Search Results

Search found 20172 results on 807 pages for 'oracle forms to adf'.

Page 564/807 | < Previous Page | 560 561 562 563 564 565 566 567 568 569 570 571  | Next Page >

  • Introducing - TailspinSpyworks - WebForms Sample Application

    iBuySpy was a very popular sample application, but a lot has changed in Web Forms development since then. ScottGu suggested that I rewrite the old iBuySpy application so I did. Its ASP.NET 4 with CSS based layout, data access via Entity Framework, etc. The www.asp.net landing page is here http://www.asp.net/web-forms/samples/tailspin-spyworks/ Ill be adding features over time and doing videos to explain some of the cool stuff. You can download the code from CodePlex at http://tailspinspyworks.codeplex.com/...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • From Bluehost to WP Engine, My WordPress Story

    - by thatjeffsmith
    This is probably the longest blog post I’ve written in a LONG time. And if you’re used to coming here for the Oracle stuff, this post is not about that. It’s about my blog, and the stuff under the hood that makes it run, AKA WordPress. If you want to skip to the juicy stuff, then use these shortcuts: My Site Slowed Down How I Moved to WP Engine How WP Engine ‘Hooked’ Me Why WP Engine? I started thatJeffSmith.com on May 28th, 2010. I had been already been blogging for several years, but a couple of really smart people I respected (Andy, Brent – thanks again!) suggested that I take ownership of my content and begin building my personal brand. I thought that was a good idea, and so I signed up for service with bluehost. Bluehost makes setting up a WordPress site very, very easy. And, they continued to be easy to work with for the past 2 years. I would even recommend them to anyone looking to host their own WordPress install/site. For $83.40, I purchased a year’s worth of service and my domain name registration – a very good value. And then last year I paid $107.40 for another year’s services. And when that year expired I paid another $190.80 for an additional two year’s service in advance. I had been up to that point, getting my money’s worth. And then, just a few weeks ago… My Site Slowed to a Crawl That spike was from an April Fool's Day Post, I think Why? Well, when I first started blogging, I had the same problem that most beginner bloggers have – not many readers. In my first year of blogging, I think the highest number of readers on a single day was about 125. I remember that day as I was very excited to break 100! Bluehost was very reliable, serving up my content with maybe a total of 3-4 outages in the past 2 years. Support was usually very prompt with answers and solutions, and I love their ‘Chat now’ technology – much nicer than message boards only or pay-to-talk phone support. In the past 6 months however, I noticed a couple of things: daily traffic was increasing – woohoo! my service was experiencing severe CPU throttling – doh! To be honest, I wasn’t aware the throttling was occuring, but I did know that the response time of my blog was starting to lag. Average load times were approaching 20-30 seconds. Not good when good sites are loading in 5 seconds or less. And just this past week, in getting ready to launch a new website for work that sucked in an RSS feed from my blog, the new page was left waiting for more than a minute. Not good! In fact my boss asked, why aren’t you blogging on Blogger? Ugh. I tried a few things to fix the problem: I paid for a premium WordPress theme – Themify’s Grido (thanks to @SQLRockstar for the heads-up) I installed a couple of WP caching plugins I read every WP optimization blog post I could get my greedy little eyes on However, at the same time I was also getting addicted to WordPress bloggers talking about all the cool things you could do with your blog. As a result I had at one point about 30 different plugins installed. WordPress runs on MySQL, and certain queries running via these plugins were starving for CPU. Plugins that would be called every page load meant that as more people clicked on my site, the more CPU I needed. I’m not stupid, so I eventually figured out that maybe less plugins was better, and was able to go down to just 20. But still, the site was running like a dog. CPU Throttling, makes MySQL wait to run a query Bluehost runs shared servers. Your site runs on the same box that several hundred (or thousand?) other services are running on. If you take more CPU than they think you should have, they will limit your service by making you stand in line for CPU, AKA ‘throttling.’ This is not bad. This business model allows them to serve many, many users for a very fair price. It works great until, well, until it doesn’t. I noticed in the last week that for every minute of service, I was being throttled between 60 and 300 seconds. If there were 5 MySQL processes running, then every single one of them were being held in check. The blog visitor notice this as their page requests would take a minute or more to be answered. Bluehost unfortunately doesn’t offer dedicated server hosting, so there was no real upgrade path for me follow and remain one of their customers. So what was I to do? Uninstall every plugin and hope the site sped up? Ask for people to take turns on my blog? I decided to spend my way out of the problem. I signed up for service with WP Engine and moved ThatJeffSmith.com The first 2 months are free, and after that it’s about $29/month to run my site on their system. My math tells me that’s a good bit more expensive than what Bluehost was charging me – to the tune of about 300% more a month. Oh, and I should just say that my blog is a personal blog even though I talk about work stuff here. I don’t get paid for blogging, I don’t sell ads, and I don’t expense the service fees – this is my personal passion. So is it worth it? In the first 4 days, it seems to be totally worth it. Load times have gone from 20-30 seconds to less than 5 seconds. A few folks have told me via Twitter that they notice faster page loads. I anticipate this will indirectly lead to more traffic as Google penalizes you in search results if your site is too slow, and of course some folks won’t even bother waiting more than 5-10 seconds. I noticed right away that writing posts, uploading pictures, and just using the WordPress dashboard in general was much more responsive. So writing is less of a chore now, which means I won’t have a good reason not to write How I Moved to WP Engine I signed up for the service and registered my domain. I then took a full export of my ‘old’ site by doing a FTP GET of all my files, then did a MySQL database backup, exported my WordPress Theme settings to a .zip file, and then finally used the WordPress ‘Export’ feature. I then used the WordPress ‘Import’ on the new site to load up my posts. Then I uploaded the theme .zip package from Themify. Then I FTP’d the ‘wp-content’ directory up to my new server using SFTP (WP Engine only supports secure FTP – good on them!) Using a temporary URL to see my new site, I was able to confirm that everything looked mostly OK – I’ll detail the challenges and issues of fixing the content next – but then it was time to ‘flip the switch.’ I updated the IP address that the DNS lookup tables use to route traffic to my new server. In a matter of minutes the DNS servers around the world were updated and it was time to see the new site! But It Was ‘Broken’ I had never moved a website before, and in my rush to update the DNS, I had changed the records without really finding out what I was supposed to do first. After re-reading the directions provided by WP Engine and following the guidance of their support engineer, I realized I had needed to set the CNAME (Alias) ‘www’ record to point to a different URL than the ‘www.thatjeffsmith.com’ entry I had set. Once corrected the site was up and running in less than a minute. Then It Was Only Mostly Broken Many of my plugins weren’t working. Apparently just ftp’ing the wp-content directory up wasn’t the proper way to re-install the plugin. I suspect file permissions or file ownership wasn’t proper. Some plug-ins were working, many had their settings wiped to the defaults, and a few just didn’t work again. I had to delete the directory of the plug-in manually via SFTP, and then use the WP Dashboard to install it from scratch. And here was my first ‘lesson’ – don’t switch the DNS records until you’ve completely tested your new site. I wasn’t able to navigate the old WP console to review my plug-in settings. Thankfully I was able to use the Wayback Machine to reverse engineer some things, and of course most plug-ins aren’t that complicated to setup to begin with. An example of one that I had to redo from scratch is the ‘Twitter @Anywhere Plus’ plugin that I use to create the form that allows folks to tweet a post they enjoyed at the end of each story. How WP Engine ‘Hooked’ Me I actually signed up with another provider first. They ranked highly in Google searches and a few Tweeps recommended them to me. But hours after signing up and I still didn’t have sever reyady, I was ready to give up on them. They offered no chat or phone support – only mail and message boards. And the message boards were rife with posts about how the service had gone downhill in the past 6 months. To their credit, they did make it easy to cancel, although I did have to do so via email as their website ‘cancel’ button was non-existent. Within minutes of activating my WP Engine account I had received my welcome message and directions on how to get started. I was able to see my staged website right away. They also did something very cool before I even got started – they looked at my existing site and told me by how much they could improve its performance. The proof is in the web pudding. I like this for a few reasons, but primarily I liked their business model. It told me they knew what they were doing, and that they were willing to put their money where their mouth was. This was further evident by their 60-day money back guarantee. And if I understand it correctly, they don’t even take your money until after that 60 day period is over. After a day, I was welcomed by the WP Engine social media team, and was given the opportunity to subscribe to their newsletter and follow their account on Twitter. I noticed their Twitter team is sure to post regular WordPress tips several times a day. It’s not just an account that’s setup for the sake of having a Twitter presence. These little things add up and give me confidence in my decision to choose them as my hosting partner. ‘Partner’ – that’s a lot nicer word than just ‘service provider,’ isn’t it? Oh, and they offered me a t-shirt. Don’t ever doubt the power of a ‘free’ t-shirt! How awesome is this e-mail, from a customer perspective? I wasn’t really expecting any of this. Exceeding expectations before I have even handed over a single dollar seems like a pretty good business plan. This is how you treat customers. Love them to death, and they reward you with loyalty. But Jeff, You Skipped a Piece Here, Why WP Engine? I found them on one of those ‘Top 10′ list posts, and pulled up their webpage. I noticed they offered a specialized service – they host WordPress installs, and that’s it. Their servers are tuned specifically for running WordPress. They had in bolded text, things like ‘INSANELY FAST. INFINITELY SCALABLE.’ and ‘LIGHTNING SPEED.’ And then they offered insurance against hackers and they took care of automatic backups and restores. The only drawbacks I have noticed so far relate to plugins I used that have been ‘blacklisted.’ In order to guarantee that ‘lightning’ speed, they have banned the use of the CPU-suckiest plugins. One of those is the ‘Related Posts’ plugin. So if you are a subscriber and are reading this in your email, you’ll notice there’s no links back to my blog to continue reading other related stories. Since that referral traffic is very small single-digit for my site, I decided that I’m OK with that. I’d rather have the warp-speed page loads. Again, I think that will lead to higher traffic down the road. In 50+ days I will need to decide if WP Engine is a permanent solution. I’ll be sure to update this post when that time comes and let y’all know how it turns out.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Book Review (Book 10) - The Information: A History, a Theory, a Flood

