Search Results

Search found 3635 results on 146 pages for 'concurrent collections'.

Page 57/146 | < Previous Page | 53 54 55 56 57 58 59 60 61 62 63 64  | Next Page >

  • Asynchrony in C# 5 (Part II)

    - by javarg
    This article is a continuation of the series of asynchronous features included in the new Async CTP preview for next versions of C# and VB. Check out Part I for more information. So, let’s continue with TPL Dataflow: Asynchronous functions TPL Dataflow Task based asynchronous Pattern Part II: TPL Dataflow Definition (by quote of Async CTP doc): “TPL Dataflow (TDF) is a new .NET library for building concurrent applications. It promotes actor/agent-oriented designs through primitives for in-process message passing, dataflow, and pipelining. TDF builds upon the APIs and scheduling infrastructure provided by the Task Parallel Library (TPL) in .NET 4, and integrates with the language support for asynchrony provided by C#, Visual Basic, and F#.” This means: data manipulation processed asynchronously. “TPL Dataflow is focused on providing building blocks for message passing and parallelizing CPU- and I/O-intensive applications”. Data manipulation is another hot area when designing asynchronous and parallel applications: how do you sync data access in a parallel environment? how do you avoid concurrency issues? how do you notify when data is available? how do you control how much data is waiting to be consumed? etc.  Dataflow Blocks TDF provides data and action processing blocks. Imagine having preconfigured data processing pipelines to choose from, depending on the type of behavior you want. The most basic block is the BufferBlock<T>, which provides an storage for some kind of data (instances of <T>). So, let’s review data processing blocks available. Blocks a categorized into three groups: Buffering Blocks Executor Blocks Joining Blocks Think of them as electronic circuitry components :).. 1. BufferBlock<T>: it is a FIFO (First in First Out) queue. You can Post data to it and then Receive it synchronously or asynchronously. It synchronizes data consumption for only one receiver at a time (you can have many receivers but only one will actually process it). 2. BroadcastBlock<T>: same FIFO queue for messages (instances of <T>) but link the receiving event to all consumers (it makes the data available for consumption to N number of consumers). The developer can provide a function to make a copy of the data if necessary. 3. WriteOnceBlock<T>: it stores only one value and once it’s been set, it can never be replaced or overwritten again (immutable after being set). As with BroadcastBlock<T>, all consumers can obtain a copy of the value. 4. ActionBlock<TInput>: this executor block allows us to define an operation to be executed when posting data to the queue. Thus, we must pass in a delegate/lambda when creating the block. Posting data will result in an execution of the delegate for each data in the queue. You could also specify how many parallel executions to allow (degree of parallelism). 5. TransformBlock<TInput, TOutput>: this is an executor block designed to transform each input, that is way it defines an output parameter. It ensures messages are processed and delivered in order. 6. TransformManyBlock<TInput, TOutput>: similar to TransformBlock but produces one or more outputs from each input. 7. BatchBlock<T>: combines N single items into one batch item (it buffers and batches inputs). 8. JoinBlock<T1, T2, …>: it generates tuples from all inputs (it aggregates inputs). Inputs could be of any type you want (T1, T2, etc.). 9. BatchJoinBlock<T1, T2, …>: aggregates tuples of collections. It generates collections for each type of input and then creates a tuple to contain each collection (Tuple<IList<T1>, IList<T2>>). Next time I will show some examples of usage for each TDF block. * Images taken from Microsoft’s Async CTP documentation.

