Search Results

Search found 26158 results on 1047 pages for 'google panda algorithm'.

Page 561/1047 | < Previous Page | 557 558 559 560 561 562 563 564 565 566 567 568  | Next Page >

  • creating the icalendar feed and accessing it via webcal: protocal

    - by Sagar
    Hi i completed creating i calendar feed in asp.net mvc.Basically the op is the file with .ics extensions.I am able to open my file in mozilla sunbird(calendar reader software) and view the milestones lists.Now when i want to open it with google calendar i get an error.How can i synchronize mi ical file with google calendar.Do i need to use webcal:\ protocol to achive that.Basically my feed link should apper some thing like this webcal://proj2009.basecamphq.com/feed/global_ical?token=457bd123e18d instead of controller/action/id(which i have now).There aint enough resource on the web for this one.Anyone pls help. Thanks in Advance.

    Read the article

  • perl xml parser get xml content within xml

    - by user391986
    How can I use XMLParser to get the item-@url, item-@replace and item-"value inside" for the content as a string of the node where item-@cone="one"? <cstep> <item cone="one" url="http://google.com/{ccc}/cthree" replace="{ccc}"> <itemsub conesub="conesub"> <itemsubsub conesubsub="conesubsub" /> </itemsub> </item> <item cone="two" url="http://google.com/{ccc}/cthree" replace="{ccc}"> <itemsub conesub="conesub"> <itemsubsub conesubsub="conesubsub" /> </itemsub> </item> </cstep>

    Read the article

  • How to resovle javax.mail.AuthenticationFailedException issue?

    - by jl
    Hi, I am doing a sendMail Servlet with JavaMail. I have javax.mail.AuthenticationFailedException on my output. Can anyone please help me out? Thanks. sendMailServlet code: try { String host = "smtp.gmail.com"; String from = "[email protected]"; String pass = "pass"; Properties props = System.getProperties(); props.put("mail.smtp.starttls.enable", "true"); props.put("mail.smtp.host", host); props.put("mail.smtp.user", from); props.put("mail.smtp.password", pass); props.put("mail.smtp.port", "587"); props.put("mail.smtp.auth", "true"); props.put("mail.debug", "true"); Session session = Session.getDefaultInstance(props, null); MimeMessage message = new MimeMessage(session); Address fromAddress = new InternetAddress(from); Address toAddress = new InternetAddress("[email protected]"); message.setFrom(fromAddress); message.setRecipient(Message.RecipientType.TO, toAddress); message.setSubject("Testing JavaMail"); message.setText("Welcome to JavaMail"); Transport transport = session.getTransport("smtp"); transport.connect(host, from, pass); message.saveChanges(); Transport.send(message); transport.close(); }catch(Exception ex){ out.println("<html><head></head><body>"); out.println("ERROR: " + ex); out.println("</body></html>"); } Output on GlassFish 2.1: DEBUG SMTP: trying to connect to host "smtp.gmail.com", port 587, isSSL false 220 mx.google.com ESMTP 36sm10907668yxh.13 DEBUG SMTP: connected to host "smtp.gmail.com", port: 587 EHLO platform-4cfaca 250-mx.google.com at your service, [203.126.159.130] 250-SIZE 35651584 250-8BITMIME 250-STARTTLS 250-ENHANCEDSTATUSCODES 250 PIPELINING DEBUG SMTP: Found extension "SIZE", arg "35651584" DEBUG SMTP: Found extension "8BITMIME", arg "" DEBUG SMTP: Found extension "STARTTLS", arg "" DEBUG SMTP: Found extension "ENHANCEDSTATUSCODES", arg "" DEBUG SMTP: Found extension "PIPELINING", arg "" STARTTLS 220 2.0.0 Ready to start TLS EHLO platform-4cfaca 250-mx.google.com at your service, [203.126.159.130] 250-SIZE 35651584 250-8BITMIME 250-AUTH LOGIN PLAIN 250-ENHANCEDSTATUSCODES 250 PIPELINING DEBUG SMTP: Found extension "SIZE", arg "35651584" DEBUG SMTP: Found extension "8BITMIME", arg "" DEBUG SMTP: Found extension "AUTH", arg "LOGIN PLAIN" DEBUG SMTP: Found extension "ENHANCEDSTATUSCODES", arg "" DEBUG SMTP: Found extension "PIPELINING", arg "" DEBUG SMTP: Attempt to authenticate AUTH LOGIN 334 VXNlcm5hbWU6 aWpveWNlbGVvbmdAZ21haWwuY29t 334 UGFzc3dvcmQ6 MTIzNDU2Nzhf 235 2.7.0 Accepted DEBUG: getProvider() returning javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Sun Microsystems, Inc] DEBUG SMTP: useEhlo true, useAuth true

