Search Results

Search found 25811 results on 1033 pages for 'visual studio 2008'.

Page 576/1033 | < Previous Page | 572 573 574 575 576 577 578 579 580 581 582 583  | Next Page >

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Live Debugging

    - by Daniel Moth
    Based on my classification of diagnostics, you should know what live debugging is NOT about - at least according to me :-) and in this post I'll share how I think of live debugging. These are the (outer) steps to live debugging Get the debugger in the picture. Control program execution. Inspect state. Iterate between 2 and 3 as necessary. Stop debugging (and potentially start new iteration going back to step 1). Step 1 has two options: start with the debugger attached, or execute your binary separately and attach the debugger later. You might say there is a 3rd option, where the app notifies you that there is an issue, referred to as JIT debugging. However, that is just a variation of the attach because that is when you start the debugging session: when you attach. I'll be covering in future posts how this step works in Visual Studio. Step 2 is about pausing (or breaking) your app so that it makes no progress and remains "frozen". A sub-variation is to pause only parts of its execution, or in other words to freeze individual threads. I'll be covering in future posts the various ways you can perform this step in Visual Studio. Step 3, is about seeing what the state of your program is when you have paused it. Typically it involves comparing the state you are finding, with a mental picture of what you thought the state would be. Or simply checking invariants about the intended state of the app, with the actual state of the app. I'll be covering in future posts the various ways you can perform this step in Visual Studio. Step 4 is necessary if you need to inspect more state - rinse and repeat. Self-explanatory, and will be covered as part of steps 2 & 3. Step 5 is the most straightforward, with 3 options: Detach the debugger; terminate your binary though the normal way that it terminates (e.g. close the main window); and, terminate the debugging session through your debugger with a result that it terminates the execution of your program too. In a future post I'll cover the ways you can detach or terminate the debugger in Visual Studio. I found an old picture I used to use to map the steps above on Visual Studio 2010. It is basically the Debug menu with colored rectangles around each menu mapping the menu to one of the first 3 steps (step 5 was merged with step 1 for that slide). Here it is in case it helps: Stay tuned for more... Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • How do I import my first sprites?

    - by steven_desu
    Continuing from this question (new question - now unrelated) So I have a thorough background in programming already (algorithms, math, logic, graphing problems, etc.) however I've never attempted to code a game before. In fact, I've never had anything more than minimal input from a user during the execution of a program. Generally input was given from a file or passed through console, all necessary functions were performed, then the program terminated with an output. I decided to try and get in on the world of game development. From several posts I've seen around gamedev.stackexchange.com XNA seems to be a favorite, and it was recommended to me when I asked where to start. I've downloaded and installed Visual Studio 2010 along with the XNA Framework and now I can't seem to get moving in the right direction. I started out looking on Google for "xna game studio tutorial", "xna game development beginners", "my first xna game", etc. I found lots of crap. The official "Introduction to Game Studio 4.0" gave me this (plus my own train of thought happily pasted on top thanks to MSPaint): http://tinypic.com/r/2w1sgvq/7 The "Get Additional Help" link (my best guess, since there was no "Continue" or "Next" link) lead me to this page: http://tinypic.com/r/2qa0dgx/7 I tried every page. The forum was the only thing that seemed helpful, however searching for "beginner", "newbie", "getting started", "first project", and similar on the forums turned up many threads with specific questions that are a bit above my level ("beginner to collision detection", for instance) Disappointed I returned to the XNA Game Studio home page. Surely their own website would have some introduction, tutorial, or at least a useful link to a community. EVERYTHING on their website was about coding Windows Phone 7.... Everything. http://tinypic.com/r/10eit8i/7 http://tinypic.com/r/120m9gl/7 Giving up on any official documentation after a while, I went back to Google. I managed to locate www.xnadevelopment.com. The website is built around XNA Game Studio 3.0, but how different can 3.0 be from 4.0?.... Apparently different enough. http://tinypic.com/r/5d8mk9/7 http://tinypic.com/r/25hflli/7 Figuring that this was the correct folder, I right-clicked.... http://tinypic.com/r/24o94yu/7 Hmm... maybe by "Add Content Reference" they mean "Add a reference to an existing file (content)"? Let's try it (after all- it's my only option) http://tinypic.com/r/2417eqt/7 At this point I gave up. I'm back. My original goal in my last question was to create a keyboard-navigable 3D world (no physics necessary, no logic or real game necessary). After my recent failures my goal has been revised. I want to display an image on the screen. Hopefully in time I'll be able to move it with the keyboard.