    Read the article

  • Coherence Data Guarantees for Data Reads - Basic Terminology

    - by jpurdy
    When integrating Coherence into applications, each application has its own set of requirements with respect to data integrity guarantees. Developers often describe these requirements using expressions like "avoiding dirty reads" or "making sure that updates are transactional", but we often find that even in a small group of people, there may be a wide range of opinions as to what these terms mean. This may simply be due to a lack of familiarity, but given that Coherence sits at an intersection of several (mostly) unrelated fields, it may be a matter of conflicting vocabularies (e.g. "consistency" is similar but different in transaction processing versus multi-threaded programming). Since almost all data read consistency issues are related to the concept of concurrency, it is helpful to start with a definition of that, or rather what it means for two operations to be concurrent. Rather than implying that they occur "at the same time", concurrency is a slightly weaker statement -- it simply means that it can't be proven that one event precedes (or follows) the other. As an example, in a Coherence application, if two client members mutate two different cache entries sitting on two different cache servers at roughly the same time, it is likely that one update will precede the other by a significant amount of time (say 0.1ms). However, since there is no guarantee that all four members have their clocks perfectly synchronized, and there is no way to precisely measure the time it takes to send a given message between any two members (that have differing clocks), we consider these to be concurrent operations since we can not (easily) prove otherwise. So this leads to a question that we hear quite frequently: "Are the contents of the near cache always synchronized with the underlying distributed cache?". It's easy to see that if an update on a cache server results in a message being sent to each near cache, and then that near cache being updated that there is a window where the contents are different. However, this is irrelevant, since even if the application reads directly from the distributed cache, another thread update the cache before the read is returned to the application. Even if no other member modifies a cache entry prior to the local near cache entry being updated (and subsequently read), the purpose of reading a cache entry is to do something with the result, usually either displaying for consumption by a human, or by updating the entry based on the current state of the entry. In the former case, it's clear that if the data is updated faster than a human can perceive, then there is no problem (and in many cases this can be relaxed even further). For the latter case, the application must assume that the value might potentially be updated before it has a chance to update it. This almost aways the case with read-only caches, and the solution is the traditional optimistic transaction pattern, which requires the application to explicitly state what assumptions it made about the old value of the cache entry. If the application doesn't want to bother stating those assumptions, it is free to lock the cache entry prior to reading it, ensuring that no other threads will mutate the entry, a pessimistic approach. The optimistic approach relies on what is sometimes called a "fuzzy read". In other words, the application assumes that the read should be correct, but it also acknowledges that it might not be. (I use the qualifier "sometimes" because in some writings, "fuzzy read" indicates the situation where the application actually sees an original value and then later sees an updated value within the same transaction -- however, both definitions are roughly equivalent from an application design perspective). If the read is not correct it is called a "stale read". Going back to the definition of concurrency, it may seem difficult to precisely define a stale read, but the practical way of detecting a stale read is that is will cause the encompassing transaction to roll back if it tries to update that value. The pessimistic approach relies on a "coherent read", a guarantee that the value returned is not only the same as the primary copy of that value, but also that it will remain that way. In most cases this can be used interchangeably with "repeatable read" (though that term has additional implications when used in the context of a database system). In none of cases above is it possible for the application to perform a "dirty read". A dirty read occurs when the application reads a piece of data that was never committed. In practice the only way this can occur is with multi-phase updates such as transactions, where a value may be temporarily update but then withdrawn when a transaction is rolled back. If another thread sees that value prior to the rollback, it is a dirty read. If an application uses optimistic transactions, dirty reads will merely result in a lack of forward progress (this is actually one of the main risks of dirty reads -- they can be chained and potentially cause cascading rollbacks). The concepts of dirty reads, fuzzy reads, stale reads and coherent reads are able to describe the vast majority of requirements that we see in the field. However, the important thing is to define the terms used to define requirements. A quick web search for each of the terms in this article will show multiple meanings, so I've selected what are generally the most common variations, but it never hurts to state each definition explicitly if they are critical to the success of a project (many applications have sufficiently loose requirements that precise terminology can be avoided).

