Search Results

Search found 17826 results on 714 pages for 'oracle news'.

Page 561/714 | < Previous Page | 557 558 559 560 561 562 563 564 565 566 567 568  | Next Page >

  • JDK bug migration: components and subcomponents

    - by darcy
    One subtask of the JDK migration from the legacy bug tracking system to JIRA was reclassifying bugs from a three-level taxonomy in the legacy system, (product, category, subcategory), to a fundamentally two-level scheme in our customized JIRA instance, (component, subcomponent). In the JDK JIRA system, there is technically a third project-level classification, but by design a large majority of JDK-related bugs were migrated into a single "JDK" project. In the end, over 450 legacy subcategories were simplified into about 120 subcomponents in JIRA. The 120 subcomponents are distributed among 17 components. A rule of thumb used was that a subcategory had to have at least 50 bugs in it for it to be retained. Below is a listing the component / subcomponent classification of the JDK JIRA project along with some notes and guidance on which OpenJDK email addresses cover different areas. Eventually, a separate incidents project to host new issues filed at bugs.sun.com will use a slightly simplified version of this scheme. The preponderance of bugs and subcomponents for the JDK are in library-related areas, with components named foo-libs and subcomponents primarily named after packages. While there was an overall condensation of subcomponents in the migration, in some cases long-standing informal divisions in core libraries based on naming conventions in the description were promoted to formal subcomponents. For example, hundreds of bugs in the java.util subcomponent whose descriptions started with "(coll)" were moved into java.util:collections. Likewise, java.lang bugs starting with "(reflect)" and "(proxy)" were moved into java.lang:reflect. client-libs (Predominantly discussed on 2d-dev and awt-dev and swing-dev.) 2d demo java.awt java.awt:i18n java.beans (See beans-dev.) javax.accessibility javax.imageio javax.sound (See sound-dev.) javax.swing core-libs (See core-libs-dev.) java.io java.io:serialization java.lang java.lang.invoke java.lang:class_loading java.lang:reflect java.math java.net java.nio (Discussed on nio-dev.) java.nio.charsets java.rmi java.sql java.sql:bridge java.text java.util java.util.concurrent java.util.jar java.util.logging java.util.regex java.util:collections java.util:i18n javax.annotation.processing javax.lang.model javax.naming (JNDI) javax.script javax.script:javascript javax.sql org.openjdk.jigsaw (See jigsaw-dev.) security-libs (See security-dev.) java.security javax.crypto (JCE: includes SunJCE/MSCAPI/UCRYPTO/ECC) javax.crypto:pkcs11 (JCE: PKCS11 only) javax.net.ssl (JSSE, includes javax.security.cert) javax.security javax.smartcardio javax.xml.crypto org.ietf.jgss org.ietf.jgss:krb5 other-libs corba corba:idl corba:orb corba:rmi-iiop javadb other (When no other subcomponent is more appropriate; use judiciously.) Most of the subcomponents in the xml component are related to jaxp. xml jax-ws jaxb javax.xml.parsers (JAXP) javax.xml.stream (JAXP) javax.xml.transform (JAXP) javax.xml.validation (JAXP) javax.xml.xpath (JAXP) jaxp (JAXP) org.w3c.dom (JAXP) org.xml.sax (JAXP) For OpenJDK, most JVM-related bugs are connected to the HotSpot Java virtual machine. hotspot (See hotspot-dev.) build compiler (See hotspot-compiler-dev.) gc (garbage collection, see hotspot-gc-dev.) jfr (Java Flight Recorder) jni (Java Native Interface) jvmti (JVM Tool Interface) mvm (Multi-Tasking Virtual Machine) runtime (See hotspot-runtime-dev.) svc (Servicability) test core-svc (See serviceability-dev.) debugger java.lang.instrument java.lang.management javax.management tools The full JDK bug database contains entries related to legacy virtual machines that predate HotSpot as well as retired APIs. vm-legacy jit (Sun Exact VM) jit_symantec (Symantec VM, before Exact VM) jvmdi (JVM Debug Interface ) jvmpi (JVM Profiler Interface ) runtime (Exact VM Runtime) Notable command line tools in the $JDK/bin directory have corresponding subcomponents. tools appletviewer apt (See compiler-dev.) hprof jar javac (See compiler-dev.) javadoc(tool) (See compiler-dev.) javah (See compiler-dev.) javap (See compiler-dev.) jconsole launcher updaters (Timezone updaters, etc.) visualvm Some aspects of JDK infrastructure directly affect JDK Hg repositories, but other do not. infrastructure build (See build-dev and build-infra-dev.) licensing (Covers updates to the third party readme, licenses, and similar files.) release_eng (Release engineering) staging (Staging of web pages related to JDK releases.) The specification subcomponent encompasses the formal language and virtual machine specifications. specification language (The Java Language Specification) vm (The Java Virtual Machine Specification) The code for the deploy and install areas is not currently included in OpenJDK. deploy deployment_toolkit plugin webstart install auto_update install servicetags In the JDK, there are a number of cross-cutting concerns whose organization is essentially orthogonal to other areas. Since these areas generally have dedicated teams working on them, it is easier to find bugs of interest if these bugs are grouped first by their cross-cutting component rather than by the affected technology. docs doclet guides hotspot release_notes tools tutorial embedded build hotspot libraries globalization locale-data translation performance hotspot libraries The list of subcomponents will no doubt grow over time, but my inclination is to resist that growth since the addition of each subcomponent makes the system as a whole more complicated and harder to use. When the system gets closer to being externalized, I plan to post more blog entries describing recommended use of various custom fields in the JDK project.

    Read the article

  • Viewing at Impossible Angles

    - by kemer
    The picture of the little screwdriver with the Allen wrench head to the right is bound to invoke a little nostalgia for those readers who were Sun customers in the late 80s. This tool was a very popular give-away: it was essential for installing and removing Multibus (you youngsters will have to look that up on Wikipedia…) cards in our systems. Back then our mid-sized systems were gargantuan: it was routine for us to schlep around a 200 lb. desk side box and 90 lb. monitor to demo a piece of software your smart phone will run better today. We were very close to the hardware, and the first thing a new field sales systems engineer had to learn was how put together a system. If you were lucky, a grizzled service engineer might run you through the process once, then threaten your health and existence should you ever screw it up so that he had to fix it. Nowadays we make it much easier to learn the ins and outs of our hardware with simulations–3D animations–that take you through the process of putting together or replacing pieces of a system. Most recently, we have posted three sophisticated PDFs that take advantage of Acrobat 9 features to provide a really intelligent approach to documenting hardware installation and repair: Sun Fire X4800/X4800 M2 Animations for Chassis Components Sun Fire X4800/X4800 M2 Animations for Sub Assembly Module (SAM) Sun Fire X4800/X4800 M2 Animations for CMOD Download one of these documents and take a close look at it. You can view the hardware from any angle, including impossible ones. Each document has a number of procedures, that break down into steps. Click on a procedure, then a step and you will see it animated in the drawing. Of course hardware design has generally eliminated the need for things like our old giveaway tools: components snap and lock in. Often you can replace redundant units while the system is hot, but for heaven’s sake, you’ll want to verify that you can do that before you try it! Meanwhile, we can all look forward to a growing portfolio of these intelligent documents. We would love to hear what you think about them. –Kemer

