Search Results

Search found 17097 results on 684 pages for 'entry level'.

Page 59/684 | < Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >

  • Problems creating a functioning table

    - by Hoser
    This is a pretty simple SQL query I would assume, but I'm having problems getting it to work. if (object_id('#InfoTable')is not null) Begin Drop Table #InfoTable End create table #InfoTable (NameOfObject varchar(50), NameOfCounter varchar(50), SampledValue float(30), DayStamp datetime) insert into #InfoTable(NameOfObject, NameOfCounter, SampledValue, DayStamp) select vPerformanceRule.ObjectName AS NameOfObject, vPerformanceRule.CounterName AS NameOfCounter, Perf.vPerfRaw.SampleValue AS SampledValue, Perf.vPerfHourly.DateTime AS DayStamp from vPerformanceRule, vPerformanceRuleInstance, Perf.vPerfHourly, Perf.vPerfRaw where (ObjectName like 'Logical Disk' and CounterName like '% Free Space' AND SampleValue > 95 AND SampleValue < 100) order by DayStamp desc select NameOfObject, NameOfCounter, SampledValue, DayStamp from #InfoTable Drop Table #InfoTable I've tried various other forms of syntax, but no matter what I do, I get these error messages. Msg 207, Level 16, State 1, Line 10 Invalid column name 'NameOfObject'. Msg 207, Level 16, State 1, Line 10 Invalid column name 'NameOfCounter'. Msg 207, Level 16, State 1, Line 10 Invalid column name 'SampledValue'. Msg 207, Level 16, State 1, Line 10 Invalid column name 'DayStamp'. Msg 207, Level 16, State 1, Line 22 Invalid column name 'NameOfObject'. Msg 207, Level 16, State 1, Line 22 Invalid column name 'NameOfCounter'. Msg 207, Level 16, State 1, Line 22 Invalid column name 'SampledValue'. Msg 207, Level 16, State 1, Line 22 Invalid column name 'DayStamp'. Line 10 is the first 'insert into' line, and line 22 is the second select line. Any ideas?