    Read the article

  • An observation on .NET loops – foreach, for, while, do-while

    It’s very common that .NET programmers use “foreach” loop for iterating through collections. Following is my observation whilst I was testing simple scenario on loops. “for” loop is 30% faster than “foreach” and “while” loop is 50% faster than “foreach”. “do-while” is bit faster than “while”. Someone may feel that how does it make difference if I’m iterating only 1000 times in a loop. This test case is only for simple iteration. According to the "Data structure" concepts, best and worst cases are completely based on the data we provide to the algorithm. so we can not conclude that a "foreach" algorithm is not good. All I want to tell that we need to be little cautious even choosing the loops. Example:- You might want to chose quick sort when you want to sort more numbers. At the same time bubble sort may be effective than quick sort when you want to sort less numbers. Take a simple scenario, a request of a simple web application fetches the data of 10000 (10K) rows and iterating them for some business logic. Think, this application is being accessed by 1000 (1K) people simultaneously. In this simple scenario you are ending up with 10000000 (10Million or 1 Crore) iterations. below is the test scenario with simple console application to test 100 Million records. using System;using System.Collections.Generic;using System.Diagnostics;namespace ConsoleApplication1{ class Program { static void Main(string[] args) { var sw = new Stopwatch(); var numbers = GetSomeNumbers(); sw.Start(); foreach (var item in numbers) { } sw.Stop(); Console.WriteLine( String.Format("\"foreach\" took {0} milliseconds", sw.ElapsedMilliseconds)); sw.Reset(); sw.Start(); for (int i = 0; i < numbers.Count; i++) { } sw.Stop(); Console.WriteLine( String.Format("\"for\" loop took {0} milliseconds", sw.ElapsedMilliseconds)); sw.Reset(); sw.Start(); var it = 0; while (it++ < numbers.Count) { } sw.Stop(); Console.WriteLine( String.Format("\"while\" loop took {0} milliseconds", sw.ElapsedMilliseconds)); sw.Reset(); sw.Start(); var it2 = 0; do { } while (it2++ < numbers.Count); sw.Stop(); Console.WriteLine( String.Format("\"do-while\" loop took {0} milliseconds", sw.ElapsedMilliseconds)); } #region Get me 10Crore (100 Million) numbers private static List<int> GetSomeNumbers() { var lstNumbers = new List<int>(); var count = 100000000; for (var i = 1; i <= count; i++) { lstNumbers.Add(i); } return lstNumbers; } #endregion Get me some numbers }} In above example, I was just iterating through 100 Million numbers. You can see the time to execute various  loops provided in .NET Output "foreach" took 1108 milliseconds "for" loop took 727 milliseconds "while" loop took 596 milliseconds "do-while" loop took 594 milliseconds   Press any key to continue . . . So I feel we need to be careful while choosing the looping strategy. Please comment your thoughts. span.fullpost {display:none;}

    Read the article

  • T-SQL Tuesday #15 : Running T-SQL workloads remotely on multiple servers

    - by AaronBertrand
    This month's installment of T-SQL Tuesday is hosted by Pat Wright ( blog | twitter ). Pat says: "So the topic I have chosen for this month is Automation! It can be Automation with T-SQL or with Powershell or a mix of both. Give us your best tips/tricks and ideas for making our lives easier through Automation." In a project we are working on, we've had a need to run concurrent workloads on as many as 100 instances of SQL Server in a test environment. A goal, obviously, is to accomplish this without...(read more)

    Read the article

  • Intel et Nvidia signent un accord de partages de technologies, pour enterrer un procès vieux de deux ans

    Intel et Nvidia signent un accord de partages de certaines de leurs technologies, afin d'enterrer un procès vieux de deux ans Intel vient de s'engager à verser, à l'amiable, la somme de 1.5 milliard de dollars à Nvidia. Pour quelle raison ? Afin de clôturer un litige qui avait débuté en février 2009 suite à une plainte d'Intel contre Nvidia (affirmant que son concurrent ne possédait pas la licence nécessaire pour fabriquer des chipsets de carte-mère pour ses derniers processeurs. L'affaire s'était poursuivie avec une contre-plainte de Nvidia, qui retirait à Intel l'accès à certains de ses brevets concernant les processeurs graphiques tout en invoquant une rupture de contrat. Et tout ceci s'était, bien sur, envenimé par voie ...

    Read the article

  • Peut-on réaliser un bon design Web sans Web-designer ? Quelques pistes de réflexions pour tenter d'y arriver

    Le design des sites aujourd'hui est un point "critique". Et bien souvent les utilisateurs préfèreront un "beau" site à son concurrent moins "évolué" graphiquement. Malheureusement, il n'est pas toujours possible d'avoir à ses côtés un web designer. Dans ce cas, il faut se retrousser les manches et tenter de faire du mieux que l'on peut. Savoir créer un design attrayant ne s'apprend pas en quelques lignes. Cependant voici un petit guide pour débutant qui vous aidera dans la création de votre graphisme. Les contraintes sont nécessaires Même si ça peut sembler contre-intuitif, un bon design part toujours de contraintes bien établies. Si vous pensez que votre projet n'...

    Read the article

  • Windows 8 débutera timidement pour décoller en 2014, selon Forrester, qui met en évidence l'hétérogénéité du marché global des OS

    Windows 8 débutera timidement pour décoller en 2014 selon Forrester, qui met en évidence l'hétérogénéité du marché global des OS À quelques jours de la sortie grand public de Windows 8, le cabinet d'analyse Forrester livre sa vision du futur de l'OS de Microsoft. Selon l'analyste Frank Gillett, vice-président du cabinet Forrester Research, le système d'exploitation va démarrer de façon timide en 2013 sur les PC, puis les ventes vont décoller en 2014. Par contre, Microsoft se positionnera simplement comme un concurrent sur le marché des tablettes et comme un troisième acteur dans le secteur de mobile, loin derrière Android et l'iPhone. Pour Franck Gillett, Microsoft...

