Search Results

Search found 19292 results on 772 pages for 'jack null'.

Page 584/772 | < Previous Page | 580 581 582 583 584 585 586 587 588 589 590 591  | Next Page >

  • Exporting only visible datagridview columns to excel

    - by Suresh E
    Need help on exporting only visible DataGridView columns to excel, I have this code for hiding columns in DataGridView. this.dg1.Columns[0].Visible = false; And then I have button click event for exporting to excel. // creating Excel Application Microsoft.Office.Interop.Excel._Application app = new Microsoft.Office.Interop.Excel._Application(); // creating new WorkBook within Excel application Microsoft.Office.Interop.Excel._Workbook workbook = app.Workbooks.Add(Type.Missing); // creating new Excelsheet in workbook Microsoft.Office.Interop.Excel._Worksheet worksheet = null; // see the excel sheet behind the program app.Visible = true; // get the reference of first sheet. By default its name is Sheet1. // store its reference to worksheet worksheet = workbook.Sheets["Sheet1"]; worksheet = workbook.ActiveSheet; // changing the name of active sheet worksheet.Name = "PIN korisnici"; // storing header part in Excel for (int i = 1; i < dg1.Columns.Count + 1; i++) { worksheet.Cells[1, i] = dg1.Columns[i - 1].HeaderText; } // storing Each row and column value to excel sheet for (int i = 0; i < dg1.Rows.Count - 1; i++) { for (int j = 0; j < dg1.Columns.Count; j++) { worksheet.Cells[i + 2, j + 1] = dg1.Rows[i].Cells[j].Value.ToString(); } } but I want to export only visible columns, while I get all of them, anyone, help on this.

    Read the article

  • Problems creating a functioning table

    - by Hoser
    This is a pretty simple SQL query I would assume, but I'm having problems getting it to work. if (object_id('#InfoTable')is not null) Begin Drop Table #InfoTable End create table #InfoTable (NameOfObject varchar(50), NameOfCounter varchar(50), SampledValue float(30), DayStamp datetime) insert into #InfoTable(NameOfObject, NameOfCounter, SampledValue, DayStamp) select vPerformanceRule.ObjectName AS NameOfObject, vPerformanceRule.CounterName AS NameOfCounter, Perf.vPerfRaw.SampleValue AS SampledValue, Perf.vPerfHourly.DateTime AS DayStamp from vPerformanceRule, vPerformanceRuleInstance, Perf.vPerfHourly, Perf.vPerfRaw where (ObjectName like 'Logical Disk' and CounterName like '% Free Space' AND SampleValue > 95 AND SampleValue < 100) order by DayStamp desc select NameOfObject, NameOfCounter, SampledValue, DayStamp from #InfoTable Drop Table #InfoTable I've tried various other forms of syntax, but no matter what I do, I get these error messages. Msg 207, Level 16, State 1, Line 10 Invalid column name 'NameOfObject'. Msg 207, Level 16, State 1, Line 10 Invalid column name 'NameOfCounter'. Msg 207, Level 16, State 1, Line 10 Invalid column name 'SampledValue'. Msg 207, Level 16, State 1, Line 10 Invalid column name 'DayStamp'. Msg 207, Level 16, State 1, Line 22 Invalid column name 'NameOfObject'. Msg 207, Level 16, State 1, Line 22 Invalid column name 'NameOfCounter'. Msg 207, Level 16, State 1, Line 22 Invalid column name 'SampledValue'. Msg 207, Level 16, State 1, Line 22 Invalid column name 'DayStamp'. Line 10 is the first 'insert into' line, and line 22 is the second select line. Any ideas?

    Read the article

  • C# SMTP virtual server doesn't send mail [closed]

    - by ragaei
    I have got the following Exception : System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. - System.Runtime.InteropServices.COMException (0x8004020F): The server rejected one or more recipient addresses. The server response was: 550 5.7.1 Unable to relay for [email protected] --- End of inner exception stack trace --- at System.RuntimeType.InvokeDispMethod(String name, BindingFlags invokeAttr, Object target, Object[] args, Boolean[] byrefModifiers, Int32 culture, String[] namedParameters) at System.RuntimeType.InvokeMember(String name, BindingFlags bindingFlags, Binder binder, Object target, Object[] providedArgs, ParameterModifier[] modifiers, CultureInfo culture, String[] namedParams) at System.Type.InvokeMember(String name, BindingFlags, invokeAttr, Binder binder, Object target, Object[] args, CultureInfo culture) at System.Web.Mail.SmtpMail.LateBoundAccessHelper.CallMethod(Type type, Object obj, String methodName, Object[] args) at System.Web.Mail.SmtpMail.LateBoundAccessHelper.CallMethod(Object obj, String methodName, Object[] args) public static void SendEmail(string _FromEmail, string _ToEmail, string _Subject, string _EmailBody) { // setup email header . SmtpMail.SmtpServer = "127.0.0.1"; MailMessage _MailMessage = new MailMessage(); _MailMessage.From = _FromEmail; _MailMessage.To = _ToEmail; _MailMessage.Subject = _Subject; _MailMessage.Body = _EmailBody; try { SmtpMail.Send(_MailMessage); } catch (Exception ex) { if (ex.InnerException != null) { String str = ex.InnerException.ToString(); } } }

    Read the article

  • Why is REMOTE_ADDR only sometimes available as an Apache environment variable?

    - by Xiong Chiamiov
    To avoid having to parse X-Forwarded-For in Varnish, I'm trying to just set a header on the SSL terminator (currently Apache) that stores the direct client IP in a header. On our development machine, this works: RequestHeader set X-Foo %{REMOTE_ADDR}e However, in staging it doesn't. Specifically, the header is empty, as illustrated by both varnishlog: 13 TxHeader b X-Foo: (null) (On the development machine, this shows the IP address as expected.) Similarly, logging REMOTE_ADDR shows that it only appears to be populated on the dev machine: # Config LogFormat "%{X-Forwarded-For}i %{REMOTE_ADDR}e" combined CustomLog "/var/log/httpd/access_log" combined # Log file, staging <my ip> - # Log file, development <my ip> <my ip> Since the dev machine is, well, a dev machine, it is different in a number of ways; however, I can't track down which difference is causing this. The versions of Apache are the same (2.2.22), and I don't see anything relevant in any of the standard config files or /etc/sysconfig/httpd. And the rest of the system is reasonably similar, since they're built off the same CentOS 5 base image. I can't even tell from the Apache documentation whether REMOTE_ADDR is expected to exist or not as an environment variable, but it clearly works on one machine, whether by fluke or design, and the inconsistency is driving me mad.

    Read the article

  • Why is MySQL unable to open hosts.allow/hosts.deny?

