Search Results

Search found 39613 results on 1585 pages for 'large object heap'.

Page 57/1585 | < Previous Page | 53 54 55 56 57 58 59 60 61 62 63 64  | Next Page >

  • How should I define my Java Objects?

    - by HonorGod
    I have a data grid where I sort of show the following information - All Guests Total Adults = 22 Total Children = 27 Confirmed Total Adults = 9 Total Children = 13 Country = Germany Total Adults = 5 Total Childres = 6 Friends Adults = 2 Children = 2 Relatives Adults = 3 Children = 4 Country = USA Total Adults = 4 Total Childres = 7 Friends Adults = 2 Children = 5 Relatives Adults = 2 Children = 2 Tentative Total Adults = 13 Total Children - 14 Country = Australia Total Adults = 7 Total Childres = 8 Friends Adults = 2 Children = 3 Relatives Adults = 5 Children = 5 Country = China Total Adults = 6 Total Childres = 6 Friends Adults = 2 Children = 4 Relatives Adults = 4 Children = 2 And in the database what I have is data at the lowest level which is Friends / Relatives and the corresponding countries set as a look-up value which in indirectly connected to another look-up that can tell me if they fall under confirmed or tentative. I guess my question is how do I layout my Java Object and perform the aggregations and give it back to the client. I am not sure if I am clear with my question, but feel free to comment so I can update the question accordingly.

    Read the article

  • Rotate an object given only by its points?

    - by d33tah
    I was recently writing a simple 3D maze FPP game. Once I was done fiddling with planes in OpenGL, I wanted to add support for importing Blender objects. The approach I used was triangulization of the object, then using Three.js to export the points to plaintext and then parsing the result JSON in my app. The example file can be seen here: https://github.com/d33tah/tinyfpp/blob/master/Data/Models/cross.txt The numbers represent x,y,z,u,v of a single vertex, which combined in three make a triangle. Then I rendered such an object triangle-by-triangle and played with it. I could move it back and forth and sideways, but I still have no idea how to rotate it by some axis. Let's say I'd like to rotate all the points by five degrees to the left, how would a code doing it look like?

    Read the article

  • Settings object with singleton pattern

    - by axis
    I need to build an object that will have only one instance because this Object is dedicated to the storage of vital settings for my application and I would like to avoid a misuse of this type or a conflict at run-time. The most popular solution for this, according to the internet, is the Singleton pattern. But I would like to know about other ideas or solutions for this; also I would like to know if other solutions can be much more easy to grasp for an user of this hypothetical library. Thanks.

    Read the article

  • Where would a senior PHP developer locate the method getActiveEntries()?

    - by darga33
    I have a class named GuestbookEntry that maps to the properties that are in the database table named "guestbook". Very simple! Originally, I had a static method named getActiveEntries() that retrieved an array of all GuestbookEntry objects. Each row in the guestbook table was an object that was added to that array. Then while learning how to properly design PHP classes, I learned some things: Static methods are not desirable. Separation of Concerns Single Responsibility Principle If the GuestbookEntry class should only be responsible for managing single guestbook entries then where should this getActiveEntries() method most properly go? Update: I am looking for an answer that complies with the SOLID acronym principles and allows for test-ability. That's why I want to stay away from static calls/standard functions. DAO, repository, ...? Please explain as though your explanation will be part of "Where to Locate FOR DUMMIES"... :-)

    Read the article

  • Is there an imperative language with a Haskell-like type system?

    - by Graham Kaemmer
    I've tried to learn Haskell a few times over the last few years, and, maybe because I know mainly scripting languages, the functional-ness of it has always bothered me (monads seem like a huge mess for doing lots of I/O). However, I think it's type system is perfect. Reading through a guide to Haskell's types and typeclasses (like this), I don't really see a reason why they would require a functional language, and furthermore, they seem like they would be perfect for an industry-grade object-oriented language (like Java). This all begs the question: has anyone ever taken Haskell's typing system and made a imperative, OOP language with it? If so, I want to use it.

