Search Results

Search found 34715 results on 1389 pages for 'carriage return'.

Page 57/1389 | < Previous Page | 53 54 55 56 57 58 59 60 61 62 63 64  | Next Page >

  • Programming style: should you return early if a guard condition is not satisfied?

    - by John Topley
    One thing I've sometimes wondered is which is the better style out of the two shown below (if any)? Is it better to return immediately if a guard condition hasn't been satisfied, or should you only do the other stuff if the guard condition is satisfied? For the sake of argument, please assume that the guard condition is a simple test that returns a boolean, such as checking to see if an element is in a collection, rather than something that might affect the control flow by throwing an exception. // Style 1 public SomeType aMethod() { SomeType result = null; if (!guardCondition()) { return result; } doStuffToResult(result); doMoreStuffToResult(result); return result; } // Style 2 public SomeType aMethod() { SomeType result = null; if (guardCondition()) { doStuffToResult(result); doMoreStuffToResult(result); } return result; }

    Read the article

  • Do all C compilers allow functions to return structures?

    - by Jordan S
    I am working on a program in C and using the SDCC compiler for a 8051 architecture device. I am trying to write a function called GetName that will read 8 characters from Flash Memory and return the character array in some form. I know that it is not possible to return an array in C so I am trying to do it using a struct like this: //********************FLASH.h file******************************* MyStruct GetName(int i); //Function prototype #define NAME_SIZE 8 typedef struct { char Name[NAME_SIZE]; } MyStruct; extern MyStruct GetName(int i); // *****************FLASH.c file*********************************** #include "FLASH.h" MyStruct GetName( int i) { MyStruct newNameStruct; //... // Fill the array by reading data from Flash //... return newNameStruct; } I don't have any references to this function yet but for some reason, I get a compiler error that says "Function cannot return aggregate." Does this mean that my compiler does not support functions that return structs? Or am I just doing something wrong?

    Read the article

  • How should I return different types in a method based on the value of a string in Java?

    - by Siracuse
    I'm new to Java and I have come to having the following problem: I have created several classes which all implement the interface "Parser". I have a JavaParser, PythonParser, CParser and finally a TextParser. I'm trying to write a method so it will take either a File or a String (representing a filename) and return the appropriate parser given the extension of the file. Here is some psuedo-code of what I'm basically attempting to do: public Parser getParser(String filename) { String extension = filename.substring(filename.lastIndexOf(".")); switch(extension) { case "py": return new PythonParser(); case "java": return new JavaParser(); case "c": return new CParser(); default: return new TextParser(); } } In general, is this the right way to handle this situation? Also, how should I handle the fact that Java doesn't allow switching on strings? Should I use the .hashcode() value of the strings? I feel like there is some design pattern or something for handling this but it eludes me. Is this how you would do it?

    Read the article

  • How to add Remember me function at custom login box ?

    - by morningglory
    In my theme, there's custom page for the login. Login function at functions.php is like this function log_in($username, $password) { $user = parse_user($username); $username = $username; $password = $password; if(isEmptyString($username)) return new WP_Error('username', 'required'); if(isEmptyString($password)) return new WP_Error('password', "required"); if(!wp_check_password( $password, $user->user_pass ) ) return new WP_Error('wrong_password', "wrong"); wp_set_auth_cookie($user->ID, $remember); wp_login($username, $password); redirect_profile(); } function parse_user($info = null, $return = 'object') { if ( is_null( $info ) ) { global $current_user; if ( empty( $current_user->ID ) ) return null; $info = get_userdata( $current_user->ID ); } elseif ( empty( $info ) ) { return null; } if( $return == 'ID' ) { if ( is_object( $info ) ) return $info->ID; if ( is_numeric( $info ) ) return $info; } elseif( $return == 'object' ) { if ( is_object( $info ) && $info->ID) return $info; if ( is_object( $info )) return get_userdata( $info->ID ); if ( is_numeric( $info ) ) return get_userdata( $info ); if ( is_string( $info ) ) return get_userdatabylogin( $info ); } else { return null; } } I want to add remember me checkbox for user to logged in all the time until they logout. How can i add this ? Please kindly help me out. Thank you.

    Read the article

  • Give a number to return the approximated value of an Enum?

    - by ElektroStudios
    I have this enumeration: Enum Lame_Bitrate kbps_8 = 8 kbps_16 = 16 kbps_24 = 24 kbps_32 = 32 kbps_40 = 40 kbps_48 = 48 kbps_56 = 56 kbps_64 = 64 kbps_80 = 80 kbps_96 = 96 kbps_112 = 112 kbps_128 = 128 kbps_144 = 144 kbps_160 = 160 kbps_192 = 192 kbps_224 = 224 kbps_256 = 256 kbps_320 = 320 End Enum And I would like to return the approximated value of the Enum given a number. For example, if I have the number 190 then I expect to find the more approximated value in the Enum to return the 192 (kbps_192 value of the Enum), if I have the number 196 then again I expect to return the value 192 (not return the next value 224 because is less approximated). Something like this: Private Sub Test() Dim wma_file As String = "C:\windows media audio file.wma" Dim wma_file_Bitrate As Integer = 172 Dim mp3_bitrate_approximated As Integer mp3_bitrate_approximated = Return_Approximated_Value_Of_Enum(wma_file_Bitrate) End Sub private function Return_Approximated_Value_Of_Enum(byval value as integer) as integer return... enum.find(value).approximated... end function Exist any framework method to find the more approximated number given other number in a Enum? I hope you can understand my question, thank you. PS: I prefer a solution using LINQ extensions if can be.

    Read the article

  • How to return string from a button click handler?

    - by riad
    I need to return a string from a button method .How can i do that? private string folderPathButton_Click(object sender, EventArgs e) { FolderBrowserDialog folderBrowser = new FolderBrowserDialog(); folderBrowser.ShowDialog(); string folderPath = folderBrowser.SelectedPath; return folderPath; } On that method on button click i get the folder path.Now i need to return it.But this code is not working? Can anybody help me to solve the problem??How can i return the folder path and call it from another method??

    Read the article

  • How to Return A File and a strongly Typed data at the same time?

    - by chobo2
    Hi I am using asp.net mvc 1.0 and I want to return a XML file but I also want to return a strongly typed data back so I can update some fields. Like the XML file will contain users who failed to be inserted into the database. So I want that to appear as a dialog save box what asp.net mvc return file() would do. However I also want to return on the page like values like how many users failed to be added, how many users where added, etc. So I want to use scafolding with the class file I want to pass it along. If this was a view I could pass it along as an object model but I don't see a parameter for that in File(). I also don't want to save the xml file onto the harddrive I want to do it through memory. So have a link that would display on the page to download the file and show the the data I want would not be desired.

    Read the article

  • In Java, how do I set a return type if an exception occurs?

    - by beagleguy
    hey all, I'm new to Java and was wondering if I define a method to return a database object like import java.sql.*; public class DbConn { public Connection getConn() { Connection conn; try { Class.forName("com.mysql.jdbc.Driver").newInstance(); if(System.getenv("MY_ENVIRONMENT") == "development") { String hostname = "localhost"; String username = "root"; String password = "root"; } conn = DriverManager.getConnection("jdbc:mysql:///mydb", username, password); return conn; } catch(Exception e) { throw new Exception(e.getMessage()); } } } if the connection fails when I try to create it what should I return? eclipse is telling me I have to return a Connection object but if it fails I'm not sure what to do. thanks!

    Read the article

  • In an If-Else Statement for a method return, should an Else be explicitly stated if it can instead b

    - by ccomet
    I have a method that checks certain things and returns a Boolean based on those checks. It involves a single branching If section that checks about 5 conditions in sequence. If any of those conditions return true, then the method will return true;. If none of the conditions return true, then the method will return false;. Since the code after the If section will only run if none of the conditions are true, then that code is logically identical to including an actual Else statement. So is it a better idea to actually write in the Else statement for this kind of situation?

    Read the article

  • how to raise warning if return value is disregarded - gcc or static code check?

    - by Drakosha
    I'd like to see all the places in my code (C++) which disregard return value of a function. How can I do it - with gcc or static code analysis tool? Bad code example: int f(int z) { return z + (z*2) + z/3 + z*z + 23; } int main() { int i = 7; f(i); ///// <<----- here I disregard the return value return 1; } Update: it should work even if the function and its use are in different files free static check tool

    Read the article

  • How to return a const QString reference in case of failure?

    - by moala
    Hi, consider the following code: const QString& MyClass::getID(int index) const { if (i < myArraySize && myArray[i]) { return myArray[i]->id; // id is a QString } else { return my_global_empty_qstring; // is a global empty QString } } How can I avoid to have an empty QString without changing the return type of the method? (It seems that returning an empty QString allocated on the stack is a bad idea) Thanks.

    Read the article

  • Where and why JVM checks that the return type of entry method main(String args[]) is void and not an

    - by akjain
    I will try to answer both, please correct me if I am wrong: Where: If a static method is being called using Classname.method() or using reflection then it doesn’t matter even if you change the return type of the calling method, the same method will still be called. So JVM probably checks this in one of the native methods of jvm.cpp methodHandle m (THREAD, init_klass-find_method(vmSymbols::object_initializer_name(), vmSymbols::void_method_signature())); if (m.is_null()) { ------ THROW_MSG_0 ……….. Why: Although it’s of useless to return a value from main, as java does not do anything with it but if we try to change the return type of main to int for example, JVM throws public static int main(String[] args) { return 1; } java.lang.NoSuchMethodError: main Exception in thread "main" So may be Java mandates the use of same signature for entry method main() to maintain a symmetry in all Java programs written.

    Read the article

  • I just learned about C++ functions; can I use if statements on function return values?

    - by Sagistic
    What I am confused on is about the isNumPalindrome() function. It returns a boolean value of either true or false. How am I suppose to use that so I can display if it's a palindrome or not. For ex. if (isNumPalindrome == true) cout << "Your number is a palindrome"; else cout << "your number is not a palindrome."; #include "stdafx.h" int _tmain(int argc, _TCHAR* argv[]) { return 0; } #include <iostream> #include <cmath> using namespace std; int askNumber(); bool isNumPalindrome(); int num, pwr; int main() { askNumber(); return 0; } bool isNumPalindrome() { int pwr = 0; if (num < 10) return true; else { while (num / static_cast<int>(pow(10.0, pwr)) >=10) pwr++; while (num >=10) { int tenTopwr = static_cast<int>(pow(10.0, pwr)); if ((num / tenTopwr) != (num% 10)) return false; else { num = num % tenTopwr; num = num / 10; pwr = pwr-2; } } return true; } } int askNumber() { cout << "Enter an integer in order to determine if it is a palindrome: " ; cin >> num; cout << endl; if(isNumPalindrome(num)) { cout << "It is a palindrome." ; cout << endl; } else { cout << "It is not a palindrome." ; cout << endl; } return num; }

    Read the article

  • Why is it possible to have an interface without a return type in PHP?