    Read the article

  • MEB: Taking Incremental Backup using last successful backup

    - by Sagar Jauhari
    Introduction In MySQL Enterprise Backup v3.7.0 (MEB 3.7.0) a new option '–incremental-base' was introduced. Using this option a user can take in incremental backup without specifying the '–start-lsn' option. Description of this option can be found here. Instead of '–start-lsn' the user can provide the location of the last full backup or incremental backup using the 'dir:' prefix. MEB would extract the end LSN of this backup from the mysql.backup_history table as well as the backup_variables.txt file (for verification) to use it as the start LSN of the incremental backup. Because of popular demand, in MEB 3.7.1 the option '-incremental-base' has been extended further. The idea is to allow the user to take an incremental backup as easily as possible using the '–incremental-base' option. With the new option MEB queries the backup_history table for the last successful backup and uses its end LSN as the start LSN for the new incremental backup. It should be noted that the last successful backup is used irrespective of the location of the backup. Details A new prefix 'history:' has been introduced for the –incremental-base option and currently the only permissible value is the string "last_backup". So using the new option an incremental backup can be taken with the following command: $ mysqlbackup --incremental --incremental-backup-dir=/media/mysqlbackup-repo/ --incremental-base=history:last_backup backup When MEB attempts to extract the end LSN of the last successful backup from the mysql.backup_history table, it also scans the corresponding backup destination for the old backup and tries to read the meta files at this backup destination. If a valid backup still exists at the backup destination and the meta files can be read, MEB compares the end LSN found in the mysql.backup_history table with the end LSN found in the backup meta files of the old backup. Assuming that the host MySQL server is alive and mysql.backup_history can be accessed by MEB, the behaviour of MEB with respect to verification of the old end LSN can be summarized as follows: If 'BD' is the backup destination of the last successful backup in mysql.backup_history table and 'BHT' is the mysql.backup_history table if can_read_files_at_BD:     if end_lsn_found_at_BD == end_lsn_of_last_backup_in_BHT:         continue_with_backup()     else         return_with_error() else     continue_with_backup() Advantages Apart from ease of usability an important advantage of this option is that the user can do repeated incremental backups without changing the command line. This is possible using the '–with-timestamp' option along with this new option. For example, the following command $ mysqlbackup --with-timestamp --incremental --incremental-backup-dir=/media/mysqlbackup-repo/ --incremental-base=history:last_backup backup  can be used to perform successive incremental backups in the directory /media/mysqlbackup-repo . Limitations The option '--incremental-base=history:last_backup' should not be used when the user takes different kinds of concurrent backups on the same MySQL server (say different partial backups at multiple locations). should not be used after any temporary or experimental backups performed on the server (which where successful!). needs to be used with precaution since any intermediate successful backup without the –no-connection will be used as the base backup for the next incremental backup.  will give an error in case a valid backup exists at the location of the last successful backup and whose end LSN is different from that of the last successful backup found in the backup_history table. Date: 2012-06-19 HTML generated by org-mode 6.33x in emacs 23

    Read the article

  • Social Analytics and the Customer

    - by David Dorf
    Many successful retailers put the customer at the center of everything they do, so its important that the customer is modeled correctly across all their systems.  The path to omni-channel starts and ends with the customer so at ARTS, our next big project is focused on ensuring a consistent representation of customers across our transactional data model, datawarehouse model, and XML schemas.  Further, we've started a new whitepaper that describes how Big Data and Social Media Analytics should be leveraged by retailers to add and additional level of customer insight. Let's start by taking a closer look at the meaning of social analytics.  Here's my definition: Social Analytics, in the retail context, describes the analysis of data obtained from social media sources in an effort to better comprehend and interact with the community of consumers.  This discipline seeks to understand what’s being said by the community about brands and products (“monitoring”), as well as understand the behaviors of those in the community (“profiling”).  The results are used to enforce the brand image, improve product decisions, and better focus marketing, all of which lead to increased sales. To help illustrate the facets of social analytics, I drew the diagram below which was originally published by Retail Touchpoints. There are lots of tools on the market that allow retailers to monitor social media for brand and product mentions.  These include analysis of sentiment, reach, share of voice, engagement, etc.  When your brand is mentioned, good or bad, its an opportunity to engage with the customer and possibly lead to a sale.  Because products are not always unique, its much more difficult to monitor product mentions, but detecting product trends early can help a retailer make better merchandising decisions, especially in fashion. Once a retailer understands what's being said, the next step is learn more about who's saying it.  That involves profiling customers beyond simple demographics to understand their motivations.  Much can be learned from patterns, and even more when customers voluntarily share their data.  Knowing that a customer is passionate about, for example, mountain biking allows the retailer to make relevant offers on helmets, ask for opinions on hydration, and help spread marketing messages. Social analytics has many facets that benefit retailers, some of which are easy but many of which are hard.  Its important for the CMO and CIO to work closely together to plan for these capabilities and monitor the maturity of tools on the market.  This is an area that will separate winners from losers.

    Read the article

  • RPi and Java Embedded GPIO: Sensor Hardware for Java Enabled Interface

    - by hinkmond
    Now here's the hardware you'll need to make a Java app interface with a static charge sensor connected to your Raspberry Pi via the GPIO port. It means another Fry's run of course. That's not too bad during Christmas since you can browse all the gadget and toys while doing your shopping for sensor hardware for your RPi. Here's a your shopping list: 1 - NTE312 JFET N-channel transistor (this is in place of the MPF-102) 1 - Set of Jumper Wires 1 - LED 1 - 300 ohm resistor 1 - set of header pins Grab all that from Fry's or your local hobby electronics shop and come back here for how to connect it together. Oh, and don't go too crazy buying all the other electronic toys and gadgets that catch your eye because of the holiday displays at the store. Hinkmond

    Read the article

  • SSAS: Utility to check you have the correct data types and sizes in your cube definition