    Read the article

  • How to separate and maintain customer specific code

    - by WYSIWYG
    I am implementing customer specific code and currently following simple approach like if (cusomterId == 23) do it. I want to separate out all the customer related code in separate place. But I have following problems. In code is in 1. Stored procs 2. Plain old classes. 3. Controllers 4. Views I came up with two solutions. First is to create table CustomerFunctionlity with columns CustomerId, FunctionalityName, method/Proc, inputs/outputs With this table I can simply check if exists, execute given function. Another way is creating a factory which returns customer related object for an interface. I am writting small end to end customer specific functionalities. How can I write maintenable code. Thanks

    Read the article

  • Name for this antipattern? Fields as local variables

    - by JSB????
    In some code I'm reviewing, I'm seeing stuff that's the moral equivalent of the following: public class Foo { private Bar bar; public MethodA() { bar = new Bar(); bar.A(); bar = null; } public MethodB() { bar = new Bar(); bar.B(); bar = null; } } The field bar here is logically a local variable, as its value is never intended to persist across method calls. However, since many of the methods in Foo need an object of type Bar, the original code author has just made a field of type Bar. This is obviously bad, right? Is there a name for this antipattern?

    Read the article

  • How to deal with OOP design problems in interviews?

    - by haps10
    This is a question where I seek guidance from fellow/senior developers to get into my dream company - it's a pioneer in OOP and Agile. I've already failed once to clear an interview. One part I feel most challenging is to come up with a proper Object Oriented design(classes, interfaces, methods, interactions etc.) in a very short time for certain situations like Pacman, Game Of Life and so on. As the problems are unprecedented ones - my approach is mostly to try different things and then make decisions - which they feel is not clear and not what they expect from a developer with 5+ years of experience. I've already studied a few books on patterns, OOP - it didn't help me much and I think it'll take a bit more than that. Could some one please guide on what specifically shall I practice so that I can do better at design problems as above. I want to refine my approach and have a better thought process.

    Read the article

  • Binary diff/patch for large files on linux?

    - by thejh
    I've got two partition images (A and B) and want to use them to create a patch that I can apply on A on another computer in order to get the new B image without flooding the network. I have the following requirements: works on linux can create diffs can use diffs to patch files can handle binary files can handle large files (a few hundred GB should work) no user interaction required (just a console application) ideally, should be able to read from/write to pipes (so that I can pipe into it from a gzip-compressed file and write to one) Does something like that exist?

    Read the article

  • How to check if JavaScript object is JSON

    - by Wei Hao
    I have a nested JSON object that I need to loop through, and the value of each key could be a String, JSON array or another JSON object. Depending on the type of object, I need to carry out different operations. Is there any way I can check the type of the object to see if it is a String, JSON object or JSON array? I tried using typeof and instanceof but both didn't seem to work, as typeof will return an object for both JSON object and array, and instanceof gives an error when I do obj instanceof JSON. To be more specific, after parsing the JSON into a JS object, is there any way I can check if it is a normal string, or an object with keys and values (from a JSON object), or an array (from a JSON array)? For example: JSON var data = {"hi": {"hello": ["hi1","hi2"] }, "hey":"words" } JavaScript var jsonObj = JSON.parse(data); var level1 = jsonObj.hi; var text = jsonObj.hey; var arr = level1.hello; //how to check if level1 was formerly a JSON object? //how to check if arr was formerly a JSON array? //how to check if text is a string?

    Read the article

  • Help with Java Generics: Cannot use "Object" as argument for "? extends Object"

    - by AniDev
    Hello, I have the following code: import java.util.*; public class SellTransaction extends Transaction { private Map<String,? extends Object> origValueMap; public SellTransaction(Map<String,? extends Object> valueMap) { super(Transaction.Type.Sell); assignValues(valueMap); this.origValueMap=valueMap; } public SellTransaction[] splitTransaction(double splitAtQuantity) { Map<String,? extends Object> valueMapPart1=origValueMap; valueMapPart1.put(nameMappings[3],(Object)new Double(splitAtQuantity)); Map<String,? extends Object> valueMapPart2=origValueMap; valueMapPart2.put(nameMappings[3],((Double)origValueMap.get(nameMappings[3]))-splitAtQuantity); return new SellTransaction[] {new SellTransaction(valueMapPart1),new SellTransaction(valueMapPart2)}; } } The code fails to compile when I call valueMapPart1.put and valueMapPart2.put, with the error: The method put(String, capture#5-of ? extends Object) in the type Map is not applicable for the arguments (String, Object) I have read on the Internet about generics and wildcards and captures, but I still don't understand what is going wrong. My understanding is that the value of the Map's can be any class that extends Object, which I think might be redundant, because all classes extend Object. And I cannot change the generics to something like ? super Object, because the Map is supplied by some library. So why is this not compiling? Also, if I try to cast valueMap to Map<String,Object>, the compiler gives me that 'Unchecked conversion' warning. Thanks!

