Search Results

Search found 253662 results on 10147 pages for 'stack trace'.

Page 58/10147 | < Previous Page | 54 55 56 57 58 59 60 61 62 63 64 65  | Next Page >

  • Turing Machine & Modern Computer

    - by smwikipedia
    I heard a lot that modern computers are based on Turing machine. I'd like to share my understanding and hear your comments. I think the computer is a big general-purpose Turing machine. Each program we write is a small specific-purpose Turing machine. The classical Turing machine do its job based on the input and its current state inside and so do our programs. Let's take a running program (a process) as an example. We know that in the process's address space, there's areas for stack, heap, and code. A classical Turing machine doesn't have the ability to remember many things, so we borrow the concept of stack from the push-down automaton. The heap and stack areas contains the state of our specific-purpose Turing machine (our program). The code area represents the logic of this small Turing machine. And various I/O devices supply input to this Turing machine. The above is my naive understanding about the working paradigm of modern computer. I couln't wait to hear your comments. Thanks very much.

    Read the article

  • about Quick Sort

    - by matin1234
    Hi I have written this code but it will print these stack traces in the console please help me thanks! (Aslo "p" and "q" are the first and last index of our array ,respectively) public class JavaQuickSort { public static void QuickSort(int A[], int p, int q) { int i, last = 0; Random rand = new Random(); if (q < 1) { return; } **swap(A, p, rand.nextInt() % (q+1));** for (i = p + 1; i <= q; i++) { if (A[i] < A[p]) { swap(A, ++last, i); } } swap(A, p, last); QuickSort(A, p, last - 1); QuickSort(A, last + 1, q); } private static void swap(int[] A, int i, int j) { int temp; temp = A[i]; **A[i] = A[j];** A[j] = temp; } public static void main(String[] args){ int[] A = {2,5,7,3,9,0,1,6,8}; **QuickSort(A, 0,8 );** System.out.println(Arrays.toString(A)); } } the Stack traces : run: Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -3 at JavaQuickSort.swap(JavaQuickSort.java:38) at JavaQuickSort.QuickSort(JavaQuickSort.java:22) at JavaQuickSort.main(JavaQuickSort.java:45) Java Result: 1 BUILD SUCCESSFUL (total time: 2 seconds) I also bold those statements that cause these stack traces. like == ** ...**

    Read the article

  • Changing associativity

    - by Sorush Rabiee
    Hi... The associativity of stream insertion operator is rtl, forgetting this fact sometimes cause to runtime or logical errors. for example: 1st- int F() { static int internal_counter c=0; return ++c; } in the main function: //....here is main() cout<<”1st=”<<F()<<”,2nd=”<<F()<<”,3rd=”<<F(); and the output is: 1st=3,2nd=2,3rd=1 that is different from what we expect at first look. 2nd- suppose that we have an implementation of stack data structure like this: // //... a Stack<DataType> class …… // Stack<int> st(10); for(int i=1;i<11;i++) st.push(i); cout<<st.pop()<<endl<<st.pop()<<endl<<st.pop()<<endl<<st.pop()<<endl; expected output is something like: 10 9 8 7 but we have: 7 8 9 10 There is no internal bug of << implementation but it can be so confusing... and finally[:-)] my question: is there any way to change assocativity of an operator by overloading it?

    Read the article

  • what exactly is the danger of an uninitialized pointer in C

    - by akh2103
    I am trying get a handle on C as I work my way thru Jim Trevor's "Cyclone: A safe dialect of C" for a PL class. Trevor and his co-authors are trying to make a safe version of C, so they eliminate uninitialized pointers in their language. Googling around a bit on uninitialized pointers, it seems like un-initialized pointers point to random locations in memory. It seems like this alone makes them unsafe. If you reference an un-itilialized pointer, you jump to an unsafe part of memory. Period. But the way Trevor talks about them seems to imply that it is more complex. He cites the following code, and explains that when the function FrmGetObjectIndex dereferences f, it isn’t accessing a valid pointer, but rather an unpredictable address — whatever was on the stack when the space for f was allocated. What does Trevor mean by "whatever was on the stack when the space for f was allocated"? Are "un-initialized" pointers initialized to random locations in memory by default? Or does their "random" behavior have to do with the memory allocated for these pointers getting filled with strange values (that are then referenced) because of unexpected behavior on the stack. Form *f; switch (event->eType) { case frmOpenEvent: f = FrmGetActiveForm(); ... case ctlSelectEvent: i = FrmGetObjectIndex(f, field); ... }

    Read the article

  • What is the best way to save the environment from before an alarm handler goes off when the alarm do

    - by EpsilonVector
    I'm trying to implement user threads on a 2.4 Linux kernel (homework) and the trick for context switch seems to be using an alarm that goes off every x milliseconds and sends us to an alarm handler from which we can longjmp to the next thread. What I'm having difficulties with is figuring out how to save the environment to return to later. Basically I have an array of jmp_buffs, and every time a "context switch" using the alarm happens I want to save the previous context to the appropriate entry of the array and longjmp to the next one. However, just the fact that I need to do this from the event handler means that just using setjmp in the event handler won't give me exactly the kind of environment I want (as far as stack and program counter are involved) because the stack has the event handler call in it and the pc is in the event handler. I suppose I can look at the stack and alter it to fit my needs, but that feels a bit cumbersome. Another idea I had is to somehow pass the environment before the jump to event handler as a parameter to the event handler, but I can't figure out if this is possible. So I guess my question is- how do I do this right?

    Read the article

  • Please help us non-C++ developers understand what RAII is

    - by Charlie Flowers
    Another question I thought for sure would have been asked before, but I don't see it in the "Related Questions" list. Could you C++ developers please give us a good description of what RAII is, why it is important, and whether or not it might have any relevance to other languages? I do know a little bit. I believe it stands for "Resource Acquisition is Initialization". However, that name doesn't jive with my (possibly incorrect) understanding of what RAII is: I get the impression that RAII is a way of initializing objects on the stack such that, when those variables go out of scope, the destructors will automatically be called causing the resources to be cleaned up. So why isn't that called "using the stack to trigger cleanup" (UTSTTC:)? How do you get from there to "RAII"? And how can you make something on the stack that will cause the cleanup of something that lives on the heap? Also, are there cases where you can't use RAII? Do you ever find yourself wishing for garbage collection? At least a garbage collector you could use for some objects while letting others be managed? Thanks.

    Read the article

  • Boost Unit testing memory reuse causing tests that should fail to pass

    - by Knyphe
    We have started using the boost unit testing library for a large existing code base, and I have run into some trouble with unit tests incorrectly passing, seemingly due to the reuse of memory on the stack. Here is my situation: BOOST_AUTO_TEST_CASE(test_select_base_instantiation_default) { SelectBase selectBase(); BOOST_CHECK_EQUAL( selectBase.getSelectType(), false); BOOST_CHECK_EQUAL( selectBase.getTypeName(_T("")); BOOST_CHECK_EQUAL( selectBase.getEntityType(), -1); BOOST_CHECK_EQUAL( selectBase.getDataPos(), -1); } BOOST_AUTO_TEST_CASE(test_select_base_instantiation_default) { SelectBase selectBase(true, _T("abc")); BOOST_CHECK_EQUAL( selectBase.getSelectType(), false); BOOST_CHECK_EQUAL( selectBase.getTypeName(_T("abc")); BOOST_CHECK_EQUAL( selectBase.getEntityType(), -1); BOOST_CHECK_EQUAL( selectBase.getDataPos(), -1); } The first test passed correctly, initializing all the variables. The constructor in the second unit test did not correctly set EntityType or DataPosition, but the unit test passed. I was able to get it to fail by placing some variables on the stack in the second test, like so: BOOST_AUTO_TEST_CASE(test_select_base_instantiation_default) { int a, b; SelectBase selectBase(true, _T("abc")); BOOST_CHECK_EQUAL( selectBase.getSelectType(), false); BOOST_CHECK_EQUAL( selectBase.getTypeName(_T("abc")); BOOST_CHECK_EQUAL( selectBase.getEntityType(), -1); BOOST_CHECK_EQUAL( selectBase.getDataPos(), -1); } If there is only one int, only the dataPos CHECK_EQUAL fails, but if there are two, both EntityType and DataPos fail, so it seems pretty clear that this is an issue with the variables being created on the same stack memory or some such. Is there a good way to clear the memory between each unit test, or am I potentially using the library incorrectly or writing bad tests? Any help would be appreciated.

    Read the article

  • When to Store Temporary Values in Hidden Field vs. Session vs. Database?