    Read the article

  • Unable to resolve class in build.gradle using Android Studio 0.60/Gradle 0.11

    - by saywhatnow
    Established app working fine using Android Studio 0.5.9/ Gradle 0.9 but upgrading to Android Studio 0.6.0/ Gradle 0.11 causes the error below. Somehow Studio seems to have lost the ability to resolve the android tools import at the top of the build.gradle file. Anyone got any ideas on how to solve this? build file 'Users/[me]/Repositories/[project]/[module]/build.gradle': 1: unable to resolve class com.android.builder.DefaultManifestParser @ line 1, column 1. import com.android.builder.DefaultManifestParser 1 error at org.codehaus.groovy.control.ErrorCollector.failIfErrors(ErrorCollector.java:302) at org.codehaus.groovy.control.CompilationUnit.applyToSourceUnits(CompilationUnit.java:858) at org.codehaus.groovy.control.CompilationUnit.doPhaseOperation(CompilationUnit.java:548) at org.codehaus.groovy.control.CompilationUnit.compile(CompilationUnit.java:497) at groovy.lang.GroovyClassLoader.doParseClass(GroovyClassLoader.java:306) at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:287) at org.gradle.groovy.scripts.internal.DefaultScriptCompilationHandler.compileScript(DefaultScriptCompilationHandler.java:115) ... 77 more 2014-06-09 10:15:28,537 [ 92905] INFO - .BaseProjectImportErrorHandler - Failed to import Gradle project at '/Users/[me]/Repositories/[project]' org.gradle.tooling.BuildException: Could not run build action using Gradle distribution 'http://services.gradle.org/distributions/gradle-1.12-all.zip'. at org.gradle.tooling.internal.consumer.ResultHandlerAdapter.onFailure(ResultHandlerAdapter.java:53) at org.gradle.tooling.internal.consumer.async.DefaultAsyncConsumerActionExecutor$1$1.run(DefaultAsyncConsumerActionExecutor.java:57) at org.gradle.internal.concurrent.DefaultExecutorFactory$StoppableExecutorImpl$1.run(DefaultExecutorFactory.java:64) [project]/[module]/build.gradle import com.android.builder.DefaultManifestParser apply plugin: 'android-sdk-manager' apply plugin: 'android' android { sourceSets { main { manifest.srcFile 'src/main/AndroidManifest.xml' res.srcDirs = ['src/main/res'] } debug { res.srcDirs = ['src/debug/res'] } release { res.srcDirs = ['src/release/res'] } } compileSdkVersion 19 buildToolsVersion '19.0.0' defaultConfig { minSdkVersion 14 targetSdkVersion 19 } signingConfigs { release } buildTypes { release { runProguard false proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.txt' signingConfig signingConfigs.release applicationVariants.all { variant -> def file = variant.outputFile def manifestParser = new DefaultManifestParser() def wmgVersionCode = manifestParser.getVersionCode(android.sourceSets.main.manifest.srcFile) println wmgVersionCode variant.outputFile = new File(file.parent, file.name.replace("-release.apk", "_" + wmgVersionCode + ".apk")) } } } packagingOptions { exclude 'META-INF/LICENSE.txt' exclude 'META-INF/NOTICE.txt' } } def Properties props = new Properties() def propFile = file('signing.properties') if (propFile.canRead()){ props.load(new FileInputStream(propFile)) if (props!=null && props.containsKey('STORE_FILE') && props.containsKey('STORE_PASSWORD') && props.containsKey('KEY_ALIAS') && props.containsKey('KEY_PASSWORD')) { println 'RELEASE BUILD SIGNING' android.signingConfigs.release.storeFile = file(props['STORE_FILE']) android.signingConfigs.release.storePassword = props['STORE_PASSWORD'] android.signingConfigs.release.keyAlias = props['KEY_ALIAS'] android.signingConfigs.release.keyPassword = props['KEY_PASSWORD'] } else { println 'RELEASE BUILD NOT FOUND SIGNING PROPERTIES' android.buildTypes.release.signingConfig = null } }else { println 'RELEASE BUILD NOT FOUND SIGNING FILE' android.buildTypes.release.signingConfig = null } repositories { maven { url 'https://repo.commonsware.com.s3.amazonaws.com' } maven { url 'https://oss.sonatype.org/content/repositories/snapshots/' } } dependencies { compile 'com.github.gabrielemariotti.changeloglib:library:1.4.+' compile 'com.google.code.gson:gson:2.2.4' compile 'com.google.android.gms:play-services:+' compile 'com.android.support:appcompat-v7:+' compile 'com.squareup.okhttp:okhttp:1.5.+' compile 'com.octo.android.robospice:robospice:1.4.11' compile 'com.octo.android.robospice:robospice-cache:1.4.11' compile 'com.octo.android.robospice:robospice-retrofit:1.4.11' compile 'com.commonsware.cwac:security:0.1.+' compile 'com.readystatesoftware.sqliteasset:sqliteassethelper:+' compile 'com.android.support:support-v4:19.+' compile 'uk.co.androidalliance:edgeeffectoverride:1.0.1+' compile 'de.greenrobot:eventbus:2.2.1+' compile project(':captureActivity') compile ('de.keyboardsurfer.android.widget:crouton:1.8.+') { exclude group: 'com.google.android', module: 'support-v4' } compile files('libs/CWAC-LoaderEx.jar') }