    Read the article

  • Is it true that in most Object Oriented Programming Languages, an "i" in an instance method always r

    - by Jian Lin
    In the following code: <script type="text/javascript"> var i = 10; function Circle(radius) { this.r = radius; this.i = radius; } Circle.i = 123; Circle.prototype.area = function() { alert(i); } var c = new Circle(1); var a = c.area(); </script> What is being alerted? The answer is at the end of this question. I found that the i in the alert call either refers to any local (if any), or the global variable. There is no way that it can be the instance variable or the class variable even when there is no local and no global defined. To refer to the instance variable i, we need this.i, and to the class variable i, we need Circle.i. Is this actually true for almost all Object oriented programming languages? Any exception? Are there cases that when there is no local and no global, it will look up the instance variable and then the class variable scope? (or in this case, are those called scope?) the answer is: 10 is being alerted.

    Read the article

  • Convert enumerated records to php object

    - by Matt H
    I have a table containing a bunch of records like this: +-----------+--------+----------+ | extension | fwd_to | type | +-----------+--------+----------+ | 800 | 11111 | noanswer | | 800 | 12345 | uncond | | 800 | 22222 | unavail | | 800 | 54321 | busy | | 801 | 123 | uncond | +-----------+--------+----------+ etc The query looks like this: select fwd_to, type from forwards where extension='800'; Now I get back an array containing objects which look like the following when printed with Kohana::debug: (object) stdClass Object ( [fwd_to] => 11111 [type] => noanswer ) (object) stdClass Object ( [fwd_to] => 12345 [type] => uncond ) (object) stdClass Object ( [fwd_to] => 22222 [type] => unavail ) (object) stdClass Object ( [fwd_to] => 54321 [type] => busy ) What I'd like to do is convert this to an object of this form: (object) stdClass Object ( [busy] => 54321 [uncond] => 12345 [unavail] => 22222 [noanswer] => 11111 ) The reason being I want to then call json_encode on it. This will allow me to use jquery populate to populate a form. Is there a suggested way I can do this nicely? I'm fairly new to PHP and I'm sure this is easy but it's eluding me at the moment.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Simple form validation. Object-oriented.

    - by kalininew
    Problem statement: It is necessary for me to write a code, whether which before form sending will check all necessary fields are filled. If not all fields are filled, it is necessary to allocate with their red colour and not to send the form. Now the code exists in such kind: function formsubmit(formName, reqFieldArr){ var curForm = new formObj(formName, reqFieldArr); if(curForm.valid) curForm.send(); else curForm.paint(); } function formObj(formName, reqFieldArr){ var filledCount = 0; var fieldArr = new Array(); for(i=reqFieldArr.length-1; i>=0; i--){ fieldArr[i] = new fieldObj(formName, reqFieldArr[i]); if(fieldArr[i].filled == true) filledCount++; } if(filledCount == fieldArr.length) this.valid = true; else this.valid = false; this.paint = function(){ for(i=fieldArr.length-1; i>=0; i--){ if(fieldArr[i].filled == false) fieldArr[i].paintInRed(); else fieldArr[i].unPaintInRed(); } } this.send = function(){ document.forms[formName].submit(); } } function fieldObj(formName, fName){ var curField = document.forms[formName].elements[fName]; if(curField.value != '') this.filled = true; else this.filled = false; this.paintInRed = function(){ curField.addClassName('red'); } this.unPaintInRed = function(){ curField.removeClassName('red'); } } Function is caused in such a way: <input type="button" onClick="formsubmit('orderform', ['name', 'post', 'payer', 'recipient', 'good'])" value="send" /> Now the code works. But I would like to add "dynamism" in it. That it is necessary for me: to keep an initial code essentially, to add listening form fields (only necessary for filling). For example, when the field is allocated by red colour and the user starts it to fill, it should become white. As a matter of fact I need to add listening of events: onChange, blur for the blank fields of the form. As it to make within the limits of an initial code. If all my code - full nonsense, let me know about it. As to me it to change using object-oriented the approach.