    Read the article

  • Silverlight Tree View with Multiple Levels

    - by psheriff
    There are many examples of the Silverlight Tree View that you will find on the web, however, most of them only show you how to go to two levels. What if you have more than two levels? This is where understanding exactly how the Hierarchical Data Templates works is vital. In this blog post, I am going to break down how these templates work so you can really understand what is going on underneath the hood. To start, let’s look at the typical two-level Silverlight Tree View that has been hard coded with the values shown below: <sdk:TreeView>  <sdk:TreeViewItem Header="Managers">    <TextBlock Text="Michael" />    <TextBlock Text="Paul" />  </sdk:TreeViewItem>  <sdk:TreeViewItem Header="Supervisors">    <TextBlock Text="John" />    <TextBlock Text="Tim" />    <TextBlock Text="David" />  </sdk:TreeViewItem></sdk:TreeView> Figure 1 shows you how this tree view looks when you run the Silverlight application. Figure 1: A hard-coded, two level Tree View. Next, let’s create three classes to mimic the hard-coded Tree View shown above. First, you need an Employee class and an EmployeeType class. The Employee class simply has one property called Name. The constructor is created to accept a “name” argument that you can use to set the Name property when you create an Employee object. public class Employee{  public Employee(string name)  {    Name = name;  }   public string Name { get; set; }} Finally you create an EmployeeType class. This class has one property called EmpType and contains a generic List<> collection of Employee objects. The property that holds the collection is called Employees. public class EmployeeType{  public EmployeeType(string empType)  {    EmpType = empType;    Employees = new List<Employee>();  }   public string EmpType { get; set; }  public List<Employee> Employees { get; set; }} Finally we have a collection class called EmployeeTypes created using the generic List<> class. It is in the constructor for this class where you will build the collection of EmployeeTypes and fill it with Employee objects: public class EmployeeTypes : List<EmployeeType>{  public EmployeeTypes()  {    EmployeeType type;            type = new EmployeeType("Manager");    type.Employees.Add(new Employee("Michael"));    type.Employees.Add(new Employee("Paul"));    this.Add(type);     type = new EmployeeType("Project Managers");    type.Employees.Add(new Employee("Tim"));    type.Employees.Add(new Employee("John"));    type.Employees.Add(new Employee("David"));    this.Add(type);  }} You now have a data hierarchy in memory (Figure 2) which is what the Tree View control expects to receive as its data source. Figure 2: A hierachial data structure of Employee Types containing a collection of Employee objects. To connect up this hierarchy of data to your Tree View you create an instance of the EmployeeTypes class in XAML as shown in line 13 of Figure 3. The key assigned to this object is “empTypes”. This key is used as the source of data to the entire Tree View by setting the ItemsSource property as shown in Figure 3, Callout #1. Figure 3: You need to start from the bottom up when laying out your templates for a Tree View. The ItemsSource property of the Tree View control is used as the data source in the Hierarchical Data Template with the key of employeeTypeTemplate. In this case there is only one Hierarchical Data Template, so any data you wish to display within that template comes from the collection of Employee Types. The TextBlock control in line 20 uses the EmpType property of the EmployeeType class. You specify the name of the Hierarchical Data Template to use in the ItemTemplate property of the Tree View (Callout #2). For the second (and last) level of the Tree View control you use a normal <DataTemplate> with the name of employeeTemplate (line 14). The Hierarchical Data Template in lines 17-21 sets its ItemTemplate property to the key name of employeeTemplate (Line 19 connects to Line 14). The source of the data for the <DataTemplate> needs to be a property of the EmployeeTypes collection used in the Hierarchical Data Template. In this case that is the Employees property. In the Employees property there is a “Name” property of the Employee class that is used to display the employee name in the second level of the Tree View (Line 15). What is important here is that your lowest level in your Tree View is expressed in a <DataTemplate> and should be listed first in your Resources section. The next level up in your Tree View should be a <HierarchicalDataTemplate> which has its ItemTemplate property set to the key name of the <DataTemplate> and the ItemsSource property set to the data you wish to display in the <DataTemplate>. The Tree View control should have its ItemsSource property set to the data you wish to display in the <HierarchicalDataTemplate> and its ItemTemplate property set to the key name of the <HierarchicalDataTemplate> object. It is in this way that you get the Tree View to display all levels of your hierarchical data structure. Three Levels in a Tree View Now let’s expand upon this concept and use three levels in our Tree View (Figure 4). This Tree View shows that you now have EmployeeTypes at the top of the tree, followed by a small set of employees that themselves manage employees. This means that the EmployeeType class has a collection of Employee objects. Each Employee class has a collection of Employee objects as well. Figure 4: When using 3 levels in your TreeView you will have 2 Hierarchical Data Templates and 1 Data Template. The EmployeeType class has not changed at all from our previous example. However, the Employee class now has one additional property as shown below: public class Employee{  public Employee(string name)  {    Name = name;    ManagedEmployees = new List<Employee>();  }   public string Name { get; set; }  public List<Employee> ManagedEmployees { get; set; }} The next thing that changes in our code is the EmployeeTypes class. The constructor now needs additional code to create a list of managed employees. Below is the new code. public class EmployeeTypes : List<EmployeeType>{  public EmployeeTypes()  {    EmployeeType type;    Employee emp;    Employee managed;     type = new EmployeeType("Manager");    emp = new Employee("Michael");    managed = new Employee("John");    emp.ManagedEmployees.Add(managed);    managed = new Employee("Tim");    emp.ManagedEmployees.Add(managed);    type.Employees.Add(emp);     emp = new Employee("Paul");    managed = new Employee("Michael");    emp.ManagedEmployees.Add(managed);    managed = new Employee("Sara");    emp.ManagedEmployees.Add(managed);    type.Employees.Add(emp);    this.Add(type);     type = new EmployeeType("Project Managers");    type.Employees.Add(new Employee("Tim"));    type.Employees.Add(new Employee("John"));    type.Employees.Add(new Employee("David"));    this.Add(type);  }} Now that you have all of the data built in your classes, you are now ready to hook up this three-level structure to your Tree View. Figure 5 shows the complete XAML needed to hook up your three-level Tree View. You can see in the XAML that there are now two Hierarchical Data Templates and one Data Template. Again you list the Data Template first since that is the lowest level in your Tree View. The next Hierarchical Data Template listed is the next level up from the lowest level, and finally you have a Hierarchical Data Template for the first level in your tree. You need to work your way from the bottom up when creating your Tree View hierarchy. XAML is processed from the top down, so if you attempt to reference a XAML key name that is below where you are referencing it from, you will get a runtime error. Figure 5: For three levels in a Tree View you will need two Hierarchical Data Templates and one Data Template. Each Hierarchical Data Template uses the previous template as its ItemTemplate. The ItemsSource of each Hierarchical Data Template is used to feed the data to the previous template. This is probably the most confusing part about working with the Tree View control. You are expecting the content of the current Hierarchical Data Template to use the properties set in the ItemsSource property of that template. But you need to look to the template lower down in the XAML to see the source of the data as shown in Figure 6. Figure 6: The properties you use within the Content of a template come from the ItemsSource of the next template in the resources section. Summary Understanding how to put together your hierarchy in a Tree View is simple once you understand that you need to work from the bottom up. Start with the bottom node in your Tree View and determine what that will look like and where the data will come from. You then build the next Hierarchical Data Template to feed the data to the previous template you created. You keep doing this for each level in your Tree View until you get to the last level. The data for that last Hierarchical Data Template comes from the ItemsSource in the Tree View itself. NOTE: You can download the sample code for this article by visiting my website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then select “Silverlight TreeView with Multiple Levels” from the drop down list.