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Computer Networks UNISA - Chap 12 &ndash; Networking Security

    - by MarkPearl
    After reading this section you should be able to Identify security risks in LANs and WANs and design security policies that minimize risks Explain how physical security contributes to network security Discuss hardware and design based security techniques Understand methods of encryption such as SSL and IPSec, that can secure data in storage and in transit Describe how popular authentication protocols such as RADIUS< TACACS,Kerberos, PAP, CHAP, and MS-CHAP function Use network operating system techniques to provide basic security Understand wireless security protocols such as WEP, WPA and 802.11i Security Audits Before spending time and money on network security, examine your networks security risks – rate and prioritize risks. Different organizations have different levels of network security requirements. Security Risks Not all security breaches result from a manipulation of network technology – there are human factors that can play a role as well. The following categories are areas of considerations… Risks associated with People Risks associated with Transmission and Hardware Risks associated with Protocols and Software Risks associated with Internet Access An effective security policy A security policy identifies your security goals, risks, levels of authority, designated security coordinator and team members, responsibilities for each team member, and responsibilities for each employee. In addition it specifies how to address security breaches. It should not state exactly which hardware, software, architecture, or protocols will be used to ensure security, nor how hardware or software will be installed and configured. A security policy must address an organizations specific risks. to understand your risks, you should conduct a security audit that identifies vulnerabilities and rates both the severity of each threat and its likelihood of occurring. Security Policy Content Security policy content should… Policies for each category of security Explain to users what they can and cannot do and how these measures protect the networks security Should define what confidential means to the organization Response Policy A security policy should provide for a planned response in the event of a security breach. The response policy should identify the members of a response team, all of whom should clearly understand the the security policy, risks, and measures in place. Some of the roles concerned could include… Dispatcher – the person on call who first notices the breach Manager – the person who coordinates the resources necessary to solve the problem Technical Support Specialist – the person who focuses on solving the problem Public relations specialist – the person who acts as the official spokesperson for the organization Physical Security An important element in network security is restricting physical access to its components. There are various techniques for this including locking doors, security people at access points etc. You should identify the following… Which rooms contain critical systems or data and must be secured Through what means might intruders gain access to these rooms How and to what extent are authorized personnel granted access to these rooms Are authentication methods such as ID cards easy to forge etc. Security in Network Design The optimal way to prevent external security breaches from affecting you LAN is not to connect your LAN to the outside world at all. The next best protection is to restrict access at every point where your LAN connects to the rest of the world. Router Access List – can be used to filter or decline access to a portion of a network for certain devices. Intrusion Detection and Prevention While denying someone access to a section of the network is good, it is better to be able to detect when an attempt has been made and notify security personnel. This can be done using IDS (intrusion detection system) software. One drawback of IDS software is it can detect false positives – i.e. an authorized person who has forgotten his password attempts to logon. Firewalls A firewall is a specialized device, or a computer installed with specialized software, that selectively filters or blocks traffic between networks. A firewall typically involves a combination of hardware and software and may reside between two interconnected private networks. The simplest form of a firewall is a packet filtering firewall, which is a router that examines the header of every packet of data it receives to determine whether that type of packet is authorized to continue to its destination or not. Firewalls can block traffic in and out of a LAN. NOS (Network Operating System) Security Regardless of the operating system, generally every network administrator can implement basic security by restricting what users are authorized to do on a network. Some of the restrictions include things related to Logons – place, time of day, total time logged in, etc Passwords – length, characters used, etc Encryption Encryption is the use of an algorithm to scramble data into a format that can be read only by reversing the algorithm. The purpose of encryption is to keep information private. Many forms of encryption exist and new ways of cracking encryption are continually being invented. The following are some categories of encryption… Key Encryption PGP (Pretty Good Privacy) SSL (Secure Sockets Layer) SSH (Secure Shell) SCP (Secure CoPy) SFTP (Secure File Transfer Protocol) IPSec (Internet Protocol Security) For a detailed explanation on each section refer to pages 596 to 604 of textbook Authentication Protocols Authentication protocols are the rules that computers follow to accomplish authentication. Several types exist and the following are some of the common authentication protocols… RADIUS and TACACS PAP (Password Authentication Protocol) CHAP and MS-CHAP EAP (Extensible Authentication Protocol) 802.1x (EAPoL) Kerberos Wireless Network Security Wireless transmissions are particularly susceptible to eavesdropping. The following are two wireless network security protocols WEP WPA