    - by viatropos
    I am trying to build a simple OpenID login panel similar to how Stack Overflow's works. The goal is: User clicks OpenID/Oauth provider OpenID/Oauth stuff happens, we end up with the result (already made that) Then we want to confirm that the user wants to actually create a new account (vs. associating account with another OpenID account). In StackOverflow, they keep a hidden field on a form that looks like this: <form action="/users/openidconfirm" method="post"> <p>This is an OpenID we haven't seen on Stack Overflow before:</p> <p class="openid-identifier">https://me.yahoo.com/a/some-hash</p> <p>Do you want to associate this OpenID with your Stack Overflow account?</p> <div> <input type="hidden" name="fkey" value="9792ab2zza1q2a4ac414casdfa137eafba7"> <input type="hidden" name="s" value="c1a3q133-11fa-49r0-a7bz-da19849383218"> <input type="submit" value="Associate OpenID"> <input type="button" value="Cancel" onclick="window.location.href = 'http://stackoverflow.com/users/169992/viatropos?s=c1a3q133-11fa-49r0-a7bz-da19849383218'"> </div> </form> Initial question is, what are those hashes fkey and s? Not that I really care what these specific hashes are, but what it seems like is happening is they have processed the openid response and saved it to the DB in a temporary object or something, and from there they generate these keys, because they don't look like Oauth keys to me. Main situation is: after I have processed OpenID/Oauth responses, I don't yet want to create a new user/account until the user submits the "confirm" form. Should I store the keys and tokens temporarily in a "Confirm" form like this? Or is there a better way? It seems that using a temp database object would be a lot of work to manage properly. Thanks for the help. Lance

    Read the article

  • How can I work out what events are being waited for with WinDBG in a kernel debug session

    - by Benj
    I'm a complete WinDbg newbie and I've been trying to debug a WindowsXP problem that a customer has sent me where our software and some third party software prevent windows from logging off. I've reproduced the problem and have verified that only when our software and the customers software are both installed (although not necessarily running at logoff) does the log off problem occur. I've observed that WM_ENDSESSION messages are not reaching the running windows when the user tries to log off and I know that the third party software uses a kernel driver. I've been looking at the processes in WinDbg and I know that csrss.exe would normally send all the windows a WM_ENDSESSION message. When I ran: !process 82356020 6 To look at csrss.exe's stack I can see: WARNING: Frame IP not in any known module. Following frames may be wrong. 00000000 00000000 00000000 00000000 00000000 0x7c90e514 THREAD 8246d998 Cid 0248.02a0 Teb: 7ffd7000 Win32Thread: e1627008 WAIT: (WrUserRequest) UserMode Non-Alertable 8243d9f0 SynchronizationEvent 81fe0390 SynchronizationEvent Not impersonating DeviceMap e1004450 Owning Process 82356020 Image: csrss.exe Attached Process N/A Image: N/A Wait Start TickCount 1813 Ticks: 20748 (0:00:05:24.187) Context Switch Count 3 LargeStack UserTime 00:00:00.000 KernelTime 00:00:00.000 Start Address 0x75b67cdf Stack Init f80bd000 Current f80bc9c8 Base f80bd000 Limit f80ba000 Call 0 Priority 14 BasePriority 13 PriorityDecrement 0 DecrementCount 0 Kernel stack not resident. ChildEBP RetAddr Args to Child f80bc9e0 80500ce6 00000000 8246d998 804f9af2 nt!KiSwapContext+0x2e (FPO: [Uses EBP] [0,0,4]) f80bc9ec 804f9af2 804f986e e1627008 00000000 nt!KiSwapThread+0x46 (FPO: [0,0,0]) f80bca24 bf80a4a3 00000002 82475218 00000001 nt!KeWaitForMultipleObjects+0x284 (FPO: [Non-Fpo]) f80bca5c bf88c0a6 00000001 82475218 00000000 win32k!xxxMsgWaitForMultipleObjects+0xb0 (FPO: [Non-Fpo]) f80bcd30 bf87507d bf9ac0a0 00000001 f80bcd54 win32k!xxxDesktopThread+0x339 (FPO: [Non-Fpo]) f80bcd40 bf8010fd bf9ac0a0 f80bcd64 00bcfff4 win32k!xxxCreateSystemThreads+0x6a (FPO: [Non-Fpo]) f80bcd54 8053d648 00000000 00000022 00000000 win32k!NtUserCallOneParam+0x23 (FPO: [Non-Fpo]) f80bcd54 7c90e514 00000000 00000022 00000000 nt!KiFastCallEntry+0xf8 (FPO: [0,0] TrapFrame @ f80bcd64) This waitForMultipleObjects looks interesting because I'm wondering if csrss.exe is waiting on some event which isn't arriving to allow the logoff. Can anyone tell me how I might find out what event it's waiting for anything else I might do to further investigate the problem?

    Read the article

  • Using struts.xml with convention plugin

    - by David Alt
    This seems like it should be easy to do, but I just can make it work. I'm hooked on the convention plugin in Struts 2.1. However, I need to define some package-level configuration such as a new interceptor stack and exception mappings. I'd like to use the struts.xml file for this, but I can't get the convention-based packages matched to the struts.xml packages. My struts.xml looks like: <struts> <constant name="struts.convention.default.parent.package" value="default"/> <package name="default" extends="struts-default"> </package> <package name="root" namespace="/" extends="struts-default"> <action name="index"> <result>/index.jsp</result> </action> </package> <package name="my.package.actions.myaccount" namespace="/myaccount" extends="struts-default"> <interceptors> <interceptor name="authenticationInterceptor" class="my.package.interceptors.AuthenticationInterceptor"/> <interceptor-stack name="secureStack"> <interceptor-ref name="authenticationInterceptor"/> <interceptor-ref name="defaultStack"/> </interceptor-stack> </interceptors> <default-interceptor-ref name="secureStack"/> </package> </struts> I have my interceptor in: /src/my/package/interceptors and my actions in: /src/my/package/actions/myaccount

    Read the article

  • SystemStackError in Rails::ActiveSupport::Callbacks

    - by coreyward
    I'm building a Rails app that connects to Dropbox and syncs with a folder to update a personal site. I'm using Rails 3.0.3, Ruby 1.9.2, and the Dropbox gem. Right now I have a DropboxAccounts Controller, and two models: DropboxSession, which wraps calls to the gem with application-specific functionality, and DropboxAccount, which stores the session and settings in the database. After the user authorizes their account with Dropbox they're redirected back over and the DropboxAccount is saved with the authorized session. That all works just fine. My problem is that when I try to call Dropbox::API#create_folder(any path) I end up with a SystemStackError in lib/activesupport/callbacks.rb:421 which refers to the code below. If I remove the call to create the folder, it works. If I call create folder from another request, it works. I doubled the stack size to 16K to no avail. # This is called the first time a callback is called with a particular # key. It creates a new callback method for the key, calculating # which callbacks can be omitted because of per_key conditions. # def __create_keyed_callback(name, kind, object, &blk) #:nodoc: @_keyed_callbacks ||= {} @_keyed_callbacks[name] ||= begin str = send("_#{kind}_callbacks").compile(name, object) class_eval <<-RUBY_EVAL, __FILE__, __LINE__ + 1 def #{name}() #{str} end # THIS IS LINE 421 protected :#{name} RUBY_EVAL true end end I'm not very familiar with Rails yet, and I'm not sure what the intention of the code above is or why it would cause a stack overflow. I'm not using any method_missing/ghost method magic in my code. I suspected it was something with a callback serialize :files but commenting it out did nothing. My DropboxAccount model contains only a call to belongs_to :user, and DropboxSession is just a handful of methods, none of which contain callbacks. Bypassing them and using the Dropbox::Session methods directly doesn't help. I hope someone on StackOverflow can help me with this stack overflow. ;)

    Read the article

  • How do I serialise a graph in Java without getting StackOverflowException?

    - by Tim Cooper
    I have a graph structure in java, ("graph" as in "edges and nodes") and I'm attempting to serialise it. However, I get "StackOverflowException", despite significantly increasing the JVM stack size. I did some googling, and apparently this is a well known limitation of java serialisation: that it doesn't work for deeply nested object graphs such as long linked lists - it uses a stack record for each link in the chain, and it doesn't do anything clever such as a breadth-first traversal, and therefore you very quickly get a stack overflow. The recommended solution is to customise the serialisation code by overriding readObject() and writeObject(), however this seems a little complex to me. (It may or may not be relevant, but I'm storing a bunch of fields on each edge in the graph so I have a class JuNode which contains a member ArrayList<JuEdge> links;, i.e. there are 2 classes involved, rather than plain object references from one node to another. It shouldn't matter for the purposes of the question). My question is threefold: (a) why don't the implementors of Java rectify this limitation or are they already working on it? (I can't believe I'm the first person to ever want to serialise a graph in java) (b) is there a better way? Is there some drop-in alternative to the default serialisation classes that does it in a cleverer way? (c) if my best option is to get my hands dirty with low-level code, does someone have an example of graph serialisation java source-code that can use to learn how to do it?