    Read the article

  • vb.net sqlite how to loop through selected records and pass each record as a parameter to another fu

    - by mazrabul
    Hi, I have a sqlite table with following fields: Langauge level hours German 2 50 French 3 40 English 1 60 German 1 10 English 2 50 English 3 60 German 1 20 French 2 40 I want to loop through the records based on language and other conditions and then pass the current selected record to a different function. So I have the following mixture of actual code and psudo code. I need help with converting the psudo code to actual code, please. I am finding it difficult to do so. Here is what I have: Private sub mainp() Dim oslcConnection As New SQLite.SQLiteConnection Dim oslcCommand As SQLite.SQLiteCommand Dim langs() As String = {"German", "French", "English"} Dim i as Integer = 0 oslcConnection.ConnectionString = "Data Source=" & My.Settings.dbFullPath & ";" oslcConnection.Open() oslcCommand = oslcConnection.CreateCommand Do While i <= langs.count If langs(i) = "German" Then oslcCommand.CommandText = "SELECT * FROM table WHERE language = '" & langs(i) & "';" For each record selected 'psudo code If level = 1 Then 'psudo code update level to 2 'psudo code minorp(currentRecord) 'psudo code: calling minorp function and passing the whole record as a parameter End If 'psudo code If level = 2 Then 'psudo code update level to 3 'psudo code minorp(currentRecord) 'psudo code: calling minorp function and passing the whole record as a parameter End If 'psudo code Next 'psudo code End If If langs(i) = "French" Then oslcCommand.CommandText = "SELECT * FROM table WHERE language = '" & langs(i) & "';" For each record selected 'psudo code If level = 1 Then 'psudo code update level to 2 'psudo code minorp(currentRecord) 'psudo code: calling minorp function and passing the whole record as a parameter End If 'psudo code If level = 2 Then 'psudo code update level to 3 'psudo code minorp(currentRecord) 'psudo code: calling minorp function and passing the whole record as a parameter End If 'psudo code Next 'psudo code End If Loop End Sub Many thanks for your help.

