classes better than static?

    - by John
    Hello, I was told more than once that Delphi handles dynamic classes better than static.Thereby using the following: type Tsomeclass=class(TObject) private procedure proc1; public someint:integer; procedure proc2; end; var someclass:TSomeclass; implementation ... initialization someclass:=TSomeclass.Create; finalization someclass.Free; rather than type Tsomeclass=class private class procedure proc1; public var someint:integer; class procedure proc2; end; 90% of the classes in the project I'm working on have and need only one instance.Do I really have to use the first way for using those classes? Is it better optimized,handled by Delphi? Sorry,I have no arguments to backup this hypothesis,but I want an expert's opinion. Thanks in advance!

    Read the article

  • SQL Table Setup Advice

    - by Ozzy
    Hi all. Basically I have an xml feed from an offsite server. The xml feed has one parameter ?value=n now N can only be between 1 and 30 What ever value i pick, there will always be 4000 rows returned from the XML file. My script will call this xml file 30 times for each value once a day. So thats 120000 rows. I will be doing quite complicated queries on these rows. But the main thing is I will always filter by value first so SELECT * WHERE value = 'N' etc. That will ALWAYS be used. Now is it better to have one table where all 120k rows are stored? or 30 tables were 4k rows are stored? EDIT: the SQL database in question will be MySQL

    Read the article

  • Why doesn't gcc remove this check of a non-volatile variable?

    - by Thomas
    This question is mostly academic. I ask out of curiosity, not because this poses an actual problem for me. Consider the following incorrect C program. #include <signal.h> #include <stdio.h> static int running = 1; void handler(int u) { running = 0; } int main() { signal(SIGTERM, handler); while (running) ; printf("Bye!\n"); return 0; } This program is incorrect because the handler interrupts the program flow, so running can be modified at any time and should therefore be declared volatile. But let's say the programmer forgot that. gcc 4.3.3, with the -O3 flag, compiles the loop body (after one initial check of the running flag) down to the infinite loop .L7: jmp .L7 which was to be expected. Now we put something trivial inside the while loop, like: while (running) putchar('.'); And suddenly, gcc does not optimize the loop condition anymore! The loop body's assembly now looks like this (again at -O3): .L7: movq stdout(%rip), %rsi movl $46, %edi call _IO_putc movl running(%rip), %eax testl %eax, %eax jne .L7 We see that running is re-loaded from memory each time through the loop; it is not even cached in a register. Apparently gcc now thinks that the value of running could have changed. So why does gcc suddenly decide that it needs to re-check the value of running in this case?

    Read the article

  • What is the best algorithm for this array-comparison problem?