    - by streetparade
    Why is it possible to create an interface without specifying a return type? Why doesn't this make this interface unusable? This makes it more Clear: Interface run { public function getInteger(); } class MyString implements run { public function myNumber() { } public function getInteger() { return "Not a number"; } } In Java every Interface has a return type like Integer, String or Void I know that PHP is unfortunately a loosely typed Language but isn't there a Solution to that Problem? Is it possible to define an Interface with a return type like Integer?

    Read the article

  • Should I use "return;" after a header()?

    - by Scarface
    Quick question, I noticed that on some of my header directors I was getting some lag while the header processed. Is using return standard after using headers? Also if you use a header on pages you don't want directly accessed, such as processing pages will return; stop that processing even if the page is not directly accessed? IF return is a good idea would it be better to use exit()?

    Read the article

  • XNA Screen Manager problem with transitions

    - by NexAddo
    I'm having issues using the game statemanagement example in the game I am developing. I have no issues with my first three screens transitioning between one another. I have a main menu screen, a splash screen and a high score screen that cycle: mainMenuScreen->splashScreen->highScoreScreen->mainMenuScreen The screens change every 15 seconds. Transition times public MainMenuScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.0); currentCreditAmount = Global.CurrentCredits; } public SplashScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public HighScoreScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } public GamePlayScreen() { TransitionOnTime = TimeSpan.FromSeconds(0.5); TransitionOffTime = TimeSpan.FromSeconds(0.5); } When a user inserts credits they can play the game after pressing start mainMenuScreen->splashScreen->highScoreScreen->(loops forever) || || || ===========Credits In============= || Start || \/ LoadingScreen || Start || \/ GamePlayScreen During each of these transitions, between screens, the same code is used, which exits(removes) all current active screens and respects transitions, then adds the new screen to the screen manager: foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); //AddScreen takes a new screen to manage and the controlling player ScreenManager.AddScreen(new NameOfScreenHere(), null); Each screen is removed from the ScreenManager with ExitScreen() and using this function, each screen transition is respected. The problem I am having is with my gamePlayScreen. When the current game is finished and the transition is complete for the gamePlayScreen, it should be removed and the next screens should be added to the ScreenManager. GamePlayScreen Code Snippet private void FinishCurrentGame() { AudioManager.StopSounds(); this.UnloadContent(); if (Global.SaveDevice.IsReady) Stats.Save(); if (HighScoreScreen.IsInHighscores(timeLimit)) { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); Global.TimeRemaining = timeLimit; ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MessageBoxScreen("Enter your Initials", true), null); } else { foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); ScreenManager.AddScreen(new BackgroundScreen(), null); ScreenManager.AddScreen(new MainMenuScreen(), null); } } The problem is that when isExiting is set to true by screen.ExitScreen() for the gamePlayScreen, the transition never completes the transition and removes the screen from the ScreenManager. Every other screen that I use the same technique to add and remove each screen fully transitions On/Off and is removed at the appropriate time from the ScreenManager, but noy my GamePlayScreen. Has anyone that has used the GameStateManagement example experienced this issue or can someone see the mistake I am making? EDIT This is what I tracked down. When the game is done, I call foreach (GameScreen screen in ScreenManager.GetScreens()) screen.ExitScreen(); to start the transition off process for the gameplay screen. At this point there is only 1 screen on the ScreenManager stack. The gamePlay screen gets isExiting set to true and starts to transition off. Right after the above call to ExitScreen() I add a background screen and menu screen to the screenManager: ScreenManager.AddScreen(new background(), null); ScreenManager.AddScreen(new Menu(), null); The count of the ScreenManager is now 3. What I noticed while stepping through the updates for GameScreen and ScreenManager, the gameplay screen never gets to the point where the transistion process finishes so the ScreenManager can remove it from the stack. This anomaly does not happen to any of my other screens when I switch between them. Screen Manager Code #region File Description //----------------------------------------------------------------------------- // ScreenManager.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #define DEMO #region Using Statements using System; using System.Diagnostics; using System.Collections.Generic; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; using PerformanceUtility.GameDebugTools; #endregion namespace GameStateManagement { /// <summary> /// The screen manager is a component which manages one or more GameScreen /// instances. It maintains a stack of screens, calls their Update and Draw /// methods at the appropriate times, and automatically routes input to the /// topmost active screen. /// </summary> public class ScreenManager : DrawableGameComponent { #region Fields List<GameScreen> screens = new List<GameScreen>(); List<GameScreen> screensToUpdate = new List<GameScreen>(); InputState input = new InputState(); SpriteBatch spriteBatch; SpriteFont font; Texture2D blankTexture; bool isInitialized; bool getOut; bool traceEnabled; #if DEBUG DebugSystem debugSystem; Stopwatch stopwatch = new Stopwatch(); bool debugTextEnabled; #endif #endregion #region Properties /// <summary> /// A default SpriteBatch shared by all the screens. This saves /// each screen having to bother creating their own local instance. /// </summary> public SpriteBatch SpriteBatch { get { return spriteBatch; } } /// <summary> /// A default font shared by all the screens. This saves /// each screen having to bother loading their own local copy. /// </summary> public SpriteFont Font { get { return font; } } public Rectangle ScreenRectangle { get { return new Rectangle(0, 0, GraphicsDevice.Viewport.Width, GraphicsDevice.Viewport.Height); } } /// <summary> /// If true, the manager prints out a list of all the screens /// each time it is updated. This can be useful for making sure /// everything is being added and removed at the right times. /// </summary> public bool TraceEnabled { get { return traceEnabled; } set { traceEnabled = value; } } #if DEBUG public bool DebugTextEnabled { get { return debugTextEnabled; } set { debugTextEnabled = value; } } public DebugSystem DebugSystem { get { return debugSystem; } } #endif #endregion #region Initialization /// <summary> /// Constructs a new screen manager component. /// </summary> public ScreenManager(Game game) : base(game) { // we must set EnabledGestures before we can query for them, but // we don't assume the game wants to read them. //TouchPanel.EnabledGestures = GestureType.None; } /// <summary> /// Initializes the screen manager component. /// </summary> public override void Initialize() { base.Initialize(); #if DEBUG debugSystem = DebugSystem.Initialize(Game, "Fonts/MenuFont"); #endif isInitialized = true; } /// <summary> /// Load your graphics content. /// </summary> protected override void LoadContent() { // Load content belonging to the screen manager. ContentManager content = Game.Content; spriteBatch = new SpriteBatch(GraphicsDevice); font = content.Load<SpriteFont>(@"Fonts\menufont"); blankTexture = content.Load<Texture2D>(@"Textures\Backgrounds\blank"); // Tell each of the screens to load their content. foreach (GameScreen screen in screens) { screen.LoadContent(); } } /// <summary> /// Unload your graphics content. /// </summary> protected override void UnloadContent() { // Tell each of the screens to unload their content. foreach (GameScreen screen in screens) { screen.UnloadContent(); } } #endregion #region Update and Draw /// <summary> /// Allows each screen to run logic. /// </summary> public override void Update(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Update", Color.Blue); if (debugTextEnabled && getOut == false) { debugSystem.FpsCounter.Visible = true; debugSystem.TimeRuler.Visible = true; debugSystem.TimeRuler.ShowLog = true; getOut = true; } else if (debugTextEnabled == false) { getOut = false; debugSystem.FpsCounter.Visible = false; debugSystem.TimeRuler.Visible = false; debugSystem.TimeRuler.ShowLog = false; } #endif // Read the keyboard and gamepad. input.Update(); // Make a copy of the master screen list, to avoid confusion if // the process of updating one screen adds or removes others. screensToUpdate.Clear(); foreach (GameScreen screen in screens) screensToUpdate.Add(screen); bool otherScreenHasFocus = !Game.IsActive; bool coveredByOtherScreen = false; // Loop as long as there are screens waiting to be updated. while (screensToUpdate.Count > 0) { // Pop the topmost screen off the waiting list. GameScreen screen = screensToUpdate[screensToUpdate.Count - 1]; screensToUpdate.RemoveAt(screensToUpdate.Count - 1); // Update the screen. screen.Update(gameTime, otherScreenHasFocus, coveredByOtherScreen); if (screen.ScreenState == ScreenState.TransitionOn || screen.ScreenState == ScreenState.Active) { // If this is the first active screen we came across, // give it a chance to handle input. if (!otherScreenHasFocus) { screen.HandleInput(input); otherScreenHasFocus = true; } // If this is an active non-popup, inform any subsequent // screens that they are covered by it. if (!screen.IsPopup) coveredByOtherScreen = true; } } // Print debug trace? if (traceEnabled) TraceScreens(); #if DEBUG debugSystem.TimeRuler.EndMark("Update"); #endif } /// <summary> /// Prints a list of all the screens, for debugging. /// </summary> void TraceScreens() { List<string> screenNames = new List<string>(); foreach (GameScreen screen in screens) screenNames.Add(screen.GetType().Name); Debug.WriteLine(string.Join(", ", screenNames.ToArray())); } /// <summary> /// Tells each screen to draw itself. /// </summary> public override void Draw(GameTime gameTime) { #if DEBUG debugSystem.TimeRuler.StartFrame(); debugSystem.TimeRuler.BeginMark("Draw", Color.Yellow); #endif foreach (GameScreen screen in screens) { if (screen.ScreenState == ScreenState.Hidden) continue; screen.Draw(gameTime); } #if DEBUG debugSystem.TimeRuler.EndMark("Draw"); #endif #if DEMO SpriteBatch.Begin(); SpriteBatch.DrawString(font, "DEMO - NOT FOR RESALE", new Vector2(20, 