    - by BuckWoody
    This is a continuation of the books I challenged myself to read to help my career - one a month, for year. You can read my first book review here, and the entire list is here. The book I chose for March 2012 was: The Information: A History, a Theory, a Flood by James Gleick. I was traveling at the end of last month so I’m a bit late posting this review here. Why I chose this book: My personal belief about computing is this: All computing technology is simply re-arranging data. We take data in, we manipulate it, and we send it back out. That’s computing. I had heard from some folks about this book and it’s treatment of data. I heard that it dealt with the basics of data - and the semantics of data, information and so on. It also deals with the earliest forms of history of information, which fascinates me. It’s similar I was told, to GEB which a favorite book of mine as well, so that was a bonus. Some folks I talked to liked it, some didn’t - so I thought I would check it out. What I learned: I liked the book. It was longer than I thought - took quite a while to read, even though I tend to read quickly. This is the kind of book you take your time with. It does in fact deal with the earliest forms of human interaction and the basics of data. I learned, for instance, that the genesis of the binary communication system is based in the invention of telegraph (far-writing) codes, and that the earliest forms of communication were expensive. In fact, many ciphers were invented not to hide military secrets, but to compress information. A sort of early “lol-speak” to keep the cost of transmitting data low! I think the comparison with GEB is a bit over-reaching. GEB is far more specific, fanciful and so on. In fact, this book felt more like something fro Richard Dawkins, and tended to wander around the subject quite a bit. I imagine the author doing his research and writing each chapter as a book that followed on from the last one. This is what possibly bothered those who tended not to like it, I think. Towards the middle of the book, I think the author tended to be a bit too fragmented even for me. He began to delve into memes, biology and more - I think he might have been better off breaking that off into another work. The existentialism just seemed jarring. All in all, I liked the book. I recommend it to any technical professional, specifically ones involved with data technology in specific. And isn’t that all of us? :)