    Read the article

  • repaint problem

    - by user357816
    I have a problem with my repaint in the method move. I dont know what to doo, the code is below import java.awt.*; import java.io.*; import java.text.*; import java.util.*; import javax.sound.sampled.*; import javax.swing.*; import javax.swing.Timer; import java.awt.event.*; import java.lang.*; public class bbb extends JPanel { public Stack<Integer> stacks[]; public JButton auto,jugar,nojugar; public JButton ok,ok2; public JLabel info=new JLabel("Numero de Discos: "); public JLabel instruc=new JLabel("Presiona la base de las torres para mover las fichas"); public JLabel instruc2=new JLabel("No puedes poner una pieza grande sobre una pequenia!"); public JComboBox numeros=new JComboBox(); public JComboBox velocidad=new JComboBox(); public boolean seguir=false,parar=false,primera=true; public int n1,n2,n3; public int click1=0; public int opcion=1,tiempo=50; public int op=1,continuar=0,cont=0; public int piezas=0; public int posx,posy; public int no; public bbb() throws IOException { stacks = new Stack[3]; stacks[0]=new Stack<Integer>(); stacks[1]=new Stack<Integer>(); stacks[2]=new Stack<Integer>(); setPreferredSize(new Dimension(1366,768)); ok=new JButton("OK"); ok.setBounds(new Rectangle(270,50,70,25)); ok.addActionListener(new okiz()); ok2=new JButton("OK"); ok2.setBounds(new Rectangle(270,50,70,25)); ok2.addActionListener(new vel()); add(ok2);ok2.setVisible(false); auto=new JButton("Automatico"); auto.setBounds(new Rectangle(50,80,100,25)); auto.addActionListener(new a()); jugar=new JButton("PLAY"); jugar.setBounds(new Rectangle(100,100,70,25)); jugar.addActionListener(new play()); nojugar=new JButton("PAUSE"); nojugar.setBounds(new Rectangle(100,150,70,25)); nojugar.addActionListener(new stop()); setLayout(null); info.setBounds(new Rectangle(50,50,170,25)); info.setForeground(Color.white); instruc.setBounds(new Rectangle(970,50,570,25)); instruc.setForeground(Color.white); instruc2.setBounds(new Rectangle(970,70,570,25)); instruc2.setForeground(Color.white); add(instruc);add(instruc2); add(jugar);add(nojugar);jugar.setVisible(false);nojugar.setVisible(false); add(info); info.setVisible(false); add(ok); ok.setVisible(false); add(auto); numeros.setBounds(new Rectangle(210,50,50,25)); numeros.addItem(1);numeros.addItem(2);numeros.addItem(3);numeros.addItem(4);numeros.addItem(5); numeros.addItem(6);numeros.addItem(7);numeros.addItem(8);numeros.addItem(9);numeros.addItem(10); add(numeros); numeros.setVisible(false); velocidad.setBounds(new Rectangle(150,50,100,25)); velocidad.addItem("Lenta"); velocidad.addItem("Intermedia"); velocidad.addItem("Rapida"); add(velocidad); velocidad.setVisible(false); } public void Mover(int origen, int destino) { for (int i=0;i<3;i++) { System.out.print("stack "+i+": "); for(int n : stacks[i]) System.out.print(n+";"); System.out.println(""); } System.out.println("de <"+origen+"> a <"+destino+">"); stacks[destino].push(stacks[origen].pop()); System.out.println(""); this.validate(); this.repaint( ); } public void hanoi(int origen, int destino, int cuantas) { while (parar) {} if (cuantas <= 1) Mover(origen,destino); else { hanoi(origen,3 - (origen+destino),cuantas-1); Mover(origen,destino); hanoi(3 - (origen+destino),destino,cuantas-1); } } public void paintComponent(Graphics g) { ImageIcon fondo= new ImageIcon("fondo.jpg"); g.drawImage(fondo.getImage(),0, 0,1366,768,null); g.setColor(new Color((int)(Math.random() * 254), (int)(Math.random() *255), (int)(Math.random() * 255))); g.fillRect(0,0,100,100); g.setColor(Color.white); g.fillRect(150,600,250,25); g.fillRect(550,600,250,25); g.fillRect(950,600,250,25); g.setColor(Color.red); g.fillRect(270,325,10,275); g.fillRect(270+400,325,10,275); g.fillRect(270+800,325,10,275); int x, y,top=0; g.setColor(Color.yellow); x=150;y=580; for(int ii:stacks[0]) { g.fillRect(x+((ii*125)/10),y-(((ii)*250)/10),((10-ii)*250)/10,20);} x=550;y=580; for(int ii:stacks[1]) {g.fillRect(x+((ii*125)/10),y-(((ii)*250)/10),((10-ii)*250)/10,20);} x=950;y=580; for(int ii:stacks[2]) {g.fillRect(x+((ii*125)/10),y-(((ii)*250)/10),((10-ii)*250)/10,20);} System.out.println("ENTRO"); setOpaque(false); } private class play implements ActionListener //manual { public void actionPerformed(ActionEvent algo) { parar=false; if(primera=true) { hanoi(0,2,no); primera=false; } } } private class stop implements ActionListener //manual { public void actionPerformed(ActionEvent algo) { parar=true; } } private class vel implements ActionListener //manual { public void actionPerformed(ActionEvent algo) { if (velocidad.getSelectedItem()=="Lenta") {tiempo=150;} else if (velocidad.getSelectedItem()=="Intermedia") {tiempo=75;} else tiempo=50; ok2.setVisible(false); jugar.setVisible(true); nojugar.setVisible(true); } } private class a implements ActionListener //auto { public void actionPerformed(ActionEvent algo) { auto.setVisible(false); info.setVisible(true); numeros.setVisible(true); ok.setVisible(true); op=3; } } private class okiz implements ActionListener //ok { public void actionPerformed(ActionEvent algo) { no=Integer.parseInt(numeros.getSelectedItem().toString()); piezas=no; if (no>0 && no<11) { info.setVisible(false); numeros.setVisible(false); ok.setVisible(false); for (int i=no;i>0;i--) stacks[0].push(i); opcion=2; if (op==3) { info.setText("Velocidad: ");info.setVisible(true); velocidad.setVisible(true); ok2.setVisible(true); } } else { } repaint(); } } } the code of the other class that calls the one up is below: import java.awt.*; import java.io.*; import java.net.URL; import javax.imageio.*; import javax.swing.*; import javax.swing.border.*; import java.lang.*; import java.awt.event.*; public class aaa extends JPanel { private ImageIcon Background; private JLabel fondo; public static void main(String[] args) throws IOException { JFrame.setDefaultLookAndFeelDecorated(true); final JPanel cp = new JPanel(new BorderLayout()); JFrame frame = new JFrame ("Torres de Hanoi"); frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE); frame.setSize(550,550); frame.setVisible(true); bbb panel = new bbb(); frame.getContentPane().add(panel); frame.pack(); frame.setVisible(true); } }

    Read the article

  • use Ghostscript to convert pcl to postscript

    - by Bryon
    So I want to use Ghostscript to convert files that are created in pcl format to postscript. That's the gist of my problem. I am simply trying to run it on the command line, but in the final stage it will have to be run on a lp command like lp -d < gs something something GPL Ghostscript 9.00 (2010-09-14) I will be running this on a solaris 10 server but I believe any unix system should work similar. bash-3.00# /usr/local/bin/gs -sDEVICE=pswrite -dLanguageLevel=1 -dNOPAUSE -dBATCH -dSAFER -sOutputFile=output.ps cms-form.pcl GPL Ghostscript 9.00 (2010-09-14) Copyright (C) 2010 Artifex Software, Inc. All rights reserved. This software comes with NO WARRANTY: see the file PUBLIC for details. Error: /undefined in &k2G-210z100u0l6d0e63fa0V Operand stack: Execution stack: %interp_exit .runexec2 --nostringval-- --nostringval-- --nostringval-- 2 %stopped_push --nostringval-- --nostringval-- --nostringval-- false 1 %stopped_push 1910 1 3 %oparray_pop 1909 1 3 %oparray_pop 1893 1 3 %oparray_pop 1787 1 3 %oparray_pop --nostringval-- %errorexec_pop .runexec2 --nostringval-- --nostringval-- --nostringval-- 2 %stopped_push --nostringval-- Dictionary stack: --dict:1154/1684(ro)(G)-- --dict:0/20(G)-- --dict:77/200(L)-- Current allocation mode is local Current file position is 30 GPL Ghostscript 9.00: Unrecoverable error, exit code 1

    Read the article

  • Can I get the IE debugger to break into long-running javascript

    - by Brian Deacon
    I have a page that has a byzantine amount of javascript running. In IE only, and only version 8, I get a long-script warning that I can reliably reproduce. I suspect it is event handlers triggering themselves in an infinite loop. The Developer Tools are limping horribly under the weight of the script running, but I do seem to be able to get the log to tell me what line of script it was executing when I aborted, but it is inevitably some of the deep plumbing of the ExtJS code we use, and I can't tell where it is in my stack of code. A way of seeing the call stack would work, but preferably I'd like to be able to just break into the debugger when I get the long script warning so I can just step through the stack. There is a similar question posted, but the answers given were for a not-the-right-tool, or the not terribly helpful advice to eliminate half my code at a time on a binary hunt for the infinite loop. If my code were simple enough that I could do that, it probably wouldn't have gotten the infinite loop in the first place. If I could reproduce the problem in firebug, I'd probably be a lot happier too.