80), Color.White); SpriteBatch.End(); #endif } #endregion #region Public Methods /// <summary> /// Adds a new screen to the screen manager. /// </summary> public void AddScreen(GameScreen screen, PlayerIndex? controllingPlayer) { screen.ControllingPlayer = controllingPlayer; screen.ScreenManager = this; screen.IsExiting = false; // If we have a graphics device, tell the screen to load content. if (isInitialized) { screen.LoadContent(); } screens.Add(screen); } /// <summary> /// Removes a screen from the screen manager. You should normally /// use GameScreen.ExitScreen instead of calling this directly, so /// the screen can gradually transition off rather than just being /// instantly removed. /// </summary> public void RemoveScreen(GameScreen screen) { // If we have a graphics device, tell the screen to unload content. if (isInitialized) { screen.UnloadContent(); } screens.Remove(screen); screensToUpdate.Remove(screen); } /// <summary> /// Expose an array holding all the screens. We return a copy rather /// than the real master list, because screens should only ever be added /// or removed using the AddScreen and RemoveScreen methods. /// </summary> public GameScreen[] GetScreens() { return screens.ToArray(); } /// <summary> /// Helper draws a translucent black fullscreen sprite, used for fading /// screens in and out, and for darkening the background behind popups. /// </summary> public void FadeBackBufferToBlack(float alpha) { Viewport viewport = GraphicsDevice.Viewport; spriteBatch.Begin(); spriteBatch.Draw(blankTexture, new Rectangle(0, 0, viewport.Width, viewport.Height), Color.Black * alpha); spriteBatch.End(); } #endregion } } Game Screen Parent of GamePlayScreen #region File Description //----------------------------------------------------------------------------- // GameScreen.cs // // Microsoft XNA Community Game Platform // Copyright (C) Microsoft Corporation. All rights reserved. //----------------------------------------------------------------------------- #endregion #region Using Statements using System; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Input; //using Microsoft.Xna.Framework.Input.Touch; using System.IO; #endregion namespace GameStateManagement { /// <summary> /// Enum describes the screen transition state. /// </summary> public enum ScreenState { TransitionOn, Active, TransitionOff, Hidden, } /// <summary> /// A screen is a single layer that has update and draw logic, and which /// can be combined with other layers to build up a complex menu system. /// For instance the main menu, the options menu, the "are you sure you /// want to quit" message box, and the main game itself are all implemented /// as screens. /// </summary> public abstract class GameScreen { #region Properties /// <summary> /// Normally when one screen is brought up over the top of another, /// the first screen will transition off to make room for the new /// one. This property indicates whether the screen is only a small /// popup, in which case screens underneath it do not need to bother /// transitioning off. /// </summary> public bool IsPopup { get { return isPopup; } protected set { isPopup = value; } } bool isPopup = false; /// <summary> /// Indicates how long the screen takes to /// transition on when it is activated. /// </summary> public TimeSpan TransitionOnTime { get { return transitionOnTime; } protected set { transitionOnTime = value; } } TimeSpan transitionOnTime = TimeSpan.Zero; /// <summary> /// Indicates how long the screen takes to /// transition off when it is deactivated. /// </summary> public TimeSpan TransitionOffTime { get { return transitionOffTime; } protected set { transitionOffTime = value; } } TimeSpan transitionOffTime = TimeSpan.Zero; /// <summary> /// Gets the current position of the screen transition, ranging /// from zero (fully active, no transition) to one (transitioned /// fully off to nothing). /// </summary> public float TransitionPosition { get { return transitionPosition; } protected set { transitionPosition = value; } } float transitionPosition = 1; /// <summary> /// Gets the current alpha of the screen transition, ranging /// from 1 (fully active, no transition) to 0 (transitioned /// fully off to nothing). /// </summary> public float TransitionAlpha { get { return 1f - TransitionPosition; } } /// <summary> /// Gets the current screen transition state. /// </summary> public ScreenState ScreenState { get { return screenState; } protected set { screenState = value; } } ScreenState screenState = ScreenState.TransitionOn; /// <summary> /// There are two possible reasons why a screen might be transitioning /// off. It could be temporarily going away to make room for another /// screen that is on top of it, or it could be going away for good. /// This property indicates whether the screen is exiting for real: /// if set, the screen will automatically remove itself as soon as the /// transition finishes. /// </summary> public bool IsExiting { get { return isExiting; } protected internal set { isExiting = value; } } bool isExiting = false; /// <summary> /// Checks whether this screen is active and can respond to user input. /// </summary> public bool IsActive { get { return !otherScreenHasFocus && (screenState == ScreenState.TransitionOn || screenState == ScreenState.Active); } } bool otherScreenHasFocus; /// <summary> /// Gets the manager that this screen belongs to. /// </summary> public ScreenManager ScreenManager { get { return screenManager; } internal set { screenManager = value; } } ScreenManager screenManager; public KeyboardState KeyboardState { get {return Keyboard.GetState();} } /// <summary> /// Gets the index of the player who is currently controlling this screen, /// or null if it is accepting input from any player. This is used to lock /// the game to a specific player profile. The main menu responds to input /// from any connected gamepad, but whichever player makes a selection from /// this menu is given control over all subsequent screens, so other gamepads /// are inactive until the controlling player returns to the main menu. /// </summary> public PlayerIndex? ControllingPlayer { get { return controllingPlayer; } internal set { controllingPlayer = value; } } PlayerIndex? controllingPlayer; /// <summary> /// Gets whether or not this screen is serializable. If this is true, /// the screen will be recorded into the screen manager's state and /// its Serialize and Deserialize methods will be called as appropriate. /// If this is false, the screen will be ignored during serialization. /// By default, all screens are assumed to be serializable. /// </summary> public bool IsSerializable { get { return isSerializable; } protected set { isSerializable = value; } } bool isSerializable = true; #endregion #region Initialization /// <summary> /// Load graphics content for the screen. /// </summary> public virtual void LoadContent() { } /// <summary> /// Unload content for the screen. /// </summary> public virtual void UnloadContent() { } #endregion #region Update and Draw /// <summary> /// Allows the screen to run logic, such as updating the transition position. /// Unlike HandleInput, this method is called regardless of whether the screen /// is active, hidden, or in the middle of a transition. /// </summary> public virtual void Update(GameTime gameTime, bool otherScreenHasFocus, bool coveredByOtherScreen) { this.otherScreenHasFocus = otherScreenHasFocus; if (isExiting) { // If the screen is going away to die, it should transition off. screenState = ScreenState.TransitionOff; if (!UpdateTransition(gameTime, transitionOffTime, 1)) { // When the transition finishes, remove the screen. ScreenManager.RemoveScreen(this); } } else if (coveredByOtherScreen) { // If the screen is covered by another, it should transition off. if (UpdateTransition(gameTime, transitionOffTime, 1)) { // Still busy transitioning. screenState = ScreenState.TransitionOff; } else { // Transition finished! screenState = ScreenState.Hidden; } } else { // Otherwise the screen should transition on and become active. if (UpdateTransition(gameTime, transitionOnTime, -1)) { // Still busy transitioning. screenState = ScreenState.TransitionOn; } else { // Transition finished! screenState = ScreenState.Active; } } } /// <summary> /// Helper for updating the screen transition position. /// </summary> bool UpdateTransition(GameTime gameTime, TimeSpan time, int direction) { // How much should we move by? float transitionDelta; if (time == TimeSpan.Zero) transitionDelta = 1; else transitionDelta = (float)(gameTime.ElapsedGameTime.TotalMilliseconds / time.TotalMilliseconds); // Update the transition position. transitionPosition += transitionDelta * direction; // Did we reach the end of the transition? if (((direction < 0) && (transitionPosition <= 0)) || ((direction > 0) && (transitionPosition >= 1))) { transitionPosition = MathHelper.Clamp(transitionPosition, 0, 1); return false; } // Otherwise we are still busy transitioning. return true; } /// <summary> /// Allows the screen to handle user input. Unlike Update, this method /// is only called when the screen is active, and not when some other /// screen has taken the focus. /// </summary> public virtual void HandleInput(InputState input) { } public KeyboardState currentKeyState; public KeyboardState lastKeyState; public bool IsKeyHit(Keys key) { if (currentKeyState.IsKeyDown(key) && lastKeyState.IsKeyUp(key)) return true; return false; } /// <summary> /// This is called when the screen should draw itself. /// </summary> public virtual void Draw(GameTime gameTime) { } #endregion #region Public Methods /// <summary> /// Tells the screen to serialize its state into the given stream. /// </summary> public virtual void Serialize(Stream stream) { } /// <summary> /// Tells the screen to deserialize its state from the given stream. /// </summary> public virtual void Deserialize(Stream stream) { } /// <summary> /// Tells the screen to go away. Unlike ScreenManager.RemoveScreen, which /// instantly kills the screen, this method respects the transition timings /// and will give the screen a chance to gradually transition off. /// </summary> public void ExitScreen() { if (TransitionOffTime == TimeSpan.Zero) { // If the screen has a zero transition time, remove it immediately. ScreenManager.RemoveScreen(this); } else { // Otherwise flag that it should transition off and then exit. isExiting = true; } } #endregion #region Helper Methods /// <summary> /// A helper method which loads assets using the screen manager's /// associated game content loader. /// </summary> /// <typeparam name="T">Type of asset.</typeparam> /// <param name="assetName">Asset name, relative to the loader root /// directory, and not including the .xnb extension.</param> /// <returns></returns> public T Load<T>(string assetName) { return ScreenManager.Game.Content.Load<T>(assetName); } #endregion } }