    - by mark
    What is the most efficient for speed algorithm to solve the following problem? Given 6 arrays, D1,D2,D3,D4,D5 and D6 each containing 6 numbers like: D1[0] = number D2[0] = number ...... D6[0] = number D1[1] = another number D2[1] = another number .... ..... .... ...... .... D1[5] = yet another number .... ...... .... Given a second array ST1, containing 1 number: ST1[0] = 6 Given a third array ans, containing 6 numbers: ans[0] = 3, ans[1] = 4, ans[2] = 5, ......ans[5] = 8 Using as index for the arrays D1,D2,D3,D4,D5 and D6, the number that goes from 0, to the number stored in ST1[0] minus one, in this example 6, so from 0 to 6-1, compare each res array against each D array My algorithm so far is: I tried to keep everything unlooped as much as possible. EML := ST1[0] //number contained in ST1[0] EML1 := 0 //start index for the arrays D While EML1 < EML if D1[ELM1] = ans[0] goto two if D2[ELM1] = ans[0] goto two if D3[ELM1] = ans[0] goto two if D4[ELM1] = ans[0] goto two if D5[ELM1] = ans[0] goto two if D6[ELM1] = ans[0] goto two ELM1 = ELM1 + 1 return 0 //If the ans[0] number is not found in either D1[0-6], D2[0-6].... D6[0-6] return 0 which will then exclude ans[0-6] numbers two: EML1 := 0 start index for arrays Ds While EML1 < EML if D1[ELM1] = ans[1] goto three if D2[ELM1] = ans[1] goto three if D3[ELM1] = ans[1] goto three if D4[ELM1] = ans[1] goto three if D5[ELM1] = ans[1] goto three if D6[ELM1] = ans[1] goto three ELM1 = ELM1 + 1 return 0 //If the ans[1] number is not found in either D1[0-6], D2[0-6].... D6[0-6] return 0 which will then exclude ans[0-6] numbers three: EML1 := 0 start index for arrays Ds While EML1 < EML if D1[ELM1] = ans[2] goto four if D2[ELM1] = ans[2] goto four if D3[ELM1] = ans[2] goto four if D4[ELM1] = ans[2] goto four if D5[ELM1] = ans[2] goto four if D6[ELM1] = ans[2] goto four ELM1 = ELM1 + 1 return 0 //If the ans[2] number is not found in either D1[0-6], D2[0-6].... D6[0-6] return 0 which will then exclude ans[0-6] numbers four: EML1 := 0 start index for arrays Ds While EML1 < EML if D1[ELM1] = ans[3] goto five if D2[ELM1] = ans[3] goto five if D3[ELM1] = ans[3] goto five if D4[ELM1] = ans[3] goto five if D5[ELM1] = ans[3] goto five if D6[ELM1] = ans[3] goto five ELM1 = ELM1 + 1 return 0 //If the ans[3] number is not found in either D1[0-6], D2[0-6].... D6[0-6] return 0 which will then exclude ans[0-6] numbers five: EML1 := 0 start index for arrays Ds While EML1 < EML if D1[ELM1] = ans[4] goto six if D2[ELM1] = ans[4] goto six if D3[ELM1] = ans[4] goto six if D4[ELM1] = ans[4] goto six if D5[ELM1] = ans[4] goto six if D6[ELM1] = ans[4] goto six ELM1 = ELM1 + 1 return 0 //If the ans[4] number is not found in either D1[0-6], D2[0-6].... D6[0-6] return 0 which will then exclude ans[0-6] numbers six: EML1 := 0 start index for arrays Ds While EML1 < EML if D1[ELM1] = ans[5] return 1 ////If the ans[1] number is not found in either D1[0-6]..... if D2[ELM1] = ans[5] return 1 which will then include ans[0-6] numbers return 1 if D3[ELM1] = ans[5] return 1 if D4[ELM1] = ans[5] return 1 if D5[ELM1] = ans[5] return 1 if D6[ELM1] = ans[5] return 1 ELM1 = ELM1 + 1 return 0 As language of choice, it would be pure c

    Read the article

  • Can anyone recommend a decent tool for optimizing images other than Photoshop

    - by toomanyairmiles
    Can anyone recommend a decent tool for optimising images other than adobe photoshop, the gimp etc? I'm looking to optimise images for the web preferably online and free. Basically I have a client who can't install additional software on their work PC but needs to optimise photographs and other images for their website and is presently uploading 1 or 2 Mb files. On a personal level I'm interested to see what other people are using...

    Read the article

  • Does the .NET CLR Really Optimize for the Current Processor

    - by dewald
    When I read about the performance of JITted languages like C# or Java, authors usually say that they should/could theoretically outperform many native-compiled applications. The theory being that native applications are usually just compiled for a processor family (like x86), so the compiler cannot make certain optimizations as they may not truly be optimizations on all processors. On the other hand, the CLR can make processor-specific optimizations during the JIT process. Does anyone know if Microsoft's (or Mono's) CLR actually performs processor-specific optimizations during the JIT process? If so, what kind of optimizations?

    Read the article

  • efficacy of register allocation algorithms!

    - by aksci
    i'm trying to do a research/project on register allocation using graph coloring where i am to test the efficiency of different optimizing register allocation algorithms in different scenarios. how do i start? what are the prerequisites and the grounds with which i can test them. what all algos can i use? thank you!

    Read the article

  • help optimize sql query

    - by msony
    I have tracking table tbl_track with id, session_id, created_date fields I need count unique session_id for one day here what i got: select count(0) from ( select distinct session_id from tbl_track where created_date between getdate()-1 and getdate() group by session_id )tbl im feeling that it could be better solution for it

    Read the article

< Previous Page | 51 52 53 54 55 56 57 58 59 60 61 62  | Next Page >