    - by DrJohn
    This blog describes a tool I developed which allows you to compare the data types and data sizes found in the cube’s data source view with the data types/sizes of the corresponding dimensional attribute.  Why is this important?  Well when creating named queries in a cube’s data source view, it is often necessary to use the SQL CAST or CONVERT operation to change the data type to something more appropriate for SSAS.  This is particularly important when your cube is based on an Oracle data source or using custom SQL queries rather than views in the relational database.   The problem with BIDS is that if you change the underlying SQL query, then the size of the data type in the dimension does not update automatically.  This then causes problems during deployment whereby processing the dimension fails because the data in the relational database is wider than that allowed by the dimensional attribute. In particular, if you use some string manipulation functions provided by SQL Server or Oracle in your queries, you may find that the 10 character string you expect suddenly turns into an 8,000 character monster.  For example, the SQL Server function REPLACE returns column with a width of 8,000 characters.  So if you use this function in the named query in your DSV, you will get a column width of 8,000 characters.  Although the Oracle REPLACE function is far more intelligent, the generated column size could still be way bigger than the maximum length of the data actually in the field. Now this may not be a problem when prototyping, but in your production cubes you really should clean up this kind of thing as these massive strings will add to processing times and storage space. Similarly, you do not want to forget to change the size of the dimension attribute if your database columns increase in size. Introducing CheckCubeDataTypes Utiltity The CheckCubeDataTypes application extracts all the data types and data sizes for all attributes in the cube and compares them to the data types and data sizes in the cube’s data source view.  It then generates an Excel CSV file which contains all this metadata along with a flag indicating if there is a mismatch between the DSV and the dimensional attribute.  Note that the app not only checks all the attribute keys but also the name and value columns for each attribute. Another benefit of having the metadata held in a CSV text file format is that you can place the file under source code control.  This allows you to compare the metadata of the previous cube release with your new release to highlight problems introduced by new development. You can download the C# source code from here: CheckCubeDataTypes.zip A typical example of the output Excel CSV file is shown below - note that the last column shows a data size mismatch by TRUE appearing in the column

    Read the article

  • What's upcoming in the GlassFish Webinar Series

    - by pieter.humphrey
    2011 is kicking off with the return of the GF Webinar series as you've never seen it before.  It's going to be packed with information about Java EE6 and how simplicity, testability and convention-over-configuration is winning the hearts and minds of enterprise Java developers.  Don't miss these industry leading speakers and topics reviewing the cutting edge of Java EE6 implementations, tools, and much more.   Note:  future dates are subject to change. Jan 20th: GlassFish & Netbeans Jan 27th: Building a Simple Web Application with Java EE Feb 15th: Java EE Developer Tools 'shootout' with GlassFish Feb 24th: What's New in GlassFish 3.1 Clustering & HA Admin Console Coherence Web Integration Security Microkernel Architecture March 15th: GlassFish 3.1 - clustering deep dive March 29th: GlassFish 3.1 - Admin Console & Productivity Features April 5th: GlassFish 3.1 - Coherence Web Integration deep dive Possible "Tech cast live" event: April (date TBC): Special Guest Adam Bien April 19th: GlassFish 3.1 - Security deep dive with Byron Nevins & TBD May 3rd: GlassFish 3.1 - Microkernel Architecture deep dive Possible "Tech cast live" event: May 17th: "Upgrading to 3.1 from existing GlassFish installations" May 31st: Embedded GlassFish del.icio.us Tags: glassfish,development,java,java ee,java ee6,OTN,NetBeans,JDeveloper,enterprise Pack for Eclipse Technorati Tags: glassfish,development,java,java ee,java ee6,OTN,NetBeans,JDeveloper,enterprise Pack for Eclipse

    Read the article

  • It is not quiet....

    - by Anthony Shorten
    You may of noticed that the blog entries have been not so frequent lately. I have been extremely busy with putting the final touches on the release of the next generation of our products. It is an exciting time for me to see the release of new functionality from start to finish for the first time becoming a Product Manager (good to see one's designs actually implemented). Once the next generation of the products have been released there will be a flood of entries outlining all the new and exciting features. Watch the skies....

    Read the article

  • The Diabolical Developer: What You Need to Do to Become Awesome

    - by Tori Wieldt
    Wearing sunglasses and quite possibly hungover, Martijn Verburg's evil persona provided key tips on how to be a Diabolical Developer. His presentation at TheServerSide Java Symposium was heavy on the sarcasm and provided lots of laughter. Martijn insisted that developers take their power back and get rid of all the "modern fluff" that distract developers.He provided several key tips to become a Diabolical Developer:*Learn only from yourself. Don't read blogs or books, and don't attend conferences. If you must go on forums, only do it display your superiority, answer as obscurely as possible.*Work aloneBest coding happens when you alone in your room, lock yourself in for days. Make sure you have a gaming machine in with you.*Keep information to yourselfKnowledge is power. Think job security. Never provide documentation. *Make sure only you can read your code.Don't put comments in your code. Name your variables A,B,C....A1,B1, etc.If someone insists you format your in a standard way, change a small section and revert it back as soon as they walk away from your screen. *Stick to what you knowStay on Java 1.3. Don't bother learning abstractions. Write your application in a single file. Stuff as much code into one class as possible, a 30,000-line class is fine. Makes it easier for you to read and maintain.*Use Real ToolsNo "fancy-pancy" IDEs. Real developers only use vi.*Ignore FadsThe cloud is massively overhyped. Mobile is a big fad for young kids.The big, clunky desktop computer (with a real keyboard) will return.Learn new stuff only to pad your resume. Ajax is great for that. *Skip TestingTest-driven development is a complete waste of time. They sent men to the moon without unit tests.Just write your code properly in the first place and you don't need tests.*Compiled = Ship ItUser acceptance testing is an absolute waste of time. *Use a Single ThreadDon't use multithreading. All you need to do is throw more hardware at the problem.*Don't waste time on SEO.If you've written the contract correctly, you are paid for writing code, not attracting users.You don't want a lot of users, they only report problems. *Avoid meetingsFake being sick to avoid meetings. If you are forced into a meeting, play corporate bingo.Once you stand up and shout "bingo" you will kicked out of the meeting. Job done.Follow these tips and you'll be well on your way to being a Diabolical Developer!