    Read the article

  • Adding nodes to MAAS server

    - by Yasith Tharindu
    I was able to install MAAS server using ubuntu 12.04. Then boot up nodes from he PXE. Then installed maas-precise-x86-64-commissioning through pxe. Now the installation is done. but im unable to commission with the MAAS server. It does not show it as a node and neither im unable to add it manually and end up with following error. Also what is the default username password for maas-precise-x86-64-commissioning. Im unable to login. This error when adding node manually. ERROR 2012-11-20 08:32:54,500 maas.maasserver ################################ Exception: timed out ################################ ERROR 2012-11-20 08:32:54,501 maas.maasserver Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/django/core/handlers/base.py", line 111, in get_response response = callback(request, *callback_args, **callback_kwargs) File "/usr/lib/python2.7/dist-packages/django/views/decorators/vary.py", line 22, in inner_func response = func(*args, **kwargs) File "/usr/lib/python2.7/dist-packages/piston/resource.py", line 166, in call result = self.error_handler(e, request, meth, em_format) File "/usr/lib/python2.7/dist-packages/piston/resource.py", line 164, in call result = meth(request, *args, **kwargs) File "/usr/lib/python2.7/dist-packages/maasserver/api.py", line 251, in dispatcher self, request, request.method, *args, **kwargs) File "/usr/lib/python2.7/dist-packages/maasserver/api.py", line 193, in perform_api_operation return method(handler, request, *args, **kwargs) File "/usr/lib/python2.7/dist-packages/maasserver/api.py", line 493, in new node = create_node(request) File "/usr/lib/python2.7/dist-packages/maasserver/api.py", line 418, in create_node return form.save() File "/usr/lib/python2.7/dist-packages/maasserver/forms.py", line 234, in save node = super(NodeWithMACAddressesForm, self).save() File "/usr/lib/python2.7/dist-packages/django/forms/models.py", line 363, in save fail_message, commit, construct=False) File "/usr/lib/python2.7/dist-packages/django/forms/models.py", line 85, in save_instance instance.save() File "/usr/lib/python2.7/dist-packages/maasserver/models.py", line 114, in save return super(CommonInfo, self).save(*args, **kwargs) File "/usr/lib/python2.7/dist-packages/django/db/models/base.py", line 460, in save self.save_base(using=using, force_insert=force_insert, force_update=force_update) File "/usr/lib/python2.7/dist-packages/django/db/models/base.py", line 570, in save_base created=(not record_exists), raw=raw, using=using) File "/usr/lib/python2.7/dist-packages/django/dispatch/dispatcher.py", line 172, in send response = receiver(signal=self, sender=sender, **named) File "/usr/lib/python2.7/dist-packages/maasserver/provisioning.py", line 485, in provision_post_save_Node profile, power_type, preseed_data) File "/usr/lib/python2.7/dist-packages/maasserver/provisioning.py", line 245, in call result = self.method(*args) 259,1 93% result = self.method(*args) File "/usr/lib/python2.7/xmlrpclib.py", line 1224, in call return self._send(self._name, args) File "/usr/lib/python2.7/xmlrpclib.py", line 1578, in _request verbose=self._verbose File "/usr/lib/python2.7/xmlrpclib.py", line 1264, in request return self.single_request(host, handler, request_body, verbose) File "/usr/lib/python2.7/xmlrpclib.py", line 1294, in single_request response = h.getresponse(buffering=True) File "/usr/lib/python2.7/httplib.py", line 1030, in getresponse response.begin() File "/usr/lib/python2.7/httplib.py", line 407, in begin version, status, reason = self._read_status() File "/usr/lib/python2.7/httplib.py", line 365, in _read_status line = self.fp.readline() File "/usr/lib/python2.7/socket.py", line 447, in readline data = self._sock.recv(self._rbufsize) timeout: timed out

    Read the article

  • Adding attachments to HumanTasks *beforehand*

    - by ccasares
    For an demo I'm preparing along with a partner, we need to add some attachments to a HumanTask beforehand, that is, the attachment must be associated already to the Task by the time the user opens its Form. How to achieve this?, indeed it's quite simple and just a matter of some mappings to the Task's input execData structure. Oracle BPM supports "default" attachments (which use BPM tables) or UCM-based ones. The way to insert attachments for both methods is pretty similar. With default attachments When using default attachments, first we need to have the attachment payload as part of the BPM process, that is, must be contained in a variable. Normally the attachment content is binary, so we'll need first to convert it to a base64-string (not covered on this blog entry). What we need to do is just to map the following execData parameters as part of the input of the HumanTask: execData.attachment[n].content            <-- the base64 payload data execData.attachment[n].mimeType           <-- depends on your attachment                                               (e.g.: "application/pdf") execData.attachment[n].name               <-- attachment name (just the name you want to                                               use. No need to be the original filename) execData.attachment[n].attachmentScope    <-- BPM or TASK (depending on your needs) execData.attachment[n].storageType        <-- TASK execData.attachment[n].doesBelongToParent <-- false (not sure if this one is really                                               needed, but it definitely doesn't hurt) execData.attachment[n].updatedBy          <-- username who is attaching it execData.attachment[n].updatedDate        <-- dateTime of when this attachment is                                               attached  Bear in mind that the attachment structure is a repetitive one. So if you need to add more than one attachment, you'll need to use XSLT mapping. If not, the Assign mapper automatically adds [1] for the iteration.  With UCM-based attachments With UCM-based attachments, the procedure is basically the same. We'll need to map some extra fields and not to map others. The tricky part with UCM-based attachments is what we need to know beforehand about the attachment itself. Of course, we don't need to have the payload, but a couple of information from the attachment that must be checked in already in UCM. First, let's see the mappings: execData.attachment[n].mimeType           <-- Document's dFormat attribute (1) execData.attachment[n].name               <-- attachment name (just the name you want to                                               use. No need to be the original filename) execData.attachment[n].attachmentScope    <-- BPM or TASK (depending on your needs) execData.attachment[n].storageType        <-- UCM execData.attachment[n].doesBelongToParent <-- false (not sure if this one is really                                               needed, but it definitely doesn't hurt) execData.attachment[n].updatedBy          <-- username who is attaching it execData.attachment[n].updatedDate        <-- dateTime of when this attachment is                                               attached  execData.attachment[n].uri                <-- "ecm://<dID>" where dID is document's dID                                      attribute (2) execData.attachment[n].ucmDocType         <-- Document's dDocType attribute (3) execData.attachment[n].securityGroup      <-- Document's dSecurityGroup attribute (4) execData.attachment[n].revision           <-- Document's dRevisionID attribute (5) execData.attachment[n].ucmMetadataItem[1].name  <-- "DocUrl" execData.attachment[n].ucmMetadataItem[1].type  <-- STRING execData.attachment[n].ucmMetadataItem[1].value <-- Document's url attribute (6)  Where to get those (n) fields? In my case I get those from a Search call to UCM (not covered on this blog entry) As I mentioned above, we must know which UCM document we're going to attach. We may know its ID, its name... whatever we need to uniquely identify it calling the IDC Search method. This method returns ALL the info we need to attach the different fields labeled with a number above.  The only tricky one is (6). UCM Search service returns the url attribute as a context-root without hostname:port. E.g.: /cs/groups/public/documents/document/dgvs/mdaw/~edisp/ccasareswcptel000239.pdf However we do need to include the full qualified URL when mapping (6). Where to get the http://<hostname>:<port> value? Honestly, I have no clue. What I use to do is to use a BPM property that can always be modified at runtime if needed. There are some other fields that might be needed in the execData.attachment structure, like account (if UCM's is using Accounts). But for demos I've never needed to use them, so I'm not sure whether it's necessary or not. Feel free to add some comments to this entry if you know it ;-)  That's all folks. Should you need help with the UCM Search service, let me know and I can write a quick entry on that topic.