    Read the article

  • Google devrait-il arrêter le développement de Chrome OS ? La séparation des équipes de Chrome et Android est jugée "stupide"

    Google devrait-il abandonner le développement de Chrome OS ? Un analyste de Bloomberg vient de publier un billet de blog plutôt provocateur. Il y traite Google d'imbécile, du fait de son organisation interne relative au développement de ses deux systèmes d'exploitation. En effet, il faut savoir qu'à Mountain View, une équipe travaille sur Chrome OS, tandis que l'autre s'occupe d'Android. Et ces deux groupes ne collaborent absolument pas, il régnerait même entre eux un fort esprit de compétition, d'après certains salariés de la firme. Pourtant, d'après Brad Stone, Android a largement démontré sa supériorité et sa plus grande popularité que son "concurrent" interne. Il estime donc que le staff ...

    Read the article

  • Google offre son codec video VP8 sous licence open source, Firefox l'intègre déjà

    Google offre son codec video VP8 sous licence open source, Firefox l'intègre déjà A l'occasion d'I/O (Innovation et Ouverture), sa conférence annuelle pour les développeurs, Google a fait plusieurs annonces importantes. Il a ainsi révélé que son codec vidéo VP8 sera désormais disponible en open source et sans royalties. Il s'agit d'un concurrent libre, en opposition aux technologies propriétaires comme H.264, permettant un encodage vidéo de qualité pour une consommation de bande passante limitée. Tout ceci fait partie d'un projet autrement plus vaste, WebM, dont le but est la création d'un format multimédia ouvert hautement qualitatif. Pour cela, les d...

    Read the article

  • C redevient le langage le plus utilisé devant Java et C++, d'après le classement des langages de pro

    Le C redevient le langage de programmation le plus utilisé Devant Java et le C++, d'après TIOBE Software TIOBE Software publie chaque mois son classement (le TIOBE Programming Community index) des langages de programmation. D'après cet index, pour la première fois depuis 4 ans, Java perd sa place de langage le plus populaire au profit du C qui retrouve donc le top du classement. Le C "est assez constant au fil des années, il varie entre 15% et 20% de parts de marché depuis presque 10 ans. Donc, la raison principale de cette place de numéro 1 n'est pas une progression du C, mais plutôt la baisse de son concurrent Java", explique l'analyse qui accompagne ce ...

