Search Results

Search found 41035 results on 1642 pages for 'object oriented design'.

Page 564/1642 | < Previous Page | 560 561 562 563 564 565 566 567 568 569 570 571  | Next Page >

  • MVC Communication Pattern

    - by Kedu
    This is kind of a follow up question to this http://stackoverflow.com/questions/23743285/model-view-controller-and-callbacks, but I wanted to post it separately, because its kind of a different topic. I'm working on a multiplayer cardgame for the Android platform. I split the project into MVC which fits the needs pretty good, but I'm currently stuck because I can't figure out a good way to communicate between the different parts. I have everything setup and working with the controller being a big state machine, which is called over and over from the gameloop, and calls getter methods from the GUI and the android/network part to get the input. The input itself in the GUI and network is set by inputlisteners that set a local variable which I read in the getter method. So far so good, this is working. But my problem is, the controller has to check every input separately,so if I want to add an input I have to check in which states its valid and call the getter method from all these states. This is not good, and lets the code look pretty ugly, makes additions uncomfortable and adds redundance. So what I've got from the question I mentioned above is that some kind of command or event pattern will fit my needs. What I want to do is to create a shared and threadsafe queue in the controller and instead of calling all these getter methods, I just check the queue for new input and proceed it. On the other side, the GUI and network don't have all these getters, but instead create an event or command and send it to the controller through, for example, observer/observable. Now my problem: I can't figure out a way, for these commands/events to fit a common interface (which the queue can store) and still transport different kind of data (button clicks, cards that are played, the player id the command comes from, synchronization data etc.). If I design the communication as command pattern, I have to stick all the information that is needed to execute the command into it when its created, that's impossible because the GUI or network has no knowledge of all the things the controller needs to execute stuff that needs to be done when for example a card is played. I thought about getting this stuff into the command when executing it. But over all the different commands I have, I would need all the information the controller has, and thus give the command a reference to the controller which would make everything in it public, which is real bad design I guess. So, I could try some kind of event pattern. I have to transport data in the event. So, like the command, I would have an interface, which all events have in common, and can be stored in the shared queue. I could create a big enum with all the different events that a are possible, save one of these enums in the actual event, and build a big switch case for the events, to proceed different stuff for different events. The problem here: I have different data for all the events. But I need a common interface, to store the events in a queue. How do I get the specific data, if I can only access the event through the interface? Even if that wouldn't be a problem, I'm creating another big switch case, which looks ugly, and when i want to add a new event, I have to create the event itself, the case, the enum, and the method that's called with the data. I could of course check the event with the enum and cast it to its type, so I can call event type specific methods that give me the data I need, but that looks like bad design too.

    Read the article

  • Dependency injection: How to sell it

    - by Mel
    Let it be known that I am a big fan of dependency injection (DI) and automated testing. I could talk all day about it. Background Recently, our team just got this big project that is to built from scratch. It is a strategic application with complex business requirements. Of course, I wanted it to be nice and clean, which for me meant: maintainable and testable. So I wanted to use DI. Resistance The problem was in our team, DI is taboo. It has been brought up a few times, but the gods do not approve. But that did not discourage me. My Move This may sound weird but third-party libraries are usually not approved by our architect team (think: "thou shalt not speak of Unity, Ninject, NHibernate, Moq or NUnit, lest I cut your finger"). So instead of using an established DI container, I wrote an extremely simple container. It basically wired up all your dependencies on startup, injects any dependencies (constructor/property) and disposed any disposable objects at the end of the web request. It was extremely lightweight and just did what we needed. And then I asked them to review it. The Response Well, to make it short. I was met with heavy resistance. The main argument was, "We don't need to add this layer of complexity to an already complex project". Also, "It's not like we will be plugging in different implementations of components". And "We want to keep it simple, if possible just stuff everything into one assembly. DI is an uneeded complexity with no benefit". Finally, My Question How would you handle my situation? I am not good in presenting my ideas, and I would like to know how people would present their argument. Of course, I am assuming that like me, you prefer to use DI. If you don't agree, please do say why so I can see the other side of the coin. It would be really interesting to see the point of view of someone who disagrees. Update Thank you for everyone's answers. It really puts things into perspective. It's nice enough to have another set of eyes to give you feedback, fifteen is really awesome! This are really great answers and helped me see the issue from different sides, but I can only choose one answer, so I will just pick the top voted one. Thanks everyone for taking the time to answer. I have decided that it is probably not the best time to implement DI, and we are not ready for it. Instead, I will concentrate my efforts on making the design testable and attempt to present automated unit testing. I am aware that writing tests is additional overhead and if ever it is decided that the additional overhead is not worth it, personally I would still see it as a win situation since the design is still testable. And if ever testing or DI is a choice in future, the design can easily handle it.

    Read the article

  • Oracle Applications Cloud Release 8 Customization: Your User Interface, Your Text

    - by ultan o'broin
    Introducing the User Interface Text Editor In Oracle Applications Cloud Release 8, there’s an addition to the customization tool set, called the User Interface Text Editor  (UITE). When signed in with an application administrator role, users launch this new editing feature from the Navigator's Tools > Customization > User Interface Text menu option. See how the editor is in there with other customization tools? User Interface Text Editor is launched from the Navigator Customization menu Applications customers need a way to make changes to the text that appears in the UI, without having to initiate an IT project. Business users can now easily change labels on fields, for example. Using a composer and activated sandbox, these users can take advantage of the Oracle Metadata Services (MDS), add a key to a text resource bundle, and then type in their preferred label and its description (as a best practice for further work, I’d recommend always completing that description). Changing a simplified UI field label using Oracle Composer In Release 8, the UITE enables business users to easily change UI text on a much wider basis. As with composers, the UITE requires an activated sandbox where users can make their changes safely, before committing them for others to see. The UITE is used for editing UI text that comes from Oracle ADF resource bundles or from the Message Dictionary (or FND_MESSAGE_% tables, if you’re old enough to remember such things). Functionally, the Message Dictionary is used for the text that appears in business rule-type error, warning or information messages, or as a text source when ADF resource bundles cannot be used. In the UITE, these Message Dictionary texts are referred to as Multi-part Validation Messages.   If the text comes from ADF resource bundles, then it’s categorized as User Interface Text in the UITE. This category refers to the text that appears in embedded help in the UI or in simple error, warning, confirmation, or information messages. The embedded help types used in the application are explained in an Oracle Fusion Applications User Experience (UX) design pattern set. The message types have a UX design pattern set too. Using UITE  The UITE enables users to search and replace text in UI strings using case sensitive options, as well as by type. Users select singular and plural options for text changes, should they apply. Searching and replacing text in the UITE The UITE also provides users with a way to preview and manage changes on an exclusion basis, before committing to the final result. There might, for example, be situations where a phrase or word needs to remain different from how it’s generally used in the application, depending on the context. Previewing replacement text changes. Changes can be excluded where required. Multi-Part Messages The Message Dictionary table architecture has been inherited from Oracle E-Business Suite days. However, there are important differences in the Oracle Applications Cloud version, notably the additional message text components, as explained in the UX Design Patterns. Message Dictionary text has a broad range of uses as indicated, and it can also be reserved for internal application use, for use by PL/SQL and C programs, and so on. Message Dictionary text may even concatenate together at run time, where required. The UITE handles the flexibility of such text architecture by enabling users to drill down on each message and see how it’s constructed in total. That way, users can ensure that any text changes being made are consistent throughout the different message parts. Multi-part (Message Dictionary) message components in the UITE Message Dictionary messages may also use supportability-related numbers, the ones that appear appended to the message text in the application’s UI. However, should you have the requirement to remove these numbers from users' view, the UITE is not the tool for the job. Instead, see my blog about using the Manage Messages UI.

    Read the article

  • How to handle multi-processing of libraries which already spawn sub-processes?

    - by exhuma
    I am having some trouble coming up with a good solution to limit sub-processes in a script which uses a multi-processed library and the script itself is also multi-processed. Both, the library and script are modifiable by us. I believe the question is more about design than actual code, but for what it's worth, it's written in Python. The goal of the library is to hide implementation details of various internet routers. For that reason, the library has a "Proxy" factory method which takes the IP of a router as parameter. The factory then probes the device using a set of possible proxies. Usually, there is one proxy which immediately knows that is is able to send commands to this device. All others usually take some time to return (given a timeout). One thought was already to simply query the device for an identifier, and then select the proper proxy using that, but in order to do so, you would already need to know how to query the device. Abstracting this knowledge is one of the main purposes of the library, so that becomes a little bit of a "circular-requirement"/deadlock: To connect to a device, you need to know what proxy to use, and to know what proxy to create, you need to connect to a device. So probing the device is - as we can see - the best solution so far, apart from keeping a lookup-table somewhere. The library currently kills all remaining processes once a valid proxy has been found. And yes, there is always only one good proxy per device. Currently there are about 12 proxies. So if one create a proxy instance using the factory, 12 sub-processes are spawned. So far, this has been really useful and worked very well. But recently someone else wanted to use this library to "broadcast" a command to all devices. So he took the library, and wrote his own multi-processed script. This obviously spawned 12 * n processes where n is the number of IPs to which he broadcasted. This has given us two problems: The host on which the command was executed slowed down to a near halt. Aborting the script with CTRL+C ground the system to a total halt. Not even the hardware console responded anymore! This may be due to some Python strangeness which still needs to be investigated. Maybe related to http://bugs.python.org/issue8296 The big underlying question, is how to design a library which does multi-processing, so other applications which use this library and want to be multi-processed themselves do not run into system limitations. My first thought was to require a pool to be passed to the library, and execute all tasks in that pool. In that way, the person using the library has control over the usage of system resources. But my gut tells me that there must be a better solution. Disclaimer: My experience with multiprocessing is fairly limited. I have implemented a few straightforward which did not require access control to resources. So I have not yet any practical experience with semaphores or mutexes. p.s.: In the future, we may have enough information to do this without the probing. But the database which would contain the proper information is not yet operational. Also, the design about multiprocessing a multiprocessed library intrigues me :)

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

  • Is there any kind of established architecture for browser based games?

    - by black_puppydog
    I am beginning the development of a broser based game in which players take certain actions at any point in time. Big parts of gameplay will be happening in real life and just have to be entered into the system. I believe a good kind of comparison might be a platform for managing fantasy football, although I have virtually no experience playing that, so please correct me if I am mistaken here. The point is that some events happen in the program (i.e. on the server, out of reach for the players) like pulling new results from some datasource, starting of a new round by a game master and such. Other events happen in real life (two players closing a deal on the transfer of some team member or whatnot - again: have never played fantasy football) and have to be entered into the system. The first part is pretty easy since the game masters will be "staff" and thus can be trusted to a certain degree to not mess with the system. But the second part bothers me quite a lot, especially since the actions may involve multiple steps and interactions with different players, like registering a deal with the system that then has to be approved by the other party or denied and passed on to a game master to decide. I would of course like to separate the game logic as far as possible from the presentation and basic form validation but am unsure how to do this in a clean fashion. Of course I could (and will) put some effort into making my own architectural decisions and prototype different ideas. But I am bound to make some stupid mistakes at some point, so I would like to avoid some of that by getting a little "book smart" beforehand. So the question is: Is there any kind of architectural works that I can read up on? Papers, blogs, maybe design documents or even source code? Writing this down this seems more like a business application with business rules, workflows and such... Any good entry points for that? EDIT: After reading the first answers I am under the impression of having made a mistake when including the "MMO" part into the title. The game will not be all fancy (i.e. 3D or such) on the client side and the logic will completely exist on the server. That is, apart from basic form validation for the user which will also be mirrored on the server side. So the target toolset will be HTML5, JavaScript, probably JQuery(UI). My question is more related to the software architecture/design of a system that enforces certain rules. Separation of ruleset and presentation One problem I am having is that I want to separate the game rules from the presentation. The first step would be to make an own module for the game "engine" that only exposes an interface that allows all actions to be taken in a clean way. If an action fails with regard to some pre/post condition, the engine throws an exception which is then presented to the user like "you cannot sell something you do not own" or "after that you would end up in a situation which is not a valid game state." The problem here is that I would like to be able to not even present invalid action in the first place or grey out the corresponding UI elements. Changing and tweaking the ruleset Another big thing is the ruleset. It will probably evolve over time and most definitely must be tweaked. What's more, it should be possible (to a certain extent) to build a ruleset that fits a specific game round, i.e. choosing different kinds of behaviours in different aspects of the game. This would do something like "we play it with extension A today but we throw out extension B." For me, this screams "Architectural/Design pattern" but I have no idea on who might have published on something like this, not even what to google for.