    Read the article

  • Cooperator Framework

    - by csharp-source.net
    Cooperator Framework is a base class library for high performance Object Relational Mapping (ORM), and a code generation tool that aids agile application development for Microsoft .Net Framework 2.0/3.0. The main features are: * Use business entities. * Full typed Model (Data Layer and Entities) * Maintain persistence across the layers by passing specific types( .net 2.0/3.0 generics) * Business objects can bind to controls in Windows Forms and Web Forms taking advantage of data binding of Visual Studio 2005. * Supports any Primary Key defined on tables, with no need to modify it or to create a unique field. * Uses stored procedures for data access. * Supports concurrency. * Generates code both for stored procedures and projects in C# or Visual Basic. * Maintains the model in a repository, which can be modified in any stage of the development cycle, regenerating the model on demand.

    Read the article

  • Does Azure only support ASP.NET MVC applications and if so how should I adapt my design?

    - by RPK
    I am writing a small ASP.NET Web Application. My worries are that I want to keep the architecture same giving me the option to install it on an Intranet or on a Cloud Platform. I am not using MVC but lately learned that Azure only supports ASP.NET MVC applications. I want to know whether ASP.NET Web Forms application work on Azure/AppHarbor or not. Do I need to convert this application to MVC if Web Forms is not supported? Will the same application run on Intranet as well?

    Read the article

  • Concerns on first ASP.NET cloud application

    - by RPK
    I am writing a small ASP.NET Web Application. My worries are that I want to keep the architecture same giving me the option to install it on an Intranet or on a Cloud Platform. I am not using MVC but lately learned that Azure only supports ASP.NET MVC applications. I want to know whether ASP.NET Web Forms application work on Azure/AppHarbor or not. Do I need to convert this application to MVC if Web Forms is not supported? Will the same application run on Intranet as well?

    Read the article

  • Basic Form Properties and Modality in VB.NET

    Creating your First VB.NET Form 1. Launch Microsoft Visual Basic 2008 Express Edition. If you do not have this program, then you cannot create VB.NET forms. You can read an introductory tutorial on how to install Visual Basic on your computer: http://www.aspfree.com/c/a/VB.NET/Visual-Basic-for-Beginners/ 2. Go to File - gt; New Project. 3. Since you will be creating a form, select Windows Forms Application. 4. Select a name for your form project, e.g. MyFirstForm. 5. Hit OK to get started. 6. You will then see an empty form -- just like an empty canvas when you paint. It looks like th...

    Read the article

  • Is ASP.NET MVC completely (and exclusively) based on conventions?

    - by Mike Valeriano
    --TL;DR Is there a "Hello World!" ASP.NET MVC tutorial out there that doesn't rely on conventions and "stock" projects? Is it even possible to take advantage of the technology without reusing the default file structure, and start from a single "hello_world.asp" file or something (like in PHP)? Am I completely mistaken and I should be looking somewhere else, maybe this? I'm interested in the MVC framework, not Web Forms --Background I've played a bit with PHP in the past, just for fun, and now I'm back to it since web development became relevant for me once again. I'm no professional, but I try to gain as much knowledge and control over the technology I'm working with as possible. I'm using Visual Studio 2012 for C# - my "desktop" language of choice - and since I got the Professional Edition from Dreamspark, the Web Development Tools are available, including ASP.NET MVC 4. I won't touch Web Forms, but the MVC Framework got my attention because the MVC pattern is something I can really relate to, since it provides the control I want but... not quite. Learning PHP was easy - and right form the start I could just create a "hello_world.php" file and just do something like this for immediate results: <!-- file: hello_world.php --> <?php> echo "Hello World!"; <?> But I couldn't find a single ASP.NET (MVC) tutorial out there (I'll be sure to buy one of the upcoming MVC 4 books, only a month away or so) that would start like that. They all start with a sample project, building up knowledge from the basics and heavily using conventions as they go along. Which is fine, I suppose, but it's now the best way for me to learn things. Even the "Empty" project template for a new ASP.NET MVC 4 Application in VS2012 is not empty at all: several files and folders are created for you - much like a new C# desktop application project, but with C# I can in fact start from scratch, creating the project structure myself. It is not the case with PHP: I can choose from a plethora of different MVC frameworks I can just create my own framework I can just skip frameworks altogether, and toss random PHP along with my HTML on a single file and make it work I understand the framework needs to establish some rules, but what if I just want to create a single page website with some C# logic behind it? Do I really need to create a whole bloat of files and folders for the sake of convention? Also, please understand that I haven't gotten far on any of those tutorials mainly because of this reason, but, if that's the only way to do it, I'll go for it using one of the books I've mentioned before. This is my first contact with ASP.NET but from the few comparisons I've read, I believe I should stay the hell away from Web Forms. Thank you. (Please forgive the broken English - it is not my primary language.)