    Read the article

  • Using XA Transactions in Coherence-based Applications

    - by jpurdy
    While the costs of XA transactions are well known (e.g. increased data contention, higher latency, significant disk I/O for logging, availability challenges, etc.), in many cases they are the most attractive option for coordinating logical transactions across multiple resources. There are a few common approaches when integrating Coherence into applications via the use of an application server's transaction manager: Use of Coherence as a read-only cache, applying transactions to the underlying database (or any system of record) instead of the cache. Use of TransactionMap interface via the included resource adapter. Use of the new ACID transaction framework, introduced in Coherence 3.6.   Each of these may have significant drawbacks for certain workloads. Using Coherence as a read-only cache is the simplest option. In this approach, the application is responsible for managing both the database and the cache (either within the business logic or via application server hooks). This approach also tends to provide limited benefit for many workloads, particularly those workloads that either have queries (given the complexity of maintaining a fully cached data set in Coherence) or are not read-heavy (where the cost of managing the cache may outweigh the benefits of reading from it). All updates are made synchronously to the database, leaving it as both a source of latency as well as a potential bottleneck. This approach also prevents addressing "hot data" problems (when certain objects are updated by many concurrent transactions) since most database servers offer no facilities for explicitly controlling concurrent updates. Finally, this option tends to be a better fit for key-based access (rather than filter-based access such as queries) since this makes it easier to aggressively invalidate cache entries without worrying about when they will be reloaded. The advantage of this approach is that it allows strong data consistency as long as optimistic concurrency control is used to ensure that database updates are applied correctly regardless of whether the cache contains stale (or even dirty) data. Another benefit of this approach is that it avoids the limitations of Coherence's write-through caching implementation. TransactionMap is generally used when Coherence acts as system of record. TransactionMap is not generally compatible with write-through caching, so it will usually be either used to manage a standalone cache or when the cache is backed by a database via write-behind caching. TransactionMap has some restrictions that may limit its utility, the most significant being: The lock-based concurrency model is relatively inefficient and may introduce significant latency and contention. As an example, in a typical configuration, a transaction that updates 20 cache entries will require roughly 40ms just for lock management (assuming all locks are granted immediately, and excluding validation and writing which will require a similar amount of time). This may be partially mitigated by denormalizing (e.g. combining a parent object and its set of child objects into a single cache entry), at the cost of increasing false contention (e.g. transactions will conflict even when updating different child objects). If the client (application server JVM) fails during the commit phase, locks will be released immediately, and the transaction may be partially committed. In practice, this is usually not as bad as it may sound since the commit phase is usually very short (all locks having been previously acquired). Note that this vulnerability does not exist when a single NamedCache is used and all updates are confined to a single partition (generally implying the use of partition affinity). The unconventional TransactionMap API is cumbersome but manageable. Only a few methods are transactional, primarily get(), put() and remove(). The ACID transactions framework (accessed via the Connection class) provides atomicity guarantees by implementing the NamedCache interface, maintaining its own cache data and transaction logs inside a set of private partitioned caches. This feature may be used as either a local transactional resource or as logging XA resource. However, a lack of database integration precludes the use of this functionality for most applications. A side effect of this is that this feature has not seen significant adoption, meaning that any use of this is subject to the usual headaches associated with being an early adopter (greater chance of bugs and greater risk of hitting an unoptimized code path). As a result, for the moment, we generally recommend against using this feature. In summary, it is possible to use Coherence in XA-oriented applications, and several customers are doing this successfully, but it is not a core usage model for the product, so care should be taken before committing to this path. For most applications, the most robust solution is normally to use Coherence as a read-only cache of the underlying data resources, even if this prevents taking advantage of certain product features.

    Read the article

  • Optimum Number of Parallel Processes

    - by System Down
    I just finished coding a (basic) ray tracer in C# for fun and for the learning experience. Now I want to further that learning experience. It seems to me that ray tracing is a prime candidate for parallel processing, which is something I have very little experience in. My question is this: how do I know the optimum number of concurrent processes to run? My first instinct tells me: it depends on how many cores my processor has, but like I said I'm new to this and I may be neglecting something.

    Read the article

  • Le code source du malware ultra - sophistiqué Carberp disponible en téléchargement, un bazooka entre les mains d'apprentis développeurs pour un expert

    Le nouveau malware bancaire ultra-sophistiqué « Carberp » défie Zeus De plus en plus de malwares ciblent Mozilla FirefoxZeus, Le cheval de Troie dont un des buts principaux est l'usurpation d'informations bancaires par Keylogging (enregistrement de frappe) n'a qu'à bien se tenir. Un sérieux concurrent vient de lui déclarer la guerre.Encore indétectable par 5 des 6 antivirus les plus répandus, il fait des ravages pour piller les comptes en banques en Europe et en Amérique au profit d'un groupe de criminels.Baptisé « Carberp », il met en action des mécanismes identiques à ceux de Zeus et cible les systèmes et navigateurs les plus populaires, à savoir Windows 7, Vista et XP, Internet Explorer et Moz...

    Read the article

  • Le code source du malware ultrasophistiqué Carberp disponible en téléchargement, un bazooka entre les mains d'apprentis développeurs pour un expert

    Le nouveau malware bancaire ultra-sophistiqué « Carberp » défie Zeus De plus en plus de malwares ciblent Mozilla FirefoxZeus, Le cheval de Troie dont un des buts principaux est l'usurpation d'informations bancaires par Keylogging (enregistrement de frappe) n'a qu'à bien se tenir. Un sérieux concurrent vient de lui déclarer la guerre.Encore indétectable par 5 des 6 antivirus les plus répandus, il fait des ravages pour piller les comptes en banques en Europe et en Amérique au profit d'un groupe de criminels.Baptisé « Carberp », il met en action des mécanismes identiques à ceux de Zeus et cible les systèmes et navigateurs les plus populaires, à savoir Windows 7, Vista et XP, Internet Explorer et Moz...

    Read the article

  • SQLBits 9 goes to Liverpool

    SQLBits 9 has now been announced as 29th September to 1st October 2011 at the Adelphi Hotel in Liverpool. This will follow the now familiar three day format, a training day, and two full days of concurrent sessions. Saturday 1st October will of course be the free community day. Despite growing the event quite dramatically over the past four years, this is something we are all very proud to have maintained and is a key factor when planning the events. Plenty of more info to come, but in the meantime session submission is now open so why not submit an abstract?