    Read the article

  • Serialize JavaScript's navigator object

    - by kappa
    Hi, I'm creating a page to help diagnose the problem our users are experiencing with our web pages (you know, asking a user "What browser are you using?" usually leads to "Internet"). This page already submits to me all the HTTP headers and now I'm trying to have JavaScript give some more informations, so I thought it would be great to have the user's navigator JavaScript object and I started looking how to serialize it so I can submit it through a form. The problem is I'm not able to serialize the navigator object using any JSON library I know of, everyone returns an empty object (?!), so I decided to write an ad-hoc serializer. You can find the code here: <!DOCTYPE html> <html> <head> <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.5.0/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> function serialize (object) { var type = typeof object; if (object === null) { return '"nullValue"'; } if (type == 'string' || type === 'number' || type === 'boolean') { return '"' + object + '"'; } else if (type === 'function') { return '"functionValue"'; } else if (type === 'object') { var output = '{'; for (var item in object) { if (item !== 'enabledPlugin') { output += '"' + item + '":' + serialize(object[item]) + ','; } } return output.replace(/\,$/, '') + '}'; } else if (type === 'undefined') { return '"undefinedError"'; } else { return '"unknownTypeError"'; } }; $(document).ready(function () { $('#navigator').text(serialize(navigator)); }); </script> <style type="text/css"> #navigator { font-family: monospaced; } </style> <title>Serialize</title> </head> <body> <h1>Serialize</h1> <p id="navigator"></p> </body> </html> This code seems to work perfectly in Firefox, Opera, Chrome and Safari but (obviously) doesn't work in Internet Explorer (at least version 8.0), it complains that "Property or method not supported by the object" at line for (var item in object) {. Do you have any hint on how to fix the code or how to reach the goal (serialize the navigator object) by other means?

    Read the article

  • C#: Object having two constructors: how to limit which properties are set together?

    - by Dr. Zim
    Say you have a Price object that accepts either an (int quantity, decimal price) or a string containing "4/$3.99". Is there a way to limit which properties can be set together? Feel free to correct me in my logic below. The Test: A and B are equal to each other, but the C example should not be allowed. Thus the question How to enforce that all three parameters are not invoked as in the C example? AdPrice A = new AdPrice { priceText = "4/$3.99"}; // Valid AdPrice B = new AdPrice { qty = 4, price = 3.99m}; // Valid AdPrice C = new AdPrice { qty = 4, priceText = "2/$1.99", price = 3.99m};// Not The class: public class AdPrice { private int _qty; private decimal _price; private string _priceText; The constructors: public AdPrice () : this( qty: 0, price: 0.0m) {} // Default Constructor public AdPrice (int qty = 0, decimal price = 0.0m) { // Numbers only this.qty = qty; this.price = price; } public AdPrice (string priceText = "0/$0.00") { // String only this.priceText = priceText; } The Methods: private void SetPriceValues() { var matches = Regex.Match(_priceText, @"^\s?((?<qty>\d+)\s?/)?\s?[$]?\s?(?<price>[0-9]?\.?[0-9]?[0-9]?)"); if( matches.Success) { if (!Decimal.TryParse(matches.Groups["price"].Value, out this._price)) this._price = 0.0m; if (!Int32.TryParse(matches.Groups["qty"].Value, out this._qty)) this._qty = (this._price > 0 ? 1 : 0); else if (this._price > 0 && this._qty == 0) this._qty = 1; } } private void SetPriceString() { this._priceText = (this._qty > 1 ? this._qty.ToString() + '/' : "") + String.Format("{0:C}",this.price); } The Accessors: public int qty { get { return this._qty; } set { this._qty = value; this.SetPriceString(); } } public decimal price { get { return this._price; } set { this._price = value; this.SetPriceString(); } } public string priceText { get { return this._priceText; } set { this._priceText = value; this.SetPriceValues(); } } }

    Read the article

  • Large virtual memory size of ElasticSearch JVM

    - by wfaulk
    I am running a JVM to support ElasticSearch. I am still working on sizing and tuning, so I left the JVM's max heap size at ElasticSearch's default of 1GB. After putting data in the database, I find that the JVM's process is showing 50GB in SIZE in top output. It appears that this is actually causing performance problems on the system; other processes are having trouble allocating memory. In asking the ElasticSearch community, they suggested that it's "just" filesystem caching. In my experience, filesystem caching doesn't show up as memory used by a particular process. Of course, they may have been talking about something other than the OS's filesystem cache, maybe something that the JVM or ElasticSearch itself is doing on top of the OS. But they also said that it would be released if needed, and that didn't seem to be happening. So can anyone help me figure out how to tune the JVM, or maybe ElasticSearch itself, to not use so much RAM. System is Solaris 10 x86 with 72GB RAM. JVM is "Java(TM) SE Runtime Environment (build 1.7.0_45-b18)".