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating ASP.NET MVC Negotiated Content Results

    - by Rick Strahl
    In a recent ASP.NET MVC application I’m involved with, we had a late in the process request to handle Content Negotiation: Returning output based on the HTTP Accept header of the incoming HTTP request. This is standard behavior in ASP.NET Web API but ASP.NET MVC doesn’t support this functionality directly out of the box. Another reason this came up in discussion is last week’s announcements of ASP.NET vNext, which seems to indicate that ASP.NET Web API is not going to be ported to the cloud version of vNext, but rather be replaced by a combined version of MVC and Web API. While it’s not clear what new API features will show up in this new framework, it’s pretty clear that the ASP.NET MVC style syntax will be the new standard for all the new combined HTTP processing framework. Why negotiated Content? Content negotiation is one of the key features of Web API even though it’s such a relatively simple thing. But it’s also something that’s missing in MVC and once you get used to automatically having your content returned based on Accept headers it’s hard to go back to manually having to create separate methods for different output types as you’ve had to with Microsoft server technologies all along (yes, yes I know other frameworks – including my own – have done this for years but for in the box features this is relatively new from Web API). As a quick review,  Accept Header content negotiation works off the request’s HTTP Accept header:POST http://localhost/mydailydosha/Editable/NegotiateContent HTTP/1.1 Content-Type: application/json Accept: application/json Host: localhost Content-Length: 76 Pragma: no-cache { ElementId: "header", PageName: "TestPage", Text: "This is a nice header" } If I make this request I would expect to get back a JSON result based on my application/json Accept header. To request XML  I‘d just change the accept header:Accept: text/xml and now I’d expect the response to come back as XML. Now this only works with media types that the server can process. In my case here I need to handle JSON, XML, HTML (using Views) and Plain Text. HTML results might need more than just a data return – you also probably need to specify a View to render the data into either by specifying the view explicitly or by using some sort of convention that can automatically locate a view to match. Today ASP.NET MVC doesn’t support this sort of automatic content switching out of the box. Unfortunately, in my application scenario we have an application that started out primarily with an AJAX backend that was implemented with JSON only. So there are lots of JSON results like this:[Route("Customers")] public ActionResult GetCustomers() { return Json(repo.GetCustomers(),JsonRequestBehavior.AllowGet); } These work fine, but they are of course JSON specific. Then a couple of weeks ago, a requirement came in that an old desktop application needs to also consume this API and it has to use XML to do it because there’s no JSON parser available for it. Ooops – stuck with JSON in this case. While it would have been easy to add XML specific methods I figured it’s easier to add basic content negotiation. And that’s what I show in this post. Missteps – IResultFilter, IActionFilter My first attempt at this was to use IResultFilter or IActionFilter which look like they would be ideal to modify result content after it’s been generated using OnResultExecuted() or OnActionExecuted(). Filters are great because they can look globally at all controller methods or individual methods that are marked up with the Filter’s attribute. But it turns out these filters don’t work for raw POCO result values from Action methods. What we wanted to do for API calls is get back to using plain .NET types as results rather than result actions. That is  you write a method that doesn’t return an ActionResult, but a standard .NET type like this:public Customer UpdateCustomer(Customer cust) { … do stuff to customer :-) return cust; } Unfortunately both OnResultExecuted and OnActionExecuted receive an MVC ContentResult instance from the POCO object. MVC basically takes any non-ActionResult return value and turns it into a ContentResult by converting the value using .ToString(). Ugh. The ContentResult itself doesn’t contain the original value, which is lost AFAIK with no way to retrieve it. So there’s no way to access the raw customer object in the example above. Bummer. Creating a NegotiatedResult This leaves mucking around with custom ActionResults. ActionResults are MVC’s standard way to return action method results – you basically specify that you would like to render your result in a specific format. Common ActionResults are ViewResults (ie. View(vn,model)), JsonResult, RedirectResult etc. They work and are fairly effective and work fairly well for testing as well as it’s the ‘standard’ interface to return results from actions. The problem with the this is mainly that you’re explicitly saying that you want a specific result output type. This works well for many things, but sometimes you do want your result to be negotiated. My first crack at this solution here is to create a simple ActionResult subclass that looks at the Accept header and based on that writes the output. I need to support JSON and XML content and HTML as well as text – so effectively 4 media types: application/json, text/xml, text/html and text/plain. Everything else is passed through as ContentResult – which effecively returns whatever .ToString() returns. Here’s what the NegotiatedResult usage looks like:public ActionResult GetCustomers() { return new NegotiatedResult(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return new NegotiatedResult("Show", repo.GetCustomer(id)); } There are two overloads of this method – one that returns just the raw result value and a second version that accepts an optional view name. The second version returns the Razor view specified only if text/html is requested – otherwise the raw data is returned. This is useful in applications where you have an HTML front end that can also double as an API interface endpoint that’s using the same model data you send to the View. For the application I mentioned above this was another actual use-case we needed to address so this was a welcome side effect of creating a custom ActionResult. There’s also an extension method that directly attaches a Negotiated() method to the controller using the same syntax:public ActionResult GetCustomers() { return this.Negotiated(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return this.Negotiated("Show",repo.GetCustomer(id)); } Using either of these mechanisms now allows you to return JSON, XML, HTML or plain text results depending on the Accept header sent. Send application/json you get just the Customer JSON data. Ditto for text/xml and XML data. Pass text/html for the Accept header and the "Show.cshtml" Razor view is rendered passing the result model data producing final HTML output. While this isn’t as clean as passing just POCO objects back as I had intended originally, this approach fits better with how MVC action methods are intended to be used and we get the bonus of being able to specify a View to render (optionally) for HTML. How does it work An ActionResult implementation is pretty straightforward. You inherit from ActionResult and implement the ExecuteResult method to send your output to the ASP.NET output stream. ActionFilters are an easy way to effectively do post processing on ASP.NET MVC controller actions just before the content is sent to the output stream, assuming your specific action result was used. Here’s the full code to the NegotiatedResult class (you can also check it out on GitHub):/// <summary> /// Returns a content negotiated result based on the Accept header. /// Minimal implementation that works with JSON and XML content, /// can also optionally return a view with HTML. /// </summary> /// <example> /// // model data only /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult(repo.Customers.OrderBy( c=> c.Company) ) /// } /// // optional view for HTML /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public class NegotiatedResult : ActionResult { /// <summary> /// Data stored to be 'serialized'. Public /// so it's potentially accessible in filters. /// </summary> public object Data { get; set; } /// <summary> /// Optional name of the HTML view to be rendered /// for HTML responses /// </summary> public string ViewName { get; set; } public static bool FormatOutput { get; set; } static NegotiatedResult() { FormatOutput = HttpContext.Current.IsDebuggingEnabled; } /// <summary> /// Pass in data to serialize /// </summary> /// <param name="data">Data to serialize</param> public NegotiatedResult(object data) { Data = data; } /// <summary> /// Pass in data and an optional view for HTML views /// </summary> /// <param name="data"></param> /// <param name="viewName"></param> public NegotiatedResult(string viewName, object data) { Data = data; ViewName = viewName; } public override void ExecuteResult(ControllerContext context) { if (context == null) throw new ArgumentNullException("context"); HttpResponseBase response = context.HttpContext.Response; HttpRequestBase request = context.HttpContext.Request; // Look for specific content types if (request.AcceptTypes.Contains("text/html")) { response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); } else if (request.AcceptTypes.Contains("text/plain")) { response.ContentType = "text/plain"; response.Write(Data); } else if (request.AcceptTypes.Contains("application/json")) { using (JsonTextWriter writer = new JsonTextWriter(response.Output)) { var settings = new JsonSerializerSettings(); if (FormatOutput) settings.Formatting = Newtonsoft.Json.Formatting.Indented; JsonSerializer serializer = JsonSerializer.Create(settings); serializer.Serialize(writer, Data); writer.Flush(); } } else if (request.AcceptTypes.Contains("text/xml")) { response.ContentType = "text/xml"; if (Data != null) { using (var writer = new XmlTextWriter(response.OutputStream, new UTF8Encoding())) { if (FormatOutput) writer.Formatting = System.Xml.Formatting.Indented; XmlSerializer serializer = new XmlSerializer(Data.GetType()); serializer.Serialize(writer, Data); writer.Flush(); } } } else { // just write data as a plain string response.Write(Data); } } } /// <summary> /// Extends Controller with Negotiated() ActionResult that does /// basic content negotiation based on the Accept header. /// </summary> public static class NegotiatedResultExtensions { /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated( repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, object data) { return new NegotiatedResult(data); } /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="viewName">Name of the View to when Accept is text/html</param> /// /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, string viewName, object data) { return new NegotiatedResult(viewName, data); } } Output Generation – JSON and XML Generating output for XML and JSON is simple – you use the desired serializer and off you go. Using XmlSerializer and JSON.NET it’s just a handful of lines each to generate serialized output directly into the HTTP output stream. Please note this implementation uses JSON.NET for its JSON generation rather than the default JavaScriptSerializer that MVC uses which I feel is an additional bonus to implementing this custom action. I’d already been using a custom JsonNetResult class previously, but now this is just rolled into this custom ActionResult. Just keep in mind that JSON.NET outputs slightly different JSON for certain things like collections for example, so behavior may change. One addition to this implementation might be a flag to allow switching the JSON serializer. Html View Generation Html View generation actually turned out to be easier than anticipated. Initially I used my generic ASP.NET ViewRenderer Class that can render MVC views from any ASP.NET application. However it turns out since we are executing inside of an active MVC request there’s an easier way: We can simply create a custom ViewResult and populate its members and then execute it. The code in text/html handling code that renders the view is simply this:response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); which is a neat and easy way to render a Razor view assuming you have an active controller that’s ready for rendering. Sweet – dependency removed which makes this class self-contained without any external dependencies other than JSON.NET. Summary While this isn’t exactly a new topic, it’s the first time I’ve actually delved into this with MVC. I’ve been doing content negotiation with Web API and prior to that with my REST library. This is the first time it’s come up as an issue in MVC. But as I have worked through this I find that having a way to specify both HTML Views *and* JSON and XML results from a single controller certainly is appealing to me in many situations as we are in this particular application returning identical data models for each of these operations. Rendering content negotiated views is something that I hope ASP.NET vNext will provide natively in the combined MVC and WebAPI model, but we’ll see how this actually will be implemented. In the meantime having a custom ActionResult that provides this functionality is a workable and easily adaptable way of handling this going forward. Whatever ends up happening in ASP.NET vNext the abstraction can probably be changed to support the native features of the future. Anyway I hope some of you found this useful if not for direct integration then as insight into some of the rendering logic that MVC uses to get output into the HTTP stream… Related Resources Latest Version of NegotiatedResult.cs on GitHub Understanding Action Controllers Rendering ASP.NET Views To String© Rick Strahl, West Wind Technologies, 2005-2014Posted in MVC  ASP.NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Metro: Creating an IndexedDbDataSource for WinJS