    Read the article

  • JDK 7u25: Solutions to Issues caused by changes to Runtime.exec

    - by Devika Gollapudi
    The following examples were prepared by Java engineering for the benefit of Java developers who may have faced issues with Runtime.exec on the Windows platform. Background In JDK 7u21, the decoding of command strings specified to Runtime.exec(String), Runtime.exec(String,String[]) and Runtime.exec(String,String[],File) methods, has been made more strict. See JDK 7u21 Release Notes for more information. This caused several issues for applications. The following section describes some of the problems faced by developers and their solutions. Note: In JDK 7u25, the system property jdk.lang.Process.allowAmbigousCommands can be used to relax the checking process and helps as a workaround for some applications that cannot be changed. The workaround is only effective for applications that are run without a SecurityManager. See JDK 7u25 Release Notes for more information. Note: To understand the details of the Windows API CreateProcess call, see: http://msdn.microsoft.com/en-us/library/windows/desktop/ms682425%28v=vs.85%29.aspx There are two forms of Runtime.exec calls: with the command as string: "Runtime.exec(String command[, ...])" with the command as string array: "Runtime.exec(String[] cmdarray [, ...] )" The issues described in this section relate to the first form of call. With the first call form, developers expect the command to be passed "as is" to Windows where the command needs be split into its executable name and arguments parts first. But, in accordance with Java API, the command argument is split into executable name and arguments by spaces. Problem 1: "The file path for the command includes spaces" In the call: Runtime.getRuntime().exec("c:\\Program Files\\do.exe") the argument is split by spaces to an array of strings as: c:\\Program, Files\\do.exe The first element of parsed array is interpreted as the executable name, verified by SecurityManager (if present) and surrounded by quotations to avoid ambiguity in executable path. This results in the wrong command: "c:\\Program" "Files\\do.exe" which will fail. Solution: Use the ProcessBuilder class, or the Runtime.exec(String[] cmdarray [, ...] ) call, or quote the executable path. Where it is not possible to change the application code and where a SecurityManager is not used, the Java property jdk.lang.Process.allowAmbigousCommands could be used by setting its value to "true" from the command line: -Djdk.lang.Process.allowAmbigousCommands=true This will relax the checking process to allow ambiguous input. Examples: new ProcessBuilder("c:\\Program Files\\do.exe").start() Runtime.getRuntime().exec(new String[]{"c:\\Program Files\\do.exe"}) Runtime.getRuntime().exec("\"c:\\Program Files\\do.exe\"") Problem 2: "Shell command/.bat/.cmd IO redirection" The following implicit cmd.exe calls: Runtime.getRuntime().exec("dir temp.txt") new ProcessBuilder("foo.bat", "", "temp.txt").start() Runtime.getRuntime().exec(new String[]{"foo.cmd", "", "temp.txt"}) lead to the wrong command: "XXXX" "" temp.txt Solution: To specify the command correctly, use the following options: Runtime.getRuntime().exec("cmd /C \"dir temp.txt\"") new ProcessBuilder("cmd", "/C", "foo.bat temp.txt").start() Runtime.getRuntime().exec(new String[]{"cmd", "/C", "foo.cmd temp.txt"}) or Process p = new ProcessBuilder("cmd", "/C" "XXX").redirectOutput(new File("temp.txt")).start(); Problem 3: "Group execution of shell command and/or .bat/.cmd files" Due to enforced verification procedure, arguments in the following calls create the wrong commands.: Runtime.getRuntime().exec("first.bat && second.bat") new ProcessBuilder("dir", "&&", "second.bat").start() Runtime.getRuntime().exec(new String[]{"dir", "|", "more"}) Solution: To specify the command correctly, use the following options: Runtime.exec("cmd /C \"first.bat && second.bat\"") new ProcessBuilder("cmd", "/C", "dir && second.bat").start() Runtime.exec(new String[]{"cmd", "/C", "dir | more"}) The same scenario also works for the "&", "||", "^" operators of the cmd.exe shell. Problem 4: ".bat/.cmd with special DOS chars in quoted params” Due to enforced verification, arguments in the following calls will cause exceptions to be thrown.: Runtime.getRuntime().exec("log.bat \"error new ProcessBuilder("log.bat", "error Runtime.getRuntime().exec(new String[]{"log.bat", "error Solution: To specify the command correctly, use the following options: Runtime.getRuntime().exec("cmd /C log.bat \"error new ProcessBuilder("cmd", "/C", "log.bat", "error Runtime.getRuntime().exec(new String[]{"cmd", "/C", "log.bat", "error Examples: Complicated redirection for shell construction: cmd /c dir /b C:\ "my lovely spaces.txt" becomes Runtime.getRuntime().exec(new String[]{"cmd", "/C", "dir \b \"my lovely spaces.txt\"" }); The Golden Rule: In most cases, cmd.exe has two arguments: "/C" and the command for interpretation.

    Read the article

  • Chem eStandards 5.1 in Public Review

    - by michael.rowell
    The Open Applications Group has announced the opening of the 45 day public review period for Chem eStandards version 5.1. Interested parties have until 13 July to submit comments. There will be two webinars review sessions on 23 June and 24 June. The details of the webinars will be available soon. You can download the Chem eStandards review package. If you have any questions, contact Jim Wilson, the OAGi Chemical Council Architect.

    Read the article

  • SPARC Power Management Article at OTN

    - by nospam(at)example.com (Joerg Moellenkamp)
    My colleague Karoly Vegh pointed in a tweet to a really interesting article about the usage of Power Management of SPARC T-series systems. The article explains how to use the power management, how it works, what it's able to do and how to use it in a dynamic fashion according to anticipated load patterns. You find the article "How to Use the Power Management Controls on SPARC Servers" written by by Bruce Evans, Julia Harper, and Terry Whatley on OTN.