    Read the article

  • httpclient ssl certificate on android

    - by Mojo Risin
    Hi all I have some troubles with ssl using httpclient on android i am trying to access public trusted certificate in details i want my app to trust all certificates. First i tried using this guide http://hc.apache.org/httpclient-3.x/sslguide.html on Desktop is working fine but on android i still got javax.net.ssl.SSLException: Not trusted server certificate. After searching in google i found some other examples how to enable ssl. http://groups.google.com/group/android-developers/browse_thread/thread/62d856cdcfa9f16e - Working when i use URLConnection but with HttpClient still got the exception. http://www.discursive.com/books/cjcook/reference/http-webdav-sect-self-signed.html - on Desktop using jars from apache is working but in android using included in SDK classes can't make it work. So any ideas how can i access trust public certificates on android using HttpClient

    Read the article

  • Sort latitude and longitude coordinates into clockwise ordered quadrilateral

    - by Dave Jarvis
    Problem Users can provide up to four latitude and longitude coordinates, in any order. They do so with Google Maps. Using Google's Polygon API (v3), the coordinates they select should highlight the selected area between the four coordinates. Solutions and Searches http://www.geocodezip.com/map-markers_ConvexHull_Polygon.asp http://softsurfer.com/Archive/algorithm_0103/algorithm_0103.htm http://stackoverflow.com/questions/2374708/how-to-sort-points-in-a-google-maps-polygon-so-that-lines-do-not-cross http://stackoverflow.com/questions/242404/sort-four-points-in-clockwise-order http://en.literateprograms.org/Quickhull_%28Javascript%29 Graham's scan seems too complicated for four coordinates Sort the coordinates into two arrays (one by latitude, the other longitude) ... then? Jarvis March algorithm? Question How do you sort the coordinates in (counter-)clockwise order, using JavaScript? Code Here is what I have so far: // Ensures the markers are sorted: NW, NE, SE, SW function sortMarkers() { var ns = markers.slice( 0 ); var ew = markers.slice( 0 ); ew.sort( function( a, b ) { if( a.position.lat() < b.position.lat() ) { return -1; } else if( a.position.lat() > b.position.lat() ) { return 1; } return 0; }); ns.sort( function( a, b ) { if( a.position.lng() < b.position.lng() ) { return -1; } else if( a.position.lng() > b.position.lng() ) { return 1; } return 0; }); var nw; var ne; var se; var sw; if( ew.indexOf( ns[0] ) > 1 ) { nw = ns[0]; } else { ne = ns[0]; } if( ew.indexOf( ns[1] ) > 1 ) { nw = ns[1]; } else { ne = ns[1]; } if( ew.indexOf( ns[2] ) > 1 ) { sw = ns[2]; } else { se = ns[2]; } if( ew.indexOf( ns[3] ) > 1 ) { sw = ns[3]; } else { se = ns[3]; } markers[0] = nw; markers[1] = ne; markers[2] = se; markers[3] = sw; } What is a better approach? The recursive Convex Hull algorithm is overkill for four points in the data set. Thank you.

    Read the article

  • Using GoogleMaps with JXMapKit

    - by npinti
    I have been searching on the web to see if I can use GoogleMaps with the JXMapViewer. According to this, it is illegal, but the article is more than three years old. Could anyone be kind enough to tell me if I can use GoogleMaps with the JXMap viewer? I know that Google has recently allowed desktop applications to use their static maps provided that the application is freely accessible to people on some website. If this can be done, I would appreciate some pointer to where I could start looking so that I can use Google Maps, I tried messing around with this but to no avail. Thanks in advance. Edit: I have managed to show a map in my JXMapKit. The only problem is that I am getting the image as a tiled image, whilst I only need one. Any help on this issue?