    Read the article

  • ESRI frameworks: java vs javascript

    - by Luke
    I'm about to develop a web mapping application with ESRI Products like ArcGIS Server and Image Server. I can't find a good comparison between the Java Web ADF and the Javascript Framework. They're of course different because one is a full environment and the other is only client side but it's much more concise and the step to start is minimal. Another problem is that the Java Web ADF is not compatible with our current application server (JBoss 4.2.2) and require an old 4.0.2 version. Someone out there has experience that can help me? Many thanks.

    Read the article

  • Is there a simpler way to create a borderless window with XNA 4.0?

    - by Cypher
    When looking into making my XNA game's window border-less, I found no properties or methods under Game.Window that would provide this, but I did find a window handle to the form. I was able to accomplish what I wanted by doing this: IntPtr hWnd = this.Window.Handle; var control = System.Windows.Forms.Control.FromHandle( hWnd ); var form = control.FindForm(); form.FormBorderStyle = System.Windows.Forms.FormBorderStyle.None; I don't know why but this feels like a dirty hack. Is there a built-in way to do this in XNA that I'm missing?

    Read the article

  • Databinding a ListView with Mono for Android

    - by Wallym
    The world lives on data. Data is all around us and in many forms: salespeople need to know what customers have spent; twitter users want to know what their friends are saying. How do we as developers present data to a user? In Android, we use the ListView in its various forms. In this article, we'll look at using a ListView, how we can work with it, then discuss what we need to do to overcome some of the challenges in a mobile environment.Article url: http://visualstudiomagazine.com/articles/2012/09/14/databind-a-listview.aspx

    Read the article

  • Creating the Business Card Request InfoPath Form

    - by JKenderdine
    Business Card Request Demo Files Back in January I spoke at SharePoint Saturday Virginia Beach about InfoPath forms and Web Part deployment.  Below is some of the information and details regarding the form I created for the session.  There are many blogs and Microsoft articles on how to create a basic form so I won’t repeat that information here.   This blog will just explain a few of the options I chose when creating the solutions for SPS Virginia Beach.  The above link contains the zipped package files of the two InfoPath forms(no code solution and coded solution), the list template for the Location list I used, and the PowerPoint deck.  If you plan to use these templates, you will need to update the forms to work within your own environments (change data connections, code links, etc.).  Also, you must have the SharePoint Enterprise version, with InfoPath Services configured in order to use the Web Browser enabled forms. So what are the requirements for this template? Business Card Request Form Template Design Plan: Gather user information and requirements for card Pull in as much user information as possible. Use data from the user profile web services as a data source Show and hide fields as necessary for requirements Create multiple views – one for those submitting the form and Another view for the executive assistants placing the orders. Browser based form integrated into SharePoint team site Submitted directly to form library The base form was created using the blank template.  The table and rows were added using Insert tab and selecting Custom Table.  The use of tables is a great way to make sure everything lines up.  You do have to split the tables from time to time.  If you’ve ever split cells and then tried to re-align one to find that you impacted the others, you know why.  Here is what the base form looks like in InfoPath.   Show and hide fields as necessary for requirements You will notice I also used Sections within the form.  These show or hide depending on options selected or whether or not fields are blank.  This is a great way to prevent your users from feeling overwhelmed with a large form (this one wouldn’t apply).  Although not used in this one, you can also use various views with a tab interface.  I’ll show that in another post. Gather user information and requirements for card Pull in as much user information as possible. Use data from the user profile web services as a data source Utilizing rules you can load data when the form initiates (Data tab, Form Load).  Anything you can automate is always appreciated by the user as that is data they don’t have to enter.  For example, loading their user id or other user information on load: Always keep in mind though how much data you load and the method for loading that data (through rules, code, etc.).  They have an impact on form performance.  The form will take longer to load if you bring in a ton of data from external sources.  Laura Rogers has a great blog post on using the User Information List to load user information.   If the user has logged into SharePoint, then this can be used quite effectively and without a huge performance hit.   What I have found is that using the User Profile service via code behind or the Web Service “GetUserProfileByName” (as above) can take more time to load the user data.  Just food for thought. You must add the data connection in order for the above rules to work.  You can connect to the data connection through the Data tab, Data Connections or select Manage Data Connections link which appears under the main data source.  The data connections can be SharePoint lists or libraries, SQL data tables, XML files, etc.  Create multiple views – one for those submitting the form and Another view for the executive assistants placing the orders. You can also create multiple views for the users to enhance their experience.  Once they’ve entered the information and submitted their request for business cards, they don’t really need to see the main data input screen any more.  They just need to view what they entered. From the Page Design tab, select New View and give the view a name.  To review the existing views, click the down arrow under View: The ReviewView shows just what the user needs and nothing more: Once you have everything configured, the form should be tested within a Test SharePoint environment before final deployment to production.  This validates you don’t have any rules or code that could impact the server negatively. Submitted directly to form library   You will need to know the form library that you will be submitting to when publishing the template.  Configure the Submit data connection to connect to this library.  There is already one configured in the sample,  but it will need to be updated to your environment prior to publishing. The Design template is different from the Published template.  While both have the .XSN extension, the published template contains all the “package” information for the form.  The published form is what is loaded into Central Admin, not the design template. Browser based form integrated into SharePoint team site In Central Admin, under General Settings, select Manage Form Templates.  Upload the published form template and Activate it to a site collection. Now it is available as a content type to select in the form library.  Some documentation on publishing form templates:  Technet – Manage administrator approved form templates And that’s all our base requirements.  Hope this helps to give a good start.