    - by HonoredMule
    I have a storage server running Nexenta (OpenSolaris kernel, Ubuntu userspace) with MySQL on top of a ZFS storage array, using innodb_file_per_table and ulimit -n set to 8K. mysqltuner.pl confirms the file limit and claims there are 169 files. The following command: pfiles `fuser -c / 2>/dev/null indicates one mysqld process having 485 file/device descriptors (and they're almost all for files) so I don't know how reliable the tuning script is, but it is still way less than 8K and this list also finds no other process which is close to it's limit. The global total number of descriptors in use is around 1K. So what can cause mysqld to be constantly streaming the following errors? [date] [host] mysqld[pid]: warning: cannot open /etc/hosts.allow: Too many open files [date] [host] mysqld[pid]: warning: cannot open /etc/hosts.deny: Too many open files Everything appears to actually be operating fine, but the issue is constantly flooding the admin console and starts right away on a fresh boot (not only reproducible, but always from mysqld and always the hosts files, whose permissions are the default -rw-r--r-- 1 root root). I could, of course, suppress it from the admin console but I'd rather get to the bottom of it and still allow mysqld warnings/errors to reach the admin console. EDIT: not only is the actual file descriptor well within sane limits, the issue also persists (with immediate appearance) even with the file limit raised to 65535 and always only on hosts.allow/deny.

    Read the article

  • Allow outgoing connections for DNS

    - by Jimmy
    I'm new to IPtables, but I am trying to setup a secure server to host a website and allow SSH. This is what I have so far: #!/bin/sh i=/sbin/iptables # Flush all rules $i -F $i -X # Setup default filter policy $i -P INPUT DROP $i -P OUTPUT DROP $i -P FORWARD DROP # Respond to ping requests $i -A INPUT -p icmp --icmp-type any -j ACCEPT # Force SYN checks $i -A INPUT -p tcp ! --syn -m state --state NEW -j DROP # Drop all fragments $i -A INPUT -f -j DROP # Drop XMAS packets $i -A INPUT -p tcp --tcp-flags ALL ALL -j DROP # Drop NULL packets $i -A INPUT -p tcp --tcp-flags ALL NONE -j DROP # Stateful inspection $i -A INPUT -m state --state NEW -p tcp --dport 22 -j ACCEPT # Allow established connections $i -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT # Allow unlimited traffic on loopback $i -A INPUT -i lo -j ACCEPT $i -A OUTPUT -o lo -j ACCEPT # Open nginx $i -A INPUT -p tcp --dport 443 -j ACCEPT $i -A INPUT -p tcp --dport 80 -j ACCEPT # Open SSH $i -A INPUT -p tcp --dport 22 -j ACCEPT However I've locked down my outgoing connections and it means I can't resolve any DNS. How do I allow that? Also, any other feedback is appreciated. James

    Read the article

  • Plesk Uninstall Memory issue

    - by user115079
    I am trying to uninstall plesk from my VPS by running following command: yum remove sw-* psa-* plesk-* when i run this command i get following error: Running rpm_check_debug Running Transaction Test memory alloc (4 bytes) returned NULL. First time when i run above command, this mem alloc (4 bytes) was very big number like (67864987). then i googled it, got some clear/ulimit commands. executed them. rebooted my system. stopped all process and executed this command again. but still getting 4 byte issue. dont know how to get rid of it. I also tried ulimit after reboot but no success and Yes. No swap attached. these are stats of my system [root@vps ~]# free -m total used free shared buffers cached Mem: 384 67 316 0 0 0 -/+ buffers/cache: 67 316 Swap: 0 0 0 top - 21:01:07 up 3:12, 1 user, load average: 0.24, 0.08, 0.03 Tasks: 31 total, 2 running, 29 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 393216k total, 69832k used, 323384k free, 0k buffers Swap: 0k total, 0k used, 0k free, 0k cached is there any other alternative to achieve my goal to uninstall plesk? thanks.

    Read the article

  • Reread partition table without rebooting?

    - by Teddy
    Sometimes, when resizing or otherwise mucking about with partitions on a disk, cfdisk will say: Wrote partition table, but re-read table failed. Reboot to update table. (This also happens with other partitioning tools, so I'm thinking this is a Linux issue rather than a cfdisk issue.) Why is this, and why does it only happens sometimes, and what can I do to avoid it? Note: Please assume that none of the partitions I am actually editing are opened, mounted or otherwise in use. Update: cfdisk uses ioctl(fd, BLKRRPART, NULL) to tell Linux to reread the partition table. Two of the other tools recommended so far (hdparm -z DEVICE, sfdisk -R DEVICE) does exactly the same thing. The partprobe DEVICE command, on the other hand, seems to use a new ioctl called BLKPG, which might be better; I don't know. (It also falls back on BLKRRPART if BLKPG fails.) BLKPG seems to be a "this partition has changed; here is the new size" operation, and it looked like partprobe called it individually on all the partitions on the device passed, so it should work if the individual partitions are unused. However, I have not had the opportunity to try it.

    Read the article

  • Why is my rsync so slow?

    - by iblue
    My Laptop and my workstation are both connected to a Gigabit Switch. Both are running Linux. But when I copy files with rsync, it performs badly. I get about 22 MB/s. Shouldn't I theoretically get about 125 MB/s? What is the limiting factor here? EDIT: I conducted some experiments. Write performance on the laptop The laptop has a xfs filesystem with full disk encryption. It uses aes-cbc-essiv:sha256 cipher mode with 256 bits key length. Disk write performance is 58.8 MB/s. iblue@nerdpol:~$ LANG=C dd if=/dev/zero of=test.img bs=1M count=1024 1073741824 Bytes (1.1 GB) copied, 18.2735 s, 58.8 MB/s Read performance on the workstation The files I copied are on a software RAID-5 over 5 HDDs. On top of the raid is a lvm. The volume itself is encrypted with the same cipher. The workstation has a FX-8150 cpu that has a native AES-NI instruction set which speeds up encryption. Disk read performance is 256 MB/s (cache was cold). iblue@raven:/mnt/bytemachine/imgs$ dd if=backup-1333796266.tar.bz2 of=/dev/null bs=1M 10213172008 bytes (10 GB) copied, 39.8882 s, 256 MB/s Network performance I ran iperf between the two clients. Network performance is 939 Mbit/s iblue@raven $ iperf -c 94.135.XXX ------------------------------------------------------------ Client connecting to 94.135.XXX, TCP port 5001 TCP window size: 23.2 KByte (default) ------------------------------------------------------------ [ 3] local 94.135.XXX port 59385 connected with 94.135.YYY port 5001 [ ID] Interval Transfer Bandwidth [ 3] 0.0-10.0 sec 1.09 GBytes 939 Mbits/sec

    Read the article

  • Audit file removal (auditctl)

    - by user1513039
    For some reason, some script or program is removing a pid file for the service on the linux server (centos5.4 / 2.6.18-308.4.1.el5xen). I suspect a faulty cron script, but manual investigation did not lead me to it. And i still want to track it down. Have been using auditctl rule: auditctl -w /var/run/some_service.pid -p w Which helped me to see something, but not quite exactly what i wanted: type=PATH msg=audit(11/12/2013 09:07:43.199:432577) : item=1 name=/var/run/some_service.pid inode=12419227 dev=fd:00 mode=file,644 ouid=root ogid=root rdev=00:00 type=SYSCALL msg=audit(11/12/2013 09:07:43.199:432577) : arch=x86_64 syscall=unlink success=yes exit=0 a0=7fff7dd46dd0 a1=1 a2=2 a3=127feb90 items=2 ppid=3454 pid=6227 auid=root uid=root gid=root euid=root suid=root fsuid=root egid=root sgid=root fsgid=root tty=pts0 ses=38138 comm=rm exe=/bin/rm key=(null) Problem here is that i see ppid of the script that removed the file, but at the analysis time the (p)pids are already invalid as probably scripts/programs have been shutdown. Imagine a cron script deleting the file. So i need some way to expand/add audit rule(s) to be able to trace the parents of the /bin/rm at the time of removal. I have been thinking to add some rule to monitor all process creation, something like: auditctl -a task,always But this happen to be very resource intensive. So i need help or advice how to combine these rules, or how to expand any of the rules to help track the script/program. Thanks.