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can create custom data sources which you can use with the controls in the WinJS library. In particular, I explain how you can create an IndexedDbDataSource which you can use to store and retrieve data from an IndexedDB database. If you want to skip ahead, and ignore all of the fascinating content in-between, I’ve included the complete code for the IndexedDbDataSource at the very bottom of this blog entry. What is IndexedDB? IndexedDB is a database in the browser. You can use the IndexedDB API with all modern browsers including Firefox, Chrome, and Internet Explorer 10. And, of course, you can use IndexedDB with Metro style apps written with JavaScript. If you need to persist data in a Metro style app written with JavaScript then IndexedDB is a good option. Each Metro app can only interact with its own IndexedDB databases. And, IndexedDB provides you with transactions, indices, and cursors – the elements of any modern database. An IndexedDB database might be different than the type of database that you normally use. An IndexedDB database is an object-oriented database and not a relational database. Instead of storing data in tables, you store data in object stores. You store JavaScript objects in an IndexedDB object store. You create new IndexedDB object stores by handling the upgradeneeded event when you attempt to open a connection to an IndexedDB database. For example, here’s how you would both open a connection to an existing database named TasksDB and create the TasksDB database when it does not already exist: var reqOpen = window.indexedDB.open(“TasksDB”, 2); reqOpen.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); }; reqOpen.onsuccess = function () { var db = reqOpen.result; // Do something with db }; When you call window.indexedDB.open(), and the database does not already exist, then the upgradeneeded event is raised. In the code above, the upgradeneeded handler creates a new object store named tasks. The new object store has an auto-increment column named id which acts as the primary key column. If the database already exists with the right version, and you call window.indexedDB.open(), then the success event is raised. At that point, you have an open connection to the existing database and you can start doing something with the database. You use asynchronous methods to interact with an IndexedDB database. For example, the following code illustrates how you would add a new object to the tasks object store: var transaction = db.transaction(“tasks”, “readwrite”); var reqAdd = transaction.objectStore(“tasks”).add({ name: “Feed the dog” }); reqAdd.onsuccess = function() { // Tasks added successfully }; The code above creates a new database transaction, adds a new task to the tasks object store, and handles the success event. If the new task gets added successfully then the success event is raised. Creating a WinJS IndexedDbDataSource The most powerful control in the WinJS library is the ListView control. This is the control that you use to display a collection of items. If you want to display data with a ListView control, you need to bind the control to a data source. The WinJS library includes two objects which you can use as a data source: the List object and the StorageDataSource object. The List object enables you to represent a JavaScript array as a data source and the StorageDataSource enables you to represent the file system as a data source. If you want to bind an IndexedDB database to a ListView then you have a choice. You can either dump the items from the IndexedDB database into a List object or you can create a custom data source. I explored the first approach in a previous blog entry. In this blog entry, I explain how you can create a custom IndexedDB data source. Implementing the IListDataSource Interface You create a custom data source by implementing the IListDataSource interface. This interface contains the contract for the methods which the ListView needs to interact with a data source. The easiest way to implement the IListDataSource interface is to derive a new object from the base VirtualizedDataSource object. The VirtualizedDataSource object requires a data adapter which implements the IListDataAdapter interface. Yes, because of the number of objects involved, this is a little confusing. Your code ends up looking something like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); The code above is used to create a new class named IndexedDbDataSource which derives from the base VirtualizedDataSource class. In the constructor for the new class, the base class _baseDataSourceConstructor() method is called. A data adapter is passed to the _baseDataSourceConstructor() method. The code above creates a new method exposed by the IndexedDbDataSource named nuke(). The nuke() method deletes all of the objects from an object store. The code above also overrides a method named remove(). Our derived remove() method accepts any type of key and removes the matching item from the object store. Almost all of the work of creating a custom data source goes into building the data adapter class. The data adapter class implements the IListDataAdapter interface which contains the following methods: · change() · getCount() · insertAfter() · insertAtEnd() · insertAtStart() · insertBefore() · itemsFromDescription() · itemsFromEnd() · itemsFromIndex() · itemsFromKey() · itemsFromStart() · itemSignature() · moveAfter() · moveBefore() · moveToEnd() · moveToStart() · remove() · setNotificationHandler() · compareByIdentity Fortunately, you are not required to implement all of these methods. You only need to implement the methods that you actually need. In the case of the IndexedDbDataSource, I implemented the getCount(), itemsFromIndex(), insertAtEnd(), and remove() methods. If you are creating a read-only data source then you really only need to implement the getCount() and itemsFromIndex() methods. Implementing the getCount() Method The getCount() method returns the total number of items from the data source. So, if you are storing 10,000 items in an object store then this method would return the value 10,000. Here’s how I implemented the getCount() method: getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); } The first thing that you should notice is that the getCount() method returns a WinJS promise. This is a requirement. The getCount() method is asynchronous which is a good thing because all of the IndexedDB methods (at least the methods implemented in current browsers) are also asynchronous. The code above retrieves an object store and then uses the IndexedDB count() method to get a count of the items in the object store. The value is returned from the promise by calling complete(). Implementing the itemsFromIndex method When a ListView displays its items, it calls the itemsFromIndex() method. By default, it calls this method multiple times to get different ranges of items. Three parameters are passed to the itemsFromIndex() method: the requestIndex, countBefore, and countAfter parameters. The requestIndex indicates the index of the item from the database to show. The countBefore and countAfter parameters represent hints. These are integer values which represent the number of items before and after the requestIndex to retrieve. Again, these are only hints and you can return as many items before and after the request index as you please. Here’s how I implemented the itemsFromIndex method: itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); } In the code above, a cursor is used to iterate through the objects in an object store. You fetch the next item in the cursor by calling either the cursor.continue() or cursor.advance() method. The continue() method moves forward by one object and the advance() method moves forward a specified number of objects. Each time you call continue() or advance(), the success event is raised again. If the cursor is null then you know that you have reached the end of the cursor and you can return the results. Some things to be careful about here. First, the return value from the itemsFromIndex() method must implement the IFetchResult interface. In particular, you must return an object which has an items, offset, and totalCount property. Second, each item in the items array must implement the IListItem interface. Each item should have a key and a data property. Implementing the insertAtEnd() Method When creating the IndexedDbDataSource, I wanted to go beyond creating a simple read-only data source and support inserting and deleting objects. If you want to support adding new items with your data source then you need to implement the insertAtEnd() method. Here’s how I implemented the insertAtEnd() method for the IndexedDbDataSource: insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); } When implementing the insertAtEnd() method, you need to be careful to return an object which implements the IItem interface. In particular, you should return an object that has a key and a data property. The key must be a string and it uniquely represents the new item added to the data source. The value of the data property represents the new item itself. Implementing the remove() Method Finally, you use the remove() method to remove an item from the data source. You call the remove() method with the key of the item which you want to remove. Implementing the remove() method in the case of the IndexedDbDataSource was a little tricky. The problem is that an IndexedDB object store uses an integer key and the VirtualizedDataSource requires a string key. For that reason, I needed to override the remove() method in the derived IndexedDbDataSource class like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); When you call remove(), you end up calling a method of the IndexedDbDataAdapter named removeInternal() . Here’s what the removeInternal() method looks like: setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); } The removeInternal() method calls the IndexedDB delete() method to delete an item from the object store. If the item is deleted successfully then the _notificationHandler.remove() method is called. Because we are not implementing the standard IListDataAdapter remove() method, we need to notify the data source (and the ListView control bound to the data source) that an item has been removed. The way that you notify the data source is by calling the _notificationHandler.remove() method. Notice that we get the _notificationHandler in the code above by implementing another method in the IListDataAdapter interface: the setNotificationHandler() method. You can raise the following types of notifications using the _notificationHandler: · beginNotifications() · changed() · endNotifications() · inserted() · invalidateAll() · moved() · removed() · reload() These methods are all part of the IListDataNotificationHandler interface in the WinJS library. Implementing the nuke() Method I wanted to implement a method which would remove all of the items from an object store. Therefore, I created a method named nuke() which calls the IndexedDB clear() method: nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); } Notice that the nuke() method calls the _notificationHandler.reload() method to notify the ListView to reload all of the items from its data source. Because we are implementing a custom method here, we need to use the _notificationHandler to send an update. Using the IndexedDbDataSource To illustrate how you can use the IndexedDbDataSource, I created a simple task list app. You can add new tasks, delete existing tasks, and nuke all of the tasks. You delete an item by selecting an item (swipe or right-click) and clicking the Delete button. Here’s the HTML page which contains the ListView, the form for adding new tasks, and the buttons for deleting and nuking tasks: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>DataSources</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- DataSources references --> <link href="indexedDb.css" rel="stylesheet" /> <script type="text/javascript" src="indexedDbDataSource.js"></script> <script src="indexedDb.js"></script> </head> <body> <div id="tmplTask" data-win-control="WinJS.Binding.Template"> <div class="taskItem"> Id: <span data-win-bind="innerText:id"></span> <br /><br /> Name: <span data-win-bind="innerText:name"></span> </div> </div> <div id="lvTasks" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplTask'), selectionMode: 'single' }"></div> <form id="frmAdd"> <fieldset> <legend>Add Task</legend> <label>New Task</label> <input id="inputTaskName" required /> <button>Add</button> </fieldset> </form> <button id="btnNuke">Nuke</button> <button id="btnDelete">Delete</button> </body> </html> And here is the JavaScript code for the TaskList app: /// <reference path="//Microsoft.WinJS.1.0.RC/js/base.js" /> /// <reference path="//Microsoft.WinJS.1.0.RC/js/ui.js" /> function init() { WinJS.UI.processAll().done(function () { var lvTasks = document.getElementById("lvTasks").winControl; // Bind the ListView to its data source var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; // Wire-up Add, Delete, Nuke buttons document.getElementById("frmAdd").addEventListener("submit", function (evt) { evt.preventDefault(); tasksDataSource.beginEdits(); tasksDataSource.insertAtEnd(null, { name: document.getElementById("inputTaskName").value }).done(function (newItem) { tasksDataSource.endEdits(); document.getElementById("frmAdd").reset(); lvTasks.ensureVisible(newItem.index); }); }); document.getElementById("btnDelete").addEventListener("click", function () { if (lvTasks.selection.count() == 1) { lvTasks.selection.getItems().done(function (items) { tasksDataSource.remove(items[0].data.id); }); } }); document.getElementById("btnNuke").addEventListener("click", function () { tasksDataSource.nuke(); }); // This method is called to initialize the IndexedDb database function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } }); } document.addEventListener("DOMContentLoaded", init); The IndexedDbDataSource is created and bound to the ListView control with the following two lines of code: var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; The IndexedDbDataSource is created with four parameters: the name of the database to create, the version of the database to create, the name of the object store to create, and a function which contains code to initialize the new database. The upgrade function creates a new object store named tasks with an auto-increment property named id: function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } The Complete Code for the IndexedDbDataSource Here’s the complete code for the IndexedDbDataSource: (function () { /************************************************ * The IndexedDBDataAdapter enables you to work * with a HTML5 IndexedDB database. *************************************************/ var IndexedDbDataAdapter = WinJS.Class.define( function (dbName, dbVersion, objectStoreName, upgrade, error) { this._dbName = dbName; // database name this._dbVersion = dbVersion; // database version this._objectStoreName = objectStoreName; // object store name this._upgrade = upgrade; // database upgrade script this._error = error || function (evt) { console.log(evt.message); }; }, { /******************************************* * IListDataAdapter Interface Methods ********************************************/ getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); }, itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); }, insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); }, setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, /***************************************** * IndexedDbDataSource Method ******************************************/ removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); }, nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); }, /******************************************* * Private Methods ********************************************/ _ensureDbOpen: function () { var that = this; // Try to get cached Db if (that._cachedDb) { return WinJS.Promise.wrap(that._cachedDb); } // Otherwise, open the database return new WinJS.Promise(function (complete, error, progress) { var reqOpen = window.indexedDB.open(that._dbName, that._dbVersion); reqOpen.onerror = function (evt) { error(); }; reqOpen.onupgradeneeded = function (evt) { that._upgrade(evt); that._notificationHandler.invalidateAll(); }; reqOpen.onsuccess = function () { that._cachedDb = reqOpen.result; complete(that._cachedDb); }; }); }, _getObjectStore: function (type) { type = type || "readonly"; var that = this; return new WinJS.Promise(function (complete, error) { that._ensureDbOpen().then(function (db) { var transaction = db.transaction(that._objectStoreName, type); complete(transaction.objectStore(that._objectStoreName)); }); }); }, _get: function (key) { return new WinJS.Promise(function (complete, error) { that._getObjectStore().done(function (store) { var reqGet = store.get(key); reqGet.onerror = that._error; reqGet.onsuccess = function (item) { complete(item); }; }); }); } } ); var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); WinJS.Namespace.define("DataSources", { IndexedDbDataSource: IndexedDbDataSource }); })(); Summary In this blog post, I provided an overview of how you can create a new data source which you can use with the WinJS library. I described how you can create an IndexedDbDataSource which you can use to bind a ListView control to an IndexedDB database. While describing how you can create a custom data source, I explained how you can implement the IListDataAdapter interface. You also learned how to raise notifications — such as a removed or invalidateAll notification — by taking advantage of the methods of the IListDataNotificationHandler interface.