    Read the article

  • Inkscape: what are "line" objects?

    - by Peter Mortensen
    What is a "line" object in Inkscape? Drawing lines in Inkscape is by using the tool "Draw Bezier curves and straight lines (Shift+F6)". This creates objects of another type, "path". Using Inkscape: is there a way to convert an object of type "line" into an object of the more general type "path"? I have imported a drawing (mostly lines, rectangles and text) that has been through Adobe Illustrator: originally made in Inkscape, imported into Illustrator, edited, saved from Illustrator as SVG, imported into Inkscape. Sample from the imported SVG file: <path id="path5855" stroke="#000000" d=" M320.198,275.935" /> <line fill="none" stroke="#000000" x1="348.553" y1="45.097" x2="348.553" y2="185.346" id="line3368" /> Update 1: I have inspected the original XML (SVG) file from 2006 and it does not contain any "line" XML tags. Thus it must be a crime of Adobe Illustrator. When a line is selected in this imported SVG file the bottom panel displays: "Line in root. Click selection to toggle scale/rotation handles.". When a line is selected that was drawn in Inkscape the bottom panel displays: "Path (2 nodes) in Layer 1. Click selection to toggle scale/rotation handles." What is the difference between "line" and "path"? Is "line" some kind of read-only/non-editable object? A generic term like "line" is not easy to use in search, but I have now found the definitions for "line" and "path": SVG line: http://www.w3schools.com/svg/svg_line.asp SVG path: http://www.w3schools.com/svg/svg_path.asp Platform: Inkscape v0.46 (2008-03-10), Windows XP 64 bit, 8 GB RAM.

    Read the article

  • Problems with ipsec betwen Cisco ASA 5505 and Juniper ssg5

    - by Oskar Kjellin
    I am trying to set up an ipsec tunnel between our ASA 5505 and a Juniper ssg5. The tunnel is up and running, but I cannot get any data through it. The local network I am on is 172.16.1.0 and the remote is 192.168.70.0. But I cannot ping anything on their netowork. I receive a "Phase 2 OK" when I set up the ipsec. I think this is the part of the config that is applicable. It seems like the data is not routed through the tunnel, but I am not sure... object network our-network subnet 172.16.1.0 255.255.255.0 object network their-network subnet 192.168.70.0 255.255.255.0 access-list outside_cryptomap extended permit ip object our-network object their-network crypto ipsec ikev1 transform-set ESP-3DES-SHA esp-3des esp-sha-hmac crypto map outside_map 1 match address outside_cryptomap crypto map outside_map 1 set pfs crypto map outside_map 1 set peer THEIR_IP crypto map outside_map 1 set ikev1 phase1-mode aggressive crypto map outside_map 1 set ikev1 transform-set ESP-3DES-MD5 crypto map outside_map 1 set ikev2 pre-shared-key ***** crypto map outside_map 1 set reverse-route crypto map outside_map interface outside webvpn group-policy GroupPolicy_THEIR_IP internal group-policy GroupPolicy_THEIR_IP attributes vpn-filter value outside_cryptomap ipv6-vpn-filter none vpn-tunnel-protocol ikev1 tunnel-group THEIR_IP type ipsec-l2l tunnel-group THEIR_IP general-attributes default-group-policy GroupPolicy_THEIR_IP tunnel-group THEIR_IP ipsec-attributes ikev1 pre-shared-key ***** ikev2 remote-authentication pre-shared-key ***** ikev2 local-authentication pre-shared-key *****

    Read the article

  • Help me please with this error

    - by Brandon
    I setup IIS. I moved my folder with all the files to the IIS directory. Now when I go to http://localhost/thefolder I get: An attempt was made to load a program with an incorrect format. (Exception from HRESULT: 0x8007000B) Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.BadImageFormatException: An attempt was made to load a program with an incorrect format. (Exception from HRESULT: 0x8007000B) Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [BadImageFormatException: An attempt was made to load a program with an incorrect format. (Exception from HRESULT: 0x8007000B)] Luxand.FSDK.ActivateLibrary(String LicenseKey) +0 FaceRecognition._Default.Page_Load(Object sender, EventArgs e) in D:\Project Details\Layne Projects\DotNet Project\FaceRecognition\FaceRecognition\Default.aspx.cs:60 System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) +25 System.Web.Util.CalliEventHandlerDelegateProxy.Callback(Object sender, EventArgs e) +42 System.Web.UI.Control.OnLoad(EventArgs e) +132 System.Web.UI.Control.LoadRecursive() +66 System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) +2428

    Read the article

  • Windows Server task manager displays much higher memory use than sum of all processes' working set s

    - by Sleepless
    I have a 16 GB Windows Server 2008 x64 machine mostly running SQL Server 2008. The free memory as seen in Task Manager is very low (128 MB at the moment), i.e. about 15.7 GB are used. So far, so good. Now when I try to narrow down the process(es) using the most memory I get confused: None of the processes have more than 200MB Working Set Size as displayed in the 'Processes' tab of Task Manager. Well, maybe the Working Set Size isn't the relevant counter? To figure that out I used a PowerShell command [1] to sum up each individual property of the process object in sort of a brute force approach - surely one of them must add up to the 15.7 GB, right? Turns out none of them does, with the closest being VirtualMemorySize (around 12.7 GB) and PeakVirtualMemorySize (around 14.7 GB). WTF? To put it another way: Which of the numerous memory related process information is the "correct" one, i.e. counts towards the server's physical memory as displayed in the Task Manager's 'Performance' tab? Thank you all! [1] $erroractionpreference="silentlycontinue"; get-process | gm | where-object {$.membertype -eq "Property"} | foreach-object {$.name; (get-process | measure-object -sum $_.name ).sum / 1MB}