    Read the article

  • Ubuntu's garbage collection cron job for PHP sessions takes 25 minutes to run, why?

    - by Lamah
    Ubuntu has a cron job set up which looks for and deletes old PHP sessions: # Look for and purge old sessions every 30 minutes 09,39 * * * * root [ -x /usr/lib/php5/maxlifetime ] \ && [ -d /var/lib/php5 ] && find /var/lib/php5/ -depth -mindepth 1 \ -maxdepth 1 -type f -cmin +$(/usr/lib/php5/maxlifetime) ! -execdir \ fuser -s {} 2> /dev/null \; -delete My problem is that this process is taking a very long time to run, with lots of disk IO. Here's my CPU usage graph: The cleanup running is represented by the teal spikes. At the beginning of the period, PHP's cleanup jobs were scheduled at the default 09 and 39 minutes times. At 15:00 I removed the 39 minute time from cron, so a cleanup job twice the size runs half as often (you can see the peaks get twice as wide and half as frequent). Here are the corresponding graphs for IO time: And disk operations: At the peak where there were about 14,000 sessions active, the cleanup can be seen to run for a full 25 minutes, apparently using 100% of one core of the CPU and what seems to be 100% of the disk IO for the entire period. Why is it so resource intensive? An ls of the session directory /var/lib/php5 takes just a fraction of a second. So why does it take a full 25 minutes to trim old sessions? Is there anything I can do to speed this up? The filesystem for this device is currently ext4, running on Ubuntu Precise 12.04 64-bit. EDIT: I suspect that the load is due to the unusual process "fuser" (since I expect a simple rm to be a damn sight faster than the performance I'm seeing). I'm going to remove the use of fuser and see what happens.

    Read the article

  • Shell script to block proftp failled attempt

    - by Saif
    Hello, I want to filter and block failed attempt to access my proftp server. Here is an example line from the /var/log/secure file: Jan 2 18:38:25 server1 proftpd[17847]: spy1.XYZ.com (93.218.93.95[93.218.93.95]) - Maximum login attempts (3) exceeded There are several lines like this. I would like to block any attempts like this from any IP twice. Here's a script I'm trying to run to block those IPs. tail -1000 /var/log/secure | awk '/proftpd/ && /Maximum login/ { if (/attempts/) try[$7]++; else try[$11]++; } END { for (h in try) if (try[h] > 4) print h; }' | while read ip do /sbin/iptables -L -n | grep $ip > /dev/null if [ $? -eq 0 ] ; then # echo "already denied ip: [$ip]" ; true else logger -p authpriv.notice "*** Blocking ProFTPD attempt from: $ip" /sbin/iptables -I INPUT -s $ip -j DROP fi done how can I select the IP with "awk". with the current script it's selecting "(93.218.93.95[93.218.93.95])" this line completely. But i only want to select the IP.

    Read the article

  • Cannot Install Windows 7 SP1 (64-bit)

    - by Clever Human
    I have tried every way I know how to get Windows 7 SP1 to install. It fails every time. Below is what looks like the relevant contents of the CBS.Log file. If there are further details that would help or more information I can gather, I will get it. 2011-08-15 10:32:52, Info CBS Startup: Package: Package_for_KB976902~31bf3856ad364e35~amd64~~6.1.1.17514 completed startup processing, new state: Installed, original: Installed, targeted: Installed. hr = 0x80070490 2011-08-15 10:32:52, Info CBS WER: Generating failure report for package: Package_for_KB976932~31bf3856ad364e35~amd64~~6.1.1.17514, status: 0x80070490, failure source: CBS Other, start state: Partially Installed, target state: Installed, client id: SP Coordinater Engine 2011-08-15 10:32:52, Info CBS Failed to query DisableWerReporting flag. Assuming not set... [HRESULT = 0x80070002 - ERROR_FILE_NOT_FOUND] 2011-08-15 10:32:52, Info CBS Failed to add %windir%\winsxs\pending.xml to WER report because it is missing. Continuing without it... 2011-08-15 10:32:52, Info CBS Failed to add %windir%\winsxs\pending.xml.bad to WER report because it is missing. Continuing without it... 2011-08-15 10:32:52, Info CBS SQM: Reporting package change completion for package: Package_for_KB976932~31bf3856ad364e35~amd64~~6.1.1.17514, current: Partially Installed, original: Partially Installed, target: Installed, status: 0x80070490, failure source: CBS Other, failure details: "(null)", client id: SP Coordinater Engine, initiated offline: False, execution sequence: 517, first merged sequence: 517 2011-08-15 10:32:52, Info CBS SQM: Upload requested for report: PackageChangeEnd_Package_for_KB976932~31bf3856ad364e35~amd64~~6.1.1.17514, session id: 101457924, sample type: Standard 2011-08-15 10:32:52, Info CBS SQM: Ignoring upload request because the sample type is not enabled: Standard I have downloaded the service pack and ran it from the EXE, I have installed it from Windows Update, I have ran all the "troubleshooting" trouble shots I could find. Nothing has worked so far. Any advice would be appreciated.

    Read the article

  • LDAPS being redirected to 389

    - by Ikkoras
    We're trying to perform an LDAPS bind to a server which blocks 389 with a firewall so all traffic must travel over 636. In our test lab we're connecting to a test ldap (located on the same server) which does not have this firewall so both ports are exposed. Running ldp.exe on the test server we generate the trace below which seems to suggest that it is successfully binding over 636. However if we monitor the traffic with wireshark all the traffic is being sent to 389 with no attempt to even contact 636. Other tools will bind only with SSL on 636 or without SSL on 389 whjich seems to suggest it is behaving correctly but Wireshark shows 389. Only the test server we are using RawCap to capture the local loopback traffic. Any ideas? 0x0 = ldap_unbind(ld); ld = ldap_sslinit("WIN-GF49504Q77T.test.com", 636, 1); Error 0 = ldap_set_option(hLdap, LDAP_OPT_PROTOCOL_VERSION, 3); Error 0 = ldap_connect(hLdap, NULL); Error 0 = ldap_get_option(hLdap,LDAP_OPT_SSL,(void*)&lv); Host supports SSL, SSL cipher strength = 128 bits Established connection to WIN-GF49504Q77T.test.com. Retrieving base DSA information... Getting 1 entries: Dn: (RootDSE)