    Read the article

  • CodePlex Daily Summary for Sunday, March 07, 2010

    CodePlex Daily Summary for Sunday, March 07, 2010New ProjectsAlgorithminator: Universal .NET algorithm visualizer, which helps you to illustrate any algorithm, written in any .NET language. Still in development.ALToolkit: Contains a set of handy .NET components/classes. Currently it contains: * A Numeric Text Box (an Extended NumericUpDown) * A Splash Screen base fo...Automaton Home: Automaton is a home automation software built with a n-Tier, MVVM pattern utilzing WCF, EF, WPF, Silverlight and XBAP.Developer Controls: Developer Controls contains various controls to help build applications that can script/write code.Dynamic Reference Manager: Dynamic Reference Manager is a set (more like a small group) of classes and attributes written in C# that allows any .NET program to reference othe...indiologic: Utilities of an IndioNeural Cryptography in F#: This project is my magistracy resulting work. It is intended to be an example of using neural networks in cryptography. Hashing functions are chose...Particle Filter Visualization: Particle Filter Visualization Program for the Intel Science and Engineering FairPólya: Efficient, immutable, polymorphic collections. .Net lacks them, we provide them*. * By we, we mean I; and by efficient, I mean hopefully so.project euler solutions from mhinze: mhinze project euler solutionsSilverlight 4 and WCF multi layer: Silverlight 4 and WCF multi layersqwarea: Project for a browser-based, minimalistic, massively multiplayer strategy game. Part of the "Génie logiciel et Cloud Computing" course of the ENS (...SuperSocket: SuperSocket, a socket application framework can build FTP/SMTP/POP server easilyToast (for ASP.NET MVC): Dynamic, developer & designer friendly content injection, compression and optimization for ASP.NET MVCNew ReleasesALToolkit: ALToolkit 1.0: Binary release of the libraries containing: NumericTextBox SplashScreen Based on the VB.NET code, but that doesn't really matter.Blacklist of Providers: 1.0-Milestone 1: Blacklist of Providers.Milestone 1In this development release implemented - Main interface (Work Item #5453) - Database (Work Item #5523)C# Linear Hash Table: Linear Hash Table b2: Now includes a default constructor, and will throw an exception if capacity is not set to a power of 2 or loadToMaintain is below 1.Composure: CassiniDev-Trunk-40745-VS2010.rc1.NET4: A simple port of the CassiniDev portable web server project for Visual Studio 2010 RC1 built against .NET 4.0. The WCF tests currently fail unless...Developer Controls: DevControls: These are the version 1.0 releases of these controls. Download the individually or all together (in a .zip file). More releases coming soon!Dynamic Reference Manager: DRM Alpha1: This is the first release. I'm calling it Alpha because I intend implementing other functions, but I do not intend changing the way current functio...ESB Toolkit Extensions: Tellago SOA ESB Extenstions v0.3: Windows Installer file that installs Library on a BizTalk ESB 2.0 system. This Install automatically configures the esb.config to use the new compo...GKO Libraries: GKO Libraries 0.1 Alpha: 0.1 AlphaHome Access Plus+: v3.0.3.0: Version 3.0.3.0 Release Change Log: Added Announcement Box Removed script files that aren't needed Fixed & issue in directory path Stylesheet...Icarus Scene Engine: Icarus Scene Engine 1.10.306.840: Icarus Professional, Icarus Player, the supporting software for Icarus Scene Engine, with some included samples, and the start of a tutorial (with ...mavjuz WndLpt: wndlpt-0.2.5: New: Response to 5 LPT inputs "test i 1" New: Reaction to 12 LPT outputs "test q 8" New: Reaction to all LPT pins "test pin 15" New: Syntax: ...Neural Cryptography in F#: Neural Cryptography 0.0.1: The most simple version of this project. It has a neural network that works just like logical AND and a possibility to recreate neural network from...Password Provider: 1.0.3: This release fixes a bug which caused the program to crash when double clicking on a generic item.RoTwee: RoTwee 6.2.0.0: New feature is as next. 16649 Add hashtag for tweet of tune.Now you can tweet your playing tune with hashtag.Visual Studio DSite: Picture Viewer (Visual C++ 2008): This example source code allows you to view any picture you want in the click of a button. All you got to do is click the button and browser via th...WatchersNET CKEditor™ Provider for DotNetNuke: CKEditor Provider 1.8.00: Whats New File Browser: Folders & Files View reworked File Browser: Folders & Files View reworked File Browser: Folders are displayed as TreeVi...WSDLGenerator: WSDLGenerator 0.0.0.4: - replaced CommonLibrary.dll by CommandLineParser.dll - added better support for custom complex typesMost Popular ProjectsMetaSharpSilverlight ToolkitASP.NET Ajax LibraryAll-In-One Code FrameworkWindows 7 USB/DVD Download Toolニコ生アラートWindows Double ExplorerVirtual Router - Wifi Hot Spot for Windows 7 / 2008 R2Caliburn: An Application Framework for WPF and SilverlightArkSwitchMost Active ProjectsUmbraco CMSRawrSDS: Scientific DataSet library and toolsBlogEngine.NETjQuery Library for SharePoint Web Servicespatterns & practices – Enterprise LibraryIonics Isapi Rewrite FilterFarseer Physics EngineFasterflect - A Fast and Simple Reflection APIFluent Assertions