    Read the article

  • WPF TreeView MouseDown

    - by imekon
    I've got something like this in a TreeView: <DataTemplate x:Key="myTemplate"> <StackPanel MouseDown="OnItemMouseDown"> ... </StackPanel> </DataTemplate> Using this I get the mouse down events if I click on items in the stack panel. However... there seems to be another item behind the stack panel that is the TreeViewItem - it's very hard to hit, but not impossible, and that's when the problems start to occur. I had a go at handling PreviewMouseDown on TreeViewItem, however that seems to require e.Handled = false otherwise standard tree view behaviour stops working. Ok, Here's the source code... MainWindow.xaml <Window x:Class="WPFMultiSelectTree.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:WPFMultiSelectTree" Title="Multiple Selection Tree" Height="300" Width="300"> <Window.Resources> <!-- Declare the classes that convert bool to Visibility --> <local:VisibilityConverter x:Key="visibilityConverter"/> <local:VisibilityInverter x:Key="visibilityInverter"/> <!-- Set the style for any tree view item --> <Style TargetType="TreeViewItem"> <Style.Triggers> <DataTrigger Binding="{Binding Selected}" Value="True"> <Setter Property="Background" Value="DarkBlue"/> <Setter Property="Foreground" Value="White"/> </DataTrigger> </Style.Triggers> <EventSetter Event="PreviewMouseDown" Handler="OnTreePreviewMouseDown"/> </Style> <!-- Declare a hierarchical data template for the tree view items --> <HierarchicalDataTemplate x:Key="RecursiveTemplate" ItemsSource="{Binding Children}"> <StackPanel Margin="2" Orientation="Horizontal" MouseDown="OnTreeMouseDown"> <Ellipse Width="12" Height="12" Fill="Green"/> <TextBlock Margin="2" Text="{Binding Name}" Visibility="{Binding Editing, Converter={StaticResource visibilityInverter}}"/> <TextBox Margin="2" Text="{Binding Name}" KeyDown="OnTextBoxKeyDown" IsVisibleChanged="OnTextBoxIsVisibleChanged" Visibility="{Binding Editing, Converter={StaticResource visibilityConverter}}"/> <TextBlock Margin="2" Text="{Binding Index, StringFormat=({0})}"/> </StackPanel> </HierarchicalDataTemplate> <!-- Declare a simple template for a list box --> <DataTemplate x:Key="ListTemplate"> <TextBlock Text="{Binding Name}"/> </DataTemplate> </Window.Resources> <Grid> <!-- Declare the rows in this grid --> <Grid.RowDefinitions> <RowDefinition Height="Auto"/> <RowDefinition/> <RowDefinition Height="Auto"/> <RowDefinition/> </Grid.RowDefinitions> <!-- The first header --> <TextBlock Grid.Row="0" Margin="5" Background="PowderBlue">Multiple selection tree view</TextBlock> <!-- The tree view --> <TreeView Name="m_tree" Margin="2" Grid.Row="1" ItemsSource="{Binding Children}" ItemTemplate="{StaticResource RecursiveTemplate}"/> <!-- The second header --> <TextBlock Grid.Row="2" Margin="5" Background="PowderBlue">The currently selected items in the tree</TextBlock> <!-- The list box --> <ListBox Name="m_list" Margin="2" Grid.Row="3" ItemsSource="{Binding .}" ItemTemplate="{StaticResource ListTemplate}"/> </Grid> </Window> MainWindow.xaml.cs /// <summary> /// Interaction logic for MainWindow.xaml /// </summary> public partial class MainWindow : Window { private Container m_root; private Container m_first; private ObservableCollection<Container> m_selection; private string m_current; /// <summary> /// Constructor /// </summary> public MainWindow() { InitializeComponent(); m_selection = new ObservableCollection<Container>(); m_root = new Container("root"); for (int parents = 0; parents < 50; parents++) { Container parent = new Container(String.Format("parent{0}", parents + 1)); for (int children = 0; children < 1000; children++) { parent.Add(new Container(String.Format("child{0}", children + 1))); } m_root.Add(parent); } m_tree.DataContext = m_root; m_list.DataContext = m_selection; m_first = null; } /// <summary> /// Has the shift key been pressed? /// </summary> private bool ShiftPressed { get { return Keyboard.IsKeyDown(Key.LeftShift) || Keyboard.IsKeyDown(Key.RightShift); } } /// <summary> /// Has the control key been pressed? /// </summary> private bool CtrlPressed { get { return Keyboard.IsKeyDown(Key.LeftCtrl) || Keyboard.IsKeyDown(Key.RightCtrl); } } /// <summary> /// Clear down the selection list /// </summary> private void DeselectAndClear() { foreach(Container container in m_selection) { container.Selected = false; } m_selection.Clear(); } /// <summary> /// Add the container to the list (if not already present), /// mark as selected /// </summary> /// <param name="container"></param> private void AddToSelection(Container container) { if (container == null) { return; } foreach (Container child in m_selection) { if (child == container) { return; } } container.Selected = true; m_selection.Add(container); } /// <summary> /// Remove container from list, mark as not selected /// </summary> /// <param name="container"></param> private void RemoveFromSelection(Container container) { m_selection.Remove(container); container.Selected = false; } /// <summary> /// Process single click on a tree item /// /// Normally just select an item /// /// SHIFT-Click extends selection /// CTRL-Click toggles a selection /// </summary> /// <param name="sender"></param> private void OnTreeSingleClick(object sender) { FrameworkElement element = sender as FrameworkElement; if (element != null) { Container container = element.DataContext as Container; if (container != null) { if (CtrlPressed) { if (container.Selected) { RemoveFromSelection(container); } else { AddToSelection(container); } } else if (ShiftPressed) { if (container.Parent == m_first.Parent) { if (container.Index < m_first.Index) { Container item = container; for (int i = container.Index; i < m_first.Index; i++) { AddToSelection(item); item = item.Next; if (item == null) { break; } } } else if (container.Index > m_first.Index) { Container item = m_first; for (int i = m_first.Index; i <= container.Index; i++) { AddToSelection(item); item = item.Next; if (item == null) { break; } } } } } else { DeselectAndClear(); m_first = container; AddToSelection(container); } } } } /// <summary> /// Process double click on tree item /// </summary> /// <param name="sender"></param> private void OnTreeDoubleClick(object sender) { FrameworkElement element = sender as FrameworkElement; if (element != null) { Container container = element.DataContext as Container; if (container != null) { container.Editing = true; m_current = container.Name; } } } /// <summary> /// Clicked on the stack panel in the tree view /// /// Double left click: /// /// Switch to editing mode (flips visibility of textblock and textbox) /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void OnTreeMouseDown(object sender, MouseButtonEventArgs e) { Debug.WriteLine("StackPanel mouse down"); switch(e.ChangedButton) { case MouseButton.Left: switch (e.ClickCount) { case 2: OnTreeDoubleClick(sender); e.Handled = true; break; } break; } } /// <summary> /// Clicked on tree view item in tree /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void OnTreePreviewMouseDown(object sender, MouseButtonEventArgs e) { Debug.WriteLine("TreeViewItem preview mouse down"); switch (e.ChangedButton) { case MouseButton.Left: switch (e.ClickCount) { case 1: { // We've had a single click on a tree view item // Unfortunately this is the WHOLE tree item, including the +/- // symbol to the left. The tree doesn't do a selection, so we // have to filter this out... MouseDevice device = e.Device as MouseDevice; Debug.WriteLine(String.Format("Tree item clicked on: {0}", device.DirectlyOver.GetType().ToString())); // This is bad. The whole point of WPF is for the code // not to know what the UI has - yet here we are testing for // it as a workaround. Sigh... if (device.DirectlyOver.GetType() != typeof(Path)) { OnTreeSingleClick(sender); } // Cannot say handled - if we do it stops the tree working! //e.Handled = true; } break; } break; } } /// <summary> /// Key press in text box /// /// Return key finishes editing /// Escape key finishes editing, restores original value (this doesn't work!) /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void OnTextBoxKeyDown(object sender, KeyEventArgs e) { switch(e.Key) { case Key.Return: { TextBox box = sender as TextBox; if (box != null) { Container container = box.DataContext as Container; if (container != null) { container.Editing = false; e.Handled = true; } } } break; case Key.Escape: { TextBox box = sender as TextBox; if (box != null) { Container container = box.DataContext as Container; if (container != null) { container.Editing = false; container.Name = m_current; e.Handled = true; } } } break; } } /// <summary> /// When text box becomes visible, grab focus and select all text in it. /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void OnTextBoxIsVisibleChanged(object sender, DependencyPropertyChangedEventArgs e) { bool visible = (bool)e.NewValue; if (visible) { TextBox box = sender as TextBox; if (box != null) { box.Focus(); box.SelectAll(); } } } } Here's the Container class public class Container : INotifyPropertyChanged { private string m_name; private ObservableCollection<Container> m_children; private Container m_parent; private bool m_selected; private bool m_editing; /// <summary> /// Constructor /// </summary> /// <param name="name">name of object</param> public Container(string name) { m_name = name; m_children = new ObservableCollection<Container>(); m_parent = null; m_selected = false; m_editing = false; } /// <summary> /// Name of object /// </summary> public string Name { get { return m_name; } set { if (m_name != value) { m_name = value; OnPropertyChanged("Name"); } } } /// <summary> /// Index of object in parent's children /// /// If there's no parent, the index is -1 /// </summary> public int Index { get { if (m_parent != null) { return m_parent.Children.IndexOf(this); } return -1; } } /// <summary> /// Get the next item, assuming this is parented /// /// Returns null if end of list reached, or no parent /// </summary> public Container Next { get { if (m_parent != null) { int index = Index + 1; if (index < m_parent.Children.Count) { return m_parent.Children[index]; } } return null; } } /// <summary> /// List of children /// </summary> public ObservableCollection<Container> Children { get { return m_children; } } /// <summary> /// Selected status /// </summary> public bool Selected { get { return m_selected; } set { if (m_selected != value) { m_selected = value; OnPropertyChanged("Selected"); } } } /// <summary> /// Editing status /// </summary> public bool Editing { get { return m_editing; } set { if (m_editing != value) { m_editing = value; OnPropertyChanged("Editing"); } } } /// <summary> /// Parent of this object /// </summary> public Container Parent { get { return m_parent; } set { m_parent = value; } } /// <summary> /// WPF Property Changed event /// </summary> public event PropertyChangedEventHandler PropertyChanged; /// <summary> /// Handler to inform WPF that a property has changed /// </summary> /// <param name="name"></param> private void OnPropertyChanged(string name) { if (PropertyChanged != null) { PropertyChanged(this, new PropertyChangedEventArgs(name)); } } /// <summary> /// Add a child to this container /// </summary> /// <param name="child"></param> public void Add(Container child) { m_children.Add(child); child.m_parent = this; } /// <summary> /// Remove a child from this container /// </summary> /// <param name="child"></param> public void Remove(Container child) { m_children.Remove(child); child.m_parent = null; } } The two classes VisibilityConverter and VisibilityInverter are implementations of IValueConverter that translates bool to Visibility. They make sure the TextBlock is displayed when not editing, and the TextBox is displayed when editing.

    Read the article

  • These are few objective type questions which i was not able to find the solution [closed]

    - by Tarun
    1. Which of the following advantages does System.Collections.IDictionaryEnumerator provide over System.Collections.IEnumerator? a. It adds properties for direct access to both the Key and the Value b. It is optimized to handle the structure of a Dictionary. c. It provides properties to determine if the Dictionary is enumerated in Key or Value order d. It provides reverse lookup methods to distinguish a Key from a specific Value 2. When Implementing System.EnterpriseServices.ServicedComponent derived classes, which of the following statements are true? a. Enabling object pooling requires an attribute on the class and the enabling of pooling in the COM+ catalog. b. Methods can be configured to automatically mark a transaction as complete by the use of attributes. c. You can configure authentication using the AuthenticationOption when the ActivationMode is set to Library. d. You can control the lifecycle policy of an individual instance using the SetLifetimeService method. 3. Which of the following are true regarding event declaration in the code below? class Sample { event MyEventHandlerType MyEvent; } a. MyEventHandlerType must be derived from System.EventHandler or System.EventHandler<TEventArgs> b. MyEventHandlerType must take two parameters, the first of the type Object, and the second of a class derived from System.EventArgs c. MyEventHandlerType may have a non-void return type d. If MyEventHandlerType is a generic type, event declaration must use a specialization of that type. e. MyEventHandlerType cannot be declared static 4. Which of the following statements apply to developing .NET code, using .NET utilities that are available with the SDK or Visual Studio? a. Developers can create assemblies directly from the MSIL Source Code. b. Developers can examine PE header information in an assembly. c. Developers can generate XML Schemas from class definitions contained within an assembly. d. Developers can strip all meta-data from managed assemblies. e. Developers can split an assembly into multiple assemblies. 5. Which of the following characteristics do classes in the System.Drawing namespace such as Brush,Font,Pen, and Icon share? a. They encapsulate native resource and must be properly Disposed to prevent potential exhausting of resources. b. They are all MarshalByRef derived classes, but functionality across AppDomains has specific limitations. c. You can inherit from these classes to provide enhanced or customized functionality 6. Which of the following are required to be true by objects which are going to be used as keys in a System.Collections.HashTable? a. They must handle case-sensitivity identically in both the GetHashCode() and Equals() methods. b. Key objects must be immutable for the duration they are used within a HashTable. c. Get HashCode() must be overridden to provide the same result, given the same parameters, regardless of reference equalityl unless the HashTable constructor is provided with an IEqualityComparer parameter. d. Each Element in a HashTable is stored as a Key/Value pair of the type System.Collections.DictionaryElement e. All of the above 7. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. A Nullable type is a structure. c. An implicit conversion exists from any non-nullable value type to a nullable form of that type. d. An implicit conversion exists from any nullable value type to a non-nullable form of that type. e. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 8. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 9. Which of the following does using Initializer Syntax with a collection as shown below require? CollectionClass numbers = new CollectionClass { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; a. The Collection Class must implement System.Collections.Generic.ICollection<T> b. The Collection Class must implement System.Collections.Generic.IList<T> c. Each of the Items in the Initializer List will be passed to the Add<T>(T item) method d. The items in the initializer will be treated as an IEnumerable<T> and passed to the collection constructor+K110 10. What impact will using implicitly typed local variables as in the following example have? var sample = "Hello World"; a. The actual type is determined at compilation time, and has no impact on the runtime b. The actual type is determined at runtime, and late binding takes effect c. The actual type is based on the native VARIANT concept, and no binding to a specific type takes place. d. "var" itself is a specific type defined by the framework, and no special binding takes place 11. Which of the following is not supported by remoting object types? a. well-known singleton b. well-known single call c. client activated d. context-agile 12. In which of the following ways do structs differ from classes? a. Structs can not implement interfaces b. Structs cannot inherit from a base struct c. Structs cannot have events interfaces d. Structs cannot have virtual methods 13. Which of the following is not an unboxing conversion? a. void Sample1(object o) { int i = (int)o; } b. void Sample1(ValueType vt) { int i = (int)vt; } c. enum E { Hello, World} void Sample1(System.Enum et) { E e = (E) et; } d. interface I { int Value { get; set; } } void Sample1(I vt) { int i = vt.Value; } e. class C { public int Value { get; set; } } void Sample1(C vt) { int i = vt.Value; } 14. Which of the following are characteristics of the System.Threading.Timer class? a. The method provided by the TimerCallback delegate will always be invoked on the thread which created the timer. b. The thread which creates the timer must have a message processing loop (i.e. be considered a UI thread) c. The class contains protection to prevent reentrancy to the method provided by the TimerCallback delegate d. You can receive notification of an instance being Disposed by calling an overload of the Dispose method. 15. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 16. Which of the following scenarios are applicable to Window Workflow Foundation? a. Document-centric workflows b. Human workflows c. User-interface page flows d. Builtin support for communications across multiple applications and/or platforms e. All of the above 17. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 18 While using the capabilities supplied by the System.Messaging classes, which of the following are true? a. Information must be explicitly converted to/from a byte stream before it uses the MessageQueue class b. Invoking the MessageQueue.Send member defaults to using the System.Messaging.XmlMessageFormatter to serialize the object. c. Objects must be XMLSerializable in order to be transferred over a MessageQueue instance. d. The first entry in a MessageQueue must be removed from the queue before the next entry can be accessed e. Entries removed from a MessageQueue within the scope of a transaction, will be pushed back into the front of the queue if the transaction fails. 19. Which of the following are true about declarative attributes? a. They must be inherited from the System.Attribute. b. Attributes are instantiated at the same time as instances of the class to which they are applied. c. Attribute classes may be restricted to be applied only to application element types. d. By default, a given attribute may be applied multiple times to the same application element. 20. When using version 3.5 of the framework in applications which emit a dynamic code, which of the following are true? a. A Partial trust code can not emit and execute a code b. A Partial trust application must have the SecurityCriticalAttribute attribute have called Assert ReflectionEmit permission c. The generated code no more permissions than the assembly which emitted it. d. It can be executed by calling System.Reflection.Emit.DynamicMethod( string name, Type returnType, Type[] parameterTypes ) without any special permissions Within Windows Workflow Foundation, Compensating Actions are used for: a. provide a means to rollback a failed transaction b. provide a means to undo a successfully committed transaction later c. provide a means to terminate an in process transaction d. achieve load balancing by adapting to the current activity 21. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 22. Which of the following controls allows the use of XSL to transform XML content into formatted content? a. System.Web.UI.WebControls.Xml b. System.Web.UI.WebControls.Xslt c. System.Web.UI.WebControls.Substitution d. System.Web.UI.WebControls.Transform 23. To which of the following do automatic properties refer? a. You declare (explicitly or implicitly) the accessibility of the property and get and set accessors, but do not provide any implementation or backing field b. You attribute a member field so that the compiler will generate get and set accessors c. The compiler creates properties for your class based on class level attributes d. They are properties which are automatically invoked as part of the object construction process 24. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. An implicit conversion exists from any non-nullable value type to a nullable form of that type. c. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 25. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is accessible via reflection. c. The compiler generates a code that will store the information separately from the instance to ensure its security. 26. When using an implicitly typed array, which of the following is most appropriate? a. All elements in the initializer list must be of the same type. b. All elements in the initializer list must be implicitly convertible to a known type which is the actual type of at least one member in the initializer list c. All elements in the initializer list must be implicitly convertible to common type which is a base type of the items actually in the list 27. Which of the following is false about anonymous types? a. They can be derived from any reference type. b. Two anonymous types with the same named parameters in the same order declared in different classes have the same type. c. All properties of an anonymous type are read/write. 28. Which of the following are true about Extension methods. a. They can be declared either static or instance members b. They must be declared in the same assembly (but may be in different source files) c. Extension methods can be used to override existing instance methods d. Extension methods with the same signature for the same class may be declared in multiple namespaces without causing compilation errors