    Read the article

  • Request sent with version Http/0.9

    - by user143224
    I am using common-HttpClient ver 3.1. All my requests are having correct (default) Http version in the request line i.e Http/1.1 except fot 1 request. Following Post request gets the requestline as Http/0.9 server : port/cas/v1/tickets/TGT-1-sUqenNbqUzvkGSWW25lcbaJc0OEcJ6wg5DOj3XDMSwoIBf6s7i-cas-1 Body: service=* I debugged through the httpclient code and saw the requestline is set to http/1.1 but on the server i see the request coming as http/0.9. i tried to set the http version explicitly using the HttpMethodParams but does not help. Does someone has any idea what could be wrong? HttpClient client = new HttpClient(); HostConfiguration hc = client.getHostConfiguration(); hc.setHost(new URI(url, false)); PostMethod method = new PostMethod(); method.setURI(new URI(url, false)); method.getParams().setUriCharset("UTF-8"); method.getParams().setHttpElementCharset("UTF-8"); method.getParams().setContentCharset("UTF-8"); method.getParams().setVersion(HttpVersion.HTTP_1_1); method.addParameter("service", URLEncoder.encode(service, "UTF-8")); method.setPath(contextPath + "/tickets/" + tgt); String respBody = null; int statusCode = client.executeMethod(method); respBody = method.getResponseBodyAsString();

    Read the article

  • Grub Autostart with timeout

    - by BetaRide
    On Ubuntu 10.4 LTS I want Grub to start the default OS after 5 Seconds. I'd like to see the output of the startup scripts. Currently grub wait forever until I hit return and the output of the startup scripts isn't visible. Can someone tell me how I have to configure /etc/default/grub or any other setups? I tried to play with GRUB_TIMEOUT and GRUB_DEFAULT and did a sudo update-grub afterwards, but nothing changed. Any ideas? # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT=5 #GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=5 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" GRUB_SAVEDEFAULT=true # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux # GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_LINUX_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1"

    Read the article

  • Faster caching method

    - by pataroulis
    I have a service that provides HTML code which at some point it is not updated anymore. The code is always generated dynamically from a database with 10 million entries so each HTML code page rendering searches there for say 60 or 70 of those entries and then renders the page. So, for those expired pages, I want to use a caching system which will be VERY simple (like just enter a record with the rendered HTML and (if I need) remove it). I tried to do it file-based but the search for the existence of a file and then passing it through php to actually render it , seems like too much for what I want to do. I was thinking of doing it on mysql with a table with MEDIUMBLOBs (each page is around 100k). It would hold about 150000 such records (for now, at least). My question is: Would it be faster to let mysql do the lookup of the file and the passing to php or is the file-based approach faster? The lookup code for the file based version looks like this: $page = @file_get_contents(getCacheFilename($pageId)); if($page!=NULL) { echo $page; } else { renderAndCachePage($pageId); } which does one lookup whether it finds the file or not. The mysql table would just have an ID (the page id) and the blob entry. The disk of the system is a simple SATA raid 1 , the mysql daemon can grab up to 2.5GB of memory (i have a proxy running too, eating the rest of the 16GB of the machine. ) In general the disk is quite busy already. My not using PEAR cache, is because I think (please feel free to correct me on this) it adds overhead I do not need because the page rendering code is called about 2M times per day and I wouldn't want to go through the whole code each time (and yes, I have eaccelerator to cache the code too). Any pointer to what direction I should go, would be greatly welcome. Thanks!

    Read the article

  • php mail() function painfully slow on local development machine

    - by Michael B
    Background: If you have set up a local apache server for development purposes you may have run into the problem where sendmail takes a long time (at least one minute) to send emails. This is extremely frustrating if you are trying to debug a problem with an email you have generated. There are several forum posts on the internet that discuss this problem. However, none of theme described what to do in enough detail for my limited knowledge. Here are the steps that worked for me: 1) find your hostname (in case you've forgotten it) using this command: :~$ cat /hosts/hostname myhostname 2) edit the file /etc/hosts and make sure the first line is the following: 127.0.0.1 localhost.localdomain localhost myhostname 3) edit the sendmail configuration file ( /etc/mail/sendmail.cf in Ubuntu) and Uncomment the line #O HostsFile=/etc/hosts 4) Restart the computer. The computer should boot up much faster now and the mail() function should return almost immediately. HOWEVER, the emails won't actually be sent unless you follow step 5. 5) You must new use the sendmail '-f' option whenever using the mail function. For example: mail('[email protected]', 'the subject', 'the message', null, '[email protected]'); My question for my fellow serverfaulters is: What further changes can be made so that I don't have to use the sendmail -f option? Although it's not very hard to add the -f option, it is a problem when your CMS (such as Drupal) does not use the -f option when sending mail. You would need to hack a core module to add this option.

    Read the article

  • Apache directory access with virtual host [SOLVED]

    - by alexeygaidamaka
    I have a virtual host with a configuration like that. When i'm trying to get into foobar.com/dir providing valid username/password pair i get 403 forbidden page instead of that directory contents. www.foobar.com/dir has 777 rights, .httpaswd is chmoded 644. But i can't figure out why i am still not seeing contents. Please, give me a hint. ServerAdmin webmaster@localhost ServerName www.foobar.com ServerAlias www.foobar.com DocumentRoot /var/www/foobar <Directory /> Options FollowSymLinks AllowOverride All </Directory> <Directory /var/www/foobar> Options -Indexes FollowSymLinks AllowOverride All Order allow,deny allow from all </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> <Directory /var/www/foobar/dir> AllowOverride AuthConfig AuthName "Authorize yourself, please!" AuthType Basic AuthUserFile /etc/apache2/.htpasswd AuthGroupFile /dev/null Allow from All Order Allow,Deny Options +Indexes<<- that one should be added Require valid-user you have to add the line Options +Indexes to see directory contents

    Read the article

  • Reasons for Ajax navigation breaking on Coldfusion/Apache when running an app in iOS fullscreen mode? [closed]

    - by frequent
    Not sure if this belongs to SO or here. I'm running a webApp using jquery, jquerymobile, requireJS and apache, coldfusion8, mysql 5.0.88 serverside. The app works fine until I try to run it in fullscreen mode on iOS (add icon to homescreen, launch app from there with <meta name="apple-mobile-web-app-capable" content="yes" /> specified). This meta tag will break the Jquery Mobile AJAX navigation. The AJAX request will fail and the requested page will be loaded as a new page, thereby restarting the app on every page change. I have chased this through the whole front end starting from requireJS through Jquery Mobiles AJAX navigation down to the AJAX request being made in Jquery. xhr.send( ( s.hasContent && s.data ) || null ); In regular browser this works no problem. In fullscreen mode, this fails (readystate=0, empty response). I have found this article, which argues that fullscreen mode is like a browser instance with different HTTP strings. On ASP.net this results in the browser not being identified by the server and only basic browser settings being assumed (e.g. no Javascript). I'm a little lost where to start looking for possible reasons serverside. I have not written any server code for handling Ajax page navigation, so this must be something that is handled out of the box by Coldfusion or Apache? Question: Where could I start looking for problable causes of fullscreen mode breaking AJAX navigation if I assume Coldfusion or Apache are the culprits? Is there a setting I'm missing in httpd.config? What else could be the problem? Thanks for inputs!