    Read the article

  • Getting ellipses function parameters without an initial argument

    - by Tox1k
    So I've been making a custom parser for a scripting language, and I wanted to be able to pass only ellipses arguments. I don't need or want an initial variable, however Microsoft and C seem to want something else. FYI, see bottom for info. I've looked at the va_* definitions #define _crt_va_start(ap,v) ( ap = (va_list)_ADDRESSOF(v) + _INTSIZEOF(v) ) #define _crt_va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) ) #define _crt_va_end(ap) ( ap = (va_list)0 ) and the part I don't want is the v in va_start. As a little background I'm competent in goasm and I know how the stack works so I know what's happening here. I was wondering if there is a way to get the function stack base without having to use inline assembly. Ideas I've had: #define im_va_start(ap) (__asm { mov [ap], ebp }) and etc... but really I feel like that's messy and I'm doing it wrong. struct function_table { const char* fname; (void)(*fptr)(...); unsigned char maxArgs; }; function_table mytable[] = { { "MessageBox", &tMessageBoxA, 4 } }; ... some function that sorts through a const char* passed to it to find the matching function in mytable and calls tMessageBoxA with the params. Also, the maxArgs argument is just so I can check that a valid number of parameters is being sent. I have personal reasons for not wanting to send it in the function, but in the meantime we can just say it's because I'm curious. This is just an example; custom libraries are what I would be implementing so it wouldn't just be calling WinAPI stuff. void tMessageBoxA(...) { // stuff to load args passed MessageBoxA(arg1, arg2, arg3, arg4); } I'm using the __cdecl calling convention and I've looked up ways to reliably get a pointer to the base of the stack (not the top) but I can't seem to find any. Also, I'm not worried about function security or typechecking.

    Read the article

  • C++ destructor called on array index - why

    - by tge
    The following code (from Apache Tuscany SDO C++) occasionally (actually very rarely) causes subsequent crashes and I don't understand what's going on. The following statement is in DataObjectImpl.cpp (see stack below): PropertyImpl* DataObjectImpl::getPropertyImpl(unsigned int index) { ... 904 PropertyList props = getType().getProperties(); 905 if (index < props.size()) 906 { 907 return (PropertyImpl*)&props[index]; ... causes the following stack (all omitted frames above and below look plausible): Note: #11 libtuscany_sdo.dll!std::vector<>::~vector<> [c:\program files\microsoft visual studio 9.0\vc\include\vector:559] Note: #12 libtuscany_sdo.dll!commonj::sdo::PropertyList::~PropertyList [y:\external\tuscany\src\runtime\core\src\commonj\sdo\propertylist.cpp:60] Note: #13 libtuscany_sdo.dll!commonj::sdo::DataObjectImpl::getPropertyImpl [y:\external\tuscany\src\runtime\core\src\commonj\sdo\dataobjectimpl.cpp:907] Note: #14 libtuscany_sdo.dll!commonj::sdo::DataObjectImpl::getSDOValue [y:\external\tuscany\src\runtime\core\src\commonj\sdo\dataobjectimpl.cpp:3845] The actual question is - why is the destructor of PropertyList called?? As stated, the stack looks OK otherwise, also the vector destructor, as PropertyList has a member std::vector<PropertyImplPtr plist; and the array index operator of PropertyList just calls the array index of the plist member. And, even more puzzling (to me), why this happens only occasionally ... Many thx!!

    Read the article

  • Questions regarding detouring by modifying the virtual table

    - by Elliott Darfink
    I've been practicing detours using the same approach as Microsoft Detours (replace the first five bytes with a jmp and an address). More recently I've been reading about detouring by modifying the virtual table. I would appreciate if someone could shed some light on the subject by mentioning a few pros and cons with this method compared to the one previously mentioned! I'd also like to ask about patched vtables and objects on the stack. Consider the following situation: // Class definition struct Foo { virtual void Call(void) { std::cout << "FooCall\n"; } }; // If it's GCC, 'this' is passed as the first parameter void MyCall(Foo * object) { std::cout << "MyCall\n"; } // In some function Foo * foo = new Foo; // Allocated on the heap Foo foo2; // Created on the stack // Arguments: void ** vtable, uint offset, void * replacement PatchVTable(*reinterpret_cast<void***>(foo), 0, MyCall); // Call the methods foo->Call(); // Outputs: 'MyCall' foo2.Call(); // Outputs: 'FooCall' In this case foo->Call() would end up calling MyCall(Foo * object) whilst foo2.Call() call the original function (i.e Foo::Call(void) method). This is because the compiler will try to decide any virtual calls during compile time if possible (correct me if I'm wrong). Does that mean it does not matter if you patch the virtual table or not, as long as you use objects on the stack (not heap allocated)?

    Read the article

  • Hopping from a C++ to a Perl Unix profile?

    - by rocknroll
    Hi all, I have been a C++,Linux Developer till now and I am adept in this stack. Off late I have been getting opportunities that require Perl,Unix (with knowledge of C++,shell scripting) expertise. Organisations are showing interest even thought I don't have much scripting experience to boast off. The roll is more in a Support,maintenance project involving SQL as well. Off late I am in a fix whether to forgo these offers or not. I don't know the dynamics of an IT organisation and thus on one hand I fear that my C++ experience will be nullified and on the positive side I am getting to work on a new technology stack which will only add to my skill set. I am sure, most of you at some point of time have encountered such dilemmas and would have taken some decision. I want you to share your perspectives on such a scenario where a person is required to change his/her technology stack when changing his/her job. What are the merits and demerits in going with either of the choices? Also I know that C++ isn't going anywhere in the near future. What about perl? I have no clue as to what the future holds for perl developer? Whether there are enough opportunities for a perl developer? I am asking this question here because most of my fellow programmers face this career choice dilemma. Thanks.

    Read the article

  • How to get a debug flow of execution in C++

    - by Rich
    Hi, I work on a global trading system which supports many users. Each user can book,amend,edit,delete trades. The system is regulated by a central deal capture service. The deal capture service informs all the user of any updates that occur. The problem comes when we have crashes, as the production environment is impossible to re-create on a test system, I have to rely on crash dumps and log files. However this doesn't tell me what the user has been doing. I'd like a system that would (at the time of crashing) dump out a history of what the user has been doing. Anything that I add has to go into the live environment so it can't impact performance too much. Ideas wise I was thinking of a MACRO at the top of each function which acted like a stack trace (only I could supply additional user information, like trade id's, user dialog choices, etc ..) The system would record stack traces (on a per thread basis) and keep a history in a cyclic buffer (varying in size, depending on how much history you wanted to capture). Then on crash, I could dump this history stack. I'd really like to hear if anyone has a better solution, or if anyone knows of an existing framework? Thanks Rich

    Read the article

  • Holding variables in memory, C++

    - by b-gen-jack-o-neill
    Today something strange came to my mind. When I want to hold some string in C (C++) the old way, without using string header, I just create array and store that string into it. But, I read that any variable definition in C in local scope of function ends up in pushing these values onto the stack. So, the string is actually 2* bigger than needed. Because first, the push instructions are located in memory, but then when they are executed (pushed onto the stack) another "copy" of the string is created. First the push instructions, than the stack space is used for one string. So, why is it this way? Why doesn't compiler just add the string (or other variables) to the program instead of creating them once again when executed? Yes, I know you cannot just have some data inside program block, but it could just be attached to the end of the program, with some jump instruction before. And than, we would just point to these data? Because they are stored in RAM when the program is executed. Thanks.