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • QotD: Alex Buckley announcing Java™ SE 8 Early Access Builds with Type Annotation Support

    - by $utils.escapeXML($entry.author)
    I am pleased to announce that binary builds of the JSR 308 Reference Implementation are available at http://jdk8.java.net/type-annotations/.Please see the Type Annotations project page for a link to the JSR 308 Specification. There is also a changelog, which is important to review as there have been significant spec changes in 2012.The builds were generated from the type-annotations/type-annotations forest on 9/9. This forest is regularly updated from jdk8/jdk8 and jdk8/tl.Alex Buckley in a post on the type-annotations-dev mailing list.If you want to play with repeating annotations, check out http://jdk8.java.net/type-annotations/ ... thanks to superior code wrangling by Joel Franck (repeating annotations) and Werner Dietl (type annotations), support for repeating annotations on declarations is included in the build.Alex Buckley in a post on the enhanced-metadata-spec-discuss mailing list.

    Read the article

  • QotD: Matt Stephens on OpenJDK in 2012 at the Register

    - by $utils.escapeXML($entry.author)
    While Java SE churns and gets pushed back, the new initiatives do at least show OpenJDK is reinvigorating the Java space. The project has picked up speed just a little too late for the fifth anniversary of the open-sourcing of Java, but if these promised developments really do come together then that means next year should see a series of “one last things” missing from 2011.Matt Stephens in an article in the Register.

    Read the article

  • QotD: Justin Kestelyn, Editor in Chief of Java Magazine on OpenJDK

    - by $utils.escapeXML($entry.author)
    Things have changed now. Java SE 7 is available, and Java SE 8 is on the way; Java developer conferences around the world are selling out in short order; Java skills are in high demand by recruiters; and the Java community is reinvigorated thanks to efforts including the OpenJDK project, the Adopt-a-JSR program, and—if I may be so bold—even this publication.Justin Kestelyn, Editor in Chief of the Java Magazine, in the opening 'from the editor' article in the magazine's March/April edition.

    Read the article

  • Project Nashorn Slides & Talks

    - by $utils.escapeXML($entry.author)
    At the Eclipse Demo Camp in Hamburg last week I got asked about resources on Project Nashorn. So, I compiled a quick list:slides from Jim Laskey's JavaOne 2011 talk titled "The Future of JavaScript in the JDK".slides from Bernard Traversat's JavaOne 2011 talk titled "HTLM5 and Java: The Facts and the Myths".slides and video from Jim Laskey's JVM Language Simmit talk titled "Adventures in JSR 292 (Nashorn)".

    Read the article

  • QotD: Peter Wayner on Programming trend No. 1

    - by $utils.escapeXML($entry.author)
    Programming trend No. 1: The JVM is not just for Java anymoreA long time ago, Sun created Java and shared the virtual machine with the world. By the time Microsoft created C#, people recognized that the VM didn't have to be limited to one language. Anything that could be transformed into the byte code could use it.Now, it seems that everyone is building their language to do just that. Leave the job of building a virtual machine to Sun/Oracle, and concentrate your efforts on the syntactic bells and structural whistles, goes the mantra today.Peter Wayner in an article on "11 programming trends to watch" at ITWorld.

    Read the article

  • UNHCR and Stanyslas Matayo Receive Duke's Choice Award 2012

    - by Geertjan
    This year, NetBeans Platform applications winning Duke's Choice Awards were not only AgroSense, by Ordina in the Netherlands, and the air command and control system by NATO... but also Level One, the UNHCR registration and emergency management system. Unfortunately, Stanyslas Matayo, the architect and lead engineer of Level One, was unable to be at JavaOne to receive his award. It would have been really cool to meet him in person, of course, and he would have joined the NetBeans Party and NetBeans Day, as well as the NetBeans Platform panel discussions that happened at various stages throughout JavaOne. Instead, he received his award at Oracle Day 2012 Nairobi, some days ago, where he presented Level One and received the Duke's Choice Award: Level One is the UNHCR (UN refugee agency) application for capturing information on the first level details of refugees in an emergency context. In its recently released initial version, the application was used in Niger to register information about families in emergency contexts. Read more about it here and see the screenshot below. Congratulations, Stanyslas, and the rest of the development team working on this interesting and important project!