    Read the article

  • Horizontal lines and PDF drawing on iPhone/iPad Quartz 2D

    - by aron
    I'm trying to display a PDF of music using the Quartz 2D calls: CGPDFDocumentGetPage and CGPDFPageGetDrawingTransform The problem is that some horizontal lines in the PDF get drawn thicker than others. The biggest problem is that I notice this in Preview on the Mac and on iPhone/iPad. Even when viewing this PDF in the iPhone/iPad mail, I get the same problem. Here is the example: http://aronnelson.com/problem/pdfproblem.jpg Note that the PDF on the left is preview, the PDF on the right is the same file but in Google Docs. See how clean the Google Docs version is? Is there any way to fix this problem? Would it help to draw the PDF larger and zoom down using a UIScrollView? Any help appreciated. I can't find much info re: this problem. Aron

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Real Life Pixar Lamp Can’t Get Enough Of Human Interaction

    - by Jason Fitzpatrick
    This curious lamp, powered by an Arduino board and servo motors, is just as playful as the on-screen counterpart that inspired its creation. The New Zealand Herald reports on the creation of the lamp, seen in action in the video above: The project is a collaborative effort by Victoria University students Shanshan Zhou, Adam Ben-Gur and Joss Doggett, who met in a Physical Computing class. The lamp’s movements are informed by a webcam with an algorithm working behind it. Robotics and facial recognition technology enable the lamp to search for faces in the images from its webcam. When it spots a face, it follows as if trying to maintain eye contact. How to Access Your Router If You Forget the Password Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor

    Read the article

  • How should I pass an object wrapping an API to a class using that API?

    - by Billy ONeal
    Hello everyone :) This is a revised/better written version of the question I asked earlier today -- that question is deleted now. I have a project where I'm getting started with Google Mock. I have created a class, and that class calls functions whithin the Windows API. I've also created a wrapper class with virtual functions wrapping the Windows API, as described in the Google Mock CheatSheet. I'm confused however at how I should pass the wrapper into my class that uses that object. Obviously that object needs to be polymorphic, so I can't pass it by value, forcing me to pass a pointer. That in and of itself is not a problem, but I'm confused as to who should own the pointer to the class wrapping the API. So... how should I pass the wrapper class into the real class to facilitate mocking?

    Read the article

  • ASP.NET C# Write RSS feed for Froogle

    - by Peter
    Hi, I'm trying to create a RSS 2.0 feed in ASP.NET C# with products to provide to Froogle. The RSS feed should look like: http://www.google.com/support/merchants/bin/answer.py?answer=160589&hl=en I'm using the SyndicationFeed and SyndicationsItems to create the feed. But I'm having trouble adding the extra elements like g:image_link. I try the extra elements like; syndicationItem.ElementExtensions.Add(new XElement("image_link", product.ImageLink).CreateReader()); This works, but how can I add the namespace xmlns:g="http://base.google.com/ns/1.0" to the first RSS tag and use this for the extension elements? Thank you

    Read the article

  • 2-legged OAuth and the Gmail atom feed

    - by jdcotter
    We're trying to get 2-legged OAuth to work with the Gmail atom feed. We're using the Java library contributed by John Kristian, Praveen Alavilli and Dirk Balfanz. [http://oauth.net/code/] instead of the GData library. We know we have the correct CONSUMER_KEY and CONSUMER_SECRET, etc. becuase it works with the Contacts feed (http://www.google.com/m8/feeds/contacts/default/full) and have no problems. However with Gmail atom feed it always returns: HTTP/1.1 401 Unauthorized Any ideas? Should we try a different OAuth framework or does the problem lie on the Google side?

    Read the article

  • GWT plugin for Eclipse not downloading

    - by Imran
    I`m following the instructions on the page : http://code.google.com/eclipse/docs/install-eclipse-3.5.html during downloading I get the following error in eclipse 3.5 galelio, is the jar file corupt on the server corrupt or what? Is it possible to manualy import GWT plugin in eclipse? java.io.IOException: Error unzipping C:\DOCUME~1\Imran\LOCALS~1\Temp\com.google.gwt.eclipse.sdkbundle.2.0.0_2.0.0.v2009120620038443413526480826930.jar: invalid entry size (expected 18889986 but got 18889962 bytes) at org.eclipse.equinox.internal.p2.core.helpers.FileUtils.unzipFile(FileUtils.java:75) at org.eclipse.equinox.internal.p2.artifact.repository.simple.SimpleArtifactRepository$ZippedFolderOutputStream.close(SimpleArtifactRepository.java:155) at java.io.FilterOutputStream.close(Unknown Source) at org.eclipse.equinox.internal.p2.artifact.repository.simple.SimpleArtifactRepository$ArtifactOutputStream.close(SimpleArtifactRepository.java:83) at org.eclipse.equinox.internal.p2.artifact.repository.MirrorRequest.transferSingle(MirrorRequest.java:184) at org.eclipse.equinox.internal.p2.artifact.repository.MirrorRequest.transfer(MirrorRequest.java:159) at org.eclipse.equinox.internal.p2.artifact.repository.MirrorRequest.perform(MirrorRequest.java:95) at org.eclipse.equinox.internal.p2.artifact.repository.simple.SimpleArtifactRepository.getArtifact(SimpleArtifactRepository.java:511) at org.eclipse.equinox.internal.p2.artifact.repository.simple.DownloadJob.run(DownloadJob.java:64) at org.eclipse.core.internal.jobs.Worker.run(Worker.java:55)

    Read the article

  • How can Swift be so much faster than Objective-C in these comparisons?