    Read the article

  • An easy way to create Side by Side registrationless COM Manifests with Visual Studio

    - by Rick Strahl
    Here's something I didn't find out until today: You can use Visual Studio to easily create registrationless COM manifest files for you with just a couple of small steps. Registrationless COM lets you use COM component without them being registered in the registry. This means it's possible to deploy COM components along with another application using plain xcopy semantics. To be sure it's rarely quite that easy - you need to watch out for dependencies - but if you know you have COM components that are light weight and have no or known dependencies it's easy to get everything into a single folder and off you go. Registrationless COM works via manifest files which carry the same name as the executable plus a .manifest extension (ie. yourapp.exe.manifest) I'm going to use a Visual FoxPro COM object as an example and create a simple Windows Forms app that calls the component - without that component being registered. Let's take a walk down memory lane… Create a COM Component I start by creating a FoxPro COM component because that's what I know and am working with here in my legacy environment. You can use VB classic or C++ ATL object if that's more to your liking. Here's a real simple Fox one: DEFINE CLASS SimpleServer as Session OLEPUBLIC FUNCTION HelloWorld(lcName) RETURN "Hello " + lcName ENDDEFINE Compile it into a DLL COM component with: BUILD MTDLL simpleserver FROM simpleserver RECOMPILE And to make sure it works test it quickly from Visual FoxPro: server = CREATEOBJECT("simpleServer.simpleserver") MESSAGEBOX( server.HelloWorld("Rick") ) Using Visual Studio to create a Manifest File for a COM Component Next open Visual Studio and create a new executable project - a Console App or WinForms or WPF application will all do. Go to the References Node Select Add Reference Use the Browse tab and find your compiled DLL to import  Next you'll see your assembly in the project. Right click on the reference and select Properties Click on the Isolated DropDown and select True Compile and that's all there's to it. Visual Studio will create a App.exe.manifest file right alongside your application's EXE. The manifest file created looks like this: xml version="1.0" encoding="utf-8"? assembly xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd" manifestVersion="1.0" xmlns:asmv1="urn:schemas-microsoft-com:asm.v1" xmlns:asmv2="urn:schemas-microsoft-com:asm.v2" xmlns:asmv3="urn:schemas-microsoft-com:asm.v3" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:co.v1="urn:schemas-microsoft-com:clickonce.v1" xmlns:co.v2="urn:schemas-microsoft-com:clickonce.v2" xmlns="urn:schemas-microsoft-com:asm.v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / file name="simpleserver.DLL" asmv2:size="27293" hash xmlns="urn:schemas-microsoft-com:asm.v2" dsig:Transforms dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" / dsig:Transforms dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" / dsig:DigestValuepuq+ua20bbidGOWhPOxfquztBCU=dsig:DigestValue hash typelib tlbid="{f10346e2-c9d9-47f7-81d1-74059cc15c3c}" version="1.0" helpdir="" resourceid="0" flags="HASDISKIMAGE" / comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" tlbid="{f10346e2-c9d9-47f7-81d1-74059cc15c3c}" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file assembly Now let's finish our super complex console app to test with: using System; using System.Collections.Generic; using System.Text; namespace ConsoleApplication1 {     class Program     {         static voidMain(string[] args)         { Type type = Type.GetTypeFromProgID("simpleserver.simpleserver",true); dynamic server = Activator.CreateInstance(type); Console.WriteLine(server.HelloWorld("rick")); Console.ReadLine(); } } } Now run the Console Application… As expected that should work. And why not? The COM component is still registered, right? :-) Nothing tricky about that. Let's unregister the COM component and then re-run and see what happens. Go to the Command Prompt Change to the folder where the DLL is installed Unregister with: RegSvr32 -u simpleserver.dll      To be sure that the COM component no longer works, check it out with the same test you used earlier (ie. o = CREATEOBJECT("SimpleServer.SimpleServer") in your development environment or VBScript etc.). Make sure you run the EXE and you don't re-compile the application or else Visual Studio will complain that it can't find the COM component in the registry while compiling. In fact now that we have our .manifest file you can remove the COM object from the project. When you run run the EXE from Windows Explorer or a command prompt to avoid the recompile. Watch out for embedded Manifest Files Now recompile your .NET project and run it… and it will most likely fail! The problem is that .NET applications by default embeds a manifest file into the compiled EXE application which results in the externally created manifest file being completely ignored. Only one manifest can be applied at a time and the compiled manifest takes precedency. Uh, thanks Visual Studio - not very helpful… Note that if you use another development tool like Visual FoxPro to create your EXE this won't be an issue as long as the tool doesn't automatically add a manifest file. Creating a Visual FoxPro EXE for example will work immediately with the generated manifest file as is. If you are using .NET and Visual Studio you have a couple of options of getting around this: Remove the embedded manifest file Copy the contents of the generated manifest file into a project manifest file and compile that in To remove an embedded manifest in a Visual Studio project: Open the Project Properties (Alt-Enter on project node) Go down to Resources | Manifest and select | Create Application without a Manifest   You can now add use the external manifest file and it will actually be respected when the app runs. The other option is to let Visual Studio create the manifest file on disk and then explicitly add the manifest file into the project. Notice on the dialog above I did this for app.exe.manifest and the manifest actually shows up in the list. If I select this file it will be compiled into the EXE and be used in lieu of any external files and that works as well. Remove the simpleserver.dll reference so you can compile your code and run the application. Now it should work without COM registration of the component. Personally I prefer external manifests because they can be modified after the fact - compiled manifests are evil in my mind because they are immutable - once they are there they can't be overriden or changed. So I prefer an external manifest. However, if you are absolutely sure nothing needs to change and you don't want anybody messing with your manifest, you can also embed it. The option to either is there. Watch for Manifest Caching While working trying to get this to work I ran into some problems at first. Specifically when it wasn't working at first (due to the embedded schema) I played with various different manifest layouts in different files etc.. There are a number of different ways to actually represent manifest files including offloading to separate folder (more on that later). A few times I made deliberate errors in the schema file and I found that regardless of what I did once the app failed or worked no amount of changing of the manifest file would make it behave differently. It appears that Windows is caching the manifest data for a given EXE or DLL. It takes a restart or a recompile of either the EXE or the DLL to clear the caching. Recompile your servers in order to see manifest changes unless there's an outright failure of an invalid manifest file. If the app starts the manifest is being read and caches immediately. This can be very confusing especially if you don't know that it's happening. I found myself always recompiling the exe after each run and before making any changes to the manifest file. Don't forget about Runtimes of COM Objects In the example I used above I used a Visual FoxPro COM component. Visual FoxPro is a runtime based environment so if I'm going to distribute an application that uses a FoxPro COM object the runtimes need to be distributed as well. The same is true of classic Visual Basic applications. Assuming that you don't know whether the runtimes are installed on the target machines make sure to install all the additional files in the EXE's directory alongside the COM DLL. In the case of Visual FoxPro the target folder should contain: The EXE  App.exe The Manifest file (unless it's compiled in) App.exe.manifest The COM object DLL (simpleserver.dll) Visual FoxPro Runtimes: VFP9t.dll (or VFP9r.dll for non-multithreaded dlls), vfp9rENU.dll, msvcr71.dll All these files should be in the same folder. Debugging Manifest load Errors If you for some reason get your manifest loading wrong there are a couple of useful tools available - SxSTrace and SxSParse. These two tools can be a huge help in debugging manifest loading errors. Put the following into a batch file (SxS_Trace.bat for example): sxstrace Trace -logfile:sxs.bin sxstrace Parse -logfile:sxs.bin -outfile:sxs.txt Then start the batch file before running your EXE. Make sure there's no caching happening as described in the previous section. For example, if I go into the manifest file and explicitly break the CLSID and/or ProgID I get a detailed report on where the EXE is looking for the manifest and what it's reading. Eventually the trace gives me an error like this: INFO: Parsing Manifest File C:\wwapps\Conf\SideBySide\Code\app.EXE.     INFO: Manifest Definition Identity is App.exe,processorArchitecture="x86",type="win32",version="1.0.0.0".     ERROR: Line 13: The value {AAaf2c2811-0657-4264-a1f5-06d033a969ff} of attribute clsid in element comClass is invalid. ERROR: Activation Context generation failed. End Activation Context Generation. pinpointing nicely where the error lies. Pay special attention to the various attributes - they have to match exactly in the different sections of the manifest file(s). Multiple COM Objects The manifest file that Visual Studio creates is actually quite more complex than is required for basic registrationless COM object invokation. The manifest file can be simplified a lot actually by stripping off various namespaces and removing the type library references altogether. Here's an example of a simplified manifest file that actually includes references to 2 COM servers: xml version="1.0" encoding="utf-8"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / file name="simpleserver.DLL" comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file file name = "sidebysidedeploy.dll" comClass clsid="{EF82B819-7963-4C36-9443-3978CD94F57C}" progid="sidebysidedeploy.SidebysidedeployServer" description="SidebySideDeploy Server" threadingModel="apartment" / file assembly Simple enough right? Routing to separate Manifest Files and Folders In the examples above all files ended up in the application's root folder - all the DLLs, support files and runtimes. Sometimes that's not so desirable and you can actually create separate manifest files. The easiest way to do this is to create a manifest file that 'routes' to another manifest file in a separate folder. Basically you create a new 'assembly identity' via a named id. You can then create a folder and another manifest with the id plus .manifest that points at the actual file. In this example I create: App.exe.manifest A folder called App.deploy A manifest file in App.deploy All DLLs and runtimes in App.deploy Let's start with that master manifest file. This file only holds a reference to another manifest file: App.exe.manifest xml version="1.0" encoding="UTF-8" standalone="yes"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.exe" version="1.0.0.0" processorArchitecture="x86" type="win32" / dependency dependentAssembly assemblyIdentity name="App.deploy" version="1.0.0.0" type="win32" / dependentAssembly dependency assembly   Note this file only contains a dependency to App.deploy which is another manifest id. I can then create App.deploy.manifest in the current folder or in an App.deploy folder. In this case I'll create App.deploy and in it copy the DLLs and support runtimes. I then create App.deploy.manifest. App.deploy.manifest xml version="1.0" encoding="UTF-8" standalone="yes"? assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" assemblyIdentity name="App.deploy" type="win32" version="1.0.0.0" / file name="simpleserver.DLL" comClass clsid="{af2c2811-0657-4264-a1f5-06d033a969ff}" threadingModel="Apartment" progid="simpleserver.SimpleServer" description="simpleserver.SimpleServer" / file file name="sidebysidedeploy.dll" comClass clsid="{EF82B819-7963-4C36-9443-3978CD94F57C}" threadingModel="Apartment" progid="sidebysidedeploy.SidebysidedeployServer" description="SidebySideDeploy Server" / file assembly   In this manifest file I then host my COM DLLs and any support runtimes. This is quite useful if you have lots of DLLs you are referencing or if you need to have separate configuration and application files that are associated with the COM object. This way the operation of your main application and the COM objects it interacts with is somewhat separated. You can see the two folders here:   Routing Manifests to different Folders In theory registrationless COM should be pretty easy in painless - you've seen the configuration manifest files and it certainly doesn't look very complicated, right? But the devil's in the details. The ActivationContext API (SxS - side by side activation) is very intolerant of small errors in the XML or formatting of the keys, so be really careful when setting up components, especially if you are manually editing these files. If you do run into trouble SxsTrace/SxsParse are a huge help to track down the problems. And remember that if you do have problems that you'll need to recompile your EXEs or DLLs for the SxS APIs to refresh themselves properly. All of this gets even more fun if you want to do registrationless COM inside of IIS :-) But I'll leave that for another blog post…© Rick Strahl, West Wind Technologies, 2005-2011Posted in COM  .NET  FoxPro   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 3