    Read the article

  • QotD - Nicolas de Loof on AdoptOpenJDK

    - by $utils.escapeXML($entry.author)
    The AdoptOpenJDK program is an initiative to get as many Java users as possible to try the OpenJDK 8 preview builds, so that feedback is collected before JDK 8 is officially released. There are many ways to contribute to this program (as explained on the wiki), but the most basic one is to start testing your own project on the Java 8 platform. CloudBees can help you there, as we just made OpenJDK 8 (preview) available on DEV@cloud so that you can configure a build job to check project compatibility. We will upgrade the JDK for all recent preview builds until JDK 8 is finalNicolas de Loof, Support Engineer at Cloudbees in a blog post on AdoptOpenJDK.

    Read the article

  • QotD: Roger Yeung on Oracle's Java Uninstall Applet

    - by $utils.escapeXML($entry.author)
    We have a build of an Applet that will assist in the removal of older versions of the JRE. The Applet is available for testing on http://java.com/uninstall-tool . At this stage the Applet only targets the Windows platform, as it represents the largest installed base and the need for platform specific elements made Windows the logical starting point. We are deliberately not giving documentation on how to use the applet - we want feedback of the tool standing on its own.The intent of making this build available is to gather feedback; ideas, suggestions, comments, good and bad, what works, what does not work, what could be improved, etc. Please try it out and give us feedback to ensure a smooth release.Roger Yeung in a post with more details on providing feedback.

    Read the article

  • I cannot enter my password when using sudo to install Sophos AV for Linux

    - by dycharlie
    I cannot type my password as shown below. After successfully unlocking root account in Ubuntu 12.04 LTS. saintmichael@ubuntu:~$ sudo usage: sudo [-D level] -h | -K | -k | -V usage: sudo -v [-AknS] [-D level] [-g groupname|#gid] [-p prompt] [-u user name|#uid] usage: sudo -l[l] [-AknS] [-D level] [-g groupname|#gid] [-p prompt] [-U user name] [-u user name|#uid] [-g groupname|#gid] [command] usage: sudo [-AbEHknPS] [-C fd] [-D level] [-g groupname|#gid] [-p prompt] [-u user name|#uid] [-g groupname|#gid] [VAR=value] [-i|-s] [<command>] usage: sudo -e [-AknS] [-C fd] [-D level] [-g groupname|#gid] [-p prompt] [-u user name|#uid] file ... saintmichael@ubuntu:~$ sudo ./sophos-av/install.sh [sudo] password for saintmichael:

    Read the article

  • QotD: Sharat Chander on Java Embedded @ JavaOne

    - by $utils.escapeXML($entry.author)
    This year, JavaOne is expanding to offer business leaders a chance to participate, as well. I'm very proud to announce the deployment of "Java Embedded @ JavaOne." With the explosion of new unconnected devices and data creation, a new IT revolution is taking place in the embedded space. This net-new conference will specifically contain business content addressing the growing embedded ecosystem.As part of the "Java Embedded @ JavaOne" call-for-papers (CFP), interested speakers can continue forward and make business submissions, and due to high interest they also have the additional opportunity to make technical submissions for the flagship JavaOne conference, but _*ONLY*_ for the "Java ME, Java Card, Embedded and Devices" track. Sharat Chander in a set of posts on Java Embedded @ JavaOne to the JUG Leaders mailing list.

    Read the article

  • Memento with optional state?