    Read the article

  • SkyDrive : Microsoft sort l'application Android pour son espace de stockage Cloud compatible Windows, Mac, iOS et Windows Phone

    SkyDrive : Microsoft sort l'application Android pour son espace de stockage Concurrent de DropBox et de Google Drive, également disponible sur Windows, OS X, iOS et Windows Phone Chose promise, chose due. L'application pour Android de SkyDrive, le service de stockage Cloud de Microsoft, est arrivée. Plus besoin de passer par le navigateur et de se connecter au service Web pour synchroniser et/ou sauvegarder des documents avec cet outil. Pour mémoire, SkyDrive est la plateforme Cloud de Microsoft qui vise à concurrencer Google Drive et des services comme DropBox ou hubiC de OVH. L'out...

    Read the article

  • CRM Webcast: Territory Setup and Manage Matching Attributes

    - by LuciaC
    Subject:  Territory Setup and Manage Matching Attributes Date: July 9, 2013 at 1pm ET, 12pm CT, 11am MT, 10am PT, 6pm, BST (London, GMT+01:00), 10:30 pm IST (Mumbai, GMT+05:30)Territories are used in a number of different EBS CRM applications, including Sales, Field Service and Service Contracts.  If you want to know more about how territories work and how to set them up, join our experts in this webcast.  The webcast will a demonstrate a high level setup for one of the Sales products and examples of how other applications use the Territory Manager. Topics will include: Enabling Matching Attributes Custom Matching Attributes Examples for Account, Leads, Quote, Proposals, Opportunities in the Sales product. Running Concurrent Requests Details & Registration: Doc ID 1544622.1

    Read the article

  • Row Versioning Concurrency in SQL Server

    The optimistic concurrency model assumes that several concurrent transactions can usually complete without interfering with each other, and therefore do not require draconian locking on the resources they access. SQL Server 2005, and later, implements a form of this model called row versioning concurrency. It works by remembering the value of the data at the start of the transaction and checking that no other transaction has modified it before committing. If this optimism is justified for the pattern of activity within a database, it can improve performance by greatly reducing blocking. Kalen Delaney explains how it works in SQL Server.

    Read the article

  • SAP rachète Sybase pour 4.6 milliards d'euros, quels changements pour le marché des logiciels ?

    SAP rachète Sybase pour 4.6 milliards d'euros, quels changements pour le marché des logiciels ? SAP, groupe allemand numéro un mondial des logiciels de gestion, vient de réaliser une grosse opération. Il vient en effet de racheter son concurrent américain Sybase (numéro quatre mondial des logiciels de bases de données) pour la coquette somme de 5.8 milliards de dollars (4.6 milliards d'euros). La transaction, qui n'a pas encore été effectuée et devrait être finalisée courant septembre 2010, consistera en le rachat par SAP des actions en numéraire de Sybase (65 dollars chaque, ce qui représente une prime de 44% par rapport au cours moyen de l'action sur trois mois et une prime avoisinant les 16% sur le cours de clôture de l'entrepr...

    Read the article

  • L'Android Market réduit l'écart qui le sépare de l'AppStore, les deux boutiques seront-elles bientôt à égalité ?

    L'Android Market réduit l'écart qui le sépare de l'AppStore, les deux boutiques seront-elles bientôt à égalité ? Selon le "graphique de la semaine" publié par Business Insider il y a quelques jours, Google est en train de réduire l'écart qui sépare son Android Market de l'AppStore d'Apple. Car si la boutique en ligne de la firme à la Pomme domine toujours en volume de contenus (350.000 applications contre 250.000 pour son concurrent), celle de Google se développe beaucoup plus vite. Le taux d'ajout de nouveaux logiciels est largement supérieur et bien plus rapide à Mountain View. Source : Graphic of the Week : [IMG]http://static2.businessinsider.com/image/4d77cf91cadcbb8933010000/chart...

    Read the article

  • Oracle s'associe à Nokia pour utiliser ses cartes dans ses applications d'entreprise, bonne nouvelle pour le Finlandais

    Oracle s'associe à Nokia pour utiliser ses cartes Dans ses applications d'entreprise, bonne nouvelle pour le Finlandais A mesure que la mobilité monte en puissance, les services de cartographie deviennent de plus en plus stratégique. En témoigne le récent abandon des Googles Maps par Apple dans iOS. Apple qui ne pouvait pas longtemps dépendre d'un concurrent dans ce domaine. Mais ce mouvement ne concerne pas que le grand public. Loin de là. Les CRM par exemple, sont de plus en plus portés sur tablette et les outils de BI prennent de plus en plus en compte des problématiques géospatiales (implantation de maga...