    Read the article

  • Value cannot be null, ArgumentNullException

    - by Wooolie
    I am currently trying to return an array which contains information about a seat at a theate such as Seat number, Name, Price and Status. I am using a combobox where I want to list all vacant or reserved seats based upon choice. When I choose reserved seats in my combobox, I call upon a method using AddRange. This method is supposed to loop through an array containing all seats and their information. If a seat is Vacant, I add it to an array. When all is done, I return this array. However, I am dealing with a ArgumentNullException. MainForm namespace Assignment4 { public partial class MainForm : Form { // private const int totNumberOfSeats = 240; private SeatManager seatMngr; private const int columns = 10; private const int rows = 10; public enum DisplayOptions { AllSeats, VacantSeats, ReservedSeats } public MainForm() { InitializeComponent(); seatMngr = new SeatManager(rows, columns); InitializeGUI(); } /// <summary> /// Fill the listbox with information from the beginning, /// let the user be able to choose from vacant seats. /// </summary> private void InitializeGUI() { rbReserve.Checked = true; txtName.Text = string.Empty; txtPrice.Text = string.Empty; lblTotalSeats.Text = seatMngr.GetNumOfSeats().ToString(); cmbOptions.Items.AddRange(Enum.GetNames(typeof(DisplayOptions))); cmbOptions.SelectedIndex = 0; UpdateGUI(); } /// <summary> /// call on methods ValidateName and ValidatePrice with arguments /// </summary> /// <param name="name"></param> /// <param name="price"></param> /// <returns></returns> private bool ValidateInput(out string name, out double price) { bool nameOK = ValidateName(out name); bool priceOK = ValidatePrice(out price); return nameOK && priceOK; } /// <summary> /// Validate name using inputUtility, show error if input is invalid /// </summary> /// <param name="name"></param> /// <returns></returns> private bool ValidateName(out string name) { name = txtName.Text.Trim(); if (!InputUtility.ValidateString(name)) { //inform user MessageBox.Show("Input of name is Invalid. It can not be empty, " + Environment.NewLine + "and must have at least one character.", " Error!"); txtName.Focus(); txtName.Text = " "; txtName.SelectAll(); return false; } return true; } /// <summary> /// Validate price using inputUtility, show error if input is invalid /// </summary> /// <param name="price"></param> /// <returns></returns> private bool ValidatePrice(out double price) { // show error if input is invalid if (!InputUtility.GetDouble(txtPrice.Text.Trim(), out price, 0)) { //inform user MessageBox.Show("Input of price is Invalid. It can not be less than 0, " + Environment.NewLine + "and must not be empty.", " Error!"); txtPrice.Focus(); txtPrice.Text = " "; txtPrice.SelectAll(); return false; } return true; } /// <summary> /// Check if item is selected in listbox /// </summary> /// <returns></returns> private bool CheckSelectedIndex() { int index = lbSeats.SelectedIndex; if (index < 0) { MessageBox.Show("Please select an item in the box"); return false; } else return true; } /// <summary> /// Call method ReserveOrCancelSeat when button OK is clicked /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void btnOK_Click(object sender, EventArgs e) { ReserveOrCancelSeat(); } /// <summary> /// Reserve or cancel seat depending on choice the user makes. Update GUI after choice. /// </summary> private void ReserveOrCancelSeat() { if (CheckSelectedIndex() == true) { string name = string.Empty; double price = 0.0; int selectedSeat = lbSeats.SelectedIndex; bool reserve = false; bool cancel = false; if (rbReserve.Checked) { DialogResult result = MessageBox.Show("Do you want to continue?", "Approve", MessageBoxButtons.YesNo); if (result == DialogResult.Yes) { if (ValidateInput(out name, out price)) { reserve = seatMngr.ReserveSeat(name, price, selectedSeat); if (reserve == true) { MessageBox.Show("Seat has been reserved"); UpdateGUI(); } else { MessageBox.Show("Seat has already been reserved"); } } } } else { DialogResult result = MessageBox.Show("Do you want to continue?", "Approve", MessageBoxButtons.YesNo); if (result == DialogResult.Yes) { cancel = seatMngr.CancelSeat(selectedSeat); if (cancel == true) { MessageBox.Show("Seat has been cancelled"); UpdateGUI(); } else { MessageBox.Show("Seat is already vacant"); } } } UpdateGUI(); } } /// <summary> /// Update GUI with new information. /// </summary> /// <param name="customerName"></param> /// <param name="price"></param> private void UpdateGUI() { lbSeats.Items.Clear(); lbSeats.Items.AddRange(seatMngr.GetSeatInfoString()); lblVacantSeats.Text = seatMngr.GetNumOfVacant().ToString(); lblReservedSeats.Text = seatMngr.GetNumOfReserved().ToString(); if (rbReserve.Checked) { txtName.Text = string.Empty; txtPrice.Text = string.Empty; } } /// <summary> /// set textboxes to false if cancel reservation button is checked /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void rbCancel_CheckedChanged_1(object sender, EventArgs e) { txtName.Enabled = false; txtPrice.Enabled = false; } /// <summary> /// set textboxes to true if reserved radiobutton is checked /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void rbReserve_CheckedChanged_1(object sender, EventArgs e) { txtName.Enabled = true; txtPrice.Enabled = true; } /// <summary> /// Make necessary changes on the list depending on what choice the user makes. Show only /// what the user wants to see, whether its all seats, reserved seats or vacant seats only. /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void cmbOptions_SelectedIndexChanged(object sender, EventArgs e) { if (cmbOptions.SelectedIndex == 0 && rbReserve.Checked) //All seats visible. { UpdateGUI(); txtName.Enabled = true; txtPrice.Enabled = true; btnOK.Enabled = true; } else if (cmbOptions.SelectedIndex == 0 && rbCancel.Checked) { UpdateGUI(); txtName.Enabled = false; txtPrice.Enabled = false; btnOK.Enabled = true; } else if (cmbOptions.SelectedIndex == 1) //Only vacant seats visible. { lbSeats.Items.Clear(); lbSeats.Items.AddRange(seatMngr.ReturnVacantSeats()); // Value cannot be null txtName.Enabled = false; txtPrice.Enabled = false; btnOK.Enabled = false; } else if (cmbOptions.SelectedIndex == 2) //Only reserved seats visible. { lbSeats.Items.Clear(); lbSeats.Items.AddRange(seatMngr.ReturnReservedSeats()); // Value cannot be null txtName.Enabled = false; txtPrice.Enabled = false; btnOK.Enabled = false; } } } } SeatManager namespace Assignment4 { class SeatManager { private string[,] nameList = null; private double[,] priceList = null; private string[,] seatList = null; private readonly int totCols; private readonly int totRows; /// <summary> /// Constructor with declarations of size for all arrays. /// </summary> /// <param name="totNumberOfSeats"></param> public SeatManager(int row, int cols) { totCols = cols; totRows = row; nameList = new string[row, cols]; priceList = new double[row, cols]; seatList = new string[row, cols]; for (int rows = 0; rows < row; rows++) { for (int col = 0; col < totCols; col++) { seatList[rows, col] = "Vacant"; } } } /// <summary> /// Check if index is within bounds of the array /// </summary> /// <param name="index"></param> /// <returns></returns> private bool CheckIndex(int index) { if (index >= 0 && index < nameList.Length) return true; else return false; } /// <summary> /// Return total number of seats /// </summary> /// <returns></returns> public int GetNumOfSeats() { int count = 0; for (int rows = 0; rows < totRows; rows++) { for (int cols = 0; cols < totCols; cols++) { count++; } } return count; } /// <summary> /// Calculate and return total number of reserved seats /// </summary> /// <returns></returns> public int GetNumOfReserved() { int totReservedSeats = 0; for (int rows = 0; rows < totRows; rows++) { for (int col = 0; col < totCols; col++) { if (!string.IsNullOrEmpty(nameList[rows, col])) { totReservedSeats++; } } } return totReservedSeats; } /// <summary> /// Calculate and return total number of vacant seats /// </summary> /// <returns></returns> public int GetNumOfVacant() { int totVacantSeats = 0; for (int rows = 0; rows < totRows; rows++) { for (int col = 0; col < totCols; col++) { if (string.IsNullOrEmpty(nameList[rows, col])) { totVacantSeats++; } } } return totVacantSeats; } /// <summary> /// Return formated string with info about the seat, name, price and its status /// </summary> /// <param name="index"></param> /// <returns></returns> public string GetSeatInfoAt(int index) { int cols = ReturnColumn(index); int rows = ReturnRow(index); string strOut = string.Format("{0,2} {1,10} {2,17} {3,20} {4,35:f2}", rows+1, cols+1, seatList[rows, cols], nameList[rows, cols], priceList[rows, cols]); return strOut; } /// <summary> /// Send an array containing all seats in the cinema /// </summary> /// <returns></returns> public string[] GetSeatInfoString() { int count = totRows * totCols; if (count <= 0) return null; string[] strSeatInfoStrings = new string[count]; for (int i = 0; i < totRows * totCols; i++) { strSeatInfoStrings[i] = GetSeatInfoAt(i); } return strSeatInfoStrings; } /// <summary> /// Reserve seat if seat is vacant /// </summary> /// <param name="name"></param> /// <param name="price"></param> /// <param name="index"></param> /// <returns></returns> public bool ReserveSeat(string name, double price, int index) { int cols = ReturnColumn(index); int rows = ReturnRow(index); if (string.IsNullOrEmpty(nameList[rows, cols])) { nameList[rows, cols] = name; priceList[rows, cols] = price; seatList[rows, cols] = "Reserved"; return true; } else return false; } public string[] ReturnVacantSeats() { int totVacantSeats = int.Parse(GetNumOfVacant().ToString()); string[] vacantSeats = new string[totVacantSeats]; for (int i = 0; i < vacantSeats.Length; i++) { if (GetSeatInfoAt(i) == "Vacant") { vacantSeats[i] = GetSeatInfoAt(i); } } return vacantSeats; } public string[] ReturnReservedSeats() { int totReservedSeats = int.Parse(GetNumOfReserved().ToString()); string[] reservedSeats = new string[totReservedSeats]; for (int i = 0; i < reservedSeats.Length; i++) { if (GetSeatInfoAt(i) == "Reserved") { reservedSeats[i] = GetSeatInfoAt(i); } } return reservedSeats; } /// <summary> /// Cancel seat if seat is reserved /// </summary> /// <param name="index"></param> /// <returns></returns> public bool CancelSeat(int index) { int cols = ReturnColumn(index); int rows = ReturnRow(index); if (!string.IsNullOrEmpty(nameList[rows, cols])) { nameList[rows, cols] = ""; priceList[rows, cols] = 0.0; seatList[rows, cols] = "Vacant"; return true; } else { return false; } } /// <summary> /// Convert index to row and return value /// </summary> /// <param name="index"></param> /// <returns></returns> public int ReturnRow(int index) { int vectorRow = index; int row; row = (int)Math.Ceiling((double)(vectorRow / totCols)); return row; } /// <summary> /// Convert index to column and return value /// </summary> /// <param name="index"></param> /// <returns></returns> public int ReturnColumn(int index) { int row = index; int col = row % totCols; return col; } } } In MainForm, this is where I get ArgumentNullException: lbSeats.Items.AddRange(seatMngr.ReturnVacantSeats()); And this is the method where the array is to be returned containing all vacant seats: public string[] ReturnVacantSeats() { int totVacantSeats = int.Parse(GetNumOfVacant().ToString()); string[] vacantSeats = new string[totVacantSeats]; for (int i = 0; i < vacantSeats.Length; i++) { if (GetSeatInfoAt(i) == "Vacant") { vacantSeats[i] = GetSeatInfoAt(i); } } return vacantSeats; }