    - by rajbk
    We continue building our report in this three part series. Creating an ASP.NET report using Visual Studio 2010 - Part 1 Creating an ASP.NET report using Visual Studio 2010 - Part 2 Adding the ReportViewer control and filter drop downs. Open the source code for index.aspx and add a ScriptManager control. This control is required for the ReportViewer control. Add a DropDownList for the categories and suppliers. Add the ReportViewer control. The markup after these steps is shown below. <div> <asp:ScriptManager ID="smScriptManager" runat="server"> </asp:ScriptManager> <div id="searchFilter"> Filter by: Category : <asp:DropDownList ID="ddlCategories" runat="server" /> and Supplier : <asp:DropDownList ID="ddlSuppliers" runat="server" /> </div> <rsweb:ReportViewer ID="rvProducts" runat="server"> </rsweb:ReportViewer> </div> The design view for index.aspx is shown below. The dropdowns will display the categories and suppliers in the database. Changing the selection in the drop downs will cause the report to be filtered by the selections in the dropdowns. You will see how to do this in the next steps.   Attaching the RDLC to the ReportViewer control by clicking on the top right of the control, going to Report Viewer tasks and selecting Products.rdlc.   Resize the ReportViewer control by dragging at the bottom right corner. I set mine to 800px x 500px. You can also set this value in source view. Defining the data sources. We will now define the Data Source used to populate the report. Go back to the “ReportViewer Tasks” and select “Choose Data Sources” Select a “New data source..” Select “Object” and name your Data Source ID “odsProducts”   In the next screen, choose “ProductRepository” as your business object. Choose “GetProductsProjected” in the next screen.   The method requires a SupplierID and CategoryID. We will set these so that our data source gets the values from the drop down lists we defined earlier. Set the parameter source to be of type “Control” and set the ControlIDs to be ddlSuppliers and ddlCategories respectively. Your screen will look like this: We are now going to define the data source for our drop downs. Select the ddlCategory drop down and pick “Choose Data Source”. Pick “Object” and give it an id “odsCategories”   In the next screen, choose “ProductRepository” Select the GetCategories() method in the next screen.   Select “CategoryName” and “CategoryID” in the next screen. We are done defining the data source for the Category drop down. Perform the same steps for the Suppliers drop down.   Select each dropdown and set the AppendDataBoundItems to true and AutoPostback to true.     The AppendDataBoundItems is needed because we are going to insert an “All“ list item with a value of empty. Go to each drop down and add this list item markup as shown below> Finally, double click on each drop down in the designer and add the following code in the code behind. This along with the “Autopostback= true” attribute refreshes the report anytime a drop down is changed. protected void ddlCategories_SelectedIndexChanged(object sender, EventArgs e) { rvProducts.LocalReport.Refresh(); }   protected void ddlSuppliers_SelectedIndexChanged(object sender, EventArgs e) { rvProducts.LocalReport.Refresh(); } Compile your report and run the page. You should see the report rendered. Note that the tool bar in the ReportViewer control gives you a couple of options including the ability to export the data to Excel, PDF or word.   Conclusion Through this three part series, we did the following: Created a data layer for use by our RDLC. Created an RDLC using the report wizard and define a dataset for the report. Used the report design surface to design our report including adding a chart. Used the ReportViewer control to attach the RDLC. Connected our ReportWiewer to a data source and take parameter values from the drop downlists. Used AutoPostBack to refresh the reports when the dropdown selection was changed. RDLCs allow you to create interactive reports including drill downs and grouping. For even more advanced reports you can use Microsoft® SQL Server™ Reporting Services with RDLs. With RDLs, the report is rendered on the report server instead of the web server. Another nice thing about RDLs is that you can define a parameter list for the report and it gets rendered automatically for you. RDLCs and RDLs both have their advantages and its best to compare them and choose the right one for your requirements. Download VS2010 RTM Sample project NorthwindReports.zip   Alfred Borden: Are you watching closely?

    Read the article

  • Entity Framework 4.0: Creating objects of correct type when using lazy loading

    - by DigiMortal
    In my posting about Entity Framework 4.0 and POCOs I introduced lazy loading in EF applications. EF uses proxy classes for lazy loading and this means we have new types in that come and go dynamically in runtime. We don’t have these types available when we write code but we cannot forget that EF may expect us to use dynamically generated types. In this posting I will give you simple hint how to use correct types in your code. The background of lazy loading and proxy classes As a first thing I will explain you in short what is proxy class. Business classes when designed correctly have no knowledge about their birth and death – they don’t know how they are created and they don’t know how their data is persisted. This is the responsibility of object runtime. When we use lazy loading we need a little bit different classes that know how to load data for properties when code accesses the property first time. As we cannot add this functionality to our business classes (they may be stored through more than one data access technology or by more than one Data Access Layer (DAL)) we create proxy classes that extend our business classes. If we have class called Product and product has lazy loaded property called Customer then we need proxy class, let’s say ProductProxy, that has same public signature as Product so we can use it INSTEAD OF product in our code. ProductProxy overrides Customer property. If customer is not asked then customer is null. But if we ask for Customer property then overridden property of ProductProxy loads it from database. This is how lazy loading works. Problem – two types for same thing As lazy loading may introduce dynamically generated proxy types we don’t know in our application code which type is returned. We cannot be sure that we have Product not ProductProxy returned. This leads us to the following question: how can we create Product of correct type if we don’t know the correct type? In EF solution is simple. Solution – use factory methods If you are using repositories and you are not using factories (imho it is pretty pointless with mapper) you can add factory methods to your EF based repositories. Take a look at this class. public class Event {     public int ID { get; set; }     public string Title { get; set; }     public string Location { get; set; }     public virtual Party Organizer { get; set; }     public DateTime Date { get; set; } } We have virtual member called Organizer. This property is virtual because we want to use lazy loading on this class so Organizer is loaded only when we ask it. EF provides us with method called CreateObject<T>(). CreateObject<T>() is member of ObjectContext class and it creates the object based on given type. In runtime proxy type for Event is created for us automatically and when we call CreateObject<T>() for Event it returns as object of Event proxy type. The factory method for events repository is as follows. public Event CreateEvent() {     var evt = _context.CreateObject<Event>();     return evt; } And we are done. Instead of creating factory classes we created factory methods that guarantee that created objects are of correct type. Conclusion Although lazy loading introduces some new objects we cannot use at design time because they live only in runtime we can write code without worrying about exact implementation type of object. This holds true until we have clean code and we don’t make any decisions based on object type. EF4.0 provides us with very simple factory method that create and return objects of correct type. All we had to do was adding factory methods to our repositories.