    Read the article

  • Design for complex ATG applications

    - by Glen Borkowski
    Overview Needless to say, some ATG applications are more complex than others.  Some ATG applications support a single site, single language, single catalog, single currency, have a single development staff, single business team, and a relatively simple business model.  The real complex applications have to support multiple sites, multiple languages, multiple catalogs, multiple currencies, a couple different development teams, multiple business teams, and a highly complex business model (and processes to go along with it).  While it's still important to implement a proper design for simple applications, it's absolutely critical to do this for the complex applications.  Why?  It's all about time and money.  If you are unable to manage your complex applications in an efficient manner, the cost of managing it will increase dramatically as will the time to get things done (time to market).  On the positive side, your competition is most likely in the same situation, so you just need to be more efficient than they are. This article is intended to discuss a number of key areas to think about when designing complex applications on ATG.  Some of this can get fairly technical, so it may help to get some background first.  You can get enough of the required background information from this post.  After reading that, come back here and follow along. Application Design Of all the various types of ATG applications out there, the most complex tend to be the ones in the telecommunications industry - especially the ones which operate in multiple countries.  To get started, let's assume that we are talking about an application like that.  One that has these properties: Operates in multiple countries - must support multiple sites, catalogs, languages, and currencies The organization is fairly loosely-coupled - single brand, but different businesses across different countries There is some common functionality across all sites in all countries There is some common functionality across different sites within the same country Sites within a single country may have some unique functionality - relative to other sites in the same country Complex product catalog (mostly in terms of bundles, eligibility, and compatibility) At this point, I'll assume you have read through the required reading and have a decent understanding of how ATG modules work... Code / configuration - assemble into modules When it comes to defining your modules for a complex application, there are a number of goals: Divide functionality between the modules in a way that maps to your business Group common functionality 'further down in the stack of modules' Provide a good balance between shared resources and autonomy for countries / sites Now I'll describe a high level approach to how you could accomplish those goals...  Let's start from the bottom and work our way up.  At the very bottom, you have the modules that ship with ATG - the 'out of the box' stuff.  You want to make sure that you are leveraging all the modules that make sense in order to get the most value from ATG as possible - and less stuff you'll have to write yourself.  On top of the ATG modules, you should create what we'll refer to as the Corporate Foundation Module described as follows: Sits directly on top of ATG modules Used by all applications across all countries and sites - this is the foundation for everyone Contains everything that is common across all countries / all sites Once established and settled, will change less frequently than other 'higher' modules Encapsulates as many enterprise-wide integrations as possible Will provide means of code sharing therefore less development / testing - faster time to market Contains a 'reference' web application (described below) The next layer up could be multiple modules for each country (you could replace this with region if that makes more sense).  We'll define those modules as follows: Sits on top of the corporate foundation module Contains what is unique to all sites in a given country Responsible for managing any resource bundles for this country (to handle multiple languages) Overrides / replaces corporate integration points with any country-specific ones Finally, we will define what should be a fairly 'thin' (in terms of functionality) set of modules for each site as follows: Sits on top of the country it resides in module Contains what is unique for a given site within a given country Will mostly contain configuration, but could also define some unique functionality as well Contains one or more web applications The graphic below should help to indicate how these modules fit together: Web applications As described in the previous section, there are many opportunities for sharing (minimizing costs) as it relates to the code and configuration aspects of ATG modules.  Web applications are also contained within ATG modules, however, sharing web applications can be a bit more difficult because this is what the end customer actually sees, and since each site may have some degree of unique look & feel, sharing becomes more challenging.  One approach that can help is to define a 'reference' web application at the corporate foundation layer to act as a solid starting point for each site.  Here's a description of the 'reference' web application: Contains minimal / sample reference styling as this will mostly be addressed at the site level web app Focus on functionality - ensure that core functionality is revealed via this web application Each individual site can use this as a starting point There may be multiple types of web apps (i.e. B2C, B2B, etc) There are some techniques to share web application assets - i.e. multiple web applications, defined in the web.xml, and it's worth investigating, but is out of scope here. Reference infrastructure In this complex environment, it is assumed that there is not a single infrastructure for all countries and all sites.  It's more likely that different countries (or regions) could have their own solution for infrastructure.  In this case, it will be advantageous to define a reference infrastructure which contains all the hardware and software that make up the core environment.  Specifications and diagrams should be created to outline what this reference infrastructure looks like, as well as it's baseline cost and the incremental cost to scale up with volume.  Having some consistency in terms of infrastructure will save time and money as new countries / sites come online.  Here are some properties of the reference infrastructure: Standardized approach to setup of hardware Type and number of servers Defines application server, operating system, database, etc... - including vendor and specific versions Consistent naming conventions Provides a consistent base of terminology and understanding across environments Defines which ATG services run on which servers Production Staging BCC / Preview Each site can change as required to meet scale requirements Governance / organization It should be no surprise that the complex application we're talking about is backed by an equally complex organization.  One of the more challenging aspects of efficiently managing a series of complex applications is to ensure the proper level of governance and organization.  Here are some ideas and goals to work towards: Establish a committee to make enterprise-wide decisions that affect all sites Representation should be evenly distributed Should have a clear communication procedure Focus on high level business goals Evaluation of feature / function gaps and how that relates to ATG release schedule / roadmap Determine when to upgrade & ensure value will be realized Determine how to manage various levels of modules Who is responsible for maintaining corporate / country / site layers Determine a procedure for controlling what goes in the corporate foundation module Standardize on source code control, database, hardware, OS versions, J2EE app servers, development procedures, etc only use tested / proven versions - this is something that should be centralized so that every country / site does not have to worry about compatibility between versions Create a innovation team Quickly develop new features, perform proof of concepts All teams can benefit from their findings Summary At this point, it should be clear why the topics above (design, governance, organization, etc) are critical to being able to efficiently manage a complex application.  To summarize, it's all about competitive advantage...  You will need to reduce costs and improve time to market with the goal of providing a better experience for your end customers.  You can reduce cost by reducing development time, time allocated to testing (don't have to test the corporate foundation module over and over again - do it once), and optimizing operations.  With an efficient design, you can improve your time to market and your business will be more flexible  and agile.  Over time, you'll find that you're becoming more focused on offering functionality that is new to the market (creativity) and this will be rewarded - you're now a leader. In addition to the above, you'll realize soft benefits as well.  Your staff will be operating in a culture based on sharing.  You'll want to reward efforts to improve and enhance the foundation as this will benefit everyone.  This culture will inspire innovation, which can only lend itself to your competitive advantage.