    Read the article

  • How To: Spell Check InfoPath web form in SharePoint

    - by JeremyRamos
    This post is a compiled version of Steve Cavanagh's blog post on How To: Spell Check an InfoPath form displayed via XmlFormView. Many are not able to follow Steve's instructions due to lack of details. See below a downloadable zip of all changes need installed for your InfoPath Spell Checker. File Contents: CustomSpellCheckEntirePage.js - This is a customized SpellCheckEntirePage.js which includes changes outlined in Steve's post above.   FormServer.aspx - Note that this will replace the exisitng FormServer.aspx - this file acts like a masterpage for all infopath forms. So this change will add the spellchecker to all infopath forms in the sharepoint farm. Only thing i changed here is to add the 'Spell Check' link before and after the form.   ReadMe.rtf - Contains instructions where to copy the files to in your MOSS WFE server.

    Read the article

  • How to select and deselect checkbox field into the GridView

    - by SAMIR BHOGAYTA
    //JavaScript function for Select and Deselect checkbox field in GridView function SelectDeselectAll(chkAll) { var a = document.forms[0]; var i=0; for(i=0;i lessthansign a.length;i++) { if(a[i].name.indexOf("chkItem") != -1) { a[i].checked = chkAll.checked; } } } function DeselectChkAll(chk) { var c=0; var d=1; var a = document.forms[0]; //alert(a.length); if(chk.checked == false) { document.getElementById("chkAll").checked = chk.checked; } else { for(i=0;i lessthansign a.length;i++) { if(a[i].name.indexOf("chkItem") != -1) { if(a[i].checked==true) { c=1; } else { d=0; } } } if(d != 0) { document.getElementById("chkAll").checked =true; } } } //How to use this function asp:TemplateField input id="Checkbox1" runat="server" onclick="javascript:SelectDeselectAll(this);" type="checkbox" / /HeaderTemplate /asp:GridView columns asp:TemplateFieldheadertemplate input id="chkAll" runat="server" onclick="javascript:SelectDeselectAll(this);" type="checkbox" / /HeaderTemplate