    - by Yellow
    Apple launched its new programming language Swift at WWDC14. In the presentation, they made some performance comparisons between Objective-C and Python. The following is a picture of one of their slides, of a comparison of those three languages performing some complex object sort: There was an even more incredible graph about a performance comparison using the RC4 encryption algorithm. Obviously this is a marketing talk, and they didn't go into detail on how this was implemented in each. I leaves me wondering though: How can a new programming language be so much faster? Are the Objective-C results caused by a bad compiler or is there something less efficient in Objective-C than Swift? How would you explain a 40% performance increase? I understand that garbage collection/automated reference control might produce some additional overhead, but this much?

    Read the article

  • What is MSSRPD?

    - by TN
    Recently, I found that some searches in Firefox are redirected to Bing. (Instead of my primary search engine Google.) I am not sure, but it seems that it is not bound to search but rather a hostname resolving. Since entering a single word that might be a hostname redirects to Bing. But entering more words searches using my primary search engine. hey - uses Bing to search hey hey - uses Google to search I found that the resulting search url contains MSSRPD: http://www.bing.com/search?q=hey&form=MSSRPD I am wondering what is the MSSRPD and how can I uninstall/disable, so my primary search engine is used?

    Read the article

  • Algorithmia Source Code released on CodePlex

    - by FransBouma
    Following the release of our BCL Extensions Library on CodePlex, we have now released the source-code of Algorithmia on CodePlex! Algorithmia is an algorithm and data-structures library for .NET 3.5 or higher and is one of the pillars LLBLGen Pro v3's designer is built on. The library contains many data-structures and algorithms, and the source-code is well documented and commented, often with links to official descriptions and papers of the algorithms and data-structures implemented. The source-code is shared using Mercurial on CodePlex and is licensed under the friendly BSD2 license. User documentation is not available at the moment but will be added soon. One of the main design goals of Algorithmia was to create a library which contains implementations of well-known algorithms which weren't already implemented in .NET itself. This way, more developers out there can enjoy the results of many years of what the field of Computer Science research has delivered. Some algorithms and datastructures are known in .NET but are re-implemented because the implementation in .NET isn't efficient for many situations or lacks features. An example is the linked list in .NET: it doesn't have an O(1) concat operation, as every node refers to the containing LinkedList object it's stored in. This is bad for algorithms which rely on O(1) concat operations, like the Fibonacci heap implementation in Algorithmia. Algorithmia therefore contains a linked list with an O(1) concat feature. The following functionality is available in Algorithmia: Command, Command management. This system is usable to build a fully undo/redo aware system by building your object graph using command-aware classes. The Command pattern is implemented using a system which allows transparent undo-redo and command grouping so you can use it to make a class undo/redo aware and set properties, use its contents without using commands at all. The Commands namespace is the namespace to start. Classes you'd want to look at are CommandifiedMember, CommandifiedList and KeyedCommandifiedList. See the CommandQueueTests in the test project for examples. Graphs, Graph algorithms. Algorithmia contains a sophisticated graph class hierarchy and algorithms implemented onto them: non-directed and directed graphs, as well as a subgraph view class, which can be used to create a view onto an existing graph class which can be self-maintaining. Algorithms include transitive closure, topological sorting and others. A feature rich depth-first search (DFS) crawler is available so DFS based algorithms can be implemented quickly. All graph classes are undo/redo aware, as they can be set to be 'commandified'. When a graph is 'commandified' it will do its housekeeping through commands, which makes it fully undo-redo aware, so you can remove, add and manipulate the graph and undo/redo the activity automatically without any extra code. If you define the properties of the class you set as the vertex type using CommandifiedMember, you can manipulate the properties of vertices and the graph contents with full undo/redo functionality without any extra code. Heaps. Heaps are data-structures which have the largest or smallest item stored in them always as the 'root'. Extracting the root from the heap makes the heap determine the next in line to be the 'maximum' or 'minimum' (max-heap vs. min-heap, all heaps in Algorithmia can do both). Algorithmia contains various heaps, among them an implementation of the Fibonacci heap, one of the most efficient heap datastructures known today, especially when you want to merge different instances into one. Priority queues. Priority queues are specializations of heaps. Algorithmia contains a couple of them. Sorting. What's an algorithm library without sort algorithms? Algorithmia implements a couple of sort algorithms which sort the data in-place. This aspect is important in situations where you want to sort the elements in a buffer/list/ICollection in-place, so all data stays in the data-structure it already is stored in. PropertyBag. It re-implements Tony Allowatt's original idea in .NET 3.5 specific syntax, which is to have a generic property bag and to be able to build an object in code at runtime which can be bound to a property grid for editing. This is handy for when you have data / settings stored in XML or other format, and want to create an editable form of it without creating many editors. IEditableObject/IDataErrorInfo implementations. It contains default implementations for IEditableObject and IDataErrorInfo (EditableObjectDataContainer for IEditableObject and ErrorContainer for IDataErrorInfo), which make it very easy to implement these interfaces (just a few lines of code) without having to worry about bookkeeping during databinding. They work seamlessly with CommandifiedMember as well, so your undo/redo aware code can use them out of the box. EventThrottler. It contains an event throttler, which can be used to filter out duplicate events in an event stream coming into an observer from an event. This can greatly enhance performance in your UI without needing to do anything other than hooking it up so it's placed between the event source and your real handler. If your UI is flooded with events from data-structures observed by your UI or a middle tier, you can use this class to filter out duplicates to avoid redundant updates to UI elements or to avoid having observers choke on many redundant events. Small, handy stuff. A MultiValueDictionary, which can store multiple unique values per key, instead of one with the default Dictionary, and is also merge-aware so you can merge two into one. A Pair class, to quickly group two elements together. Multiple interfaces for helping with building a de-coupled, observer based system, and some utility extension methods for the defined data-structures. We regularly update the library with new code. If you have ideas for new algorithms or want to share your contribution, feel free to discuss it on the project's Discussions page or send us a pull request. Enjoy!