    Read the article

  • MacBook Pro Late 2009 SATA Resets, Slowness

    - by A Student at a University
    My MacBook Pro runs slower the longer it's on. I am getting kernel warnings. The resets correlate with AC power connects and disconnects. I don't know if the warnings do. (How do I tell?) Are these bus CRC errors? Or something else? Can this damage the drive or corrupt data? What is it seeing that motivates these? 02:37:16 :[ 0.791992] ahci 0000:00:0b.0: PCI INT A -> Link[LSI0] -> GSI 20 (level, low) -> IRQ 20 02:37:16 :[ 0.792053] ahci 0000:00:0b.0: controller can't do PMP, turning off CAP_PMP 02:37:16 :[ 0.792104] ahci 0000:00:0b.0: AHCI 0001.0200 32 slots 6 ports 1.5 Gbps 0x3 impl IDE mode 02:37:16 :[ 0.792107] ahci 0000:00:0b.0: flags: 64bit ncq sntf pm led pio slum part boh 02:37:16 :[ 0.813473] scsi0 : ahci 02:37:16 :[ 0.823340] scsi1 : ahci 02:37:16 :[ 0.848164] ata1: SATA max UDMA/133 abar m8192@0xe7484000 port 0xe7484100 irq 43 02:37:16 :[ 0.848166] ata2: SATA max UDMA/133 abar m8192@0xe7484000 port 0xe7484180 irq 43 02:37:16 :[ 1.190132] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 300) 02:37:16 :[ 1.190153] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 300) 02:37:16 :[ 1.213568] ata1.00: ATA-8: OCZ-VERTEX2, 1.23, max UDMA/133 02:37:16 :[ 1.213572] ata1.00: 195371568 sectors, multi 1: LBA48 NCQ (depth 31/32) 02:37:16 :[ 1.227293] ata2.00: ATA-8: ST9500420ASG, 0002SDM1, max UDMA/133 02:37:16 :[ 1.227297] ata2.00: 976773168 sectors, multi 16: LBA48 NCQ (depth 31/32) 02:37:16 :[ 1.229570] ata2.00: configured for UDMA/133 02:37:16 :[ 1.240133] ata2: hard resetting link 02:37:16 :[ 1.260738] ata1.00: configured for UDMA/133 02:37:16 :[ 1.280122] ata1: hard resetting link 02:37:16 :[ 1.470125] usb 2-5: new high speed USB device using ehci_hcd and address 3 02:37:16 :[ 1.550165] firewire_core: created device fw0: GUID 58b035fffea99f5c, S800 02:37:16 :[ 1.631306] Initializing USB Mass Storage driver... 02:37:16 :[ 1.631392] scsi6 : usb-storage 2-5:1.0 02:37:16 :[ 1.631454] usbcore: registered new interface driver usb-storage 02:37:16 :[ 1.631455] USB Mass Storage support registered. 02:37:16 :[ 1.960128] usb 4-1: new full speed USB device using ohci_hcd and address 2 02:37:16 :[ 1.990101] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 300) 02:37:16 :[ 1.994215] ata2.00: configured for UDMA/133 02:37:16 :[ 1.994220] ata2: EH complete 02:37:16 :[ 2.030097] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 300) 02:37:16 :[ 2.090773] ata1.00: configured for UDMA/133 02:37:16 :[ 2.090778] ata1: EH complete 02:37:16 :[ 2.090931] scsi 0:0:0:0: Direct-Access ATA OCZ-VERTEX2 1.23 PQ: 0 ANSI: 5 02:37:16 :[ 2.091045] sd 0:0:0:0: Attached scsi generic sg0 type 0 02:37:16 :[ 2.091121] sd 0:0:0:0: [sda] 195371568 512-byte logical blocks: (100 GB/93.1 GiB) 02:37:16 :[ 2.091159] scsi 1:0:0:0: Direct-Access ATA ST9500420ASG 0002 PQ: 0 ANSI: 5 02:37:16 :[ 2.091163] sd 0:0:0:0: [sda] Write Protect is off 02:37:16 :[ 2.091183] sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA 02:37:16 :[ 2.091252] sd 1:0:0:0: Attached scsi generic sg1 type 0 02:37:16 :[ 2.091337] sda: 02:37:16 :[ 2.091446] sd 1:0:0:0: [sdb] 976773168 512-byte logical blocks: (500 GB/465 GiB) 02:37:16 :[ 2.091580] sd 1:0:0:0: [sdb] Write Protect is off 02:37:16 :[ 2.091637] sd 1:0:0:0: [sdb] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA 02:37:16 :[ 2.091756] sdb: sda1 sda2 02:37:16 :[ 2.093140] sd 0:0:0:0: [sda] Attached SCSI disk 02:37:16 :[ 2.093505] sdb1 sdb2 sdb3 02:37:16 :[ 2.093773] sd 1:0:0:0: [sdb] Attached SCSI disk 02:37:16 :[ 2.693899] EXT4-fs (dm-0): mounted filesystem with ordered data mode. Opts: (null) 02:37:16 :[ 5.483492] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro 02:37:16 :[ 7.905040] EXT4-fs (dm-2): mounted filesystem with ordered data mode. Opts: (null) 02:37:25 :[ 19.553095] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 02:37:25 :[ 19.555266] EXT4-fs (dm-2): re-mounted. Opts: commit=600 02:37:25 :[ 19.641533] ata1: hard resetting link 02:37:25 :[ 19.642084] ata2: hard resetting link 02:37:26 :[ 20.392606] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 300) 02:37:26 :[ 20.392610] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 300) 02:37:26 :[ 20.396697] ata2.00: configured for UDMA/133 02:37:26 :[ 20.396703] ata2: EH complete 02:37:26 :[ 20.451491] ata1.00: configured for UDMA/133 02:37:26 :[ 20.451498] ata1: EH complete 02:37:30 :[ 24.563725] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 02:37:30 :[ 24.565939] EXT4-fs (dm-2): re-mounted. Opts: commit=600 02:37:30 :[ 24.627246] ata1: hard resetting link 02:37:30 :[ 24.632250] ata2: hard resetting link 02:37:31 :[ 25.372582] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 300) 02:37:31 :[ 25.382615] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 300) 02:37:31 :[ 25.386782] ata2.00: configured for UDMA/133 02:37:31 :[ 25.386788] ata2: EH complete 02:37:31 :[ 25.431668] ata1.00: configured for UDMA/133 02:37:31 :[ 25.431674] ata1: EH complete 02:45:54 :[ 529.141844] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=0 02:45:55 :[ 529.544529] EXT4-fs (dm-2): re-mounted. Opts: commit=0 02:45:55 :[ 529.622561] ata1: limiting SATA link speed to 1.5 Gbps 02:45:55 :[ 529.622583] ata1: hard resetting link 02:45:55 :[ 529.622609] ata2: limiting SATA link speed to 1.5 Gbps 02:45:55 :[ 529.622624] ata2: hard resetting link 02:45:56 :[ 530.380135] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:45:56 :[ 530.380157] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:45:56 :[ 530.384305] ata2.00: configured for UDMA/133 02:45:56 :[ 530.384314] ata2: EH complete 02:45:56 :[ 530.399225] ata1.00: configured for UDMA/133 02:45:56 :[ 530.399233] ata1: EH complete 02:45:58 :[ 532.395990] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 02:45:58 :[ 532.518270] EXT4-fs (dm-2): re-mounted. Opts: commit=600 02:45:58 :[ 532.590983] ata1: hard resetting link 02:45:58 :[ 532.591045] ata2: hard resetting link 02:45:59 :[ 533.340147] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:45:59 :[ 533.340168] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:45:59 :[ 533.344416] ata2.00: configured for UDMA/133 02:45:59 :[ 533.344424] ata2: EH complete 02:45:59 :[ 533.360839] ata1.00: configured for UDMA/133 02:45:59 :[ 533.360847] ata1: EH complete 02:45:59 :[ 533.584449] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=0 02:45:59 :[ 533.586999] EXT4-fs (dm-2): re-mounted. Opts: commit=0 02:45:59 :[ 533.660132] ata2: hard resetting link 02:45:59 :[ 533.660151] ata1: hard resetting link 02:46:00 :[ 534.412536] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:00 :[ 534.412562] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:00 :[ 534.416768] ata2.00: configured for UDMA/133 02:46:00 :[ 534.416777] ata2: EH complete 02:46:00 :[ 534.431396] ata1.00: configured for UDMA/133 02:46:00 :[ 534.431401] ata1: EH complete 02:46:03 :[ 537.384649] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 02:46:03 :[ 537.504214] EXT4-fs (dm-2): re-mounted. Opts: commit=600 02:46:03 :[ 537.586002] ata1: hard resetting link 02:46:03 :[ 537.586036] ata2: hard resetting link 02:46:04 :[ 538.330147] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:04 :[ 538.330168] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:04 :[ 538.334389] ata2.00: configured for UDMA/133 02:46:04 :[ 538.334398] ata2: EH complete 02:46:04 :[ 538.343511] ata1.00: configured for UDMA/133 02:46:04 :[ 538.343519] ata1: EH complete 02:46:04 :[ 538.456413] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=0 02:46:04 :[ 538.459404] EXT4-fs (dm-2): re-mounted. Opts: commit=0 02:46:04 :[ 538.540138] ata1.00: limiting speed to UDMA/100:PIO4 02:46:04 :[ 538.540159] ata1: hard resetting link 02:46:04 :[ 538.540202] ata2.00: limiting speed to UDMA/100:PIO4 02:46:04 :[ 538.540220] ata2: hard resetting link 02:46:05 :[ 539.290054] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:05 :[ 539.290041] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:05 :[ 539.294100] ata2.00: configured for UDMA/100 02:46:05 :[ 539.294106] ata2: EH complete 02:46:05 :[ 539.314125] ata1.00: configured for UDMA/100 02:46:05 :[ 539.314132] ------------[ cut here ]------------ 02:46:05 :[ 539.314140] WARNING: at /build/buildd/linux-2.6.35/drivers/ata/libata-eh.c:3638 ata_eh_finish+0xdf/0xf0() 02:46:05 :[ 539.314144] Hardware name: MacBookPro5,3 02:46:05 :[ 539.314146] Modules linked in: michael_mic arc4 xt_multiport binfmt_misc rfcomm sco bnep l2cap parport_pc ppdev nvidia(P) ipt_REJECT