    - by Korey Hinton
    EDIT: As pointed out by Steve Evers and pdr, I am not correctly implementing the Memento pattern, my design is actually State pattern. Menu Program I built a console-based menu program with multiple levels that selects a particular test to run. Each level more precisely describes the operation. At any level you can type back to go back one level (memento). Level 1: Server Type? [1] Server A [2] Server B Level 2: Server environment? [1] test [2] production Level 3: Test type? [1] load [2] unit Level 4: Data Collection? [1] Legal docs [2] Corporate docs Level 4.5 (optional): Load Test Type [2] Multi TIF [2] Single PDF Level 5: Command Type? [1] Move [2] Copy [3] Remove [4] Custom Level 6: Enter a keyword [setup, cleanup, run] Design States PROBLEM: Right now the STATES enum is the determining factor as to what state is BACK and what state is NEXT yet it knows nothing about what the current memento state is. Has anyone experienced a similar issue and found an effective way to handle mementos with optional state? static enum STATES { SERVER, ENVIRONMENT, TEST_TYPE, COLLECTION, COMMAND_TYPE, KEYWORD, FINISHED } Possible Solution (Not-flexible) In reference to my code below, every case statement in the Menu class could check the state of currentMemo and then set the STATE (enum) accordingly to pass to the Builder. However, this doesn't seem flexible very flexible to change and I'm struggling to see an effective way refactor the design. class Menu extends StateConscious { private State state; private Scanner reader; private ServerUtils utility; Menu() { state = new State(); reader = new Scanner(System.in); utility = new ServerUtils(); } // Recurring menu logic public void startPromptingLoop() { List<State> states = new ArrayList<>(); states.add(new State()); boolean redoInput = false; boolean userIsDone = false; while (true) { // get Memento from last loop Memento currentMemento = states.get(states.size() - 1) .saveMemento(); if (currentMemento == null) currentMemento = new Memento.Builder(0).build(); if (!redoInput) System.out.println(currentMemento.prompt); redoInput = false; // prepare Memento for next loop Memento nextMemento = null; STATES state = STATES.values()[states.size() - 1]; // get user input String selection = reader.nextLine(); switch (selection) { case "exit": reader.close(); return; // only escape case "quit": nextMemento = new Memento.Builder(first(), currentMemento, selection).build(); states.clear(); break; case "back": nextMemento = new Memento.Builder(previous(state), currentMemento, selection).build(); if (states.size() <= 1) { states.remove(0); } else { states.remove(states.size() - 1); states.remove(states.size() - 1); } break; case "1": nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); break; case "2": nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); break; case "3": nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); break; case "4": nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); break; default: if (state.equals(STATES.CATEGORY)) { String command = selection; System.out.println("Executing " + command + " command on: " + currentMemento.type + " " + currentMemento.environment); utility.executeCommand(currentMemento.nickname, command); userIsDone = true; states.clear(); nextMemento = new Memento.Builder(first(), currentMemento, selection).build(); } else if (state.equals(STATES.KEYWORD)) { nextMemento = new Memento.Builder(next(state), currentMemento, selection).build(); states.clear(); nextMemento = new Memento.Builder(first(), currentMemento, selection).build(); } else { redoInput = true; System.out.println("give it another try"); continue; } break; } if (userIsDone) { // start the recurring menu over from the beginning for (int i = 0; i < states.size(); i++) { if (i != 0) { states.remove(i); // remove all except first } } reader = new Scanner(System.in); this.state = new State(); userIsDone = false; } if (!redoInput) { this.state.restoreMemento(nextMemento); states.add(this.state); } } } }

    Read the article

  • PSA: OpenJDK OCA Submission E-Mail Address

    - by $utils.escapeXML($entry.author)
    If you're coming new to OpenJDK and are reading How to contribute page, you'll quickly notice that item 0 contains the following section "If you haven't yet signed the Oracle Contributor Agreement (OCA) then please do so, scan it and e-mail the result to oracle-ca_us(at)oracle.com."That e-mail address here used to be a sun.com address back when OpenJDK started, but that changed a little while ago. So if you encounter e-mail trouble trying to submit your OCA in order to hack on OpenJDK, please check if you're trying to send it to the correct e-mail address.

    Read the article

  • QotD: Heather Vancura-Chilson on 2012 JCP EC Election Ballot

    - by $utils.escapeXML($entry.author)
    The JCP Executive Committee (EC) Election ballot is now open and all of the candidates' nominations materials are now available on JCP.org -- note that two new candidates were nominated late last week: Liferay and North Sixty-One. It is shaping up to be an exciting election this year!The ratified candidates are: Cinterion, Credit Suisse, Fujitsu and HP.The elected candidates are (9 candidates, 2 open seats): Cisco Systems, CloudBees, Giuseppe Dell'Abate, Liferay, London Java Community, MoroccoJUG, North Sixty-One, Software AG, and Zero Turnaround.Heather Vancura-Chilson in a post on the JCP Program Office blog.