    Read the article

  • SSH / SFTP connection issue using Tamir.SharpSsh

    - by jinsungy
    This is my code to connect and send a file to a remote SFTP server. public static void SendDocument(string fileName, string host, string remoteFile, string user, string password) { Scp scp = new Scp(); scp.OnConnecting += new FileTansferEvent(scp_OnConnecting); scp.OnStart += new FileTansferEvent(scp_OnProgress); scp.OnEnd += new FileTansferEvent(scp_OnEnd); scp.OnProgress += new FileTansferEvent(scp_OnProgress); try { scp.To(fileName, host, remoteFile, user, password); } catch (Exception e) { throw e; } } I can successfully connect, send and receive files using CoreFTP. Thus, the issue is not with the server. When I run the above code, the process seems to stop at the scp.To method. It just hangs indefinitely. Anyone know what might my problem be? Maybe it has something to do with adding the key to the a SSH Cache? If so, how would I go about this? EDIT: I inspected the packets using wireshark and discovered that my computer is not executing the Diffie-Hellman Key Exchange Init. This must be the issue. EDIT: I ended up using the following code. Note, the StrictHostKeyChecking was turned off to make things easier. JSch jsch = new JSch(); jsch.setKnownHosts(host); Session session = jsch.getSession(user, host, 22); session.setPassword(password); System.Collections.Hashtable hashConfig = new System.Collections.Hashtable(); hashConfig.Add("StrictHostKeyChecking", "no"); session.setConfig(hashConfig); try { session.connect(); Channel channel = session.openChannel("sftp"); channel.connect(); ChannelSftp c = (ChannelSftp)channel; c.put(fileName, remoteFile); c.exit(); } catch (Exception e) { throw e; } Thanks.

    Read the article

  • Hopcroft–Karp algorithm in Python

    - by Simon
    I am trying to implement the Hopcroft Karp algorithm in Python using networkx as graph representation. Currently I am as far as this: #Algorithms for bipartite graphs import networkx as nx import collections class HopcroftKarp(object): INFINITY = -1 def __init__(self, G): self.G = G def match(self): self.N1, self.N2 = self.partition() self.pair = {} self.dist = {} self.q = collections.deque() #init for v in self.G: self.pair[v] = None self.dist[v] = HopcroftKarp.INFINITY matching = 0 while self.bfs(): for v in self.N1: if self.pair[v] and self.dfs(v): matching = matching + 1 return matching def dfs(self, v): if v != None: for u in self.G.neighbors_iter(v): if self.dist[ self.pair[u] ] == self.dist[v] + 1 and self.dfs(self.pair[u]): self.pair[u] = v self.pair[v] = u return True self.dist[v] = HopcroftKarp.INFINITY return False return True def bfs(self): for v in self.N1: if self.pair[v] == None: self.dist[v] = 0 self.q.append(v) else: self.dist[v] = HopcroftKarp.INFINITY self.dist[None] = HopcroftKarp.INFINITY while len(self.q) > 0: v = self.q.pop() if v != None: for u in self.G.neighbors_iter(v): if self.dist[ self.pair[u] ] == HopcroftKarp.INFINITY: self.dist[ self.pair[u] ] = self.dist[v] + 1 self.q.append(self.pair[u]) return self.dist[None] != HopcroftKarp.INFINITY def partition(self): return nx.bipartite_sets(self.G) The algorithm is taken from http://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm However it does not work. I use the following test code G = nx.Graph([ (1,"a"), (1,"c"), (2,"a"), (2,"b"), (3,"a"), (3,"c"), (4,"d"), (4,"e"),(4,"f"),(4,"g"), (5,"b"), (5,"c"), (6,"c"), (6,"d") ]) matching = HopcroftKarp(G).match() print matching Unfortunately this does not work, I end up in an endless loop :(. Can someone spot the error, I am out of ideas and I must admit that I have not yet fully understand the algorithm, so it is mostly an implementation of the pseudo code on wikipedia

    Read the article

  • Most useful free .NET libraries?