    Read the article

  • File gone or altered after MySQL[HY000][2002] error [on hold]

    - by Psyberion
    I'm working on a rather small project, and today I got an SQLSTATE[HY000][2002]:Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' error. After a bit of googling and a few attempts to restart the mysqld service, I gave up and tried rebooting the computer. This did the trick, MySQL was now running fine. I did, however, get a more serious issue: Some files were missing, others were altered. Also, a few posts in the MySQL was gone. It's really strange, it's like the whole project has been reset two or three days, and I have no clue why. Some additional details about this: I save my files after every line of code. I'm religious about this. So I haven't lost the files that way. I was accessing the server via SSH when the error occurred, so I did the programming and the reboot over SSH. The server is a Raspberry Pi, model B, with Raspian on which I run Apache2. I was viewing the site and had an active session when I rebooted the system. The pages I lost did work just before this all happened. The MySQL fault occurred when I tried to add a text NOT NULL column to a table which had entries. Now, the amount of lost work isn't really that much, so I'm not really looking for help recovering the files. The reason I'm posting this is because I wonder how did this happen, and why?

    Read the article

  • Metro: Creating an IndexedDbDataSource for WinJS

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can create custom data sources which you can use with the controls in the WinJS library. In particular, I explain how you can create an IndexedDbDataSource which you can use to store and retrieve data from an IndexedDB database. If you want to skip ahead, and ignore all of the fascinating content in-between, I’ve included the complete code for the IndexedDbDataSource at the very bottom of this blog entry. What is IndexedDB? IndexedDB is a database in the browser. You can use the IndexedDB API with all modern browsers including Firefox, Chrome, and Internet Explorer 10. And, of course, you can use IndexedDB with Metro style apps written with JavaScript. If you need to persist data in a Metro style app written with JavaScript then IndexedDB is a good option. Each Metro app can only interact with its own IndexedDB databases. And, IndexedDB provides you with transactions, indices, and cursors – the elements of any modern database. An IndexedDB database might be different than the type of database that you normally use. An IndexedDB database is an object-oriented database and not a relational database. Instead of storing data in tables, you store data in object stores. You store JavaScript objects in an IndexedDB object store. You create new IndexedDB object stores by handling the upgradeneeded event when you attempt to open a connection to an IndexedDB database. For example, here’s how you would both open a connection to an existing database named TasksDB and create the TasksDB database when it does not already exist: var reqOpen = window.indexedDB.open(“TasksDB”, 2); reqOpen.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); }; reqOpen.onsuccess = function () { var db = reqOpen.result; // Do something with db }; When you call window.indexedDB.open(), and the database does not already exist, then the upgradeneeded event is raised. In the code above, the upgradeneeded handler creates a new object store named tasks. The new object store has an auto-increment column named id which acts as the primary key column. If the database already exists with the right version, and you call window.indexedDB.open(), then the success event is raised. At that point, you have an open connection to the existing database and you can start doing something with the database. You use asynchronous methods to interact with an IndexedDB database. For example, the following code illustrates how you would add a new object to the tasks object store: var transaction = db.transaction(“tasks”, “readwrite”); var reqAdd = transaction.objectStore(“tasks”).add({ name: “Feed the dog” }); reqAdd.onsuccess = function() { // Tasks added successfully }; The code above creates a new database transaction, adds a new task to the tasks object store, and handles the success event. If the new task gets added successfully then the success event is raised. Creating a WinJS IndexedDbDataSource The most powerful control in the WinJS library is the ListView control. This is the control that you use to display a collection of items. If you want to display data with a ListView control, you need to bind the control to a data source. The WinJS library includes two objects which you can use as a data source: the List object and the StorageDataSource object. The List object enables you to represent a JavaScript array as a data source and the StorageDataSource enables you to represent the file system as a data source. If you want to bind an IndexedDB database to a ListView then you have a choice. You can either dump the items from the IndexedDB database into a List object or you can create a custom data source. I explored the first approach in a previous blog entry. In this blog entry, I explain how you can create a custom IndexedDB data source. Implementing the IListDataSource Interface You create a custom data source by implementing the IListDataSource interface. This interface contains the contract for the methods which the ListView needs to interact with a data source. The easiest way to implement the IListDataSource interface is to derive a new object from the base VirtualizedDataSource object. The VirtualizedDataSource object requires a data adapter which implements the IListDataAdapter interface. Yes, because of the number of objects involved, this is a little confusing. Your code ends up looking something like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); The code above is used to create a new class named IndexedDbDataSource which derives from the base VirtualizedDataSource class. In the constructor for the new class, the base class _baseDataSourceConstructor() method is called. A data adapter is passed to the _baseDataSourceConstructor() method. The code above creates a new method exposed by the IndexedDbDataSource named nuke(). The nuke() method deletes all of the objects from an object store. The code above also overrides a method named remove(). Our derived remove() method accepts any type of key and removes the matching item from the object store. Almost all of the work of creating a custom data source goes into building the data adapter class. The data adapter class implements the IListDataAdapter interface which contains the following methods: · change() · getCount() · insertAfter() · insertAtEnd() · insertAtStart() · insertBefore() · itemsFromDescription() · itemsFromEnd() · itemsFromIndex() · itemsFromKey() · itemsFromStart() · itemSignature() · moveAfter() · moveBefore() · moveToEnd() · moveToStart() · remove() · setNotificationHandler() · compareByIdentity Fortunately, you are not required to implement all of these methods. You only need to implement the methods that you actually need. In the case of the IndexedDbDataSource, I implemented the getCount(), itemsFromIndex(), insertAtEnd(), and remove() methods. If you are creating a read-only data source then you really only need to implement the getCount() and itemsFromIndex() methods. Implementing the getCount() Method The getCount() method returns the total number of items from the data source. So, if you are storing 10,000 items in an object store then this method would return the value 10,000. Here’s how I implemented the getCount() method: getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); } The first thing that you should notice is that the getCount() method returns a WinJS promise. This is a requirement. The getCount() method is asynchronous which is a good thing because all of the IndexedDB methods (at least the methods implemented in current browsers) are also asynchronous. The code above retrieves an object store and then uses the IndexedDB count() method to get a count of the items in the object store. The value is returned from the promise by calling complete(). Implementing the itemsFromIndex method When a ListView displays its items, it calls the itemsFromIndex() method. By default, it calls this method multiple times to get different ranges of items. Three parameters are passed to the itemsFromIndex() method: the requestIndex, countBefore, and countAfter parameters. The requestIndex indicates the index of the item from the database to show. The countBefore and countAfter parameters represent hints. These are integer values which represent the number of items before and after the requestIndex to retrieve. Again, these are only hints and you can return as many items before and after the request index as you please. Here’s how I implemented the itemsFromIndex method: itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); } In the code above, a cursor is used to iterate through the objects in an object store. You fetch the next item in the cursor by calling either the cursor.continue() or cursor.advance() method. The continue() method moves forward by one object and the advance() method moves forward a specified number of objects. Each time you call continue() or advance(), the success event is raised again. If the cursor is null then you know that you have reached the end of the cursor and you can return the results. Some things to be careful about here. First, the return value from the itemsFromIndex() method must implement the IFetchResult interface. In particular, you must return an object which has an