    Read the article

  • Workaround for datadude deployment bug - NullReferenceException

    - by jamiet
    I have come across a bug in Visual Studio 2010 Database Projects (aka datadude aka DPro aka Visual Studio Database Development Tools aka Visual Studio Team Edition for Database Professionals aka Juneau aka SQL Server Data Tools) that other people may encounter so, for the purposes of googling, I'm writing this blog post about it. Through my own googling I discovered that a Connect bug had already been raised about it (VS2010 Database project deploy - “SqlDeployTask” task failed unexpectedly, NullReferenceException), and coincidentally enough it was raised by my former colleague Tom Hunter (whom I have mentioned here before as the superhuman Tom Hunter) although it has not (at this time) received a reply from Microsoft. Tom provided a repro, namely that this syntactically valid function definition: CREATE FUNCTION [dbo].[Function1]()RETURNS TABLEASRETURN (    WITH cte AS (    SELECT 1 AS [c1]    FROM [$(Database3)].[dbo].[Table1]   )   SELECT 1 AS [c1]   FROM cte) would produce this nasty unhelpful error upon deployment: C:\Program Files (x86)\MSBuild\Microsoft\VisualStudio\v10.0\TeamData\Microsoft.Data.Schema.TSqlTasks.targets(120,5): Error MSB4018: The "SqlDeployTask" task failed unexpectedly.System.NullReferenceException: Object reference not set to an instance of an object.   at Microsoft.Data.Schema.Sql.SchemaModel.SqlModelComparerBase.VariableSubstitution(SqlScriptProperty propertyValue, IDictionary`2 variables, Boolean& isChanged)   at Microsoft.Data.Schema.Sql.SchemaModel.SqlModelComparerBase.ArePropertiesEqual(IModelElement source, IModelElement target, ModelPropertyClass propertyClass, ModelComparerConfiguration configuration)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareProperties(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, ModelComparisonChangeDefinition changes)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareElementsWithoutCompareName(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, Boolean parentExplicitlyIncluded, Boolean compareElementOnly, ModelComparisonResult result, ModelComparisonChangeDefinition changes)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareElementsWithSameType(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, ModelComparisonResult result, Boolean ignoreComparingName, Boolean parentExplicitlyIncluded, Boolean compareElementOnly, Boolean compareFromRootElement, ModelComparisonChangeDefinition& changes)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareChildren(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, Boolean parentExplicitlyIncluded, Boolean compareParentElementOnly, ModelComparisonResult result, ModelComparisonChangeDefinition changes, Boolean isComposing)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareElementsWithoutCompareName(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, Boolean parentExplicitlyIncluded, Boolean compareElementOnly, ModelComparisonResult result, ModelComparisonChangeDefinition changes)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareElementsWithSameType(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, ModelComparisonResult result, Boolean ignoreComparingName, Boolean parentExplicitlyIncluded, Boolean compareElementOnly, Boolean compareFromRootElement, ModelComparisonChangeDefinition& changes)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareChildren(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, Boolean parentExplicitlyIncluded, Boolean compareParentElementOnly, ModelComparisonResult result, ModelComparisonChangeDefinition changes, Boolean isComposing)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareElementsWithoutCompareName(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, Boolean parentExplicitlyIncluded, Boolean compareElementOnly, ModelComparisonResult result, ModelComparisonChangeDefinition changes)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareElementsWithSameType(IModelElement sourceElement, IModelElement targetElement, ModelComparerConfiguration configuration, ModelComparisonResult result, Boolean ignoreComparingName, Boolean parentExplicitlyIncluded, Boolean compareElementOnly, Boolean compareFromRootElement, ModelComparisonChangeDefinition& changes)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareAllElementsForOneType(ModelElementClass type, ModelComparerConfiguration configuration, ModelComparisonResult result, Boolean compareOrphanedElements)   at Microsoft.Data.Schema.SchemaModel.ModelComparer.CompareStore(ModelStore source, ModelStore target, ModelComparerConfiguration configuration)   at Microsoft.Data.Schema.Build.SchemaDeployment.CompareModels()   at Microsoft.Data.Schema.Build.SchemaDeployment.PrepareBuildPlan()   at Microsoft.Data.Schema.Build.SchemaDeployment.Execute(Boolean executeDeployment)   at Microsoft.Data.Schema.Build.SchemaDeployment.Execute()   at Microsoft.Data.Schema.Tasks.DBDeployTask.Execute()   at Microsoft.Build.BackEnd.TaskExecutionHost.Microsoft.Build.BackEnd.ITaskExecutionHost.Execute()   at Microsoft.Build.BackEnd.TaskBuilder.ExecuteInstantiatedTask(ITaskExecutionHost taskExecutionHost, TaskLoggingContext taskLoggingContext, TaskHost taskHost, ItemBucket bucket, TaskExecutionMode howToExecuteTask, Boolean& taskResult)   Done executing task "SqlDeployTask" -- FAILED.  Done building target "DspDeploy" in project "Lloyds.UKTax.DB.UKtax.dbproj" -- FAILED. Done executing task "CallTarget" -- FAILED.Done building target "DBDeploy" in project It turns out there are a certain set of circumstances that need to be met for this error to occur: The object being deployed is an inline function  (may also exist for multistatement and scalar functions - I haven't tested that) That object includes SQLCMD variable references The object has already been deployed successfully Just to reiterate that last bullet point, the error does not occur when you deploy the function for the first time, only on the subsequent deployment.   Luckily I have a direct line into a guy on the development team so I fired off an email on Friday evening and today (Monday) I received a reply back telling me that there is a simple fix, one simply has to remove the parentheses that wrap the SQL statement. So, in the case of Tom's repro, the function definition simpy has to be changed to: CREATE FUNCTION [dbo].[Function1]()RETURNS TABLEASRETURN --(    WITH cte AS (    SELECT 1 AS [c1]    FROM [$(Database3)].[dbo].[Table1]   )   SELECT 1 AS [c1]   FROM cte--) I have commented out the offending parentheses rather than removing them just to emphasize the point. Thereafter the function will deploy fine. I tested this out on my own project this morning and can confirm that this fix does indeed work.   I have been told that the bug CAN be reproduced in the Release Candidate (RC) 0 build of SQL Server Data Tools in SQL Server 2010 so am hoping that a fix makes it in for the Release-To-Manufacturing (RTM) build. Hope this helps @jamiet

    Read the article

  • Book Review: Oracle ADF Real World Developer’s Guide

    - by Frank Nimphius
    Recently PACKT Publishing published "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman, a product manager in our team. Though already the sixth book dedicated to Oracle ADF, it has a lot of great information in it that none of the previous books covered, making it a safe buy even for those who own the other books published by Oracle Press (McGrwHill) and PACKT Publishing. More than the half of the "Oracle ADF Real World Developer’s Guide" book is dedicated to Oracle ADF Business Components in a depth and clarity that allows you to feel the expertise that Jobinesh gained in this area. If you enjoy Jobinesh blog (http://jobinesh.blogspot.co.uk/) about Oracle ADF, then, no matter what expert you are in Oracle ADF, this book makes you happy as it provides you with detail information you always wished to have. If you are new to Oracle ADF, then this book alone doesn't get you flying, but, if you have some Java background, accelerates your learning big, big, big times. Chapter 1 is an introduction to Oracle ADF and not only explains the layers but also how it compares to plain Java EE solutions (page 13). If you are new to Oracle JDeveloper and ADF, then at the end of this chapter you know how to start JDeveloper and begin your ADF development Chapter 2 starts with what Jobinesh really is good at: ADF Business Components. In this chapter you learn about the architecture ingredients of ADF Business Components: View Objects, View Links, Associations, Entities, Row Sets, Query Collections and Application Modules. This chapter also provides a introduction to ADFBC SDO services, as well as sequence diagrams for what happens when you execute queries or commit updates. Chapter 3 is dedicated to entity objects and  is one of many chapters in this book you will enjoy and never want to miss. Jobinesh explains the artifacts that make up an entity object, how to work with entities and resource bundles, and many advanced topics, including inheritance, change history tracking, custom properties, validation and cursor handling.  Chapter 4 - you guessed it - is all about View objects. Comparable to entities, you learn about the XM files and classes that make a view object, as well as how to define and work with queries. List-of-values, inheritance, polymorphism, bind variables and data filtering are interesting - and important topics that follow. Again the chapter provides helpful sequence diagrams for you to understand what happens internally within a view object. Chapter 5 focuses on advanced view object and entity object topics, like lifecycle callback methods and when you want to override them. This chapter is a good digest of Jobinesh's blog entries (which most ADF developers have in their bookmark list). Really worth reading ! Chapter 6 then is bout Application Modules. Beside of what application modules are, this chapter covers important topics like properties, passivation, activation, application module pooling, how and where to write custom logic. In addition you learn about the AM lifecycle and request sequence. Chapter 7 is about the ADF binding layer. If you are new to Oracle ADF and got lost in the more advanced ADF Business Components chapters, then this chapter is where you get back into the game. In very easy terms, Jobinesh explains what the ADF binding is, how it fits into the JSF request lifecycle and what are the metadata file involved. Chapter 8 then goes into building data bound web user interfaces. In this chapter you get the basics of JavaServer Faces (e.g. managed beans) and learn about the interaction between the JSF UI and the ADF binding layer. Later this chapter provides advanced solutions for working with tree components and list of values. Chapter 9 introduces bounded task flows and ADF controller. This is a chapter you want to read if you are new to ADF of have started. Experts don't find anything new here, which doesn't mean that it is not worth reading it (I for example, enjoyed the controller talk very much) Chapter 10 is an advanced coverage of bounded task flow and talks about contextual events  Chapter 11 is another highlight and explains error handling, trains, transactions and more. I can only recommend you read this chapter. I am aware of many documents that cover exception handling in Oracle ADF (and my Oracle Magazine article for January/February 2013 does the same), but none that covers it in such a great depth. Chapter 12 covers ADF best practices, which is a great round-up of all the tips provided in this book (without Jobinesh to repeat himself). Its all cool stuff that helps you with your ADF projects. In summary, "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman is a great book and addition for all Oracle ADF developers and those who want to become one. Frank

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 2

    - by shiju
    In my previous post Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1, we have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. We have created generic repository and unit of work with EF Code First for our ASP.NET MVC 3 application and did basic CRUD operations against a simple domain entity. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. You can download the source code from http://efmvc.codeplex.com . The following frameworks will be used for this step by step tutorial.    1. ASP.NET MVC 3 RTM    2. EF Code First CTP 5    3. Unity 2.0 Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } }   View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below   public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. jquery-ui.js jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script>   Source Code You can download the source code from http://efmvc.codeplex.com/ . Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • New .NET Library for Accessing the Survey Monkey API

    - by Ben Emmett
    I’ve used Survey Monkey’s API for a while, and though it’s pretty powerful, there’s a lot of boilerplate each time it’s used in a new project, and the json it returns needs a bunch of processing to be able to use the raw information. So I’ve finally got around to releasing a .NET library you can use to consume the API more easily. The main advantages are: Only ever deal with strongly-typed .NET objects, making everything much more robust and a lot faster to get going Automatically handles things like rate-limiting and paging through results Uses combinations of endpoints to get all relevant data for you, and processes raw response data to map responses to questions To start, either install it using NuGet with PM> Install-Package SurveyMonkeyApi (easier option), or grab the source from https://github.com/bcemmett/SurveyMonkeyApi if you prefer to build it yourself. You’ll also need to have signed up for a developer account with Survey Monkey, and have both your API key and an OAuth token. A simple usage would be something like: string apiKey = "KEY"; string token = "TOKEN"; var sm = new SurveyMonkeyApi(apiKey, token); List<Survey> surveys = sm.GetSurveyList(); The surveys object is now a list of surveys with all the information available from the /surveys/get_survey_list API endpoint, including the title, id, date it was created and last modified, language, number of questions / responses, and relevant urls. If there are more than 1000 surveys in your account, the library pages through the results for you, making multiple requests to get a complete list of surveys. All the filtering available in the API can be controlled using .NET objects. For example you might only want surveys created in the last year and containing “pineapple” in the title: var settings = new GetSurveyListSettings { Title = "pineapple", StartDate = DateTime.Now.AddYears(-1) }; List<Survey> surveys = sm.GetSurveyList(settings); By default, whenever optional fields can be requested with a response, they will all be fetched for you. You can change this behaviour if for some reason you explicitly don’t want the information, using var settings = new GetSurveyListSettings { OptionalData = new GetSurveyListSettingsOptionalData { DateCreated = false, AnalysisUrl = false } }; Survey Monkey’s 7 read-only endpoints are supported, and the other 4 which make modifications to data might be supported in the future. The endpoints are: Endpoint Method Object returned /surveys/get_survey_list GetSurveyList() List<Survey> /surveys/get_survey_details GetSurveyDetails() Survey /surveys/get_collector_list GetCollectorList() List<Collector> /surveys/get_respondent_list GetRespondentList() List<Respondent> /surveys/get_responses GetResponses() List<Response> /surveys/get_response_counts GetResponseCounts() Collector /user/get_user_details GetUserDetails() UserDetails /batch/create_flow Not supported Not supported /batch/send_flow Not supported Not supported /templates/get_template_list Not supported Not supported /collectors/create_collector Not supported Not supported The hierarchy of objects the library can return is Survey List<Page> List<Question> QuestionType List<Answer> List<Item> List<Collector> List<Response> Respondent List<ResponseQuestion> List<ResponseAnswer> Each of these classes has properties which map directly to the names of properties returned by the API itself (though using PascalCasing which is more natural for .NET, rather than the snake_casing used by SurveyMonkey). For most users, Survey Monkey imposes a rate limit of 2 requests per second, so by default the library leaves at least 500ms between requests. You can request higher limits from them, so if you want to change the delay between requests just use a different constructor: var sm = new SurveyMonkeyApi(apiKey, token, 200); //200ms delay = 5 reqs per sec There’s a separate cap of 1000 requests per day for each API key, which the library doesn’t currently enforce, so if you think you’ll be in danger of exceeding that you’ll need to handle it yourself for now.  To help, you can see how many requests the current instance of the SurveyMonkeyApi object has made by reading its RequestsMade property. If the library encounters any errors, including communicating with the API, it will throw a SurveyMonkeyException, so be sure to handle that sensibly any time you use it to make calls. Finally, if you have a survey (or list of surveys) obtained using GetSurveyList(), the library can automatically fill in all available information using sm.FillMissingSurveyInformation(surveys); For each survey in the list, it uses the other endpoints to fill in the missing information about the survey’s question structure, respondents, and responses. This results in at least 5 API calls being made per survey, so be careful before passing it a large list. It also joins up the raw response information to the survey’s question structure, so that for each question in a respondent’s set of replies, you can access a ProcessedAnswer object. For example, a response to a dropdown question (from the /surveys/get_responses endpoint) might be represented in json as { "answers": [ { "row": "9384627365", } ], "question_id": "615487516" } Separately, the question’s structure (from the /surveys/get_survey_details endpoint) might have several possible answers, one of which might look like { "text": "Fourth item in dropdown list", "visible": true, "position": 4, "type": "row", "answer_id": "9384627365" } The library understands how this mapping works, and uses that to give you the following ProcessedAnswer object, which first describes the family and type of question, and secondly gives you the respondent’s answers as they relate to the question. Survey Monkey has many different question types, with 11 distinct data structures, each of which are supported by the library. If you have suggestions or spot any bugs, let me know in the comments, or even better submit a pull request .