    Read the article

  • Connecting SceneBuilder edited FXML to Java code

    - by daniel
    Recently I had to answer several questions regarding how to connect an UI built with the JavaFX SceneBuilder 1.0 Developer Preview to Java Code. So I figured out that a short overview might be helpful. But first, let me state the obvious. What is FXML? To make it short, FXML is an XML based declaration format for JavaFX. JavaFX provides an FXML loader which will parse FXML files and from that construct a graph of Java object. It may sound complex when stated like that but it is actually quite simple. Here is an example of FXML file, which instantiate a StackPane and puts a Button inside it: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml"> <children> <Button mnemonicParsing="false" text="Button" /> </children> </StackPane> ... and here is the code I would have had to write if I had chosen to do the same thing programatically: import javafx.scene.control.*; import javafx.scene.layout.*; ... final Button button = new Button("Button"); button.setMnemonicParsing(false); final StackPane stackPane = new StackPane(); stackPane.setPrefWidth(200.0); stackPane.setPrefHeight(150.0); stacPane.getChildren().add(button); As you can see - FXML is rather simple to understand - as it is quite close to the JavaFX API. So OK FXML is simple, but why would I use it?Well, there are several answers to that - but my own favorite is: because you can make it with SceneBuilder. What is SceneBuilder? In short SceneBuilder is a layout tool that will let you graphically build JavaFX user interfaces by dragging and dropping JavaFX components from a library, and save it as an FXML file. SceneBuilder can also be used to load and modify JavaFX scenegraphs declared in FXML. Here is how I made the small FXML file above: Start the JavaFX SceneBuilder 1.0 Developer Preview In the Library on the left hand side, click on 'StackPane' and drag it on the content view (the white rectangle) In the Library, select a Button and drag it onto the StackPane on the content view. In the Hierarchy Panel on the left hand side - select the StackPane component, then invoke 'Edit > Trim To Selected' from the menubar That's it - you can now save, and you will obtain the small FXML file shown above. Of course this is only a trivial sample, made for the sake of the example - and SceneBuilder will let you create much more complex UIs. So, I have now an FXML file. But what do I do with it? How do I include it in my program? How do I write my main class? Loading an FXML file with JavaFX Well, that's the easy part - because the piece of code you need to write never changes. You can download and look at the SceneBuilder samples if you need to get convinced, but here is the short version: Create a Java class (let's call it 'Main.java') which extends javafx.application.Application In the same directory copy/save the FXML file you just created using SceneBuilder. Let's name it "simple.fxml" Now here is the Java code for the Main class, which simply loads the FXML file and puts it as root in a stage's scene. /* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. */ package simple; import java.util.logging.Level; import java.util.logging.Logger; import javafx.application.Application; import javafx.fxml.FXMLLoader; import javafx.scene.Scene; import javafx.scene.layout.StackPane; import javafx.stage.Stage; public class Main extends Application { /** * @param args the command line arguments */ public static void main(String[] args) { Application.launch(Main.class, (java.lang.String[])null); } @Override public void start(Stage primaryStage) { try { StackPane page = (StackPane) FXMLLoader.load(Main.class.getResource("simple.fxml")); Scene scene = new Scene(page); primaryStage.setScene(scene); primaryStage.setTitle("FXML is Simple"); primaryStage.show(); } catch (Exception ex) { Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex); } } } Great! Now I only have to use my favorite IDE to compile the class and run it. But... wait... what does it do? Well nothing. It just displays a button in the middle of a window. There's no logic attached to it. So how do we do that? How can I connect this button to my application logic? Here is how: Connection to code First let's define our application logic. Since this post is only intended to give a very brief overview - let's keep things simple. Let's say that the only thing I want to do is print a message on System.out when the user clicks on my button. To do that, I'll need to register an action handler with my button. And to do that, I'll need to somehow get a handle on my button. I'll need some kind of controller logic that will get my button and add my action handler to it. So how do I get a handle to my button and pass it to my controller? Once again - this is easy: I just need to write a controller class for my FXML. With each FXML file, it is possible to associate a controller class defined for that FXML. That controller class will make the link between the UI (the objects defined in the FXML) and the application logic. To each object defined in FXML we can associate an fx:id. The value of the id must be unique within the scope of the FXML, and is the name of an instance variable inside the controller class, in which the object will be injected. Since I want to have access to my button, I will need to add an fx:id to my button in FXML, and declare an @FXML variable in my controller class with the same name. In other words - I will need to add fx:id="myButton" to my button in FXML: -- <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> and declare @FXML private Button myButton in my controller class @FXML private Button myButton; // value will be injected by the FXMLLoader Let's see how to do this. Add an fx:id to the Button object Load "simple.fxml" in SceneBuilder - if not already done In the hierarchy panel (bottom left), or directly on the content view, select the Button object. Open the Properties sections of the inspector (right panel) for the button object At the top of the section, you will see a text field labelled fx:id. Enter myButton in that field and validate. Associate a controller class with the FXML file Still in SceneBuilder, select the top root object (in our case, that's the StackPane), and open the Code section of the inspector (right hand side) At the top of the section you should see a text field labelled Controller Class. In the field, type simple.SimpleController. This is the name of the class we're going to create manually. If you save at this point, the FXML will look like this: -- <?xml version="1.0" encoding="UTF-8"?> <?import java.lang.*?> <?import java.util.*?> <?import javafx.scene.control.*?> <?import javafx.scene.layout.*?> <?import javafx.scene.paint.*?> <StackPane prefHeight="150.0" prefWidth="200.0" xmlns:fx="http://javafx.com/fxml" fx:controller="simple.SimpleController"> <children> <Button fx:id="myButton" mnemonicParsing="false" text="Button" /> </children> </StackPane> As you can see, the name of the controller class has been added to the root object: fx:controller="simple.SimpleController" Coding the controller class In your favorite IDE, create an empty SimpleController.java class. Now what does a controller class looks like? What should we put inside? Well - SceneBuilder will help you there: it will show you an example of controller skeleton tailored for your FXML. In the menu bar, invoke View > Show Sample Controller Skeleton. A popup appears, displaying a suggestion for the controller skeleton: copy the code displayed there, and paste it into your SimpleController.java: /** * Sample Skeleton for "simple.fxml" Controller Class * Use copy/paste to copy paste this code into your favorite IDE **/ package simple; import java.net.URL; import java.util.ResourceBundle; import javafx.fxml.FXML; import javafx.fxml.Initializable; import javafx.scene.control.Button; public class SimpleController implements Initializable { @FXML // fx:id="myButton" private Button myButton; // Value injected by FXMLLoader @Override // This method is called by the FXMLLoader when initialization is complete public void initialize(URL fxmlFileLocation, ResourceBundle resources) { assert myButton != null : "fx:id=\"myButton\" was not injected: check your FXML file 'simple.fxml'."; // initialize your logic here: all @FXML variables will have been injected } } Note that the code displayed by SceneBuilder is there only for educational purpose: SceneBuilder does not create and does not modify Java files. This is simply a hint of what you can use, given the fx:id present in your FXML file. You are free to copy all or part of the displayed code and paste it into your own Java class. Now at this point, there only remains to add our logic to the controller class. Quite easy: in the initialize method, I will register an action handler with my button: () { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... -- ... // initialize your logic here: all @FXML variables will have been injected myButton.setOnAction(new EventHandler<ActionEvent>() { @Override public void handle(ActionEvent event) { System.out.println("That was easy, wasn't it?"); } }); ... That's it - if you now compile everything in your IDE, and run your application, clicking on the button should print a message on the console! Summary What happens is that in Main.java, the FXMLLoader will load simple.fxml from the jar/classpath, as specified by 'FXMLLoader.load(Main.class.getResource("simple.fxml"))'. When loading simple.fxml, the loader will find the name of the controller class, as specified by 'fx:controller="simple.SimpleController"' in the FXML. Upon finding the name of the controller class, the loader will create an instance of that class, in which it will try to inject all the objects that have an fx:id in the FXML. Thus, after having created '<Button fx:id="myButton" ... />', the FXMLLoader will inject the button instance into the '@FXML private Button myButton;' instance variable found on the controller instance. This is because The instance variable has an @FXML annotation, The name of the variable exactly matches the value of the fx:id Finally, when the whole FXML has been loaded, the FXMLLoader will call the controller's initialize method, and our code that registers an action handler with the button will be executed. For a complete example, take a look at the HelloWorld SceneBuilder sample. Also make sure to follow the SceneBuilder Get Started guide, which will guide you through a much more complete example. Of course, there are more elegant ways to set up an Event Handler using FXML and SceneBuilder. There are also many different ways to work with the FXMLLoader. But since it's starting to be very late here, I think it will have to wait for another post. I hope you have enjoyed the tour! --daniel

    Read the article

  • .NET Programmatically invoke screenclick doesn't work?