items, offset, and totalCount property. Second, each item in the items array must implement the IListItem interface. Each item should have a key and a data property. Implementing the insertAtEnd() Method When creating the IndexedDbDataSource, I wanted to go beyond creating a simple read-only data source and support inserting and deleting objects. If you want to support adding new items with your data source then you need to implement the insertAtEnd() method. Here’s how I implemented the insertAtEnd() method for the IndexedDbDataSource: insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); } When implementing the insertAtEnd() method, you need to be careful to return an object which implements the IItem interface. In particular, you should return an object that has a key and a data property. The key must be a string and it uniquely represents the new item added to the data source. The value of the data property represents the new item itself. Implementing the remove() Method Finally, you use the remove() method to remove an item from the data source. You call the remove() method with the key of the item which you want to remove. Implementing the remove() method in the case of the IndexedDbDataSource was a little tricky. The problem is that an IndexedDB object store uses an integer key and the VirtualizedDataSource requires a string key. For that reason, I needed to override the remove() method in the derived IndexedDbDataSource class like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); When you call remove(), you end up calling a method of the IndexedDbDataAdapter named removeInternal() . Here’s what the removeInternal() method looks like: setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); } The removeInternal() method calls the IndexedDB delete() method to delete an item from the object store. If the item is deleted successfully then the _notificationHandler.remove() method is called. Because we are not implementing the standard IListDataAdapter remove() method, we need to notify the data source (and the ListView control bound to the data source) that an item has been removed. The way that you notify the data source is by calling the _notificationHandler.remove() method. Notice that we get the _notificationHandler in the code above by implementing another method in the IListDataAdapter interface: the setNotificationHandler() method. You can raise the following types of notifications using the _notificationHandler: · beginNotifications() · changed() · endNotifications() · inserted() · invalidateAll() · moved() · removed() · reload() These methods are all part of the IListDataNotificationHandler interface in the WinJS library. Implementing the nuke() Method I wanted to implement a method which would remove all of the items from an object store. Therefore, I created a method named nuke() which calls the IndexedDB clear() method: nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); } Notice that the nuke() method calls the _notificationHandler.reload() method to notify the ListView to reload all of the items from its data source. Because we are implementing a custom method here, we need to use the _notificationHandler to send an update. Using the IndexedDbDataSource To illustrate how you can use the IndexedDbDataSource, I created a simple task list app. You can add new tasks, delete existing tasks, and nuke all of the tasks. You delete an item by selecting an item (swipe or right-click) and clicking the Delete button. Here’s the HTML page which contains the ListView, the form for adding new tasks, and the buttons for deleting and nuking tasks: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>DataSources</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- DataSources references --> <link href="indexedDb.css" rel="stylesheet" /> <script type="text/javascript" src="indexedDbDataSource.js"></script> <script src="indexedDb.js"></script> </head> <body> <div id="tmplTask" data-win-control="WinJS.Binding.Template"> <div class="taskItem"> Id: <span data-win-bind="innerText:id"></span> <br /><br /> Name: <span data-win-bind="innerText:name"></span> </div> </div> <div id="lvTasks" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplTask'), selectionMode: 'single' }"></div> <form id="frmAdd"> <fieldset> <legend>Add Task</legend> <label>New Task</label> <input id="inputTaskName" required /> <button>Add</button> </fieldset> </form> <button id="btnNuke">Nuke</button> <button id="btnDelete">Delete</button> </body> </html> And here is the JavaScript code for the TaskList app: /// <reference path="//Microsoft.WinJS.1.0.RC/js/base.js" /> /// <reference path="//Microsoft.WinJS.1.0.RC/js/ui.js" /> function init() { WinJS.UI.processAll().done(function () { var lvTasks = document.getElementById("lvTasks").winControl; // Bind the ListView to its data source var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; // Wire-up Add, Delete, Nuke buttons document.getElementById("frmAdd").addEventListener("submit", function (evt) { evt.preventDefault(); tasksDataSource.beginEdits(); tasksDataSource.insertAtEnd(null, { name: document.getElementById("inputTaskName").value }).done(function (newItem) { tasksDataSource.endEdits(); document.getElementById("frmAdd").reset(); lvTasks.ensureVisible(newItem.index); }); }); document.getElementById("btnDelete").addEventListener("click", function () { if (lvTasks.selection.count() == 1) { lvTasks.selection.getItems().done(function (items) { tasksDataSource.remove(items[0].data.id); }); } }); document.getElementById("btnNuke").addEventListener("click", function () { tasksDataSource.nuke(); }); // This method is called to initialize the IndexedDb database function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } }); } document.addEventListener("DOMContentLoaded", init); The IndexedDbDataSource is created and bound to the ListView control with the following two lines of code: var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; The IndexedDbDataSource is created with four parameters: the name of the database to create, the version of the database to create, the name of the object store to create, and a function which contains code to initialize the new database. The upgrade function creates a new object store named tasks with an auto-increment property named id: function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } The Complete Code for the IndexedDbDataSource Here’s the complete code for the IndexedDbDataSource: (function () { /************************************************ * The IndexedDBDataAdapter enables you to work * with a HTML5 IndexedDB database. *************************************************/ var IndexedDbDataAdapter = WinJS.Class.define( function (dbName, dbVersion, objectStoreName, upgrade, error) { this._dbName = dbName; // database name this._dbVersion = dbVersion; // database version this._objectStoreName = objectStoreName; // object store name this._upgrade = upgrade; // database upgrade script this._error = error || function (evt) { console.log(evt.message); }; }, { /******************************************* * IListDataAdapter Interface Methods ********************************************/ getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); }, itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); }, insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); }, setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, /***************************************** * IndexedDbDataSource Method ******************************************/ removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); }, nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); }, /******************************************* * Private Methods ********************************************/ _ensureDbOpen: function () { var that = this; // Try to get cached Db if (that._cachedDb) { return WinJS.Promise.wrap(that._cachedDb); } // Otherwise, open the database return new WinJS.Promise(function (complete, error, progress) { var reqOpen = window.indexedDB.open(that._dbName, that._dbVersion); reqOpen.onerror = function (evt) { error(); }; reqOpen.onupgradeneeded = function (evt) { that._upgrade(evt); that._notificationHandler.invalidateAll(); }; reqOpen.onsuccess = function () { that._cachedDb = reqOpen.result; complete(that._cachedDb); }; }); }, _getObjectStore: function (type) { type = type || "readonly"; var that = this; return new WinJS.Promise(function (complete, error) { that._ensureDbOpen().then(function (db) { var transaction = db.transaction(that._objectStoreName, type); complete(transaction.objectStore(that._objectStoreName)); }); }); }, _get: function (key) { return new WinJS.Promise(function (complete, error) { that._getObjectStore().done(function (store) { var reqGet = store.get(key); reqGet.onerror = that._error; reqGet.onsuccess = function (item) { complete(item); }; }); }); } } ); var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); WinJS.Namespace.define("DataSources", { IndexedDbDataSource: IndexedDbDataSource }); })(); Summary In this blog post, I provided an overview of how you can create a new data source which you can use with the WinJS library. I described how you can create an IndexedDbDataSource which you can use to bind a ListView control to an IndexedDB database. While describing how you can create a custom data source, I explained how you can implement the IListDataAdapter interface. You also learned how to raise notifications — such as a removed or invalidateAll notification — by taking advantage of the methods of the IListDataNotificationHandler interface.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Problem in creation MDB Queue connection at Jboss StartUp