xt_recent snd_hda_codec_cirrus xt_limit xt_tcpudp ipt_addrtype xt_state snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_seq_midi applesmc led_class ip6table_filter lib80211_crypt_tkip snd_rawmidi snd_seq_midi_event ip6_tables input_polldev hid_apple snd_seq wl(P) snd_timer snd_seq_device snd joydev bcm5974 usbhid mbp_nvidia_bl uvcvideo btusb videodev v4l1_compat v4l2_compat_ioctl32 nf_nat_irc hid nf_conntrack_irc soundcore snd_page_alloc i2c_nforce2 coretemp lib80211 bluetooth nf_nat_ftp nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_conntrack_ftp nf_conntrack lp parport iptable_filter ip_tables x_tables usb_storage firewire_ohci firewire_core forcedeth crc_itu_t ahci libahci 02:46:05 :[ 539.314221] Pid: 202, comm: scsi_eh_0 Tainted: P 2.6.35-25-generic #44-Ubuntu 02:46:05 :[ 539.314224] Call Trace: 02:46:05 :[ 539.314233] [<ffffffff8106091f>] warn_slowpath_common+0x7f/0xc0 02:46:05 :[ 539.314237] [<ffffffff8106097a>] warn_slowpath_null+0x1a/0x20 02:46:05 :[ 539.314242] [<ffffffff813dc77f>] ata_eh_finish+0xdf/0xf0 02:46:05 :[ 539.314246] [<ffffffff813e441e>] sata_pmp_error_handler+0x2e/0x40 02:46:05 :[ 539.314256] [<ffffffffa00021bf>] ahci_error_handler+0x1f/0x90 [libahci] 02:46:05 :[ 539.314261] [<ffffffff813dd6d2>] ata_scsi_error+0x492/0x5e0 02:46:05 :[ 539.314266] [<ffffffff813b24cd>] scsi_error_handler+0x10d/0x190 02:46:05 :[ 539.314270] [<ffffffff813b23c0>] ? scsi_error_handler+0x0/0x190 02:46:05 :[ 539.314275] [<ffffffff8107f266>] kthread+0x96/0xa0 02:46:05 :[ 539.314280] [<ffffffff8100aee4>] kernel_thread_helper+0x4/0x10 02:46:05 :[ 539.314284] [<ffffffff8107f1d0>] ? kthread+0x0/0xa0 02:46:05 :[ 539.314288] [<ffffffff8100aee0>] ? kernel_thread_helper+0x0/0x10 02:46:05 :[ 539.314291] ---[ end trace 76dbffc2d5d49d9b ]--- 02:46:05 :[ 539.314296] ata1: EH complete 02:46:12 :[ 547.040117] ata1: hard resetting link 02:46:13 :[ 547.390144] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:13 :[ 547.408430] ata1.00: configured for UDMA/100 02:46:13 :[ 547.408438] ------------[ cut here ]------------ 02:46:13 :[ 547.408447] WARNING: at /build/buildd/linux-2.6.35/drivers/ata/libata-eh.c:3638 ata_eh_finish+0xdf/0xf0() 02:46:13 :[ 547.408451] Hardware name: MacBookPro5,3 02:46:13 :[ 547.408453] Modules linked in: michael_mic arc4 xt_multiport binfmt_misc rfcomm sco bnep l2cap parport_pc ppdev nvidia(P) ipt_REJECT xt_recent snd_hda_codec_cirrus xt_limit xt_tcpudp ipt_addrtype xt_state snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_seq_midi applesmc led_class ip6table_filter lib80211_crypt_tkip snd_rawmidi snd_seq_midi_event ip6_tables input_polldev hid_apple snd_seq wl(P) snd_timer snd_seq_device snd joydev bcm5974 usbhid mbp_nvidia_bl uvcvideo btusb videodev v4l1_compat v4l2_compat_ioctl32 nf_nat_irc hid nf_conntrack_irc soundcore snd_page_alloc i2c_nforce2 coretemp lib80211 bluetooth nf_nat_ftp nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_conntrack_ftp nf_conntrack lp parport iptable_filter ip_tables x_tables usb_storage firewire_ohci firewire_core forcedeth crc_itu_t ahci libahci 02:46:13 :[ 547.408528] Pid: 202, comm: scsi_eh_0 Tainted: P W 2.6.35-25-generic #44-Ubuntu 02:46:13 :[ 547.408531] Call Trace: 02:46:13 :[ 547.408540] [<ffffffff8106091f>] warn_slowpath_common+0x7f/0xc0 02:46:13 :[ 547.408544] [<ffffffff8106097a>] warn_slowpath_null+0x1a/0x20 02:46:13 :[ 547.408549] [<ffffffff813dc77f>] ata_eh_finish+0xdf/0xf0 02:46:13 :[ 547.408553] [<ffffffff813e441e>] sata_pmp_error_handler+0x2e/0x40 02:46:13 :[ 547.408563] [<ffffffffa00021bf>] ahci_error_handler+0x1f/0x90 [libahci] 02:46:13 :[ 547.408567] [<ffffffff813dd6d2>] ata_scsi_error+0x492/0x5e0 02:46:13 :[ 547.408572] [<ffffffff813b24cd>] scsi_error_handler+0x10d/0x190 02:46:13 :[ 547.408577] [<ffffffff813b23c0>] ? scsi_error_handler+0x0/0x190 02:46:13 :[ 547.408582] [<ffffffff8107f266>] kthread+0x96/0xa0 02:46:13 :[ 547.408587] [<ffffffff8100aee4>] kernel_thread_helper+0x4/0x10 02:46:13 :[ 547.408591] [<ffffffff8107f1d0>] ? kthread+0x0/0xa0 02:46:13 :[ 547.408595] [<ffffffff8100aee0>] ? kernel_thread_helper+0x0/0x10 02:46:13 :[ 547.408598] ---[ end trace 76dbffc2d5d49d9c ]--- 02:46:13 :[ 547.408620] ata1: EH complete 02:46:13 :[ 547.562470] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 02:46:13 :[ 547.671380] EXT4-fs (dm-2): re-mounted. Opts: commit=600 02:46:13 :[ 547.738198] ata1.00: limiting speed to UDMA/33:PIO4 02:46:13 :[ 547.738218] ata1: hard resetting link 02:46:13 :[ 547.738274] ata2: hard resetting link 02:46:14 :[ 548.482561] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:14 :[ 548.484083] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:14 :[ 548.486809] ata2.00: configured for UDMA/100 02:46:14 :[ 548.486818] ata2: EH complete 02:46:14 :[ 548.498998] ata1.00: configured for UDMA/33 02:46:14 :[ 548.499004] ata1: EH complete 02:46:18 :[ 552.410499] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 02:46:18 :[ 552.522521] EXT4-fs (dm-2): re-mounted. Opts: commit=600 02:46:18 :[ 552.529684] ata1: hard resetting link 02:46:18 :[ 552.529723] ata2: hard resetting link 02:46:19 :[ 553.280059] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:19 :[ 553.280068] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:19 :[ 553.284141] ata2.00: configured for UDMA/100 02:46:19 :[ 553.284150] ata2: EH complete 02:46:19 :[ 553.301629] ata1.00: configured for UDMA/33 02:46:19 :[ 553.301637] ata1: EH complete 02:46:21 :[ 556.078830] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=0 02:46:21 :[ 556.180361] EXT4-fs (dm-2): re-mounted. Opts: commit=0 02:46:22 :[ 556.262612] ata1: hard resetting link 02:46:22 :[ 556.262617] ata2: hard resetting link 02:46:22 :[ 557.010050] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:22 :[ 557.010070] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:22 :[ 557.014069] ata2.00: configured for UDMA/100 02:46:22 :[ 557.014075] ata2: EH complete 02:46:22 :[ 557.023646] ata1.00: configured for UDMA/33 02:46:22 :[ 557.023654] ata1: EH complete 02:46:30 :[ 565.047438] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 02:46:30 :[ 565.051554] EXT4-fs (dm-2): re-mounted. Opts: commit=600 02:46:30 :[ 565.108332] ata1: hard resetting link 02:46:30 :[ 565.108389] ata2.00: limiting speed to UDMA/33:PIO4 02:46:30 :[ 565.108406] ata2: hard resetting link 02:46:31 :[ 565.850048] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:31 :[ 565.850068] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:31 :[ 565.854304] ata2.00: configured for UDMA/33 02:46:31 :[ 565.854313] ata2: EH complete 02:46:31 :[ 565.868477] ata1.00: configured for UDMA/33 02:46:31 :[ 565.868485] ata1: EH complete 02:46:35 :[ 569.265469] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=0 02:46:35 :[ 569.268139] EXT4-fs (dm-2): re-mounted. Opts: commit=0 02:46:35 :[ 569.340079] ata1: hard resetting link 02:46:35 :[ 569.340113] ata2: hard resetting link 02:46:35 :[ 570.092568] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:35 :[ 570.092589] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:46:35 :[ 570.096828] ata2.00: configured for UDMA/33 02:46:35 :[ 570.096837] ata2: EH complete 02:46:35 :[ 570.110727] ata1.00: configured for UDMA/33 02:46:35 :[ 570.110735] ata1: EH complete 02:47:04 :[ 598.528232] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 02:47:04 :[ 598.653973] EXT4-fs (dm-2): re-mounted. Opts: commit=600 02:47:04 :[ 598.730854] ata1: hard resetting link 02:47:04 :[ 598.730910] ata2: hard resetting link 02:47:05 :[ 599.480136] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:47:05 :[ 599.480159] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 02:47:05 :[ 599.484206] ata2.00: configured for UDMA/33 02:47:05 :[ 599.484213] ata2: EH complete 02:47:05 :[ 599.496699] ata1.00: configured for UDMA/33 02:47:05 :[ 599.496707] ata1: EH complete 04:45:59 :[ 7733.756548] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=0 04:45:59 :[ 7733.882748] EXT4-fs (dm-2): re-mounted. Opts: commit=0 04:45:59 :[ 7733.960142] ata1: hard resetting link 04:45:59 :[ 7733.960189] ata2: hard resetting link 04:46:00 :[ 7734.701926] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 04:46:00 :[ 7734.719939] ata1.00: configured for UDMA/33 04:46:00 :[ 7734.719946] ata1: EH complete 04:46:00 :[ 7734.722547] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 04:46:00 :[ 7734.726652] ata2.00: configured for UDMA/33 04:46:00 :[ 7734.726659] ata2: EH complete 04:46:02 :[ 7736.656465] ACPI: EC: GPE storm detected, transactions will use polling mode 13:38:49 :[39704.188621] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 