    - by Binoj Antony
    I have used a lot of free .NET libraries, some from Microsoft itself! Which ones have you found the most useful? Dependency Injection/Inversion of Control Unity Framework - Microsoft StructureMap - Jeremy Miller Castle Windsor NInject Spring Framework Autofac Managed Extensibility Framework Logging Logging Application Block - Microsoft Log4Net - Apache Error Logging Modules and Handlers(ELMAH) NLog Compression SharpZipLib DotNetZip YUI Compressor (CSS and JS compression/minification) AjaxMinifier (in other downloads) (JS compression. Also includes MSBuild task) Ajax Ajax Control Toolkit - Microsoft AJAXNet Pro Data Mapper XmlDataMapper AutoMapper ORM NHibernate Castle ActiveRecord Subsonic XmlDataMapper Charting/Graphics Microsoft Chart Controls for ASP.NET 3.5 SP1 Microsoft Chart Controls for Winforms ZedGraph Charting NPlot - Charting for ASP.NET and WinForms PDF Creators/Generators PDFsharp iTextSharp Unit Testing/Mocking NUnit Rhino Mocks Moq TypeMock.Net xUnit.net mbUnit Machine.Specifications Automated Web Testing Selenium Watin URL Rewriting url rewriter UrlRewriting.Net Url Rewriter and Reverse Proxy - Managed Fusion Controls Krypton - Free winform controls Source Grid - A Grid control Devexpress - free controls Unclassified CSLA Framework - Business Objects Framework AForge.net - AI, computer vision, genetic algorithms, machine learning Enterprise Library 4.1 - Logging, Exception Management, Validation, Policy Injection File helpers library C5 Collections - Collections for .NET Quartz.NET - Enterprise Job Scheduler for .NET Platform MiscUtil - Utilities by Jon Skeet Lucene.net - Text indexing and searching Json.NET - Linq over JSON Flee - expression evaluator PostSharp - AOP IKVM - brings the extensive world of Java libraries to .NET. Title of the question taken from here. [EDIT] Please provide links to these free libraries as well. Once we have a huge list of this, it can be arranged in categories! Please do not mention .NET Applications/EXEs here.

    Read the article

  • Rally Rest .NET API throws KeyNotFoundException when posting a new defect without required field value

    - by Triet Pham
    I've tried to post a new defect to Rally via Rest .net api by the following code: var api = new RallyRestApi("<myusername>", "<mypassword>", "https://community.rallydev.com"); var defect = new DynamicJsonObject(); defect["Name"] = "Sample Defect"; defect["Description"] = "Test posting defect without required field value"; defect["Project"] = "https://trial.rallydev.com/slm/webservice/1.29/project/5808130051.js"; defect["SubmittedBy"] = "https://trial.rallydev.com/slm/webservice/1.29/user/5797741589.js"; defect["ScheduleState"] = "In-Progress"; defect["State"] = "Open"; CreateResult creationResult = api.Create("defect", defect); But the api throws a weird exception: System.Collections.Generic.KeyNotFoundException was unhandled Message=The given key was not present in the dictionary. Source=mscorlib StackTrace: at System.Collections.Generic.Dictionary`2.get_Item(TKey key) at Rally.RestApi.DynamicJsonObject.GetMember(String name) at Rally.RestApi.DynamicJsonObject.TryGetMember(GetMemberBinder binder, Object& result) at CallSite.Target(Closure , CallSite , Object ) at System.Dynamic.UpdateDelegates.UpdateAndExecute1[T0,TRet](CallSite site, T0 arg0) at Rally.RestApi.RallyRestApi.Create(String type, DynamicJsonObject obj) at RallyIntegrationSample.Program.Main(String[] args) in D:\Projects\qTrace\References\Samples\RallyIntegrationSample\Program.cs:line 24 The problem is when i checked out the trace log file of Rally, it showed exactly what wrong in the posting request: Rally.RestApi Post Response: { "CreateResult": { "_rallyAPIMajor":"1", "_rallyAPIMinor":"29", "Errors":["Validation error: Defect.Severity should not be null"], "Warnings":[] } } Instead of given the proper CreateResult object with according errors information in its property, the Rally Rest .Net Api throws an unexpected exception. Is that a mistake in Rally rest .net api or should i do any extra steps to get the CreatResult seamlessly in case of any errors returned by Rally service? Many thanks for your helps.

    Read the article

< Previous Page | 53 54 55 56 57 58 59 60 61 62 63 64  | Next Page >