    Read the article

  • getaddrinfo appears to return different results between Windows and Ubuntu?

    - by MrDuk
    I have the following two sets of code: Windows #undef UNICODE #include <winsock2.h> #include <ws2tcpip.h> #include <stdio.h> // link with Ws2_32.lib #pragma comment (lib, "Ws2_32.lib") int __cdecl main(int argc, char **argv) { //----------------------------------------- // Declare and initialize variables WSADATA wsaData; int iResult; INT iRetval; DWORD dwRetval; argv[1] = "www.google.com"; argv[2] = "80"; int i = 1; struct addrinfo *result = NULL; struct addrinfo *ptr = NULL; struct addrinfo hints; struct sockaddr_in *sockaddr_ipv4; // struct sockaddr_in6 *sockaddr_ipv6; LPSOCKADDR sockaddr_ip; char ipstringbuffer[46]; DWORD ipbufferlength = 46; /* // Validate the parameters if (argc != 3) { printf("usage: %s <hostname> <servicename>\n", argv[0]); printf("getaddrinfo provides protocol-independent translation\n"); printf(" from an ANSI host name to an IP address\n"); printf("%s example usage\n", argv[0]); printf(" %s www.contoso.com 0\n", argv[0]); return 1; } */ // Initialize Winsock iResult = WSAStartup(MAKEWORD(2, 2), &wsaData); if (iResult != 0) { printf("WSAStartup failed: %d\n", iResult); return 1; } //-------------------------------- // Setup the hints address info structure // which is passed to the getaddrinfo() function ZeroMemory( &hints, sizeof(hints) ); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; // hints.ai_protocol = IPPROTO_TCP; printf("Calling getaddrinfo with following parameters:\n"); printf("\tnodename = %s\n", argv[1]); printf("\tservname (or port) = %s\n\n", argv[2]); //-------------------------------- // Call getaddrinfo(). If the call succeeds, // the result variable will hold a linked list // of addrinfo structures containing response // information dwRetval = getaddrinfo(argv[1], argv[2], &hints, &result); if ( dwRetval != 0 ) { printf("getaddrinfo failed with error: %d\n", dwRetval); WSACleanup(); return 1; } printf("getaddrinfo returned success\n"); // Retrieve each address and print out the hex bytes for(ptr=result; ptr != NULL ;ptr=ptr->ai_next) { printf("getaddrinfo response %d\n", i++); printf("\tFlags: 0x%x\n", ptr->ai_flags); printf("\tFamily: "); switch (ptr->ai_family) { case AF_UNSPEC: printf("Unspecified\n"); break; case AF_INET: printf("AF_INET (IPv4)\n"); sockaddr_ipv4 = (struct sockaddr_in *) ptr->ai_addr; printf("\tIPv4 address %s\n", inet_ntoa(sockaddr_ipv4->sin_addr) ); break; case AF_INET6: printf("AF_INET6 (IPv6)\n"); // the InetNtop function is available on Windows Vista and later // sockaddr_ipv6 = (struct sockaddr_in6 *) ptr->ai_addr; // printf("\tIPv6 address %s\n", // InetNtop(AF_INET6, &sockaddr_ipv6->sin6_addr, ipstringbuffer, 46) ); // We use WSAAddressToString since it is supported on Windows XP and later sockaddr_ip = (LPSOCKADDR) ptr->ai_addr; // The buffer length is changed by each call to WSAAddresstoString // So we need to set it for each iteration through the loop for safety ipbufferlength = 46; iRetval = WSAAddressToString(sockaddr_ip, (DWORD) ptr->ai_addrlen, NULL, ipstringbuffer, &ipbufferlength ); if (iRetval) printf("WSAAddressToString failed with %u\n", WSAGetLastError() ); else printf("\tIPv6 address %s\n", ipstringbuffer); break; case AF_NETBIOS: printf("AF_NETBIOS (NetBIOS)\n"); break; default: printf("Other %ld\n", ptr->ai_family); break; } printf("\tSocket type: "); switch (ptr->ai_socktype) { case 0: printf("Unspecified\n"); break; case SOCK_STREAM: printf("SOCK_STREAM (stream)\n"); break; case SOCK_DGRAM: printf("SOCK_DGRAM (datagram) \n"); break; case SOCK_RAW: printf("SOCK_RAW (raw) \n"); break; case SOCK_RDM: printf("SOCK_RDM (reliable message datagram)\n"); break; case SOCK_SEQPACKET: printf("SOCK_SEQPACKET (pseudo-stream packet)\n"); break; default: printf("Other %ld\n", ptr->ai_socktype); break; } printf("\tProtocol: "); switch (ptr->ai_protocol) { case 0: printf("Unspecified\n"); break; case IPPROTO_TCP: printf("IPPROTO_TCP (TCP)\n"); break; case IPPROTO_UDP: printf("IPPROTO_UDP (UDP) \n"); break; default: printf("Other %ld\n", ptr->ai_protocol); break; } printf("\tLength of this sockaddr: %d\n", ptr->ai_addrlen); printf("\tCanonical name: %s\n", ptr->ai_canonname); } freeaddrinfo(result); WSACleanup(); return 0; } Ubuntu /* ** listener.c -- a datagram sockets "server" demo */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <netdb.h> #define MYPORT "4950" // the port users will be connecting to #define MAXBUFLEN 100 // get sockaddr, IPv4 or IPv6: void *get_in_addr(struct sockaddr *sa) { if (sa->sa_family == AF_INET) { return &(((struct sockaddr_in*)sa)->sin_addr); } return &(((struct sockaddr_in6*)sa)->sin6_addr); } int main(void) { int sockfd; struct addrinfo hints, *servinfo, *p; int rv; int numbytes; struct sockaddr_storage their_addr; char buf[MAXBUFLEN]; socklen_t addr_len; char s[INET6_ADDRSTRLEN]; memset(&hints, 0, sizeof hints); hints.ai_family = AF_UNSPEC; // set to AF_INET to force IPv4 hints.ai_socktype = SOCK_DGRAM; hints.ai_flags = AI_PASSIVE; // use my IP if ((rv = getaddrinfo(NULL, MYPORT, &hints, &servinfo)) != 0) { fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv)); return 1; } // loop through all the results and bind to the first we can for(p = servinfo; p != NULL; p = p->ai_next) { if ((sockfd = socket(p->ai_family, p->ai_socktype, p->ai_protocol)) == -1) { perror("listener: socket"); continue; } if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) { close(sockfd); perror("listener: bind"); continue; } break; } if (p == NULL) { fprintf(stderr, "listener: failed to bind socket\n"); return 2; } freeaddrinfo(servinfo); printf("listener: waiting to recvfrom...\n"); addr_len = sizeof their_addr; if ((numbytes = recvfrom(sockfd, buf, MAXBUFLEN-1 , 0, (struct sockaddr *)&their_addr, &addr_len)) == -1) { perror("recvfrom"); exit(1); } printf("listener: got packet from %s\n", inet_ntop(their_addr.ss_family, get_in_addr((struct sockaddr *)&their_addr), s, sizeof s)); printf("listener: packet is %d bytes long\n", numbytes); buf[numbytes] = '\0'; printf("listener: packet contains \"%s\"\n", buf); close(sockfd); return 0; } When I attempt www.google.com, I don't get the ipv6 socket returned on Windows - why is this? Outputs: (ubuntu) caleb@ub1:~/Documents/dev/cs438/mp0/MP0$ ./a.out www.google.com IP addresses for www.google.com: IPv4: 74.125.228.115 IPv4: 74.125.228.116 IPv4: 74.125.228.112 IPv4: 74.125.228.113 IPv4: 74.125.228.114 IPv6: 2607:f8b0:4004:803::1010 Outputs: (win) Calling getaddrinfo with following parameters: nodename = www.google.com servname (or port) = 80 getaddrinfo returned success getaddrinfo response 1 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.114 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null) getaddrinfo response 2 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.115 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null) getaddrinfo response 3 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.116 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null) getaddrinfo response 4 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.112 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null) getaddrinfo response 5 Flags: 0x0 Family: AF_INET (IPv4) IPv4 address 74.125.228.113 Socket type: SOCK_STREAM (stream) Protocol: Unspecified Length of this sockaddr: 16 Canonical name: (null)