13:38:49 :[39704.280588] EXT4-fs (dm-2): re-mounted. Opts: commit=600 13:38:49 :[39704.360819] ata1: hard resetting link 13:38:49 :[39704.360882] ata2: hard resetting link 13:38:50 :[39705.112956] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 13:38:50 :[39705.114435] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 13:38:50 :[39705.118673] ata2.00: configured for UDMA/33 13:38:50 :[39705.118682] ata2: EH complete 13:38:50 :[39705.127076] ata1.00: configured for UDMA/33 13:38:50 :[39705.127084] ata1: EH complete 13:39:49 :[39764.142463] applesmc: F1Mn: write arg fail 13:48:11 :[40267.025145] applesmc: FS! : read arg fail 13:52:53 :[40548.596735] applesmc: FS! : read arg fail 13:53:58 :[40613.972856] applesmc: FS! : read arg fail 13:54:08 :[40624.057339] applesmc: FS! : read arg fail 13:58:20 :[40875.397749] applesmc: TC0D: read data fail 14:16:56 :[41991.722054] applesmc: Th2H: read data fail 14:22:32 :[42327.991522] applesmc: light sensor data length set to 10 14:26:19 :[42554.788886] applesmc: F1Mn: write arg fail 14:32:36 :[42931.860443] applesmc: TC0F: read data fail 14:34:32 :[43048.041469] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=0 14:34:33 :[43048.185850] EXT4-fs (dm-2): re-mounted. Opts: commit=0 14:34:33 :[43048.270184] ata1: hard resetting link 14:34:33 :[43048.270224] ata2: hard resetting link 14:34:33 :[43049.030049] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 14:34:33 :[43049.030065] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 14:34:33 :[43049.034106] ata2.00: configured for UDMA/33 14:34:33 :[43049.034112] ata2: EH complete 14:34:33 :[43049.056952] ata1.00: configured for UDMA/33 14:34:33 :[43049.056959] ------------[ cut here ]------------ 14:34:33 :[43049.056968] WARNING: at /build/buildd/linux-2.6.35/drivers/ata/libata-eh.c:3638 ata_eh_finish+0xdf/0xf0() 14:34:33 :[43049.056971] Hardware name: MacBookPro5,3 14:34:33 :[43049.056973] Modules linked in: michael_mic arc4 xt_multiport binfmt_misc rfcomm sco bnep l2cap parport_pc ppdev nvidia(P) ipt_REJECT xt_recent snd_hda_codec_cirrus xt_limit xt_tcpudp ipt_addrtype xt_state snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_seq_midi applesmc led_class ip6table_filter lib80211_crypt_tkip snd_rawmidi snd_seq_midi_event ip6_tables input_polldev hid_apple snd_seq wl(P) snd_timer snd_seq_device snd joydev bcm5974 usbhid mbp_nvidia_bl uvcvideo btusb videodev v4l1_compat v4l2_compat_ioctl32 nf_nat_irc hid nf_conntrack_irc soundcore snd_page_alloc i2c_nforce2 coretemp lib80211 bluetooth nf_nat_ftp nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_conntrack_ftp nf_conntrack lp parport iptable_filter ip_tables x_tables usb_storage firewire_ohci firewire_core forcedeth crc_itu_t ahci libahci 14:34:33 :[43049.057048] Pid: 202, comm: scsi_eh_0 Tainted: P W 2.6.35-25-generic #44-Ubuntu 14:34:33 :[43049.057052] Call Trace: 14:34:33 :[43049.057060] [<ffffffff8106091f>] warn_slowpath_common+0x7f/0xc0 14:34:33 :[43049.057064] [<ffffffff8106097a>] warn_slowpath_null+0x1a/0x20 14:34:33 :[43049.057069] [<ffffffff813dc77f>] ata_eh_finish+0xdf/0xf0 14:34:33 :[43049.057074] [<ffffffff813e441e>] sata_pmp_error_handler+0x2e/0x40 14:34:33 :[43049.057083] [<ffffffffa00021bf>] ahci_error_handler+0x1f/0x90 [libahci] 14:34:33 :[43049.057088] [<ffffffff813dd6d2>] ata_scsi_error+0x492/0x5e0 14:34:33 :[43049.057093] [<ffffffff813b24cd>] scsi_error_handler+0x10d/0x190 14:34:33 :[43049.057097] [<ffffffff813b23c0>] ? scsi_error_handler+0x0/0x190 14:34:33 :[43049.057102] [<ffffffff8107f266>] kthread+0x96/0xa0 14:34:33 :[43049.057107] [<ffffffff8100aee4>] kernel_thread_helper+0x4/0x10 14:34:33 :[43049.057111] [<ffffffff8107f1d0>] ? kthread+0x0/0xa0 14:34:33 :[43049.057115] [<ffffffff8100aee0>] ? kernel_thread_helper+0x0/0x10 14:34:33 :[43049.057118] ---[ end trace 76dbffc2d5d49d9d ]--- 14:34:33 :[43049.057123] ata1: EH complete 14:34:41 :[43057.012698] ata1: hard resetting link 14:34:42 :[43057.362780] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 14:34:42 :[43057.381432] ata1.00: configured for UDMA/33 14:34:42 :[43057.381441] ------------[ cut here ]------------ 14:34:42 :[43057.381450] WARNING: at /build/buildd/linux-2.6.35/drivers/ata/libata-eh.c:3638 ata_eh_finish+0xdf/0xf0() 14:34:42 :[43057.381453] Hardware name: MacBookPro5,3 14:34:42 :[43057.381455] Modules linked in: michael_mic arc4 xt_multiport binfmt_misc rfcomm sco bnep l2cap parport_pc ppdev nvidia(P) ipt_REJECT xt_recent snd_hda_codec_cirrus xt_limit xt_tcpudp ipt_addrtype xt_state snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_seq_midi applesmc led_class ip6table_filter lib80211_crypt_tkip snd_rawmidi snd_seq_midi_event ip6_tables input_polldev hid_apple snd_seq wl(P) snd_timer snd_seq_device snd joydev bcm5974 usbhid mbp_nvidia_bl uvcvideo btusb videodev v4l1_compat v4l2_compat_ioctl32 nf_nat_irc hid nf_conntrack_irc soundcore snd_page_alloc i2c_nforce2 coretemp lib80211 bluetooth nf_nat_ftp nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_conntrack_ftp nf_conntrack lp parport iptable_filter ip_tables x_tables usb_storage firewire_ohci firewire_core forcedeth crc_itu_t ahci libahci 14:34:42 :[43057.381530] Pid: 202, comm: scsi_eh_0 Tainted: P W 2.6.35-25-generic #44-Ubuntu 14:34:42 :[43057.381533] Call Trace: 14:34:42 :[43057.381542] [<ffffffff8106091f>] warn_slowpath_common+0x7f/0xc0 14:34:42 :[43057.381546] [<ffffffff8106097a>] warn_slowpath_null+0x1a/0x20 14:34:42 :[43057.381551] [<ffffffff813dc77f>] ata_eh_finish+0xdf/0xf0 14:34:42 :[43057.381556] [<ffffffff813e441e>] sata_pmp_error_handler+0x2e/0x40 14:34:42 :[43057.381565] [<ffffffffa00021bf>] ahci_error_handler+0x1f/0x90 [libahci] 14:34:42 :[43057.381569] [<ffffffff813dd6d2>] ata_scsi_error+0x492/0x5e0 14:34:42 :[43057.381575] [<ffffffff813b24cd>] scsi_error_handler+0x10d/0x190 14:34:42 :[43057.381579] [<ffffffff813b23c0>] ? scsi_error_handler+0x0/0x190 14:34:42 :[43057.381584] [<ffffffff8107f266>] kthread+0x96/0xa0 14:34:42 :[43057.381589] [<ffffffff8100aee4>] kernel_thread_helper+0x4/0x10 14:34:42 :[43057.381594] [<ffffffff8107f1d0>] ? kthread+0x0/0xa0 14:34:42 :[43057.381598] [<ffffffff8100aee0>] ? kernel_thread_helper+0x0/0x10 14:34:42 :[43057.381601] ---[ end trace 76dbffc2d5d49d9e ]--- 14:34:42 :[43057.381624] ata1: EH complete 14:34:42 :[43057.557887] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 14:34:42 :[43057.560517] EXT4-fs (dm-2): re-mounted. Opts: commit=600 14:34:42 :[43057.621194] ata1: hard resetting link 14:34:42 :[43057.621252] ata2: hard resetting link 14:34:43 :[43058.370141] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 14:34:43 :[43058.370162] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 14:34:43 :[43058.374407] ata2.00: configured for UDMA/33 14:34:43 :[43058.374415] ata2: EH complete 14:34:43 :[43058.381989] ata1.00: configured for UDMA/33 14:34:43 :[43058.381996] ata1: EH complete 14:34:43 :[43058.616228] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=600 14:34:43 :[43058.618931] EXT4-fs (dm-2): re-mounted. Opts: commit=600 14:34:43 :[43058.626687] ata1: hard resetting link 14:34:43 :[43058.626731] ata2: hard resetting link 14:34:44 :[43059.372908] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 14:34:44 :[43059.372932] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 14:34:44 :[43059.376997] ata2.00: configured for UDMA/33 14:34:44 :[43059.377003] ata2: EH complete 14:34:44 :[43059.392576] ata1.00: configured for UDMA/33 14:34:44 :[43059.392585] ata1: EH complete 15:48:19 :[47474.710860] ata1: hard resetting link 15:48:19 :[47474.710882] ata2: hard resetting link 15:48:20 :[47475.460144] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 15:48:20 :[47475.460169] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 15:48:20 :[47475.473709] ata1.00: configured for UDMA/33 15:48:20 :[47475.473717] ata1: EH complete 15:48:20 :[47475.727960] ata2.00: configured for UDMA/33 15:48:20 :[47475.727969] ata2: EH complete 16:29:39 :[49954.295017] EXT4-fs (dm-0): re-mounted. Opts: errors=remount-ro,commit=0 16:29:39 :[49954.622307] EXT4-fs (dm-2): re-mounted. Opts: commit=0 16:29:39 :[49954.710139] ata1: hard resetting link 16:29:39 :[49954.710174] ata2: hard resetting link 16:29:40 :[49955.460046] ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 16:29:40 :[49955.460062] ata2: SATA link up 1.5 Gbps (SStatus 113 SControl 310) 16:29:40 :[49955.464138] ata2.00: configured for UDMA/33 16:29:40 :[49955.464144] ata2: EH complete 16:29:40 :[49955.473251] ata1.00: configured for UDMA/33 16:29:40 :[49955.473258] ata1: EH complete