    - by Amit Ruwali
    I am not able to create a Queue connection in JBOSS4.2.3GA Version & Java1.5, as I am using MDB as per the below details. I am putting this MDB in a jar file(named utsJar.jar) and copied it in deploy folder of JBOSS, In the test env. this MDB works well but in another env. [ env settings and jboss/java ver is same ] it is throwing error at jboss start up [attached below ]. I have searched for this error but couldn't find any solution till now; was there any issue of port confict or something related with configurations ? UTSMessageListner.java @MessageDriven(activationConfig = { @ActivationConfigProperty(propertyName="destinationType", propertyValue="javax.jms.Queue"), @ActivationConfigProperty(propertyName="destination", propertyValue="queue/UTSQueue") }) @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED) public class UTSMessageListner implements MessageListener { public void onMessage(Message msg) { ObjectMessage objmsg = (ObjectMessage) msg; try { UTSListVO utsMessageListVO = (UTSListVO) objmsg.getObject(); if(utsMessageListVO.getUtsMessageList()!=null) { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: SIZE Of UTSMessage List =[" +utsMessageListVO.getUtsMessageList().size() + "]"); UTSDataLayerImpl.getInstance().insertUTSMessage(utsMessageListVO); } else { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: Message List is NULL"); } } catch (Exception ex) { UtsWebServiceLogger.logMessage("UTSMessageListner:onMessage: Error Receiving Message"+ExceptionUtility.getStackTrace(ex)); } } } [ I have also attached whole server.log as an attach] /// ///////////////////////////////// Error Trace is Below while starting the server /////////////////////////// 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] Could not find the queue destination-jndi-name=queue/UTSQueue 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] destination not found: queue/UTSQueue reason: javax.naming.NameNotFoundException: queue not bound 2010-03-12 07:05:40,061 WARN [org.jboss.ejb3.mdb.MessagingContainer] creating a new temporary destination: queue/UTSQueue 2010-03-12 07:05:40,071 WARN [org.jboss.system.ServiceController] Problem starting service jboss.j2ee:ear=uts.ear,jar=utsJar.jar,name=UTSMessageListner,service=EJB3 java.lang.NullPointerException at org.jboss.mq.server.jmx.DestinationManager.createDestination(DestinationManager.java:336) at org.jboss.mq.server.jmx.DestinationManager.createQueue(DestinationManager.java:293) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.ejb3.JmxClientKernelAbstraction.invoke(JmxClientKernelAbstraction.java:44) at org.jboss.ejb3.jms.DestinationManagerJMSDestinationFactory.createDestination(DestinationManagerJMSDestinationFactory.java:75) at org.jboss.ejb3.mdb.MessagingContainer.createTemporaryDestination(MessagingContainer.java:573) at org.jboss.ejb3.mdb.MessagingContainer.createDestination(MessagingContainer.java:512) at org.jboss.ejb3.mdb.MessagingContainer.innerCreateQueue(MessagingContainer.java:438) at org.jboss.ejb3.mdb.MessagingContainer.jmsCreate(MessagingContainer.java:400) at org.jboss.ejb3.mdb.MessagingContainer.innerStart(MessagingContainer.java:166) at org.jboss.ejb3.mdb.MessagingContainer.start(MessagingContainer.java:152) at org.jboss.ejb3.mdb.MDB.start(MDB.java:126) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.ejb3.ServiceDelegateWrapper.startService(ServiceDelegateWrapper.java:103) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy53.start(Unknown Source) at org.jboss.ejb3.JmxKernelAbstraction.install(JmxKernelAbstraction.java:120) at org.jboss.ejb3.Ejb3Deployment.registerEJBContainer(Ejb3Deployment.java:301) at org.jboss.ejb3.Ejb3Deployment.start(Ejb3Deployment.java:362) at org.jboss.ejb3.Ejb3Module.startService(Ejb3Module.java:91) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy33.start(Unknown Source) at org.jboss.ejb3.EJB3Deployer.start(EJB3Deployer.java:512) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.interceptor.DynamicInterceptor.invoke(DynamicInterceptor.java:97) at org.jboss.system.InterceptorServiceMBeanSupport.invokeNext(InterceptorServiceMBeanSupport.java:238) at org.jboss.wsf.container.jboss42.DeployerInterceptor.start(DeployerInterceptor.java:87) at org.jboss.deployment.SubDeployerInterceptorSupport$XMBeanInterceptor.start(SubDeployerInterceptorSupport.java:188) at org.jboss.deployment.SubDeployerInterceptor.invoke(SubDeployerInterceptor.java:95) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy34.start(Unknown Source) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1025) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1015) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:819) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:782) at sun.reflect.GeneratedMethodAccessor20.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy9.deploy(Unknown Source) at org.jboss.deployment.scanner.URLDeploymentScanner.deploy(URLDeploymentScanner.java:421) at org.jboss.deployment.scanner.URLDeploymentScanner.scan(URLDeploymentScanner.java:634) at org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.doScan(AbstractDeploymentScanner.java:263) at org.jboss.deployment.scanner.AbstractDeploymentScanner.startService(AbstractDeploymentScanner.java:336) at org.jboss.system.ServiceMBeanSupport.jbossInternalStart(ServiceMBeanSupport.java:289) at org.jboss.system.ServiceMBeanSupport.jbossInternalLifecycle(ServiceMBeanSupport.java:245) at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.system.ServiceController$ServiceProxy.invoke(ServiceController.java:978) at $Proxy0.start(Unknown Source) at org.jboss.system.ServiceController.start(ServiceController.java:417) at sun.reflect.GeneratedMethodAccessor10.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.server.Invocation.invoke(Invocation.java:86) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy4.start(Unknown Source) at org.jboss.deployment.SARDeployer.start(SARDeployer.java:304) at org.jboss.deployment.MainDeployer.start(MainDeployer.java:1025) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:819) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:782) at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:766) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:585) at org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155) at org.jboss.mx.server.Invocation.dispatch(Invocation.java:94) at org.jboss.mx.interceptor.AbstractInterceptor.invoke(AbstractInterceptor.java:133) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.interceptor.ModelMBeanOperationInterceptor.invoke(ModelMBeanOperationInterceptor.java:142) at org.jboss.mx.server.Invocation.invoke(Invocation.java:88) at org.jboss.mx.server.AbstractMBeanInvoker.invoke(AbstractMBeanInvoker.java:264) at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:659) at org.jboss.mx.util.MBeanProxyExt.invoke(MBeanProxyExt.java:210) at $Proxy5.deploy(Unknown Source) at org.jboss.system.server.ServerImpl.doStart(ServerImpl.java:482) at org.jboss.system.server.ServerImpl.start(ServerImpl.java:362) at org.jboss.Main.boot(Main.java:200) at org.jboss.Main$1.run(Main.java:508) at java.lang.Thread.run(Thread.java:595)