    Read the article

  • Nagging As A Strategy For Better Linking: -z guidance

    - by user9154181
    The link-editor (ld) in Solaris 11 has a new feature that we call guidance that is intended to help you build better objects. The basic idea behind guidance is that if (and only if) you request it, the link-editor will issue messages suggesting better options and other changes you might make to your ld command to get better results. You can choose to take the advice, or you can disable specific types of guidance while acting on others. In some ways, this works like an experienced friend leaning over your shoulder and giving you advice — you're free to take it or leave it as you see fit, but you get nudged to do a better job than you might have otherwise. We use guidance to build the core Solaris OS, and it has proven to be useful, both in improving our objects, and in making sure that regressions don't creep back in later. In this article, I'm going to describe the evolution in thinking and design that led to the implementation of the -z guidance option, as well as give a brief description of how it works. The guidance feature issues non-fatal warnings. However, experience shows that once developers get used to ignoring warnings, it is inevitable that real problems will be lost in the noise and ignored or missed. This is why we have a zero tolerance policy against build noise in the core Solaris OS. In order to get maximum benefit from -z guidance while maintaining this policy, I added the -z fatal-warnings option at the same time. Much of the material presented here is adapted from the arc case: PSARC 2010/312 Link-editor guidance The History Of Unfortunate Link-Editor Defaults The Solaris link-editor is one of the oldest Unix commands. It stands to reason that this would be true — in order to write an operating system, you need the ability to compile and link code. The original link-editor (ld) had defaults that made sense at the time. As new features were needed, command line option switches were added to let the user use them, while maintaining backward compatibility for those who didn't. Backward compatibility is always a concern in system design, but is particularly important in the case of the tool chain (compilers, linker, and related tools), since it is a basic building block for the entire system. Over the years, applications have grown in size and complexity. Important concepts like dynamic linking that didn't exist in the original Unix system were invented. Object file formats changed. In the case of System V Release 4 Unix derivatives like Solaris, the ELF (Extensible Linking Format) was adopted. Since then, the ELF system has evolved to provide tools needed to manage today's larger and more complex environments. Features such as lazy loading, and direct bindings have been added. In an ideal world, many of these options would be defaults, with rarely used options that allow the user to turn them off. However, the reality is exactly the reverse: For backward compatibility, these features are all options that must be explicitly turned on by the user. This has led to a situation in which most applications do not take advantage of the many improvements that have been made in linking over the last 20 years. If their code seems to link and run without issue, what motivation does a developer have to read a complex manpage, absorb the information provided, choose the features that matter for their application, and apply them? Experience shows that only the most motivated and diligent programmers will make that effort. We know that most programs would be improved if we could just get you to use the various whizzy features that we provide, but the defaults conspire against us. We have long wanted to do something to make it easier for our users to use the linkers more effectively. There have been many conversations over the years regarding this issue, and how to address it. They always break down along the following lines: Change ld Defaults Since the world would be a better place the newer ld features were the defaults, why not change things to make it so? This idea is simple, elegant, and impossible. Doing so would break a large number of existing applications, including those of ISVs, big customers, and a plethora of existing open source packages. In each case, the owner of that code may choose to follow our lead and fix their code, or they may view it as an invitation to reconsider their commitment to our platform. Backward compatibility, and our installed base of working software, is one of our greatest assets, and not something to be lightly put at risk. Breaking backward compatibility at this level of the system is likely to do more harm than good. But, it sure is tempting. New Link-Editor One might create a new linker command, not called 'ld', leaving the old command as it is. The new one could use the same code as ld, but would offer only modern options, with the proper defaults for features such as direct binding. The resulting link-editor would be a pleasure to use. However, the approach is doomed to niche status. There is a vast pile of exiting code in the world built around the existing ld command, that reaches back to the 1970's. ld use is embedded in large and unknown numbers of makefiles, and is used by name by compilers that execute it. A Unix link-editor that is not named ld will not find a majority audience no matter how good it might be. Finally, a new linker command will eventually cease to be new, and will accumulate its own burden of backward compatibility issues. An Option To Make ld Do The Right Things Automatically This line of reasoning is best summarized by a CR filed in 2005, entitled 6239804 make it easier for ld(1) to do what's best The idea is to have a '-z best' option that unchains ld from its backward compatibility commitment, and allows it to turn on the "best" set of features, as determined by the authors of ld. The specific set of features enabled by -z best would be subject to change over time, as requirements change. This idea is more realistic than the other two, but was never implemented because it has some important issues that we could never answer to our satisfaction: The -z best proposal assumes that the user can turn it on, and trust it to select good options without the user needing to be aware of the options being applied. This is a fallacy. Features such as direct bindings require the user to do some analysis to ensure that the resulting program will still operate properly. A user who is willing to do the work to verify that what -z best does will be OK for their application is capable of turning on those features directly, and therefore gains little added benefit from -z best. The intent is that when a user opts into -z best, that they understand that z best is subject to sometimes incompatible evolution. Experience teaches us that this won't work. People will use this feature, the meaning of -z best will change, code that used to build will fail, and then there will be complaints and demands to retract the change. When (not if) this occurs, we will of course defend our actions, and point at the disclaimer. We'll win some of those debates, and lose others. Ultimately, we'll end up with -z best2 (-z better), or other compromises, and our goal of simplifying the world will have failed. The -z best idea rolls up a set of features that may or may not be related to each other into a unit that must be taken wholesale, or not at all. It could be that only a subset of what it does is compatible with a given application, in which case the user is expected to abandon -z best and instead set the options that apply to their application directly. In doing so, they lose one of the benefits of -z best, that if you use it, future versions of ld may choose a different set of options, and automatically improve the object through the act of rebuilding it. I drew two conclusions from the above history: For a link-editor, backward compatibility is vital. If a given command line linked your application 10 years ago, you have every reason to expect that it will link today, assuming that the libraries you're linking against are still available and compatible with their previous interfaces. For an application of any size or complexity, there is no substitute for the work involved in examining the code and determining which linker options apply and which do not. These options are largely orthogonal to each other, and it can be reasonable not to use any or all of them, depending on the situation, even in modern applications. It is a mistake to tie them together. The idea for -z guidance came from consideration of these points. By decoupling the advice from the act of taking the advice, we can retain the good aspects of -z best while avoiding its pitfalls: -z guidance gives advice, but the decision to take that advice remains with the user who must evaluate its merit and make a decision to take it or not. As such, we are free to change the specific guidance given in future releases of ld, without breaking existing applications. The only fallout from this will be some new warnings in the build output, which can be ignored or dealt with at the user's convenience. It does not couple the various features given into a single "take it or leave it" option, meaning that there will never be a need to offer "-zguidance2", or other such variants as things change over time. Guidance has the potential to be our final word on this subject. The user is given the flexibility to disable specific categories of guidance without losing the benefit of others, including those that might be added to future versions of the system. Although -z fatal-warnings stands on its own as a useful feature, it is of particular interest in combination with -z guidance. Used together, the guidance turns from advice to hard requirement: The user must either make the suggested change, or explicitly reject the advice by specifying a guidance exception token, in order to get a build. This is valuable in environments with high coding standards. ld Command Line Options The guidance effort resulted in new link-editor options for guidance and for turning warnings into fatal errors. Before I reproduce that text here, I'd like to highlight the strategic decisions embedded in the guidance feature: In order to get guidance, you have to opt in. We hope you will opt in, and believe you'll get better objects if you do, but our default mode of operation will continue as it always has, with full backward compatibility, and without judgement. Guidance suggestions always offers specific advice, and not vague generalizations. You can disable some guidance without turning off the entire feature. When you get guidance warnings, you can choose to take the advice, or you can specify a keyword to disable guidance for just that category. This allows you to get guidance for things that are useful to you, without being bothered about things that you've already considered and dismissed. As the world changes, we will add new guidance to steer you in the right direction. All such new guidance will come with a keyword that let's you turn it off. In order to facilitate building your code on different versions of Solaris, we quietly ignore any guidance keywords we don't recognize, assuming that they are intended for newer versions of the link-editor. If you want to see what guidance tokens ld does and does not recognize on your system, you can use the ld debugging feature as follows: % ld -Dargs -z guidance=foo,nodefs debug: debug: Solaris Linkers: 5.11-1.2275 debug: debug: arg[1] option=-D: option-argument: args debug: arg[2] option=-z: option-argument: guidance=foo,nodefs debug: warning: unrecognized -z guidance item: foo The -z fatal-warning option is straightforward, and generally useful in environments with strict coding standards. Note that the GNU ld already had this feature, and we accept their option names as synonyms: -z fatal-warnings | nofatal-warnings --fatal-warnings | --no-fatal-warnings The -z fatal-warnings and the --fatal-warnings option cause the link-editor to treat warnings as fatal errors. The -z nofatal-warnings and the --no-fatal-warnings option cause the link-editor to treat warnings as non-fatal. This is the default behavior. The -z guidance option is defined as follows: -z guidance[=item1,item2,...] Provide guidance messages to suggest ld options that can improve the quality of the resulting object, or which are otherwise considered to be beneficial. The specific guidance offered is subject to change over time as the system evolves. Obsolete guidance offered by older versions of ld may be dropped in new versions. Similarly, new guidance may be added to new versions of ld. Guidance therefore always represents current best practices. It is possible to enable guidance, while preventing specific guidance messages, by providing a list of item tokens, representing the class of guidance to be suppressed. In this way, unwanted advice can be suppressed without losing the benefit of other guidance. Unrecognized item tokens are quietly ignored by ld, allowing a given ld command line to be executed on a variety of older or newer versions of Solaris. The guidance offered by the current version of ld, and the item tokens used to disable these messages, are as follows. Specify Required Dependencies Dynamic executables and shared objects should explicitly define all of the dependencies they require. Guidance recommends the use of the -z defs option, should any symbol references remain unsatisfied when building dynamic objects. This guidance can be disabled with -z guidance=nodefs. Do Not Specify Non-Required Dependencies Dynamic executables and shared objects should not define any dependencies that do not satisfy the symbol references made by the dynamic object. Guidance recommends that unused dependencies be removed. This guidance can be disabled with -z guidance=nounused. Lazy Loading Dependencies should be identified for lazy loading. Guidance recommends the use of the -z lazyload option should any dependency be processed before either a -z lazyload or -z nolazyload option is encountered. This guidance can be disabled with -z guidance=nolazyload. Direct Bindings Dependencies should be referenced with direct bindings. Guidance recommends the use of the -B direct, or -z direct options should any dependency be processed before either of these options, or the -z nodirect option is encountered. This guidance can be disabled with -z guidance=nodirect. Pure Text Segment Dynamic objects should not contain relocations to non-writable, allocable sections. Guidance recommends compiling objects with Position Independent Code (PIC) should any relocations against the text segment remain, and neither the -z textwarn or -z textoff options are encountered. This guidance can be disabled with -z guidance=notext. Mapfile Syntax All mapfiles should use the version 2 mapfile syntax. Guidance recommends the use of the version 2 syntax should any mapfiles be encountered that use the version 1 syntax. This guidance can be disabled with -z guidance=nomapfile. Library Search Path Inappropriate dependencies that are encountered by ld are quietly ignored. For example, a 32-bit dependency that is encountered when generating a 64-bit object is ignored. These dependencies can result from incorrect search path settings, such as supplying an incorrect -L option. Although benign, this dependency processing is wasteful, and might hide a build problem that should be solved. Guidance recommends the removal of any inappropriate dependencies. This guidance can be disabled with -z guidance=nolibpath. In addition, -z guidance=noall can be used to entirely disable the guidance feature. See Chapter 7, Link-Editor Quick Reference, in the Linker and Libraries Guide for more information on guidance and advice for building better objects. Example The following example demonstrates how the guidance feature is intended to work. We will build a shared object that has a variety of shortcomings: Does not specify all it's dependencies Specifies dependencies it does not use Does not use direct bindings Uses a version 1 mapfile Contains relocations to the readonly allocable text (not PIC) This scenario is sadly very common — many shared objects have one or more of these issues. % cat hello.c #include <stdio.h> #include <unistd.h> void hello(void) { printf("hello user %d\n", getpid()); } % cat mapfile.v1 # This version 1 mapfile will trigger a guidance message % cc hello.c -o hello.so -G -M mapfile.v1 -lelf As you can see, the operation completes without error, resulting in a usable object. However, turning on guidance reveals a number of things that could be better: % cc hello.c -o hello.so -G -M mapfile.v1 -lelf -zguidance ld: guidance: version 2 mapfile syntax recommended: mapfile.v1 ld: guidance: -z lazyload option recommended before first dependency ld: guidance: -B direct or -z direct option recommended before first dependency Undefined first referenced symbol in file getpid hello.o (symbol belongs to implicit dependency /lib/libc.so.1) printf hello.o (symbol belongs to implicit dependency /lib/libc.so.1) ld: warning: symbol referencing errors ld: guidance: -z defs option recommended for shared objects ld: guidance: removal of unused dependency recommended: libelf.so.1 warning: Text relocation remains referenced against symbol offset in file .rodata1 (section) 0xa hello.o getpid 0x4 hello.o printf 0xf hello.o ld: guidance: position independent (PIC) code recommended for shared objects ld: guidance: see ld(1) -z guidance for more information Given the explicit advice in the above guidance messages, it is relatively easy to modify the example to do the right things: % cat mapfile.v2 # This version 2 mapfile will not trigger a guidance message $mapfile_version 2 % cc hello.c -o hello.so -Kpic -G -Bdirect -M mapfile.v2 -lc -zguidance There are situations in which the guidance does not fit the object being built. For instance, you want to build an object without direct bindings: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance ld: guidance: -B direct or -z direct option recommended before first dependency ld: guidance: see ld(1) -z guidance for more information It is easy to disable that specific guidance warning without losing the overall benefit from allowing the remainder of the guidance feature to operate: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance=nodirect Conclusions The linking guidelines enforced by the ld guidance feature correspond rather directly to our standards for building the core Solaris OS. I'm sure that comes as no surprise. It only makes sense that we would want to build our own product as well as we know how. Solaris is usually the first significant test for any new linker feature. We now enable guidance by default for all builds, and the effect has been very positive. Guidance helps us find suboptimal objects more quickly. Programmers get concrete advice for what to change instead of vague generalities. Even in the cases where we override the guidance, the makefile rules to do so serve as documentation of the fact. Deciding to use guidance is likely to cause some up front work for most code, as it forces you to consider using new features such as direct bindings. Such investigation is worthwhile, but does not come for free. However, the guidance suggestions offer a structured and straightforward way to tackle modernizing your objects, and once that work is done, for keeping them that way. The investment is often worth it, and will replay you in terms of better performance and fewer problems. I hope that you find guidance to be as useful as we have.