    Read the article

  • Knockoutjs - stringify to handling observables and custom events

    - by Renso
    Goal: Once you viewmodel has been built and populated with data, at some point it goal of it all is to persist the data to the database (or some other media). Regardless of where you want to save it, your client-side viewmodel needs to be converted to a JSON string and sent back to the server. Environment considerations: jQuery 1.4.3+ Knockoutjs version 1.1.2   How to: So let’s set the stage, you are using Knockoutjs and you have a viewmodel with some Knockout dependencies. You want to make sure it is in the proper JSON format and via ajax post it to the server for persistence.   First order of business is to deal with the viewmodel (JSON) object. To most the JSON stringifier sounds familiar. The JSON stringifier converts JavaScript data structures into JSON text. JSON does not support cyclic data structures, so be careful to not give cyclical structures to the JSON stringifier. You may ask, is this the best way to do it? What about those observables and other Knockout properties that I don’t want to persist or want their actual value persisted and not their function, etc. Not sure if you were aware, but KO already has a method; ko.utils.stringifyJson() - it's mostly just a wrapper around JSON.stringify. (which is native in some browsers, and can be made available by referencing json2.js in others). What does it do that the regular stringify does not is that it automatically converts observable, dependentObservable, or observableArray to their underlying value to JSON. Hold on! There is a new feature in this version of Knockout, the ko.toJSON. It is part of the core library and it will clone the view model’s object graph, so you don’t mess it up after you have stringified  it and unwrap all its observables. It's smart enough to avoid reference cycles. Since you are using the MVVM pattern it would assume you are not trying to reference DOM nodes from your view. Wait a minute. I can already see this info on the http://knockoutjs.com/examples/contactsEditor.html website, why mention it all here? First of this is a much nicer blog, no orange ? At this time, you may want to have a look at the blog and see what I am talking about. See the save event, how they stringify the view model’s contacts only? That’s cool but what if your view model is a representation of your object you want to persist, meaning it has no property that represents the json object you want to persist, it is the view model itself. The example in http://knockoutjs.com/examples/contactsEditor.html assumes you have a list of contacts you may want to persist. In the example here, you want to persist the view model itself. The viewmodel here looks something like this:     var myViewmodel = {         accountName: ko.observable(""),         accountType: ko.observable("Active")     };     myViewmodel.isItActive = ko.dependentObservable(function () {         return myViewmodel.accountType() == "Active";     });     myViewmodel.clickToSaveMe = function() {         SaveTheAccount();     }; Here is the function in charge of saving the account: Function SaveTheAccount() {     $.ajax({         data: ko.toJSON(viewmodel),         url: $('#ajaxSaveAccountUrl').val(),         type: "POST",         dataType: "json",         async: false,         success: function (result) {             if (result && result.Success == true) {                 $('#accountMessage').html('<span class="fadeMyContainerSlowly">The account has been saved</span>').show();                 FadeContainerAwaySlowly();             }         },         error: function (xmlHttpRequest, textStatus, errorThrown) {             alert('An error occurred: ' + errorThrown);         }     }); //ajax }; Try run this and your browser will eventually freeze up or crash. Firebug will tell you that you have a repetitive call to the first function call in your model that keeps firing infinitely.  What is happening is that Knockout serializes the view model to a JSON string by traversing the object graph and firing off the functions, again-and-again. Not sure why it does that, but it does. So what is the work around: Nullify your function calls and then post it:         var lightweightModel = viewmodel.clickToSaveMe = null;         data: ko.toJSON(lightweightModel), So then I traced the JSON string on the server and found it having issues with primitive types. C#, by the way. So I changed ko.toJSON(model) to ko.toJS(model), and that solved my problem. Of course you could just create a property on the viewmodel for the account itself, so you only have to serialize the property and not the entire viewmodel. If that is an option then that would be the way to go. If your view model contains other properties in the view model that you also want to post then that would not be an option and then you’ll know what to watch out for. Hope this helps.

    Read the article

  • Handling Trailing Delimiters in HL7 Messages

    - by Thomas Canter
    Applies to: BizTalk Server 2006 with the HL7 1.3 Accelerator Outline of the problem Trailing Delimiters are empty values at the end of an object in a HL7 ER7 formatted message. Examples: Empty Field NTE|P| NTE|P|| Empty component ORC|1|725^ Empty Subcomponent ORC|1|||||27& Empty repeat OBR|1||||||||027~ Trailing delimiters indicate the following object exists and is empty, which is quite different from null, null is an explicit value indicated by a pair of double quotes -> "". The BizTalk HL7 Accelerator by default does not allow trailing delimiters. There are three methods to allow trailing delimiters. NOTE: All Schemas always allow trailing delimiters in the MSH Segment Using party identifiers MSH3.1 – Receive/inbound processing, using this value as a party allows you to configure the system to allow inbound trailing delimiters. MSH5.1 – Send/outbound processing, using this value as a party allows you to configure the system to allow outbound trailing delimiters. Generally, if you allow inbound trailing delimiters, unless you are willing to programmatically remove all trailing delimiters, then you need to configure the send to allow trailing delimiters. Add the appropriate parties to the BizTalk Parties list from these two fields in your message stream. Open the BizTalk HL7 Configuration tool and for each party check the "Allow trailing delimiters (separators)" check box on the Validation tab. Disadvantage – Each MSH3.1 and MSH5.1 value must be represented in the parties list and configured. Advantage – granular control over system behavior for each inbound/outbound system. Using instance properties of a pipeline used in a send port or receive location. Open the BizTalk Server Administration console locate the send port or receive location that contains the BTAHL72XReceivePipeline or BTAHL72XSendPipeline pipeline. Open the properties To the right of the pipeline selected locate the […] ellipses button In the property list, locate the "TrailingDelimiterAllowed" property and set it to True. Advantage – All messages through a particular Send Port or Receive Location will allow trailing delimiters. Disadvantage – Must configure each Send Port or Receive Location. No granular control over which remote parties will send or receive messages with trailing delimiters. Using a custom pipeline that uses a pre-configured BTA HL7 Pipeline component. Use Visual Studio to construct a custom receive and send pipeline using the appropriate assembler or dissasembler. Set the component property to "TrailingDelimitersAllowed" to True Compile and deploy the custom pipeline Use the custom pipeline instead of the standard pipeline for all HL7 message processing Advantage – All messages using the custom pipeline will automatically allow trailing delimiters. Disadvantage – Requires custom coding and development to create and deploy the custom pipeline. No granular control over which remote parties will send or receive messages with trailing delimiters. What does a Trailing Delimiter do to the XML Schema? Allowing trailing delimiters does not have the impact often expected in the actual XML Schema.The Schema reproduces the message with no data loss.Thus, the message when represented in XML must contain the extra fields, in order to reproduce the outbound message.Thus, a trialing delimiter results in an empty XML field.Trailing Delmiters are not stripped from the inbound message. Example:<PID_21>44172</PID_21><PID_21>9257</PID_21> -> the original maximum number of repeats<PID_21></PID_21> -> The empty repeated field Allowing trailing delimiters not remove the trailing delimiters from the message, it simply suppresses the check that will cause the message to fail parse with trailing delimiters. When can you not fix the problem by enabling trailing delimiters Each object in a message must have a location in the target BTAHL7 schema for its content to reside.If you have more objects in the message than are contained at that location, then enabling trailing delimiters will not resolve the problem. The schema must be extended to accommodate the empty message content.Examples: Extra Field NTE|P||||Only 4 fields in NTE Segment, the 4th field exists, but is empty. Extra component PID|1|1523|47^^^^^^^Only 5 components in a CX data type, the 5th component exists, but is empty Extra subcomponent ORC|1|||||27&&Only 2 subcomponents in a CQ data type, the 3rd subcomponent is empty, but exists. Extra Repeat PID|1||||||||||||||||||||4419~5217~Only 2 repeats allowed for the field "Mother's identifier", the repeat is empty, but exists. In each of these cases, you must locate the failing object and extend the type to allow an additional object of that type. FieldAdd a field of ST to the end of the segment with a suitable name in the segments_nnn.xsd Component Create a new Custom CX data type (i.e. CX_XtraComp) in the datatypes_nnn.xsd and add a new component to the custom CX data type. Update the field in the segments_nnn.xsd file to use the custom data type instead of the standard datatype. Subcomponent Create a new Custom CQ data type that accepts an additional TS value at the end of the data type. Create a custom TQ data type that uses the new custom CQ data type as the first subcomponent. Modify the ORC segment to use the new CQ data type at ORC.7 instead of the standard CQ data type. RepeatModify the Field definition for PID.21 in the segments_nnn.xsd to allow more repeats in the field.

    Read the article

  • Class Loading Deadlocks

    - by tomas.nilsson
    Mattis follows up on his previous post with one more expose on Class Loading Deadlocks As I wrote in a previous post, the class loading mechanism in Java is very powerful. There are many advanced techniques you can use, and when used wrongly you can get into all sorts of trouble. But one of the sneakiest deadlocks you can run into when it comes to class loading doesn't require any home made class loaders or anything. All you need is classes depending on each other, and some bad luck. First of all, here are some basic facts about class loading: 1) If a thread needs to use a class that is not yet loaded, it will try to load that class 2) If another thread is already loading the class, the first thread will wait for the other thread to finish the loading 3) During the loading of a class, one thing that happens is that the <clinit method of a class is being run 4) The <clinit method initializes all static fields, and runs any static blocks in the class. Take the following class for example: class Foo { static Bar bar = new Bar(); static { System.out.println("Loading Foo"); } } The first time a thread needs to use the Foo class, the class will be initialized. The <clinit method will run, creating a new Bar object and printing "Loading Foo" But what happens if the Bar object has never been used before either? Well, then we will need to load that class as well, calling the Bar <clinit method as we go. Can you start to see the potential problem here? A hint is in fact #2 above. What if another thread is currently loading class Bar? The thread loading class Foo will have to wait for that thread to finish loading. But what happens if the <clinit method of class Bar tries to initialize a Foo object? That thread will have to wait for the first thread, and there we have the deadlock. Thread one is waiting for thread two to initialize class Bar, thread two is waiting for thread one to initialize class Foo. All that is needed for a class loading deadlock is static cross dependencies between two classes (and a multi threaded environment): class Foo { static Bar b = new Bar(); } class Bar { static Foo f = new Foo(); } If two threads cause these classes to be loaded at exactly the same time, we will have a deadlock. So, how do you avoid this? Well, one way is of course to not have these circular (static) dependencies. On the other hand, it can be very hard to detect these, and sometimes your design may depend on it. What you can do in that case is to make sure that the classes are first loaded single threadedly, for example during an initialization phase of your application. The following program shows this kind of deadlock. To help bad luck on the way, I added a one second sleep in the static block of the classes to trigger the unlucky timing. Notice that if you uncomment the "//Foo f = new Foo();" line in the main method, the class will be loaded single threadedly, and the program will terminate as it should. public class ClassLoadingDeadlock { // Start two threads. The first will instansiate a Foo object, // the second one will instansiate a Bar object. public static void main(String[] arg) { // Uncomment next line to stop the deadlock // Foo f = new Foo(); new Thread(new FooUser()).start(); new Thread(new BarUser()).start(); } } class FooUser implements Runnable { public void run() { System.out.println("FooUser causing class Foo to be loaded"); Foo f = new Foo(); System.out.println("FooUser done"); } } class BarUser implements Runnable { public void run() { System.out.println("BarUser causing class Bar to be loaded"); Bar b = new Bar(); System.out.println("BarUser done"); } } class Foo { static { // We are deadlock prone even without this sleep... // The sleep just makes us more deterministic try { Thread.sleep(1000); } catch(InterruptedException e) {} } static Bar b = new Bar(); } class Bar { static { try { Thread.sleep(1000); } catch(InterruptedException e) {} } static Foo f = new Foo(); }