    Read the article

  • Savable in Widget Lookup on Move Action

    - by Geertjan
    Possible from 7.3 onwards, since Widget now implements Lookup.Provider for the first time: import java.awt.Point; import java.io.IOException; import org.netbeans.api.visual.action.ActionFactory; import org.netbeans.api.visual.action.MoveProvider; import org.netbeans.api.visual.widget.LabelWidget; import org.netbeans.api.visual.widget.Scene; import org.netbeans.api.visual.widget.Widget; import org.netbeans.spi.actions.AbstractSavable; import org.openide.util.Lookup; import org.openide.util.lookup.AbstractLookup; import org.openide.util.lookup.InstanceContent; import org.openide.windows.TopComponent; public class MyWidget extends LabelWidget { private MySavable mySavable; private Lookup lookup; private TopComponent tc; private InstanceContent ic; public MyWidget(Scene scene, String label, TopComponent tc) { super(scene, label); this.tc = tc; ic = new InstanceContent(); getActions().addAction(ActionFactory.createMoveAction(null, new MoveStrategyProvider())); } @Override public Lookup getLookup() { if (lookup == null) { lookup = new AbstractLookup(ic); } return lookup; } private class MoveStrategyProvider implements MoveProvider { @Override public void movementStarted(Widget widget) { } @Override public void movementFinished(Widget widget) { modify(); } @Override public Point getOriginalLocation(Widget widget) { return ActionFactory.createDefaultMoveProvider().getOriginalLocation(widget); } @Override public void setNewLocation(Widget widget, Point point) { ActionFactory.createDefaultMoveProvider().setNewLocation(widget, point); } } private void modify() { if (getLookup().lookup(MySavable.class) == null) { ic.add(mySavable = new MySavable()); } } private class MySavable extends AbstractSavable { public MySavable() { register(); } TopComponent tc() { return tc; } @Override protected String findDisplayName() { return getLabel(); } @Override protected void handleSave() throws IOException { ic.remove(mySavable); unregister(); } @Override public boolean equals(Object obj) { if (obj instanceof MySavable) { MySavable m = (MySavable) obj; return tc() == m.tc(); } return false; } @Override public int hashCode() { return tc().hashCode(); } } }

    Read the article

  • Solaris Web Magazine JP ?????

    - by kazun
    #midashi{ font-size:120%; border-left: 8px solid #FF0000;/*??????????????????*/ border-bottom:dotted 1px #cccccc;/*?????????????*/ width:515px;/*??????*/ line-height: 26px;/*h3?????*/ padding-left: 5px;/*?????????*/ color:#333333; /*????*/ font-weight:bold; } .select{ padding-top:2px; padding-left: 3px;/*?????????*/ font-size:10px; color:#999999; display: block; } #midashi2{ font-size:120%; border-left: 8px solid #FF0000;/*??????????????????*/ border-bottom:dotted 1px #cccccc;/*?????????????*/ width:205px;/*??????*/ line-height: 26px;/*h3?????*/ padding-left: 5px;/*?????????*/ color:#333333; /*????*/ font-weight:bold; } .select{ padding-top:2px; padding-left: 3px;/*?????????*/ font-size:10px; color:#999999; display: block; } ???? ????????:Oracle OpenWorld Tokyo 2012 ?????? ????:?????????????????:???????Oracle Solaris Studio 12.3? ???? Oracle Solaris ???????????????????? Oracle OpenWorld Tokyo 2012 ?????? Oracle Solaris 11 ?????????:?Oracle Solaris 11 ?????·????·??? ?2???? ?????????????????:???????Oracle Solaris Studio 12.3? ????? ???? ??????????????????????? Oracle Solaris Oracle Solaris Studio Oracle Solaris Cluster ????? ???? Oracle Technology Network ??????????????????????????????? Oracle Solaris 11 Oracle Solaris 10 Oracle Solaris Cluster Enterprise Edition Oracle Solaris Studio OTN? ????/????  ?????????#4?6/15(?)??? 2012/5/21 Oracle Solaris ??????? #3 2012/5/23 ?83? ????! ???????? ~Oracle x Sun ?6?: Solaris 10 ?? Solaris 11 ?????????????(Slideshare) ?????? Solaris 11 Solaris 10 Oracle Solaris Cluster Oracle Solaris Studio Oracle Linux OTN? ??????????? ?????????? Oracle Solaris ????????????????????????????????????????????????? ???????????????????????????????????????????????? OTN ???? ?????? ????? ?????? ???? Oracle Software Delivery Cloud My Oracle Support ????????? Oracle PartnerNetwork Oracle Solaris Knowledge Zone ????????? Solaris ?????? Oracle|Sun ????????? Oracle Japan (??????) Oracle University ????? Oracle Solaris 11 ?????? Oracle Solaris 11 ??????????? Sun Cluster for Hign Availability ???????? ???????? ?????????? Server / Storage System ????

    Read the article

  • Visual Studio Code Analysis: CA0001 Error Running Code Analysis - object reference not set to an instance of an object

    - by sturdytree
    For a WPF application being developed in VS 2012 (Ultimate), the application runs fine when a particular project's code analysis is disabled. Enabling it results in the error above. This was working fine until recently (i.e. running with code analysis enabled for the particular project) and the only recent change I can think of is removing NHibernate Profiler (using NuGet). Will be grateful for any pointers on how to debug this, or to see a more detailed log/error message.