    Read the article

  • QotD: Maurizio Cimadamore on Project Lambda Binary Snapshots

    - by $utils.escapeXML($entry.author)
    I'm glad to announce that the first binary snapshots of the lambda repository are available at the following URL:http://jdk8.java.net/lambda/As you can imagine, as the implementation of the compiler/libraries is still under heavy development, there are still many rough corners that need to be polished. I'd like to thank you all for all the patience and the valuable feedback provided so far - please keep it coming!Maurizio Cimadamore announcing the Project Lambda binary snapshots on the lambda-dev OpenJDK mailing list.

    Read the article

  • OpenJDK In The News: Oracle Outlines Roadmap for Java SE and JavaFX at JavaOne 2012

    - by $utils.escapeXML($entry.author)
    The OpenJDK Community continues to host the development of the reference implementation of Java SE 8. Weekly developer preview builds of JDK 8 continue to be available from jdk8.java.net.OpenJDK continues to thrive with contributions from Oracle, as well as other companies, researchers and individuals.The OpenJDK Web Site Terms of Use was recently updated to allow work on Java Specification Requests (JSRs) for Java SE to take place in the OpenJDK Community, alongside their corresponding reference implementations, so that specification leads can satisfy the new transparency requirements of the Java Community Process (JCP 2.8).“The recent decision by the Java SE 8 Expert Group to defer modularity to Java SE 9 will allow us to focus on the highly-anticipated Project Lambda, the Nashorn JavaScript engine, the new Date/Time API, and Type Annotations, along with numerous other performance, simplification, and usability enhancements,” said Georges Saab, vice president, Software Development, Java Platform Group at Oracle. “We are continuing to increase our communication and transparency by developing the reference implementation and the Oracle-led JSRs in the OpenJDK community.”Quotes taken from the 14th press release from Oracle mentioning OpenJDK, titled "Oracle Outlines Roadmap for Java SE and JavaFX at JavaOne 2012".

    Read the article

  • OpenJDK In The News: AMD and Oracle to Collaborate in the OpenJDK Community [..]

    - by $utils.escapeXML($entry.author)
    During the JavaOne™ 2012 Strategy Keynote, AMD (NYSE: AMD) announced its participation in OpenJDK™ Project “Sumatra” in collaboration with Oracle and other members of the OpenJDK community to help bring heterogeneous computing capabilities to Java™ for server and cloud environments. The OpenJDK Project “Sumatra” will explore how the Java Virtual Machine (JVM), as well as the Java language and APIs, might be enhanced to allow applications to take advantage of graphics processing unit (GPU) acceleration, either in discrete graphics cards or in high-performance graphics processor cores such as those found in AMD accelerated processing units (APUs).“Affirming our plans to contribute to the OpenJDK Project represents the next step towards bringing heterogeneous computing to millions of Java developers and can potentially lead to future developments of new hardware models, as well as server and cloud programming paradigms,” said Manju Hegde, corporate vice president, Heterogeneous Applications and Developer Solutions at AMD. “AMD has an established track record of collaboration with open-software development communities from OpenCL™ to the Heterogeneous System Architecture (HSA) Foundation, and with this initiative we will help further the development of graphics acceleration within the Java community.”“We expect our work with AMD and other OpenJDK participants in Project “Sumatra” will eventually help provide Java developers with the ability to quickly leverage GPU acceleration for better performance,” said Georges Saab, vice president, Software Development, Java Platform Group at Oracle. "We hope individuals and other organizations interested in this exciting development will follow AMD's lead by joining us in Project “Sumatra."Quotes taken from the first press release from AMD mentioning OpenJDK, titled "AMD and Oracle to Collaborate in the OpenJDK Community to Explore Heterogeneous Computing for Java ".