    Read the article

  • Implementation of ZipCrypto / Zip 2.0 encryption in java

    - by gomesla
    I'm trying o implement the zipcrypto / zip 2.0 encryption algoritm to deal with encrypted zip files as discussed in http://www.pkware.com/documents/casestudies/APPNOTE.TXT I believe I've followed the specs but just can't seem to get it working. I'm fairly sure the issue has to do with my interpretation of the crc algorithm. The documentation states CRC-32: (4 bytes) The CRC-32 algorithm was generously contributed by David Schwaderer and can be found in his excellent book "C Programmers Guide to NetBIOS" published by Howard W. Sams & Co. Inc. The 'magic number' for the CRC is 0xdebb20e3. The proper CRC pre and post conditioning is used, meaning that the CRC register is pre-conditioned with all ones (a starting value of 0xffffffff) and the value is post-conditioned by taking the one's complement of the CRC residual. Here is the snippet that I'm using for the crc32 public class PKZIPCRC32 { private static final int CRC32_POLYNOMIAL = 0xdebb20e3; private int crc = 0xffffffff; private int CRCTable[]; public PKZIPCRC32() { buildCRCTable(); } private void buildCRCTable() { int i, j; CRCTable = new int[256]; for (i = 0; i <= 255; i++) { crc = i; for (j = 8; j > 0; j--) if ((crc & 1) == 1) crc = (crc >>> 1) ^ CRC32_POLYNOMIAL; else crc >>>= 1; CRCTable[i] = crc; } } private int crc32(byte buffer[], int start, int count, int lastcrc) { int temp1, temp2; int i = start; crc = lastcrc; while (count-- != 0) { temp1 = crc >>> 8; temp2 = CRCTable[(crc ^ buffer[i++]) & 0xFF]; crc = temp1 ^ temp2; } return crc; } public int crc32(int crc, byte buffer) { return crc32(new byte[] { buffer }, 0, 1, crc); } } Below is my complete code. Can anyone see what I'm doing wrong. package org.apache.commons.compress.archivers.zip; import java.io.IOException; import java.io.InputStream; public class ZipCryptoInputStream extends InputStream { public class PKZIPCRC32 { private static final int CRC32_POLYNOMIAL = 0xdebb20e3; private int crc = 0xffffffff; private int CRCTable[]; public PKZIPCRC32() { buildCRCTable(); } private void buildCRCTable() { int i, j; CRCTable = new int[256]; for (i = 0; i <= 255; i++) { crc = i; for (j = 8; j > 0; j--) if ((crc & 1) == 1) crc = (crc >>> 1) ^ CRC32_POLYNOMIAL; else crc >>>= 1; CRCTable[i] = crc; } } private int crc32(byte buffer[], int start, int count, int lastcrc) { int temp1, temp2; int i = start; crc = lastcrc; while (count-- != 0) { temp1 = crc >>> 8; temp2 = CRCTable[(crc ^ buffer[i++]) & 0xFF]; crc = temp1 ^ temp2; } return crc; } public int crc32(int crc, byte buffer) { return crc32(new byte[] { buffer }, 0, 1, crc); } } private static final long ENCRYPTION_KEY_1 = 0x12345678; private static final long ENCRYPTION_KEY_2 = 0x23456789; private static final long ENCRYPTION_KEY_3 = 0x34567890; private InputStream baseInputStream = null; private final PKZIPCRC32 checksumEngine = new PKZIPCRC32(); private long[] keys = null; public ZipCryptoInputStream(ZipArchiveEntry zipEntry, InputStream inputStream, String passwd) throws Exception { baseInputStream = inputStream; // Decryption // ---------- // PKZIP encrypts the compressed data stream. Encrypted files must // be decrypted before they can be extracted. // // Each encrypted file has an extra 12 bytes stored at the start of // the data area defining the encryption header for that file. The // encryption header is originally set to random values, and then // itself encrypted, using three, 32-bit keys. The key values are // initialized using the supplied encryption password. After each byte // is encrypted, the keys are then updated using pseudo-random number // generation techniques in combination with the same CRC-32 algorithm // used in PKZIP and described elsewhere in this document. // // The following is the basic steps required to decrypt a file: // // 1) Initialize the three 32-bit keys with the password. // 2) Read and decrypt the 12-byte encryption header, further // initializing the encryption keys. // 3) Read and decrypt the compressed data stream using the // encryption keys. // Step 1 - Initializing the encryption keys // ----------------------------------------- // // Key(0) <- 305419896 // Key(1) <- 591751049 // Key(2) <- 878082192 // // loop for i <- 0 to length(password)-1 // update_keys(password(i)) // end loop // // Where update_keys() is defined as: // // update_keys(char): // Key(0) <- crc32(key(0),char) // Key(1) <- Key(1) + (Key(0) & 000000ffH) // Key(1) <- Key(1) * 134775813 + 1 // Key(2) <- crc32(key(2),key(1) >> 24) // end update_keys // // Where crc32(old_crc,char) is a routine that given a CRC value and a // character, returns an updated CRC value after applying the CRC-32 // algorithm described elsewhere in this document. keys = new long[] { ENCRYPTION_KEY_1, ENCRYPTION_KEY_2, ENCRYPTION_KEY_3 }; for (int i = 0; i < passwd.length(); ++i) { update_keys((byte) passwd.charAt(i)); } // Step 2 - Decrypting the encryption header // ----------------------------------------- // // The purpose of this step is to further initialize the encryption // keys, based on random data, to render a plaintext attack on the // data ineffective. // // Read the 12-byte encryption header into Buffer, in locations // Buffer(0) thru Buffer(11). // // loop for i <- 0 to 11 // C <- buffer(i) ^ decrypt_byte() // update_keys(C) // buffer(i) <- C // end loop // // Where decrypt_byte() is defined as: // // unsigned char decrypt_byte() // local unsigned short temp // temp <- Key(2) | 2 // decrypt_byte <- (temp * (temp ^ 1)) >> 8 // end decrypt_byte // // After the header is decrypted, the last 1 or 2 bytes in Buffer // should be the high-order word/byte of the CRC for the file being // decrypted, stored in Intel low-byte/high-byte order. Versions of // PKZIP prior to 2.0 used a 2 byte CRC check; a 1 byte CRC check is // used on versions after 2.0. This can be used to test if the password // supplied is correct or not. byte[] encryptionHeader = new byte[12]; baseInputStream.read(encryptionHeader); for (int i = 0; i < encryptionHeader.length; i++) { encryptionHeader[i] ^= decrypt_byte(); update_keys(encryptionHeader[i]); } } protected byte decrypt_byte() { byte temp = (byte) (keys[2] | 2); return (byte) ((temp * (temp ^ 1)) >> 8); } @Override public int read() throws IOException { // // Step 3 - Decrypting the compressed data stream // ---------------------------------------------- // // The compressed data stream can be decrypted as follows: // // loop until done // read a character into C // Temp <- C ^ decrypt_byte() // update_keys(temp) // output Temp // end loop int read = baseInputStream.read(); read ^= decrypt_byte(); update_keys((byte) read); return read; } private final void update_keys(byte ch) { keys[0] = checksumEngine.crc32((int) keys[0], ch); keys[1] = keys[1] + (byte) keys[0]; keys[1] = keys[1] * 134775813 + 1; keys[2] = checksumEngine.crc32((int) keys[2], (byte) (keys[1] >> 24)); } }

    Read the article

< Previous Page | 580 581 582 583 584 585 586 587 588 589 590 591  | Next Page >