    Read the article

  • Filtering option list values based on security in UCM

    - by kyle.hatlestad
    Fellow UCM blog writer John Sim recently posted a comment asking about filtering values based on the user's security. I had never dug into that detail before, but thought I would take a look. It ended up being tricker then I originally thought and required a bit of insider knowledge, so I thought I would share. The first step is to create the option list table in Configuration Manager. You want to define the column for the option list value and any other columns desired. You then want to have a column which will store the security attribute to apply to the option list value. In this example, we'll name the column 'dGroupName'. Next step is to create a View based on the new table. For the Internal and Visible column, you can select the option list column name. Then click on the Security tab, uncheck the 'Publish view data' checkbox and select the 'Use standard document security' radio button. Click on the 'Edit Values...' button and add the values for the option list. In the dGroupName field, enter the Security Group (or Account if you use Accounts for security) to apply to that value. Create the custom metadata field and apply the View just created. The next step requires file system access to the server. Open the file [ucm directory]\data\schema\views\[view name].hda in a text editor. Below the line '@Properties LocalData', add the line: schSecurityImplementorColumnMap=dGroupName:dSecurityGroup The 'dGroupName' value designates the column in the table which stores the security value. 'dSecurityGroup' indicates the type of security to check against. It would be 'dDocAccount' if using Accounts. Save the file and restart UCM. Now when a user goes to the check-in page, they will only see the options for which they have read and write privileges to the associated Security Group. And on the Search page, they will see the options for which they have just read access. One thing to note is if a value that a user normally can't view on Check-in or Search is applied to a document, but the document is viewable by the user, the user will be able to see the value on the Content Information screen.