    Read the article

  • QotD: Eben Upton on Raspberry Pi Model B Shipping With 512MB of RAM

    - by $utils.escapeXML($entry.author)
    One of the most common suggestions we’ve heard since launch is that we should produce a more expensive “Model C” version of Raspberry Pi with extra RAM. This would be useful for people who want to use the Pi as a general-purpose computer, with multiple large applications running concurrently, and would enable some interesting embedded use cases (particularly using Java) which are slightly too heavyweight to fit comfortably in 256MB.The downside of this suggestion for us is that we’re very attached to $35 as our highest price point. With this in mind, we’re pleased to announce that from today all Model B Raspberry Pis will ship with 512MB of RAM as standard.Eben Upton, a founder and trustee of the Raspberry Pi foundation, in a blog post announcing the change.

    Read the article

  • Food For Tests: 7u12 Build b05, 8 with Lambda Preview b68

    - by $utils.escapeXML($entry.author)
    This week brought along new developer preview releases of the JDK and related projects. On the JDK 7 side, the Java™ Platform, Standard Edition 7 Update 12 Developer Preview Releases have been updated to 7u12 Build b05. On the JDK 8 side, as Mike Duigou announced on the lambda-dev mailing list, A new promotion (b68) of preview binaries for OpenJDK Java 8 with lambda extensions is now available at http://jdk8.java.net/lambda/. Happy testing!

    Read the article

  • OpenJDK In the News: Oracle Outlines Plans to Make the Future Java During JavaOne 2012 [..]

    - by $utils.escapeXML($entry.author)
    Phil Rogers, AMD Corporate Fellow and HSA Foundation President, joined Oracle on stage to discuss Project Sumatra, which was recently approved in the OpenJDK Community. Project Sumatra will explore how Java can be extended to support heterogeneous computing models for improved performance and power consumption.Oracle plans to propose Project Nashorn, a new JavaScript engine for the Java Virtual Machine (JVM), later this year in the OpenJDK Community. Oracle expects to enhance Project Nashorn with the support of several other OpenJDK Community contributors, including IBM, Red Hat and Twitter.The OpenJDK Community continues to host the development of the reference implementation of Java SE 8. Weekly developer preview builds of JDK 8 continue to be available from jdk8.java.net.Quotes taken from the 13th press release from Oracle mentioning OpenJDK, titled "Oracle Outlines Plans to Make the Future Java During JavaOne 2012 Strategy Keynote".

    Read the article

  • Downgrading Mercurial in MacPorts

    - by $utils.escapeXML($entry.author)
    Another Mercurial release, another broken extension. Mercurial 2.3 breaks hgforest ... once more. Of course, with open source, the notion of backwards compatibility is sometimesoften left as an exercise for the curious readers of said source code, so until someone gets around to fix up hgforest ... once more, to keep up with Mercurial's churn, one way to get hgforest working again is to downgrade to Mercurial 2.2.3, for example. In MacPorts, assuming you have installed Mercurial 2.2.3 before, and it was updated to the broken Mercurial 2.3 version, it's pretty easy to get back to a working state: sudo port deactivate [email protected]_1sudo port activate [email protected]_0

    Read the article

  • Looking for a previous post about skillsets for an embedded/firmware engineer. Can't find it anymore [closed]

    - by Sandiego
    I remember reading a post inquiring the basic/advanced skills required for embedded engineer works. The top comment divides the answer into two parts, the basic level/design level ,not purely coding(something like this...). Then another level : writing application(all about programming). For each level/category, the top comment talks about the necessary skills/knowledge/college courses(for me at least) . While I was searching for this post as I was trying to read it again, I found similar questions, but these are not the one I saw: http://stackoverflow.com/questions/1091931/what-skill-set-should-a-low-level-programmer-possess http://stackoverflow.com/questions/45247/how-do-i-get-started-in-embedded-programming http://electronics.stackexchange.com/questions/3343/how-to-become-an-embedded-software-developer Has anyone seen the post I'm talking about? This is a repost from Stackoverflow where I was told that this question is off-topic. So..please help guys

    Read the article

< Previous Page | 55 56 57 58 59 60 61 62 63 64 65 66  | Next Page >