    Read the article

  • Expression Studio 4 Premium & SketchFlow: Am I screwed?

    - by Refracted Paladin
    Through work I have an Visual Studio Premium with MSDN subscription that I love. However, my biggest disappointment of the last 12 months was discovering that our 2nd from the top level subscription was not enough to get me Sketchflow! This sucks and I am borderline distraught! What are my options? Upgrading to an Ultimate subscription for Sketchflow is out of the question. Am I forced, then, to stay with Blend 3 or Purchase Blend 4 seperately? If this is not a question I should ask here please inform and I'll delete. I just tend to default to SO for all questions that Google can't answer and Google did not answer this one.

    Read the article

  • JSLint reports "Unexpected dangling" character in an underscore prefixed variable name

    - by Zhami
    I know that some people consider the presence of a leading underscore to imply that a variable is "private," that such privacy is a fiction, and assume this is why JSLint reports such names with an error message. I use Google Analytics on a Web site I am building. I make reference to GA's variables, such as "_gaq." I am trying to get my JS code to be 100% JSLint clean (I'm not religious about my coding style, and so will go with Mr. Crockford's counsel). That said, I can't do anything about Google's variables names... so, I guess I can't get 100% "clean." I post here in case I've misunderstood the message, and can do something to comply with JSLint practices.

    Read the article

  • Difference Procedural Generation and Random Generation

    - by U-No-Poo
    Today, I got into an argument about the term "procedural generation". My point was that its different from "classic" random generation in the way that procedural is based on a more mathematical, fractal based, algorithm leading to a more "realistic" distribution and the usual randomness of most languages are based on a pseudo-random-number generator, leading to an "unrealistic", in a way, ugly, distribution. This discussion was made with a heightmap in mind. The discussion left me somehow unconvinced about my own arguments though, so, is there more to it? Or am I the one who is, in fact, simply wrong?

    Read the article

  • XMPP TLS connection with SslStream

    - by Marcom
    I am trying to create a simple xmpp client that connects to Gtalk. The first part of the handshake seems to work. Ror the TLS handshake I created a client SslStream, connected to the intended server (talk.google.com) and successfully got authenticated . The first SSlStream.Read is to receive the greeting reply, it went fine . I do a SslStream.write to send my first command, but when i do my Sslstream.Read() to get the reply , i get this error."System.IO.IOException: Unable to read data from the transport connection: An established connection was aborted by the software in your host machine." Can anyone point me to the right direction? I am using code very similar to the example on msdn http://msdn.microsoft.com/en-us/library/system.net.security.sslstream.aspx except that I switch from a Network stream to a Sslstream when TLS is negotiated. netStream.Flush(); sslStream = new SslStream(netStream, true, new RemoteCertificateValidationCallback(ValidateServerCertificate), null ); sslStream.AuthenticateAsClient("talk.google.com");

    Read the article

< Previous Page | 557 558 559 560 561 562 563 564 565 566 567 568  | Next Page >