    - by ropstah
    I'm trying to programmatically invoke an onclick event however the click is not received/handled. Am I missing something, or is security preventing the click to be executed? I have a forms application which is invisible. Basically I would like to say: DoDoubleClick(wait, x, y) This should raise two click (mousedown+mouseup) events on screen with the specified wait interval. However the click isn't received in a Flash application in Firefox (which is running at that moment). Here's my code: Form: Public Class Form1 Private WithEvents gmh As GlobalMouseHook Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load gmh = New GlobalMouseHook() Me.Visible = false gmh.DoDoubleClick(50, 800, 600) End Sub Private Sub Form1_FormClosed(ByVal sender As System.Object, ByVal e As System.Windows.Forms.FormClosedEventArgs) Handles MyBase.FormClosed gmh.Dispose() End Sub Private Sub gmh_MouseDown(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles gmh.MouseDown End Sub Private Sub gmh_MouseMove(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles gmh.MouseMove End Sub Private Sub gmh_MouseUp(ByVal sender As Object, ByVal e As System.Windows.Forms.MouseEventArgs) Handles gmh.MouseUp End Sub End Class GlobalMouseHook class: Friend Class GlobalMouseHook Implements IDisposable Private hhk As IntPtr = IntPtr.Zero Private disposedValue As Boolean = False Public Event MouseDown As MouseEventHandler Public Event MouseUp As MouseEventHandler Public Event MouseMove As MouseEventHandler Public Sub New() Hook() End Sub Private Sub Hook() Dim hInstance As IntPtr = LoadLibrary("User32") hhk = SetWindowsHookEx(WH_MOUSE_LL, AddressOf Me.HookProc, hInstance, 0) End Sub Private Sub Unhook() UnhookWindowsHookEx(hhk) End Sub Public Sub DoDoubleClick(ByVal wait As Integer, ByVal x As Integer, ByVal y As Integer) RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Left, 1, x, y, 0)) RaiseEvent MouseUp(Me, Nothing) System.Threading.Thread.Sleep(wait) RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Left, 1, x, y, 0)) RaiseEvent MouseUp(Me, Nothing) End Sub Private Function HookProc(ByVal nCode As Integer, ByVal wParam As UInteger, ByRef lParam As MSLLHOOKSTRUCT) As Integer If nCode >= 0 Then Select Case wParam Case WM_LBUTTONDOWN RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Left, 0, lParam.pt.x, lParam.pt.y, 0)) Case WM_RBUTTONDOWN RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Right, 0, lParam.pt.x, lParam.pt.y, 0)) Case WM_MBUTTONDOWN RaiseEvent MouseDown(Me, New MouseEventArgs(MouseButtons.Middle, 0, lParam.pt.x, lParam.pt.y, 0)) Case WM_LBUTTONUP, WM_RBUTTONUP, WM_MBUTTONUP RaiseEvent MouseUp(Nothing, Nothing) Case WM_MOUSEMOVE RaiseEvent MouseMove(Nothing, Nothing) Case WM_MOUSEWHEEL, WM_MOUSEHWHEEL Case Else Console.WriteLine(wParam) End Select End If Return CallNextHookEx(hhk, nCode, wParam, lParam) End Function Private Structure API_POINT Public x As Integer Public y As Integer End Structure Private Structure MSLLHOOKSTRUCT Public pt As API_POINT Public mouseData As UInteger Public flags As UInteger Public time As UInteger Public dwExtraInfo As IntPtr End Structure Private Const WM_MOUSEWHEEL As UInteger = &H20A Private Const WM_MOUSEHWHEEL As UInteger = &H20E Private Const WM_MOUSEMOVE As UInteger = &H200 Private Const WM_LBUTTONDOWN As UInteger = &H201 Private Const WM_LBUTTONUP As UInteger = &H202 Private Const WM_MBUTTONDOWN As UInteger = &H207 Private Const WM_MBUTTONUP As UInteger = &H208 Private Const WM_RBUTTONDOWN As UInteger = &H204 Private Const WM_RBUTTONUP As UInteger = &H205 Private Const WH_MOUSE_LL As Integer = 14 Private Delegate Function LowLevelMouseHookProc(ByVal nCode As Integer, ByVal wParam As UInteger, ByRef lParam As MSLLHOOKSTRUCT) As Integer Private Declare Auto Function LoadLibrary Lib "kernel32" (ByVal lpFileName As String) As IntPtr Private Declare Auto Function SetWindowsHookEx Lib "user32.dll" (ByVal idHook As Integer, ByVal lpfn As LowLevelMouseHookProc, ByVal hInstance As IntPtr, ByVal dwThreadId As UInteger) As IntPtr Private Declare Function CallNextHookEx Lib "user32" (ByVal hhk As IntPtr, ByVal nCode As Integer, ByVal wParam As UInteger, ByRef lParam As MSLLHOOKSTRUCT) As Integer Private Declare Function UnhookWindowsHookEx Lib "user32" (ByVal hhk As IntPtr) As Boolean ' IDisposable Protected Overridable Sub Dispose(ByVal disposing As Boolean) If Not Me.disposedValue Then If disposing Then ' TODO: free other state (managed objects). End If Unhook() End If Me.disposedValue = True End Sub ' This code added by Visual Basic to correctly implement the disposablepattern. Public Sub Dispose() Implements IDisposable.Dispose ' Do not change this code. Put cleanup code in Dispose(ByValdisposing As Boolean) above. Dispose(True) GC.SuppressFinalize(Me) End Sub End Class

    Read the article

  • Habanero

    - by csharp-source.net
    An Enterprise Application Framework for .Net that is ideally suited for developing applications in an agile manner. The framework is used for producing an application from the data layer through to the front-end. Free open source under the LGPL license, it includes ORM, code generation and runtime UI generation to create one application for the desktop & web. Features: * ORM: Map database tables to objects in code * Persist property values to and from the database * Define all mapping in a single XML file * Switch between database vendors with one setting * Support for MySQL, MS Sql Server, MS Access, Oracle, PostgreSQL, SQLite, Firebird * FireStarter GUI class definitions xml manager * Generate user interfaces and map properties to controls * Develop for both desktop (with Windows Forms) and web (with Gizmox' Visual WebGUI) * Generate new projects and code files * Generate UI forms from templates * Reverse engineer class definitions from existing databases * Support variable data sources, including an in-memory database. Ships with Firestarter a free database reverse engineering, Domain Modelling and Code Generator.

    Read the article

  • CSV files not being written

    - by Kamalpreet
    I worked on a small project in which the data entered in HTML forms was saved in a CSV file which was used subsequently. The files were run on Apache2. It worked fine. After about 25 days, when I reopened the project, the data entered in forms was not saved in CSV file. I checked all the permissions. I even sent a zip file of my files to one of m friends. It worked well on his system. So should I figure it out there's some problem in the system. I am using Ubuntu 13.04. Kindly suggest me something so that I am able to figure out the problem.

    Read the article

< Previous Page | 560 561 562 563 564 565 566 567 568 569 570 571  | Next Page >