    Read the article

  • Adding a second table in a database

    - by MB
    Hi everyone. I used the code provided by the NoteExample from the developers doc to create a database. Now I want to add a second table to store different data. I simply "copied" the given code, but when I try to insert into the new table I get an error saying: "0ERROR/Database(370): android.database.sqlite.SQLiteException: no such table: routes: , while compiling: INSERT INTO routes(line, arrival, duration, start) VALUES(?, ?, ?, ?);" Can someone please take quick look at my DbAdapter class and give me a hint or a solution? I really don't see any problem. my code compiles without any errors.. thanks in advance! CODE: import static android.provider.BaseColumns._ID; import android.content.ContentValues; import android.content.Context; import android.database.Cursor; import android.database.SQLException; import android.database.sqlite.SQLiteDatabase; import android.database.sqlite.SQLiteOpenHelper; import android.util.Log; public class DbAdapter { public static final String KEY_FROM = "title"; public static final String KEY_TO = "body"; public static final String KEY_ROWID = "_id"; public static final String KEY_START = "start"; public static final String KEY_ARRIVAL = "arrival"; public static final String KEY_LINE = "line"; public static final String KEY_DURATION = "duration"; private static final String DATABASE_NAME = "data"; private static final String DATABASE_NOTESTABLE = "notes"; private static final String DATABASE_ROUTESTABLE = "routes"; private static final String TAG = "DbAdapter"; private DatabaseHelper mDbHelper; private SQLiteDatabase mDb; /** * Database creation sql statement */ private static final String DATABASE_CREATE_NOTES = "create table notes (_id integer primary key autoincrement, " + "title text not null, body text not null)"; private static final String DATABASE_CREATE_ROUTES = "create table routes (_id integer primary key autoincrement, " + "start text not null, arrival text not null, " + "line text not null, duration text not null);"; private static final int DATABASE_VERSION = 2; private final Context mCtx; private static class DatabaseHelper extends SQLiteOpenHelper { DatabaseHelper(Context context) { super(context, DATABASE_NAME, null, DATABASE_VERSION); } @Override public void onCreate(SQLiteDatabase db) { db.execSQL(DATABASE_CREATE_NOTES); Log.d(TAG, "created notes table"); db.execSQL(DATABASE_CREATE_ROUTES); //CREATE LOKALTABLE db.execSQL("CREATE TABLE " + DATABASE_ROUTESTABLE + " " + "(" + _ID + " INTEGER PRIMARY KEY AUTOINCREMENT, " + KEY_START + " TEXT NOT NULL, " + KEY_ARRIVAL + " TEXT NOT NULL, " + KEY_LINE + " TEXT NOT NULL, " + KEY_DURATION + " TEXT NOT NULL"); Log.d(TAG, "created routes table"); } @Override public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) { Log.w(TAG, "Upgrading database from version " + oldVersion + " to " + newVersion + ", which will destroy all old data"); db.execSQL("DROP TABLE IF EXISTS notes"); onCreate(db); } } /** * Constructor - takes the context to allow the database to be * opened/created * * @param ctx the Context within which to work */ public DbAdapter(Context ctx) { this.mCtx = ctx; } /** * Open the notes database. If it cannot be opened, try to create a new * instance of the database. If it cannot be created, throw an exception to * signal the failure * * @return this (self reference, allowing this to be chained in an * initialization call) * @throws SQLException if the database could be neither opened or created */ public DbAdapter open() throws SQLException { mDbHelper = new DatabaseHelper(mCtx); mDb = mDbHelper.getWritableDatabase(); return this; } public void close() { mDbHelper.close(); } /** * Create a new note using the title and body provided. If the note is * successfully created return the new rowId for that note, otherwise return * a -1 to indicate failure. * * @param title the title of the note * @param body the body of the note * @return rowId or -1 if failed */ public long createNote(String title, String body) { ContentValues initialValues = new ContentValues(); initialValues.put(KEY_FROM, title); initialValues.put(KEY_TO, body); return mDb.insert(DATABASE_NOTESTABLE, null, initialValues); } /** * Create a new route using the title and body provided. If the route is * successfully created return the new rowId for that route, otherwise return * a -1 to indicate failure. * * @param start the start time of the route * @param arrival the arrival time of the route * @param line the line number of the route * @param duration the routes duration * @return rowId or -1 if failed */ public long createRoute(String start, String arrival, String line, String duration){ ContentValues initialValues = new ContentValues(); initialValues.put(KEY_START, start); initialValues.put(KEY_ARRIVAL, arrival); initialValues.put(KEY_LINE, line); initialValues.put(KEY_DURATION, duration); return mDb.insert(DATABASE_ROUTESTABLE, null, initialValues); } /** * Delete the note with the given rowId * * @param rowId id of note to delete * @return true if deleted, false otherwise */ public boolean deleteNote(long rowId) { return mDb.delete(DATABASE_NOTESTABLE, KEY_ROWID + "=" + rowId, null) > 0; } /** * Return a Cursor over the list of all notes in the database * * @return Cursor over all notes */ public Cursor fetchAllNotes() { return mDb.query(DATABASE_NOTESTABLE, new String[] {KEY_ROWID, KEY_FROM, KEY_TO}, null, null, null, null, null); } /** * Return a Cursor over the list of all routes in the database * * @return Cursor over all routes */ public Cursor fetchAllRoutes() { return mDb.query(DATABASE_ROUTESTABLE, new String[] {KEY_ROWID, KEY_START, KEY_ARRIVAL, KEY_LINE, KEY_DURATION}, null, null, null, null, null); } /** * Return a Cursor positioned at the note that matches the given rowId * * @param rowId id of note to retrieve * @return Cursor positioned to matching note, if found * @throws SQLException if note could not be found/retrieved */ public Cursor fetchNote(long rowId) throws SQLException { Cursor mCursor = mDb.query(true, DATABASE_NOTESTABLE, new String[] {KEY_ROWID, KEY_FROM, KEY_TO}, KEY_ROWID + "=" + rowId, null, null, null, null, null); if (mCursor != null) { mCursor.moveToFirst(); } return mCursor; } /** * Return a Cursor positioned at the route that matches the given rowId * * @param rowId id of route to retrieve * @return Cursor positioned to matching route * @throws SQLException if note could not be found/retrieved */ public Cursor fetchRoute(long rowId) throws SQLException { Cursor mCursor = mDb.query(true, DATABASE_ROUTESTABLE, new String[] {KEY_ROWID, KEY_START, KEY_ARRIVAL, KEY_LINE, KEY_DURATION}, KEY_ROWID + "=" + rowId, null, null, null, null, null); if (mCursor != null) { mCursor.moveToFirst(); } return mCursor; } /** * Update the note using the details provided. The note to be updated is * specified using the rowId, and it is altered to use the title and body * values passed in * * @param rowId id of note to update * @param title value to set note title to * @param body value to set note body to * @return true if the note was successfully updated, false otherwise */ public boolean updateNote(long rowId, String title, String body) { ContentValues args = new ContentValues(); args.put(KEY_FROM, title); args.put(KEY_TO, body); return mDb.update(DATABASE_NOTESTABLE, args, KEY_ROWID + "=" + rowId, null) > 0; } }

    Read the article

  • How to obtain a random sub-datatable from another data table

    - by developerit
    Introduction In this article, I’ll show how to get a random subset of data from a DataTable. This is useful when you already have queries that are filtered correctly but returns all the rows. Analysis I came across this situation when I wanted to display a random tag cloud. I already had the query to get the keywords ordered by number of clicks and I wanted to created a tag cloud. Tags that are the most popular should have more chance to get picked and should be displayed larger than less popular ones. Implementation In this code snippet, there is everything you need. ' Min size, in pixel for the tag Private Const MIN_FONT_SIZE As Integer = 9 ' Max size, in pixel for the tag Private Const MAX_FONT_SIZE As Integer = 14 ' Basic function that retreives Tags from a DataBase Public Shared Function GetTags() As MediasTagsDataTable ' Simple call to the TableAdapter, to get the Tags ordered by number of clicks Dim dt As MediasTagsDataTable = taMediasTags.GetDataValide ' If the query returned no result, return an empty DataTable If dt Is Nothing OrElse dt.Rows.Count < 1 Then Return New MediasTagsDataTable End If ' Set the font-size of the group of data ' We are dividing our results into sub set, according to their number of clicks ' Example: 10 results -> [0,2] will get font size 9, [3,5] will get font size 10, [6,8] wil get 11, ... ' This is the number of elements in one group Dim groupLenth As Integer = CType(Math.Floor(dt.Rows.Count / (MAX_FONT_SIZE - MIN_FONT_SIZE)), Integer) ' Counter of elements in the same group Dim counter As Integer = 0 ' Counter of groups Dim groupCounter As Integer = 0 ' Loop througt the list For Each row As MediasTagsRow In dt ' Set the font-size in a custom column row.c_FontSize = MIN_FONT_SIZE + groupCounter ' Increment the counter counter += 1 ' If the group counter is less than the counter If groupLenth <= counter Then ' Start a new group counter = 0 groupCounter += 1 End If Next ' Return the new DataTable with font-size Return dt End Function ' Function that generate the random sub set Public Shared Function GetRandomSampleTags(ByVal KeyCount As Integer) As MediasTagsDataTable ' Get the data Dim dt As MediasTagsDataTable = GetTags() ' Create a new DataTable that will contains the random set Dim rep As MediasTagsDataTable = New MediasTagsDataTable ' Count the number of row in the new DataTable Dim count As Integer = 0 ' Random number generator Dim rand As New Random() While count < KeyCount Randomize() ' Pick a random row Dim r As Integer = rand.Next(0, dt.Rows.Count - 1) Dim tmpRow As MediasTagsRow = dt(r) ' Import it into the new DataTable rep.ImportRow(tmpRow) ' Remove it from the old one, to be sure not to pick it again dt.Rows.RemoveAt(r) ' Increment the counter count += 1 End While ' Return the new sub set Return rep End Function Pro’s This method is good because it doesn’t require much work to get it work fast. It is a good concept when you are working with small tables, let says less than 100 records. Con’s If you have more than 100 records, out of memory exception may occur since we are coping and duplicating rows. I would consider using a stored procedure instead.

    Read the article

< Previous Page | 53 54 55 56 57 58 59 60 61 62 63 64  | Next Page >