    Read the article

  • facebook open graph meta property og:type of 'website'. The property 'object-name' requires an object of og:type 'object-name'

    - by chinmayahd
    in cake php 1.3 in view ctp i have follow code: $url = 'http://example.com/exmp/explus/books/view/'.$book['Book']['id']; echo $this->Html->meta(array('property' => 'fb:app_id', 'content' => '*******'),'',array('inline'=>false)); echo $this->Html->meta(array('property' => 'og:type', 'content' => 'book'),'',array('inline'=>false)); echo $this->Html->meta(array('property' => 'og:url', 'content' => $url ),'',array('inline'=>false)); echo $this->Html->meta(array('property' => 'og:title', 'content' => $book['Book']['title']),'',array('inline'=>false)); echo $this->Html->meta(array('property' => 'og:description', 'content' => $book['Book']['title']),'',array('inline'=>false)); $imgurl = '../image/'.$book['Book']['id']; echo $this->Html->meta(array('property' => 'og:image', 'content' => $imgurl ),'',array('inline'=>false)); ?> and it gives the following error when i am posting it' { "error": { "message": "(#3502) Object at URL http://example.com/exmp/explus/books/view/234' has og:type of 'website'. The property 'book' requires an object of og:type 'book'. ", "type": "OAuthException", "code": 3502 } } is any one know how to solve it?

    Read the article

  • Web workflow solution - how should I approach the design?

    - by Tom Pickles
    We've been tasked with creating a web based workflow tool to track change management. It has a single workflow with multiple synchronous tasks for the most part, but branch out at a point to tasks running in parallel which meet up later on. There will be all sorts of people using the application, and all of them will need to see their outstanding tasks for each change, but only theirs, not others. There will also be a high level group of people who oversee all changes, so need to see everything. They will need to see tasks which have not been done in the specified time, who's responsible etc. The data will be persisted to a SQL database. It'll all be put together using .Net. I've been trying to learn and implement OOP into my designs of late, but I'm wondering if this is moot in this instance as it may be better to have the business logic for this in stored procedures in the DB. I could use POCO's, a front end layer and a data access layer for the web application and just use it as a mechanism for CRUD actions on the DB, then use SP's fired in the DB to apply the business rules. On the other hand, I could use an object oriented design within the web app, but as the data in the app is state-less, is this a bad idea? I could try and model out the whole application into a class structure, implementing interfaces, base classes and all that good stuff. So I would create a change class, which contained a list of task classes/types, which defined each task, and implement an ITask interface etc. Put end-user types into the tasks to identify who should be doing what task. Then apply all the business logic in the respective class methods etc. What approach do you guys think I should be using for this solution?

    Read the article

  • When too much encapsulation was reached

    - by Samuel
    Recently, I read a lot of gook articles about how to do a good encapsulation. And when I say "good encapsulation", I don't talk about hiding private fields with public properties; I talk about preventing users of your Api to do wrong things. Here is two good articles about this subject: http://blog.ploeh.dk/2011/05/24/PokayokeDesignFromSmellToFragrance.aspx http://lostechies.com/derickbailey/2011/03/28/encapsulation-youre-doing-it-wrong/ At my job, the majority a our applications are not destined to other programmers but rather to the customers. About 80% of the application code is at the top of the structure (Not used by other code). For this reason, there is probably no chance ever that this code will be used by other application. An example of encapsulation that prevent user to do wrong thing with your Api is to return an IEnumerable instead of IList when you don't want to give the ability to the user to add or remove items in the list. My question is: When encapsulation could be considered like too much of purism object oriented programming while keeping in mind that each hour of programming is charged to the customer? I want to do good code that is maintainable, easy to read and to use but when this is not a public Api (Used by other programmer), where could we put the line between perfect code and not so perfect code? Thank you.

    Read the article

  • JVM memory initializazion error after windows update

    - by Pier Luigi
    Hi all, I have three Windows Server 2003 with 2 GB RAM. Server1 tomcat 5.5.25 jvm version SUN 1.6.0_11-b03 Server2 tomcat 5.5.25 jvm version SUN 1.6.0_14-b08 Server3 tomcat 6.0.18 jvm version SUN 1.6.0_14-b08 For the three servers JVM parameters are: -XX:MaxPermSize=256m -Dcatalina.base=C:\Apache Group\apache-tomcat-5.5.25 -Dcatalina.home=C:\Apache Group\apache-tomcat-5.5.25 -Djava.endorsed.dirs=C:\Apache Group\apache-tomcat-5.5.25\common\endorsed -Djava.io.tmpdir=C:\Apache Group\apache-tomcat-5.5.25\temp vfprintf -Xms512m -Xmx1024m For some months everithing worked fine. Last friday we installed some windows updates. After the reboot tomcat doesn't start anymore, with error: Error occurred during initialization of VM Could not reserve enough space for object heap We reduced the parameter -Xmx1024m to -Xmx768m and now tomcat starts. But we need greater max heap size What happened to our servers ? Thanks in advance.

    Read the article

< Previous Page | 53 54 55 56 57 58 59 60 61 62 63 64  | Next Page >