    Read the article

  • C# 4.0: Covariance And Contravariance In Generics

    - by Paulo Morgado
    C# 4.0 (and .NET 4.0) introduced covariance and contravariance to generic interfaces and delegates. But what is this variance thing? According to Wikipedia, in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometrical or physical entities changes when passing from one coordinate system to another.(*) But what does this have to do with C# or .NET? In type theory, a the type T is greater (>) than type S if S is a subtype (derives from) T, which means that there is a quantitative description for types in a type hierarchy. So, how does covariance and contravariance apply to C# (and .NET) generic types? In C# (and .NET), variance applies to generic type parameters and not to the resulting generic type. A generic type parameter is: covariant if the ordering of the generic types follows the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. contravariant if the ordering of the generic types is reversed from the ordering of the generic type parameters: Generic<T> = Generic<S> for T = S. invariant if neither of the above apply. If this definition is applied to arrays, we can see that arrays have always been covariant because this is valid code: object[] objectArray = new string[] { "string 1", "string 2" }; objectArray[0] = "string 3"; objectArray[1] = new object(); However, when we try to run this code, the second assignment will throw an ArrayTypeMismatchException. Although the compiler was fooled into thinking this was valid code because an object is being assigned to an element of an array of object, at run time, there is always a type check to guarantee that the runtime type of the definition of the elements of the array is greater or equal to the instance being assigned to the element. In the above example, because the runtime type of the array is array of string, the first assignment of array elements is valid because string = string and the second is invalid because string = object. This leads to the conclusion that, although arrays have always been covariant, they are not safely covariant – code that compiles is not guaranteed to run without errors. In C#, the way to define that a generic type parameter as covariant is using the out generic modifier: public interface IEnumerable<out T> { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> { T Current { get; } bool MoveNext(); } Notice the convenient use the pre-existing out keyword. Besides the benefit of not having to remember a new hypothetic covariant keyword, out is easier to remember because it defines that the generic type parameter can only appear in output positions — read-only properties and method return values. In a similar way, the way to define a type parameter as contravariant is using the in generic modifier: public interface IComparer<in T> { int Compare(T x, T y); } Once again, the use of the pre-existing in keyword makes it easier to remember that the generic type parameter can only be used in input positions — write-only properties and method non ref and non out parameters. Because covariance and contravariance apply only to the generic type parameters, a generic type definition can have both covariant and contravariant generic type parameters in its definition: public delegate TResult Func<in T, out TResult>(T arg); A generic type parameter that is not marked covariant (out) or contravariant (in) is invariant. All the types in the .NET Framework where variance could be applied to its generic type parameters have been modified to take advantage of this new feature. In summary, the rules for variance in C# (and .NET) are: Variance in type parameters are restricted to generic interface and generic delegate types. A generic interface or generic delegate type can have both covariant and contravariant type parameters. Variance applies only to reference types; if you specify a value type for a variant type parameter, that type parameter is invariant for the resulting constructed type. Variance does not apply to delegate combination. That is, given two delegates of types Action<Derived> and Action<Base>, you cannot combine the second delegate with the first although the result would be type safe. Variance allows the second delegate to be assigned to a variable of type Action<Derived>, but delegates can combine only if their types match exactly. If you want to learn more about variance in C# (and .NET), you can always read: Covariance and Contravariance in Generics — MSDN Library Exact rules for variance validity — Eric Lippert Events get a little overhaul in C# 4, Afterward: Effective Events — Chris Burrows Note: Because variance is a feature of .NET 4.0 and not only of C# 4.0, all this also applies to Visual Basic 10.

    Read the article

  • MVVM Light V4 preview 2 (BL0015) #mvvmlight

    - by Laurent Bugnion
    Over the past few weeks, I have worked hard on a few new features for MVVM Light V4. Here is a second early preview (consider this pre-alpha if you wish). The features are unit-tested, but I am now looking for feedback and there might be bugs! Bug correction: Messenger.CleanupList is now thread safe This was an annoying bug that is now corrected: In some circumstances, an exception could be thrown when the Messenger’s recipients list was cleaned up (i.e. the “dead” instances were removed). The method is called now and then and the exception was thrown apparently at random. In fact it was really a multi-threading issue, which is now corrected. Bug correction: AllowPartiallyTrustedCallers prevents EventToCommand to work This is a particularly annoying regression bug that was introduced in BL0014. In order to allow MVVM Light to work in XBAPs too, I added the AllowPartiallyTrustedCallers attribute to the assemblies. However, we just found out that this causes issues when using EventToCommand. In order to allow EventToCommand to continue working, I reverted to the previous state by removing the AllowPartiallyTrustedCallers attribute for now. I will work with my friends at Microsoft to try and find a solution. Stay tuned. Bug correction: XML documentation file is now generated in Release configuration The XML documentation file was not generated for the Release configuration. This was a simple flag in the project file that I had forgotten to set. This is corrected now. Applying EventToCommand to non-FrameworkElements This feature has been requested in order to be able to execute a command when a Storyboard is completed. I implemented this, but unfortunately found out that EventToCommand can only be added to Storyboards in Silverlight 3 and Silverlight 4, but not in WPF or in Windows Phone 7. This obviously limits the usefulness of this change, but I decided to publish it anyway, because it is pretty damn useful in Silverlight… Why not in WPF? In WPF, Storyboards added to a resource dictionary are frozen. This is a feature of WPF which allows to optimize certain objects for performance: By freezing them, it is a contract where we say “this object will not be modified anymore, so do your perf optimization on them without worrying too much”. Unfortunately, adding a Trigger (such as EventTrigger) to an object in resources does not work if this object is frozen… and unfortunately, there is no way to tell WPF not to freeze the Storyboard in the resources… so there is no way around that (at least none I can see. In Silverlight, objects are not frozen, so an EventTrigger can be added without problems. Why not in WP7? In Windows Phone 7, there is a totally different issue: Adding a Trigger can only be done to a FrameworkElement, which Storyboard is not. Here I think that we might see a change in a future version of the framework, so maybe this small trick will work in the future. Workaround? Since you cannot use the EventToCommand on a Storyboard in WPF and in WP7, the workaround is pretty obvious: Handle the Completed event in the code behind, and call the Command from there on the ViewModel. This object can be obtained by casting the DataContext to the ViewModel type. This means that the View needs to know about the ViewModel, but I never had issues with that anyway. New class: NotifyPropertyChanged Sometimes when you implement a model object (for example Customer), you would like to have it implement INotifyPropertyChanged, but without having all the frills of a ViewModelBase. A new class named NotifyPropertyChanged allows you to do that. This class is a simple implementation of INotifyPropertyChaned (with all the overloads of RaisePropertyChanged that were implemented in BL0014). In fact, ViewModelBase inherits NotifyPropertyChanged. ViewModelBase does not implement IDisposable anymore The IDisposable interface and the Dispose method had been marked obsolete in the ViewModelBase class already in V3. Now they have been removed. Note: By this, I do not mean that IDisposable is a bad interface, or that it shouldn’t be used on viewmodels. In the contrary, I know that this interface is very useful in certain circumstances. However, I think that having it by default on every instance of ViewModelBase was sending a wrong message. This interface has a strong meaning in .NET: After Dispose has been executed, the instance should not be used anymore, and should be ready for garbage collection. What I really wanted to have on ViewModelBase was rather a simple cleanup method, something that can be executed now and then during runtime. This is fulfilled by the ICleanup interface and its Cleanup method. If your ViewModels need IDisposable, you can still use it! You will just have to implement the interface on the class itself, because it is not available on ViewModelBase anymore. What’s next? I have a couple exciting new features implemented already but that need more testing before they go live… Just stay tuned and by MIX11 (12-14 April 2011), we should see at least a major addition to MVVM Light Toolkit, as well as another smaller feature which is pretty cool nonetheless More about this later! Happy Coding Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • Center Pictures and Other Objects in Office 2007 & 2010

    - by Matthew Guay
    Sometimes it can be difficult to center a picture in a document just by dragging it dragging it around. Today we show you how to center pictures, images, and other objects perfectly in Word and PowerPoint. Note: For this tutorial we’re using Office 2010, but the steps are nearly identical in 2007. Centering a Picture in Word First let’s insert a picture into our document.  Click the Insert tab, and then click Picture. Once you select the picture you want, it will be added to your document.  Usually, pictures are added wherever your curser was in the document, so in a blank document it will be added at the top left. Also notice Picture Tools show up in the Ribbon after inserting an image. Note: The following menu items are available in Picture Tools Format tab which is displayed when you select the object or image you’re working with. How do we align the picture just like we want?  Click Position to get some quick placement options, including centered in the middle of the document or on the top.    However, for more advanced placement, we can use the Align tool.  If Word isn’t maximized, you may only see the icon without the “Align” label. Notice the tools were grayed out in the menu by default.  To be able to change the Alignment, we need to first change the text wrap settings. Click the Wrap Text button, and any option other than “In Line with Text”.  Your choice will depend on the document you’re writing, just choose the option that works best in the document.   Now, select the Align tools again.  You can now position your image precisely with these options. Align Center will position your picture in the center of the page widthwise. Align Middle will put the picture in the middle of the page height-wise. This works the same with textboxes.  Simply click the Align button in the Format tab, and you can center it in the page. And if you’d like to align several objects together, simply select them all, click Group, and then select Group from the menu.   Now, in the align tools, you can center the whole group on your page for a heading, or whatever you want to use the pictures for. These steps also work the same with Office 2007. Center objects in PowerPoint This works similar in PowerPoint, except that pictures are automatically set for square wrapping automatically, so you don’t have to change anything.  Simply insert the picture or other object of your choice, click Align, and choose the option you want. Additionally, if one object is already aligned like you want, drag another object near it and you will see a Smart Guide to help you align or center the second object with the first.  This only works with shapes in PowerPoint 2010 beta, but will work with pictures, textboxes, and media in the final release this summer. Conclusion These are good methods for centering images and objects in Word and PowerPoint.  From designing perfect headers to emphasizing your message in a PowerPoint presentation, this is something we’ve found useful and hope you will too. Since we’re talking about Office here, it’s worth mentioning that Microsoft has announced the Technology Guarantee Program for Office 2010. Essentially what this means is, if you purchase a version of Office 2007 between March 5th and September 30th of this year, when Office 2010 is released you’ll be able to upgrade to it for free! Similar Articles Productive Geek Tips Add or Remove Apps from the Microsoft Office 2007 or 2010 SuiteAdd More Functions To Office 2007 By Installing Add-InsCustomize Your Welcome Picture Choices in Windows VistaEasily Rotate Pictures In Word 2007Add Effects To Your Pictures in Word 2007 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Discover New Bundled Feeds in Google Reader Play Music in Chrome by Simply Dragging a File 15 Great Illustrations by Chow Hon Lam Easily Sync Files & Folders with Friends & Family Amazon Free Kindle for PC Download Stretch popurls.com with a Stylish Script (Firefox)

    Read the article

< Previous Page | 560 561 562 563 564 565 566 567 568 569 570 571  | Next Page >