    Read the article

  • Why are events and commands in MVVM so unsupported by WPF / Visual Studio?

    - by Edward Tanguay
    When creating an WPF application with the MVVM pattern, it seems I have to gather the necessary tools myself to even begin the most rudimentary event handling, e.g. AttachedBehaviors I get from here DelegateCommands I get from here Now I'm looking for some way to handle the ItemSelected event in a ComboBox and am getting suggestions of tricks and workarounds to do this (using a XAML trigger or have other elements bound to the selected item, etc.). Ok, I can go down this road, but it seems to be reinventing the wheel. It would be nice to just have an ItemSelected command that I can handle in my ViewModel. Am I missing some set of standard tools or is everyone doing MVVM with WPF basically building and putting together their own collection of tools just so they can do the simplest plumbing tasks with events and commands, things that take only a couple lines in code-behind with a Click="eventHandler"?

    Read the article

  • Why are events and commands in MVVM so unsupported by WPF / Visual Studio?

    - by Edward Tanguay
    When creating an WPF application with the MVVM pattern, it seems I have to gather the necessary tools myself to even begin the most rudimentary event handling, e.g. AttachedBehaviors I get from here DelegateCommands I get from here Now I'm looking for some way to handle the ItemSelected event in a ComboBox and am getting suggestions of tricks and workarounds to do this (using a XAML trigger or have other elements bound to the selected item, etc.). Ok, I can go down this road, but it seems to be reinventing the wheel. It would be nice to just have an ItemSelected command that I can handle in my ViewModel. Am I missing some set of standard tools or is everyone doing MVVM with WPF basically building and putting together their own collection of tools just so they can do the simplest plumbing tasks with events and commands, things that take only a couple lines in code-behind with a Click="eventHandler"?

    Read the article

  • How can I set the Regional Options in a Visual Basic 6.0 Application?

    - by jalcom
    I have a VB6's Application that is in production environment right now, this application is reading the pc's Regional Settings; but now, I need to set another Regional Settings for the application without change the pc's settings. How can I set the new Regional Settings globally with the lowest impact? Is there any configuration method (or something like that) for do it?

    Read the article

  • How to find out minimal render size of a visual in WPF?

    - by MartyIX
    Hello, I'm trying to display a game desk and info panel right next to the game desk and I need to calculate minimal width of the info panel in order to display the game desk properly. This is my XAML code: <StackPanel Orientation="Horizontal"> <Rectangle Width="Auto" Height="Auto" Name="gamedeskRect" Style="{DynamicResource GameDesk}" /> <StackPanel Name="infoPanel" Width="Auto" HorizontalAlignment="Right" Height="Auto" VerticalAlignment="Center" Margin="10,0,0,0"> <!-- a few textblocks in a grid here --> </StackPanel> </StackPanel> And the problem is that when I'm resizing the window a part of the right panel may be cropped which is what I don't want.

    Read the article

  • Using visual basic in excel to create word document, how do I make some bold text?

    - by Ernst
    I've seen this, but it doesn't work for me, I don't get where to change from insertafter to typetext. What should I change in the following to get part of the text bold as desired? Sub CreateNewWordDoc() Dim wrdDoc As Word.Document Dim wrdApp As Word.Application Set wrdApp = CreateObject("Word.Application") Set wrdDoc = wrdApp.Documents.Add With wrdDoc .Content.InsertAfter "not bold " .Content.Font.Bold = True .Content.InsertAfter "should be bold" .Content.Font.Bold = False .Content.InsertAfter " again not bold, followed by newline" .Content.InsertParagraphAfter .Content.Font.Bold = True .Content.InsertAfter "bold again" .Content.Font.Bold = False .Content.InsertAfter " and again not bold" .Content.InsertParagraphAfter .SaveAs ("testword.doc") .Close End With wrdApp.Quit Set wrdDoc = Nothing Set wrdApp = Nothing End Sub Thanks, Ernst

    Read the article

  • Suggested (simple) approach for drawing large numbers of visual elements in WPF?

    - by Ender
    I'm writing an interface that features a large (~50000px width) "canvas"-type area that is used to display a lot of data in a fairly novel way. This involves lots of lines, rectangles, and text. The user can scroll around to explore the entire canvas. At the moment I'm just using a standard Canvas panel with various Shapes placed on it. This is nice and easy to do: construct a shape, assign some coordinates, and attach it to the Canvas. Unfortunately, it's pretty slow (to construct the children, not to do the actual rendering). I've looked into some alternatives, it's a bit intimidating. I don't need anything fancy - just the ability to efficiently construct and place objects in a coordinate plane. If all I get are lines, colored rectangles, and text, I'll be happy. Do I need Geometry instances inside of Geometry Groups inside of GeometryDrawings inside of some Panel container? Note: I'd like to include text and graphics (i.e. colored rectangles) in the same space, if possible.

    Read the article

< Previous Page | 572 573 574 575 576 577 578 579 580 581 582 583  | Next Page >