    Read the article

  • Facebook Stories for Retailers

    - by David Dorf
    Getting people to "like" a brand is important because it opens the door to a possible B2C relationship. Once a person likes that brand, the brand can post to their newsfeed with promotions, announcements, and surveys. At least for me, I "hide" the noisy brands and just monitor the ones that keep posts under 4 times a week. I see lots of people, especially with fashion brands, comment on postings at which point the posting is seen by their network. A metric I've heard (but not verified) is that for every person that comments, ten of their friends see the original posting. That's a pretty cheap way to communicate to potential customers in a viral way. Over at mainstreet.com they compiled the a list of the top liked retailers on Facebook as of Feb 1, 2011. They are listed below: 19,414,892 Starbucks 11,302,939 Victoria's Secret 7,925,184 Zara 7,032,398 McDonald's 6,117,222 H&M 5,400,586 Taco Bell 4,665,760 Subway 4,494,849 Lacoste 4,185,570 Hollister 3,973,181 Forever 21 So I guess the public likes their fast-food and fashion. To take this to the next level, Facebook is now displaying Sponsored Stories, which I saw for the first time on my page this weekend. I found this picture at the Wall Blog that depicits Sponsored Stories very well. Over on the right-hand column of a person's page, where they see advertisements and such, Facebook will post stories involving their network of friends and their interaction with sponsored brands. Now their "likes" can suddenly become your ads. "Jessica and Philip like Starbucks. What are you waiting for?" This is another great way to take messages viral by accessing social graphs. As usual there will be a certain level of outcry from privacy advocates, but given the other more iniquitous issues, I believe this will fall by the wayside. Retailers should consider using Sponsored Stories to increase their Likes, and thus increase their voice in the social world.

    Read the article

  • Upgrade nap prezentáció

    - by Lajos Sárecz
    Még tart az Upgrade 11g szeminárium, de a prezentáció már elérheto, letöltheto innen az upgrade112 jelszó megadását követoen. A prezentáció egy bovebb változat, hiszen két napos workshop-ra van tervezve. Lehetoség van arra, hogy a jövoben egy 2 napos workshopot szervezzünk, ahol már nem csak slide-ok, de hands-on gyakorlatok is lennének. Kérjük aki szeretne ilyenen Budapesten részt venni, az jelezze nekünk. Azt gondolom akik eljöttek, azok meggyozodhettek róla, hogy Mike komoly upgrade tapasztalattal rendelkezik, és számos jó ötletet adott a résztvevok számára. Aki felbátorodik, és nekiáll az upgrade-nek, majd szívesen beszámol a tapasztalatairól, azoknak eloadás pályázatát majd örömmel látjuk a jövo évi HOUG-on!

    Read the article

  • Free SANS Mobility Policy Survey Webcast - October 23rd @10:00 am PST

    - by Darin Pendergraft
    Join us for a free webcast tomorrow, October 23 @ 10:00 am PST as SANS presents the findings from their mobility policy survey. -- Register here for Part 1: https://www.sans.org/webcasts/byod-security-lists-policies-mobility-policy-management-survey-95429 This is a great opportunity to see where companies are with respect to mobile access policies and overall mobile application management. This first part is entitled: BYOD Wish Lists and Policies.  Part 2 will be run on October 25th and is entitled: BYOD security practices. -- Register here for Part 2: https://www.sans.org/webcasts/byod-security-practices-2-mobility-policy-management-survey-95434

    Read the article

  • What's up with LDoms: Part 9 - Direct IO

    - by Stefan Hinker
    In the last article of this series, we discussed the most general of all physical IO options available for LDoms, root domains.  Now, let's have a short look at the next level of granularity: Virtualizing individual PCIe slots.  In the LDoms terminology, this feature is called "Direct IO" or DIO.  It is very similar to root domains, but instead of reassigning ownership of a complete root complex, it only moves a single PCIe slot or endpoint device to a different domain.  Let's look again at hardware available to mars in the original configuration: root@sun:~# ldm ls-io NAME TYPE BUS DOMAIN STATUS ---- ---- --- ------ ------ pci_0 BUS pci_0 primary pci_1 BUS pci_1 primary pci_2 BUS pci_2 primary pci_3 BUS pci_3 primary /SYS/MB/PCIE1 PCIE pci_0 primary EMP /SYS/MB/SASHBA0 PCIE pci_0 primary OCC /SYS/MB/NET0 PCIE pci_0 primary OCC /SYS/MB/PCIE5 PCIE pci_1 primary EMP /SYS/MB/PCIE6 PCIE pci_1 primary EMP /SYS/MB/PCIE7 PCIE pci_1 primary EMP /SYS/MB/PCIE2 PCIE pci_2 primary EMP /SYS/MB/PCIE3 PCIE pci_2 primary OCC /SYS/MB/PCIE4 PCIE pci_2 primary EMP /SYS/MB/PCIE8 PCIE pci_3 primary EMP /SYS/MB/SASHBA1 PCIE pci_3 primary OCC /SYS/MB/NET2 PCIE pci_3 primary OCC /SYS/MB/NET0/IOVNET.PF0 PF pci_0 primary /SYS/MB/NET0/IOVNET.PF1 PF pci_0 primary /SYS/MB/NET2/IOVNET.PF0 PF pci_3 primary /SYS/MB/NET2/IOVNET.PF1 PF pci_3 primary All of the "PCIE" type devices are available for SDIO, with a few limitations.  If the device is a slot, the card in that slot must support the DIO feature.  The documentation lists all such cards.  Moving a slot to a different domain works just like moving a PCI root complex.  Again, this is not a dynamic process and includes reboots of the affected domains.  The resulting configuration is nicely shown in a diagram in the Admin Guide: There are several important things to note and consider here: The domain receiving the slot/endpoint device turns into an IO domain in LDoms terminology, because it now owns some physical IO hardware. Solaris will create nodes for this hardware under /devices.  This includes entries for the virtual PCI root complex (pci_0 in the diagram) and anything between it and the actual endpoint device.  It is very important to understand that all of this PCIe infrastructure is virtual only!  Only the actual endpoint devices are true physical hardware. There is an implicit dependency between the guest owning the endpoint device and the root domain owning the real PCIe infrastructure: Only if the root domain is up and running, will the guest domain have access to the endpoint device. The root domain is still responsible for resetting and configuring the PCIe infrastructure (root complex, PCIe level configurations, error handling etc.) because it owns this part of the physical infrastructure. This also means that if the root domain needs to reset the PCIe root complex for any reason (typically a reboot of the root domain) it will reset and thus disrupt the operation of the endpoint device owned by the guest domain.  The result in the guest is not predictable.  I recommend to configure the resulting behaviour of the guest using domain dependencies as described in the Admin Guide in Chapter "Configuring Domain Dependencies". Please consult the Admin Guide in Section "Creating an I/O Domain by Assigning PCIe Endpoint Devices" for all the details! As you can see, there are several restrictions for this feature.  It was introduced in LDoms 2.0, mainly to allow the configuration of guest domains that need access to tape devices.  Today, with the higher number of PCIe root complexes and the availability of SR-IOV, the need to use this feature is declining.  I personally do not recommend to use it, mainly because of the drawbacks of the depencies on the root domain and because it can be replaced with SR-IOV (although then with similar limitations). This was a rather short entry, more for completeness.  I believe that DIO can usually be replaced by SR-IOV, which is much more flexible.  I will cover SR-IOV in the next section of this blog series.

    Read the article

< Previous Page | 557 558 559 560 561 562 563 564 565 566 567 568  | Next Page >