    Read the article

  • The DOS DEBUG Environment

    - by MarkPearl
    Today I thought I would go back in time and have a look at the DEBUG command that has been available since the beginning of dawn in DOS, MS-DOS and Microsoft Windows. up to today I always knew it was there, but had no clue on how to use it so for those that are interested this might be a great geek party trick to pull out when you want the awe the younger generation and want to show them what “real” programming is about. But wait, you will have to do it relatively quickly as it seems like DEBUG was finally dumped from the Windows group in Windows 7. Not to worry, pull out that Windows XP box which will get you even more geek points and you can still poke DEBUG a bit. So, for those that are interested and want to find out a bit about the history of DEBUG read the wiki link here. That all put aside, lets get our hands dirty.. How to Start DEBUG in Windows Make sure your version of Windows supports DEBUG. Open up a console window Make a directory where you want to play with debug – in my instance I called it C221 Enter the directory and type Debug You will get a response with a – as illustrated in the image below…   The commands available in DEBUG There are several commands available in DEBUG. The most common ones are A (Assemble) R (Register) T (Trace) G (Go) D (Dump or Display) U (Unassemble) E (Enter) P (Proceed) N (Name) L (Load) W (Write) H (Hexadecimal) I (Input) O (Output) Q (Quit) I am not going to cover all these commands, but what I will do is go through a few of them briefly. A is for Assemble Command (to write code) The A command translates assembly language statements into machine code. It is quite useful for writing small assembly programs. Below I have written a very basic assembly program. The code typed out is as follows mov ax,0015 mov cx,0023 sub cx,ax mov [120],al mov cl,[120]A nop R is for Register (to jump to a point in memory) The r command turns out to be one of the most frequent commands you will use in DEBUG. It allows you to view the contents of registers and to change their values. It can be used with the following combinations… R – Displays the contents of all the registers R f – Displays the flags register R register_name – Displays the contents of a specific register All three methods are illustrated in the image above T is for Trace (To execute a program step by step) The t command allows us to execute the program step by step. Before we can trace the program we need to point back to the beginning of the program. We do this by typing in r ip, which moves us back to memory point 100. We then type trace which executes the first line of code (line 100) (As shown in the image below starting from the red arrow). You can see from the above image that the register AX now contains 0015 as per our instruction mov ax,0015 You can also see that the IP points to line 0103 which has the MOV CX,0023 command If we type t again it will now execute the second line of the program which moves 23 in the cx register. Again, we can see that the line of code was executed and that the CX register now holds the value of 23. What I would like to highlight now is the section underlined in red. These are the status flags. The ones we are going to look at now are 1st (NV), 4th (PL), 5th (NZ) & 8th (NC) NV means no overflow, the alternate would be OV PL means that the sign of the previous arithmetic operation was Plus, the alternate would be NG (Negative) NZ means that the results of the previous arithmetic operation operation was Not Zero, the alternate would be ZR NC means that No final Carry resulted from the previous arithmetic operation. CY means that there was a final Carry. We could now follow this process of entering the t command until the entire program is executed line by line. G is for Go (To execute a program up to a certain line number) So we have looked at executing a program line by line, which is fine if your program is minuscule BUT totally unpractical if we have any decent sized program. A quicker way to run some lines of code is to use the G command. The ‘g’ command executes a program up to a certain specified point. It can be used in connection with the the reset IP command. You would set your initial point and then run the G command with the line you want to end on. P is for Proceed (Similar to trace but slightly more streamlined) Another command similar to trace is the proceed command. All that the p command does is if it is called and it encounters a CALL, INT or LOOP command it terminates the program execution. In the example below I modified our example program to include an int 20 at the end of it as illustrated in the image below… Then when executing the code when I encountered the int 20 command I typed the P command and the program terminated normally (illustrated below). D is for Dump (or for those more polite Display) So, we have all these assembly lines of code, but if you have ever opened up an exe or com file in a text/hex editor, it looks nothing like assembly code. The D command is a way that we can see what our code looks like in memory (or in a hex editor). If we examined the image above, we can see that Debug is storing our assembly code with each instruction following immediately after the previous one. For instance in memory address 110 we have int and 111 we have 20. If we examine the dump of memory we can see at memory point 110 CD is stored and at memory point 111 20 is stored. U is for Unassemble (or Convert Machine code to Assembly Code) So up to now we have gone through a bunch of commands, but probably one of the most useful is the U command. Let’s say we don’t understand machine code so well and so instead we want to see it in its equivalent assembly code. We can type the U command followed by the start memory point, followed by the end memory point and it will show us the assembly code equivalent of the machine code. E is for a bunch of things… The E command can be used for a bunch of things… One example is to enter data or machine code instructions directly into memory. It can also be used to display the contents of memory locations. I am not going to worry to much about it in this post. N / L / W is for Name, Load & Write So we have written out assembly code in debug, and now we want to save it to disk, or write it as a com file or load it. This is where the N, L & W command come in handy. The n command is used to give a name to the executable program file and is pretty simple to use. The w command is a bit trickier. It saves to disk all the memory between point bx and point cx so you need to specify the bx memory address and the cx memory address for it to write your code. Let’s look at an example illustrated below. You do this by calling the r command followed by the either bx or cx. We can then go to the directory where we were working and will see the new file with the name we specified. The L command is relatively simple. You would first specify the name of the file you would like to load using the N command, and then call the L command. Q is for Quit The last command that I am going to write about in this post is the Q command. Simply put, calling the Q command exits DEBUG. Commands we did not Cover Out of the standard DEBUG commands we covered A, T, G, D, U, E, P, R, N, L & W. The ones we did not cover were H, I & O – I might make mention of these in a later post, but for the basics they are not really needed. Some Useful Resources Please note this post is based on the COS2213 handouts for UNISA A Guide to DEBUG - http://mirror.href.com/thestarman/asm/debug/debug.htm#NT

    Read the article

  • An XEvent a Day (21 of 31) – The Future – Tracking Blocking in Denali

    - by Jonathan Kehayias
    One of my favorite features that was added to SQL Server 2005 has been the Blocked Process Report trace event which collects an XML report whenever a process is blocked inside of the database engine longer than the user configurable threshold.  I wrote an article about this feature on SQL Server Central  two years ago titled Using the Blocked Process Report in SQL Server 2005/2008 .  One of the aspects of this feature is that it requires that you either have a SQL Trace running that...(read more)

    Read the article

  • Free tools for SQL Server - Automating Execution Plan Analysis

    - by jchang
    Since this topic is being discussed, I will plug my own tools, SQL Exec Stats and (a little dated) documentation the main capability is cross-referencing index usuage with specific execution plans. another feature is generating execution plans for all stored procedures in a database, along with the index usage cross-reference. There are several sources of execution plans or plan handles, this could be a live trace, a previously saved trace, previously saved sqlplan files, from dm_exec_cached_plans,...(read more)

    Read the article

< Previous Page | 54 55 56 57 58 59 60 61 62 63 64 65  | Next Page >